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Deep Network Designer
Design, visualize, and train deep learning networks

Description
The Deep Network Designer app lets you build, visualize, edit, and train deep learning networks.
Using this app, you can:

• Build, import, edit, and combine networks.
• Load pretrained networks and edit them for transfer learning.
• View and edit layer properties and add new layers and connections.
• Analyze the network to ensure that the network architecture is defined correctly, and detect

problems before training.
• Import and visualize datastores and image data for training and validation.
• Apply augmentations to image classification training data and visualize the distribution of the

class labels.
• Train networks and monitor training with plots of accuracy, loss, and validation metrics.
• Export trained networks to the workspace or to Simulink®.
• Generate MATLAB® code for building and training networks and create experiments for

hyperparameter tuning using Experiment Manager.
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Open the Deep Network Designer App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter deepNetworkDesigner.

Examples

Select Pretrained Network

Examine a pretrained network in Deep Network Designer.

Open the app and select a pretrained network. You can also load a pretrained network by selecting
the Designer tab and clicking New. If you need to download the network, then click Install to open
the Add-On Explorer. Deep Network Designer has pretrained networks suitable for image and audio
tasks. Loading pretrained audio networks requires Audio Toolbox™.

Tip To get started, try choosing one of the faster image classification networks, such as SqueezeNet
or GoogLeNet. Once you gain an understanding of which settings work well, try a more accurate
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network, such as Inception-v3 or a ResNet, and see if that improves your results. For more
information on selecting a pretrained network, see “Pretrained Deep Neural Networks”.

In the Designer pane, visualize and explore the network. For a list of available pretrained image
classification networks and how to compare them, see “Pretrained Deep Neural Networks”.
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For information on constructing networks using Deep Network Designer, see “Build Networks with
Deep Network Designer”.

Edit Pretrained Network for Transfer Learning

Prepare a network for transfer learning by editing it in Deep Network Designer.

Transfer learning is the process of taking a pretrained deep learning network and fine-tuning it to
learn a new task. You can quickly transfer learned features to a new task using a smaller number of
training images. Transfer learning is therefore often faster and easier than training a network from
scratch. To use a pretrained network for transfer learning, you must change the number of classes to
match your new data set.

Open Deep Network Designer with SqueezeNet.

deepNetworkDesigner(squeezenet)

To prepare the network for transfer learning, replace the last learnable layer and the final
classification layer. For SqueezeNet, the last learnable layer is a 2-D convolutional layer named
'conv10'.
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• Drag a new convolution2dLayer onto the canvas. Set the FilterSize property to 1,1 and the
NumFilters property to the new number of classes.

• Change the learning rates so that learning is faster in the new layer than in the transferred layers
by increasing the WeightLearnRateFactor and BiasLearnRateFactor values.

• Delete the last convolution2dLayer and connect your new layer instead.

Tip For most pretrained networks (for example, GoogLeNet) the last learnable layer is the fully
connected layer. To prepare the network for transfer learning, replace the fully connected layer with
a new fully connected layer and set the OutputSize property to the new number of classes. For an
example, see “Get Started with Deep Network Designer”.

Next, delete the classification output layer. Then, drag a new classificationLayer onto the canvas
and connect it instead. The default settings for the output layer mean the network learns the number
of classes during training.

Check your network by clicking Analyze in the Designer tab. The network is ready for training if
Deep Learning Network Analyzer reports zero errors. For an example showing how to train a
network to classify new images, see “Transfer Learning with Deep Network Designer”.

Get Help on Layer Properties

For help understanding and editing layer properties, click the help icon next to the layer name.
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On the Designer pane, select a layer to view and edit the properties. Click the help icon next to the
layer name for more information about the properties of the layer.

For more information about layer properties, see “List of Deep Learning Layers”.

Add Custom Layer to Network

Add layers from the workspace to a network in Deep Network Designer.

In Deep Network Designer, you can build a network by dragging built-in layers from the Layer
Library to the Designer pane and connecting them. You can also add custom layers from the
workspace to a network in the Designer pane. Suppose that you have a custom layer stored in the
variable myCustomLayer.

1 Click New in the Designer tab.
2 Pause on From Workspace and click Import.
3 Select myCustomLayer and click OK.
4 Click Add.

The app adds the custom layer to the top of the Designer pane. To see the new layer, zoom-in using a
mouse or click Zoom in.

Connect myCustomLayer to the network in the Designer pane. For an example showing how build a
network with a custom layer in Deep Network Designer, see “Import Custom Layer into Deep
Network Designer”.

You can also combine networks in Deep Network Designer. For example, you can create a semantic
segmentation network by combining a pretrained network with a decoder subnetwork.

Import Data for Training

Import data into Deep Network Designer for training.
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You can use the Data tab of Deep Network Designer to import training and validation data. Deep
Network Designer supports the import of image data and datastore objects. Select an import method
based on the type of task.

Task Data Type Data Import Method Example Visualization
Image
classifica
tion

ImageDatastor
e object, or a
folder with
subfolders
containing
images for each
class. The class
labels are
sourced from the
subfolder names.

Select Import Data >
Import Image Data.

You can select augmentation
options and specify the
validation data in the Import
Image Data dialog box. For
more information, see “Import
Data into Deep Network
Designer”.
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Task Data Type Data Import Method Example Visualization
Other
extended
workflow
s (such
as
numeric
feature
input,
out-of-
memory
data,
image
processi
ng, and
audio
and
speech
processi
ng)

Datastore.

For other
extended
workflows, use a
suitable
datastore object.
For example,
AugmentedImag
eDatastore,
CombinedDatas
tore,
pixelLabelIma
geDatastore,
audioDatastor
e, or custom
datastore.

You can import
and train any
datastore object
that works with
the
trainNetwork
function. For
more information
about
constructing and
using datastore
objects for deep
learning
applications, see
“Datastores for
Deep Learning”.

Select Import Data >
Import Datastore.

You can specify the validation
data in the Import Datastore
dialog box. For more
information, see “Import Data
into Deep Network Designer”.

Train Network

Train deep neural networks using Deep Network Designer.

Using Deep Network Designer, you can train a network using image data or any datastore object that
works with the trainNetwork function. For example, you can train a semantic segmentation
network or a multi-input network using a CombinedDatastore object. For more information about
importing data into Deep Network Designer, see “Import Data into Deep Network Designer”.

To train a network on data imported into Deep Network Designer, on the Training tab, click Train.
The app displays an animated plot of the training progress. The plot shows mini-batch loss and
accuracy, validation loss and accuracy, and additional information on the training progress. The plot
has a stop button  in the top-right corner. Click the button to stop training and return the current
state of the network.
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For more information, see “Train Networks Using Deep Network Designer”.

If you require greater control over the training, click Training Options to select the training
settings. For more information about selecting training options, see trainingOptions.
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For an example showing how to train an image classification network, see “Transfer Learning with
Deep Network Designer”. For an example showing how to train a sequence-to-sequence LSTM
network, see “Train Network for Time Series Forecasting Using Deep Network Designer”.

To train a network on data not supported by Deep Network Designer, select the Designer tab, and
click Export to export the initial network architecture. You can then programmatically train the
network, for example, using a custom training loop.

Export Network and Generate Code

Export the network architecture created in Deep Network Designer to the workspace or Simulink and
generate code to recreate the network and training.

• To export the network architecture with the initial weights to the workspace, on the Designer tab,
click Export. Depending on the network architecture, Deep Network Designer exports the
network as a LayerGraph lgraph or as a Layer object layers.

• To export the network trained in Deep Network Designer to the workspace, on the Training tab,
click Export. Deep Network Designer exports the trained network architecture as a DAGNetwork
object trainedNetwork. Deep Network Designer also exports the results from training, such as
training and validation accuracy, as the structure array trainInfoStruct.

• To export the network trained in Deep Network Designer to Simulink, on the Training tab, click
Export > Export to Simulink. Deep Network Designer saves the trained network as a MAT-file
and generates Simulink blocks representing the trained network. The blocks generated depend on
the type of network trained.

• Image Classifier — Classify data using a trained deep learning neural network.
• Predict — Predict responses using a trained deep learning neural network.
• Stateful Classify — Classify data using a trained recurrent neural network.
• Stateful Predict — Predict responses using a trained recurrent neural network.

For an example showing how to export a network from Deep Network Designer to Simulink, see
“Export Image Classification Network from Deep Network Designer to Simulink”.

To recreate a network that you construct and train in Deep Network Designer, generate MATLAB
code.

• To recreate the network layers, on the Designer tab, select Export > Generate Code.
• To recreate the network layers, including any learnable parameters, on the Designer tab, select

Export > Generate Code with Initial Parameters.
• To recreate the network, data import, and training, on the Training tab, select Export >

Generate Code for Training.

After generating a script, you can perform the following tasks.

• To recreate the network layers created in the app, run the script. If you generated the training
script, running the script will also replicate the network training.

• Examine the code to learn how to create and connect layers programmatically, and how to train a
deep network.

• To modify the layers, edit the code. You can also run the script and import the network back into
the app for editing.
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For more information, see “Generate MATLAB Code from Deep Network Designer”.

You can also use Deep Network Designer to create deep learning experiments which sweep through a
range of hyperparameter values or use Bayesian optimization to find optimal training options. For an
example showing how to use Experiment Manager to tune the hyperparameters of a network
trained in Deep Network Designer, see “Generate Experiment Using Deep Network Designer”.

• “Transfer Learning with Deep Network Designer”
• “Build Networks with Deep Network Designer”
• “Import Data into Deep Network Designer”
• “Train Networks Using Deep Network Designer”
• “Train Network for Time Series Forecasting Using Deep Network Designer”
• “Train Simple Semantic Segmentation Network in Deep Network Designer”
• “Image-to-Image Regression in Deep Network Designer”
• “Transfer Learning with Pretrained Audio Networks in Deep Network Designer”
• “Import Custom Layer into Deep Network Designer”
• “Generate MATLAB Code from Deep Network Designer”
• “Export Image Classification Network from Deep Network Designer to Simulink”
• “Generate Experiment Using Deep Network Designer”
• “List of Deep Learning Layers”

Programmatic Use
deepNetworkDesigner opens the Deep Network Designer app. If Deep Network Designer is already
open, deepNetworkDesigner brings focus to the app.

deepNetworkDesigner(net) opens the Deep Network Designer app and loads the specified
network into the app. The network can be a series network, DAG network, layer graph, or an array of
layers.

For example, open Deep Network Designer with a pretrained SqueezeNet network.

net = squeezenet;
deepNetworkDesigner(net);

If Deep Network Designer is already open, deepNetworkDesigner(net) brings focus to the app
and prompts you to add to or replace any existing network.

Tips
To train multiple networks and compare the results, try Experiment Manager. You can use Deep
Network Designer to create experiments suitable for Experiment Manager.

Version History
Introduced in R2018b
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See Also
Functions
analyzeNetwork | trainNetwork | trainingOptions | Experiment Manager

Topics
“Transfer Learning with Deep Network Designer”
“Build Networks with Deep Network Designer”
“Import Data into Deep Network Designer”
“Train Networks Using Deep Network Designer”
“Train Network for Time Series Forecasting Using Deep Network Designer”
“Train Simple Semantic Segmentation Network in Deep Network Designer”
“Image-to-Image Regression in Deep Network Designer”
“Transfer Learning with Pretrained Audio Networks in Deep Network Designer”
“Import Custom Layer into Deep Network Designer”
“Generate MATLAB Code from Deep Network Designer”
“Export Image Classification Network from Deep Network Designer to Simulink”
“Generate Experiment Using Deep Network Designer”
“List of Deep Learning Layers”
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Deep Network Quantizer
Quantize a deep neural network to 8-bit scaled integer data types

Description
Use the Deep Network Quantizer app to reduce the memory requirement of a deep neural network
by quantizing weights, biases, and activations of convolution layers to 8-bit scaled integer data types.
Using this app you can:

• Visualize the dynamic ranges of convolution layers in a deep neural network.
• Select individual network layers to quantize.
• Assess the performance of a quantized network.
• Generate GPU code to deploy the quantized network using GPU Coder™.
• Generate HDL code to deploy the quantized network to an FPGA using Deep Learning HDL

Toolbox™.
• Generate C++ code to deploy the quantized network to an ARM Cortex-A microcontroller using

MATLAB Coder™.
• Generate a simulatable quantized network that you can explore in MATLAB without generating

code or deploying to hardware.

This app requires Deep Learning Toolbox Model Quantization Library. To learn about the products
required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.
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Open the Deep Network Quantizer App
• MATLAB command prompt: Enter deepNetworkQuantizer.
• MATLAB toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.

Examples

Quantize a Network for GPU Deployment

To explore the behavior of a neural network with quantized convolution layers, use the Deep
Network Quantizer app. This example quantizes the learnable parameters of the convolution layers
of the squeezenet neural network after retraining the network to classify new images according to
the “Train Deep Learning Network to Classify New Images” example.

This example uses a DAG network with the GPU execution environment.

Load the network to quantize into the base workspace.

load squeezenetmerch
net
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net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data.

The app uses calibration data to exercise the network and collect the dynamic ranges of the weights
and biases in the convolution and fully connected layers of the network and the dynamic ranges of the
activations in all layers of the network. For the best quantization results, the calibration data must be
representative of inputs to the network.

The app uses the validation data to test the network after quantization to understand the effects of
the limited range and precision of the quantized learnable parameters of the convolution layers in the
network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

At the MATLAB command prompt, open the app.

deepNetworkQuantizer

In the app, click New and select Quantize a network.

The app verifies your execution environment. For more information, see “Quantization Workflow
Prerequisites”.

In the dialog, select the execution environment and the network to quantize from the base
workspace. For this example, select a GPU execution environment and the DAG network, net.

 Deep Network Quantizer

1-17



The app displays the layer graph of the selected network.

In the Calibrate section of the toolstrip, under Calibration Data, select the
augmentedImageDatastore object from the base workspace containing the calibration data,
aug_calData. Select Calibrate.

The Deep Network Quantizer uses the calibration data to exercise the network and collect range
information for the learnable parameters in the network layers.

When the calibration is complete, the app displays a table containing the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network and their minimum and maximum values during the calibration. To the right of
the table, the app displays histograms of the dynamic ranges of the parameters. The gray regions of
the histograms indicate data that cannot be represented by the quantized representation. For more
information on how to interpret these histograms, see “Quantization of Deep Neural Networks”.

1 Deep Learning Functions

1-18



In the Quantize column of the table, indicate whether to quantize the learnable parameters in the
layer. Layers that are not quantized remain in single-precision after quantization.

In the Validate section of the toolstrip, under Validation Data, select the
augmentedImageDatastore object from the base workspace containing the validation data,
aug_valData.

In the Validate section of the toolstrip, under Quantization Options, select the Default metric
function and MinMax exponent scheme. Select Quantize and Validate.

The Deep Network Quantizer quantizes the weights, activations, and biases of convolution layers in
the network to scaled 8-bit integer data types and uses the validation data to exercise the network.
The app determines a default metric function to use for the validation based on the type of network
that is being quantized. For a classification network, the app uses Top-1 Accuracy.

When the validation is complete, the app displays the results of the validation, including:

• Metric function used for validation
• Result of the metric function before and after quantization
• Memory requirement of the network before and after quantization (MB)
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If you want to use a different metric function for validation, for example to use the Top-5 accuracy
metric function instead of the default Top-1 accuracy metric function, you can define a custom metric
function. Save this function in a local file.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

To revalidate the network using this custom metric function, under Quantization Options, enter the
name of the custom metric function, hComputeModelAccuracy. Select Add to add
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hComputeModelAccuracy to the list of metric functions available in the app. Select
hComputeModelAccuracy as the metric function to use.

The custom metric function must be on the path. If the metric function is not on the path, this step
will produce an error.

Select Quantize and Validate.

The app quantizes the network and displays the validation results for the custom metric function.
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The app displays only scalar values in the validation results table. To view the validation results for a
custom metric function with non-scalar output, export the dlquantizer object as described below,
then validate using the validate function at the MATLAB command window.

If the performance of the quantized network is not satisfactory, you can choose to not quantize some
layers by deselecting the layer in the table. You can also explore the effects of choosing a different
exponent selection scheme for quantization in the Quantization Options menu. To see the effects of
these changes, select Quantize and Validate again.

After calibrating the network, you can choose to export the quantized network or the dlquantizer
object. Select the Export button. In the drop down, select from the following options:

• Export Quantized Network - Add the quantized network to the base workspace. This option
exports a simulatable quantized network that you can explore in MATLAB without deploying to
hardware.

• Export Quantizer - Add the dlquantizer object to the base workspace. You can save the
dlquantizer object and use it for further exploration in the Deep Network Quantizer app or at
the command line, or use it to generate code for your target hardware.

• Generate Code - Open the GPU Coder app and generate GPU code from the quantized neural
network. Generating GPU code requires a GPU Coder™ license.
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Import a dlquantizer Object into the Deep Network Quantizer App

This example shows you how to import a dlquantizer object from the base workspace into the
Deep Network Quantizer app. This allows you to begin quantization of a deep neural network using
the command line or the app, and resume your work later in the app.

Open the Deep Network Quantizer app.

deepNetworkQuantizer

In the app, click New and select Import dlquantizer object.

In the dialog, select the dlquantizer object to import from the base workspace. For this example,
use quantObj that you create in the above example Quantize a Neural Network for GPU Target.

The app imports any data contained in the dlquantizer object that was collected at the command
line. This data can include the network to quantize, calibration data, validation data, and calibration
statistics.

The app displays a table containing the calibration data contained in the imported dlquantizer
object, quantObj. To the right of the table, the app displays histograms of the dynamic ranges of the
parameters. The gray regions of the histograms indicate data that cannot be represented by the
quantized representation. For more information on how to interpret these histograms, see
“Quantization of Deep Neural Networks”.
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Quantize a Network for FPGA Deployment

To explore the behavior of a neural network that has quantized convolution layers, use the Deep
Network Quantizer app. This example quantizes the learnable parameters of the convolution layers
of the LogoNet neural network for an FPGA target.

For this example, you need the products listed under FPGA in “Quantization Workflow Prerequisites”.

Load the pretrained network to quantize into the base workspace. Create a file in your current
working folder called getLogoNetwork.m. In the file, enter:
function net = getLogoNetwork
 if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
    net  = data.convnet;
end

Load the pretrained network.

snet = getLogoNetwork;

snet = 

  SeriesNetwork with properties:
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         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The Deep Network Quantizer app uses calibration data to exercise the network and collect the
dynamic ranges of the weights and biases in the convolution and fully connected layers of the
network. The app also exercises the dynamic ranges of the activations in all layers of the LogoNet
network. For the best quantization results, the calibration data must be representative of inputs to
the LogoNet network.

After quantization, the app uses the validation data set to test the network to understand the effects
of the limited range and precision of the quantized learnable parameters of the convolution layers in
the network.

In this example, use the images in the logos_dataset data set to calibrate and validate the
LogoNet network. Define an imageDatastore object, then split the data into calibration and
validation data sets.

Expedite the calibration and validation process for this example by using a subset of the calibration
and validation data. Store the new reduced calibration data set in calData_concise and the new
reduced validation data set in valData_concise.
currentDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,currentDir);
unzip('logos_dataset.zip');

imds = imageDatastore(fullfile(currentDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');

[calData,valData] = splitEachLabel(imds,0.7,'randomized');

calData_concise = calData.subset(1:20);
valData_concise = valData.subset(1:6);

Open the Deep Network Quantizer app.

deepNetworkQuantizer

Click New and select Quantize a network.

Set the execution environment to FPGA and select snet - SeriesNetwork as the network to
quantize.
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The app displays the layer graph of the selected network.

Under Calibration Data, select the calData_concise - ImageDatastore object from the base
workspace containing the calibration data.

Click Calibrate. By default, the app uses the host GPU to collect calibration data, if one is available.
Otherwise, the host CPU is used. You can use the Calibrate drop down menu to select the calibration
environment.

The Deep Network Quantizer app uses the calibration data to exercise the network and collect
range information for the learnable parameters in the network layers.

When the calibration is complete, the app displays a table containing the weights and biases in the
convolution and fully connected layers of the network. Also displayed are the dynamic ranges of the
activations in all layers of the network and their minimum and maximum values recorded during the
calibration. The app displays histograms of the dynamic ranges of the parameters. The gray regions
of the histograms indicate data that cannot be represented by the quantized representation. For more
information on how to interpret these histograms, see “Quantization of Deep Neural Networks”.
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In the Quantize Layer column of the table, indicate whether to quantize the learnable parameters in
the layer. Layers that are not quantized remain in single-precision.

Under Validation Data, select the valData_concise - ImageDatastore object from the base
workspace containing the validation data.

In the Hardware Settings section of the toolstrip, select the environment to use for validation of the
quantized network. For more information on these options, see “Hardware Settings” on page 1-0 .

For this example, select Xilinx ZC706 (zc706_int8) and JTAG.
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Under Quantization Options, select the Default metric function and MinMax exponent scheme.
For more information on these options, see “Quantization Options” on page 1-0 .

Click Quantize and Validate.

The Deep Network Quantizer app quantizes the weights, activations, and biases of convolution
layers in the network to scaled 8-bit integer data types and uses the validation data to exercise the
network. The app determines a default metric function to use for the validation based on the type of
network that is being quantized. For more information, see “Quantization Options” on page 1-0 .

When the validation is complete, the app displays the validation results.
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After quantizing and validating the network, you can choose to export the quantized network.

Click the Export button. In the drop-down list, select Export Quantizer to create a dlquantizer
object in the base workspace. You can deploy the quantized network to your target FPGA board and
retrieve the prediction results by using MATLAB. For an example, see “Deploy Quantized Network
Example” (Deep Learning HDL Toolbox).

• “Quantization of Deep Neural Networks”
• “Quantize Residual Network Trained for Image Classification and Generate CUDA Code”

Parameters
Execution Environment — Execution Environment
GPU (default) | FPGA | CPU | MATLAB

When you select New > Quantize a Network, the app allows you to choose the execution
environment for the quantized network. How the network is quantized depends on the choice of
execution environment.

When you select the MATLAB execution environment, the app performs target-agnostic quantization of
the neural network. This option does not require you to have target hardware in order to explore the
quantized network in MATLAB.

Hardware Settings — Hardware settings
simulation environment | target

Specify hardware settings based on your execution environment.

• GPU Execution Environment

Select from the following simulation environments:
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Simulation Environment Action
GPU

Simulate on host GPU

Deploys the quantized network to the host
GPU. Validates the quantized network by
comparing performance to single-precision
version of the network.

MATLAB

Simulate in MATLAB

Simulates the quantized network in MATLAB.
Validates the quantized network by comparing
performance to single-precision version of the
network.

• FPGA Execution Environment

Select from the following simulation environments:

Simulation Environment Action
MATLAB

Simulate in MATLAB

Simulates the quantized network in MATLAB.
Validates the quantized network by comparing
performance to single-precision version of the
network.

Intel Arria 10 SoC

arria10soc_int8

Deploys the quantized network to an Intel®
Arria® 10 SoC board by using the
arria10soc_int8 bitstream. Validates the
quantized network by comparing performance
to single-precision version of the network.

Xilinx ZCU102

zcu102_int8

Deploys the quantized network to a Xilinx®

Zynq® UltraScale+™ MPSoC ZCU102 10 SoC
board by using the zcu102_int8 bitstream.
Validates the quantized network by comparing
performance to single-precision version of the
network.

Xilinx ZC706

zc706_int8

Deploys the quantized network to a Xilinx
Zynq-7000 ZC706 board by using the
zc706_int8 bitstream. Validates the
quantized network by comparing performance
to single-precision version of the network.

When you select the Intel Arria 10 SoC, Xilinx ZCU102, or Xilinx ZC706 option, additionally
select the interface to use to deploy and validate the quantized network.

Target Option Action
JTAG Programs the target FPGA board selected

under Simulation Environment by using a
JTAG cable. For more information, see “JTAG
Connection” (Deep Learning HDL Toolbox).

Ethernet Programs the target FPGA board selected in
Simulation Environment through the
Ethernet interface. Specify the IP address for
your target board in the IP Address field.

• CPU Execution Environment
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The Hardware Settings button is disabled. However, you must use the raspi function to
establish a connection to your Raspberry Pi™ board prior to the Quantize and Validate step.

Quantization Options — Options for quantization and validation
metric function | exponent scheme

By default, the Deep Network Quantizer app determines a metric function to use for the validation
based on the type of network that is being quantized.

Type of Network Metric Function
Classification Top-1 Accuracy – Accuracy of the network
Object Detection Average Precision – Average precision over all

detection results. See
evaluateDetectionPrecision.

Regression MSE – Mean squared error of the network
Semantic Segmentation WeightedIOU – Average IoU of each class,

weighted by the number of pixels in that class.
See evaluateSemanticSegmentation.

You can also specify a custom metric function to use for validation.

You can select the exponent selection scheme to use for quantization of the network:

• MinMax — (default) Evaluate the exponent based on the range information in the calibration
statistics and avoid overflows.

• Histogram — Distribution-based scaling which evaluates the exponent to best fit the calibration
data.

Export — Options for exporting quantized network
Export Quantized Network | Export Quantizer | Generate Code

• Export Quantized Network — After calibrating the network, quantize and add the quantized
network to the base workspace. This option exports a simulatable quantized network,
quantizedNet, that you can explore in MATLAB without deploying to hardware. This option is
equivalent to using quantize at the command line.

Code generation is not supported for the exported quantized network, quantizedNet.
• Export Quantizer — Add the dlquantizer object to the base workspace. You can save the

dlquantizer object and use it for further exploration in the Deep Network Quantizer app or at
the command line, or use it to generate code for your target hardware.

• Generate Code — Open the GPU Coder app and generate GPU code from the quantized and
validated neural network. Generating GPU code requires a GPU Coder license.

Version History
Introduced in R2020a

Calibrate on host GPU or host CPU
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You can now choose whether to calibrate your network using the host GPU or host CPU. By default,
the calibrate function and the Deep Network Quantizer app will calibrate on the host GPU if one
is available.

In previous versions, it was required that the execution environment be the same as the
instrumentation environment used for the calibration step of quantization.

dlnetwork support

The Deep Network Quantizer app now supports calibration and validation for dlnetwork objects.

Validate the performance of quantized network for CPU target

The Deep Network Quantizer app now supports the quantization and validation workflow for CPU
targets.

Quantize neural networks without a specific target

Specify MATLAB as the Execution Environment to quantize your neural networks without
generating code or committing to a specific target for code deployment. This can be useful if you:

• Do not have access to your target hardware.
• Want to inspect your quantized network without generating code.

Your quantized network implements int8 data instead of single data. It keeps the same layers and
connections as the original network, and it has the same inference behavior as it would when running
on hardware.

Once you have quantized your network, you can use the quantizationDetails function to inspect
your quantized network. Additionally, you also have the option to deploy the code to a GPU target.

See Also
Functions
calibrate | quantize | validate | dlquantizer | dlquantizationOptions |
quantizationDetails | estimateNetworkMetrics

Topics
“Quantization of Deep Neural Networks”
“Quantize Residual Network Trained for Image Classification and Generate CUDA Code”
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Experiment Manager
Design and run experiments to train and compare deep learning networks

Description
The Experiment Manager app enables you to create deep learning experiments to train networks
under multiple initial conditions and compare the results. For example, you can use deep learning
experiments to:

• Sweep through a range of hyperparameter values or use Bayesian optimization to find optimal
training options. Bayesian optimization requires Statistics and Machine Learning Toolbox™.

• Use the built-in function trainNetwork or define your own custom training function.
• Compare the results of using different data sets or test different deep network architectures.

To set up your experiment quickly, you can start with a preconfigured template. The experiment
templates support workflows that include image classification, image regression, sequence
classification, semantic segmentation, and custom training loops.

Experiment Manager provides visualization tools such as training plots and confusion matrices, filters
to refine your experiment results, and annotations to record your observations. To improve
reproducibility, every time that you run an experiment, Experiment Manager stores a copy of the
experiment definition. You can access past experiment definitions to keep track of the
hyperparameter combinations that produce each of your results.

Experiment Manager organizes your experiments and results in a project.

• You can store several experiments in the same project.
• Each experiment contains a set of results for each time that you run the experiment.
• Each set of results consists of one or more trials corresponding to a different combination of

hyperparameters.

By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox™,
you can configure your experiment to run multiple trials at the same time or to run a single trial at a
time on multiple GPUs, on a cluster, or in the cloud. If you have MATLAB Parallel Server™, you can
also offload experiments as batch jobs in a remote cluster so that you can continue working or close
your MATLAB session during training. For more information, see “Use Experiment Manager to Train
Networks in Parallel” and “Offload Experiments as Batch Jobs to Cluster”.

The Experiment Browser pane displays the hierarchy of experiments and results in the project. For
instance, this project has two experiments, each of which has several sets of results.
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The blue flask  indicates a built-in training experiment that uses the trainNetwork function. The

green beaker  indicates a custom training experiment that relies on a different training function.
To open the configuration for an experiment and view its results, double-click the name of the
experiment or a set of results.

Open the Experiment Manager App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter experimentManager.

Examples

Image Classification by Sweeping Hyperparameters

This example shows how to use the experiment template for image classification by sweeping
hyperparameters. With this template, you can quickly set up a built-in training experiment that uses
the trainNetwork function. For more examples of solving image classification problems with
Experiment Manager, see “Create a Deep Learning Experiment for Classification” and “Use
Experiment Manager to Train Networks in Parallel”. For more information on an alternative strategy
to sweeping hyperparameters, see “Tune Experiment Hyperparameters by Using Bayesian
Optimization”.
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Open the example to load a project with a preconfigured experiment that you can inspect and run. To
open the experiment, in the Experiment Browser pane, double-click the name of the experiment
(Experiment1).

Alternatively, you can configure the experiment yourself by following these steps.

1. Open Experiment Manager. A dialog box provides links to the getting started tutorials and your
recent projects, as well as buttons to create a new project or open an example from the
documentation.
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2. Under New, select Project. A dialog box lists several templates that support workflows including
image classification, image regression, sequence classification, semantic segmentation, and custom
training loops.

3. Under Image Classification Experiments, select Image Classification by Sweeping
Hyperparameters.

4. Specify the name and location for the new project. Experiment Manager opens a new experiment
in the project. The Experiment pane displays the description, hyperparameters, setup function, and
metrics that define the experiment.

5. In the Description field, enter a description of the experiment:

Classification of digits, using various initial learning rates.

6. Under Hyperparameters, replace the value of myInitialLearnRate with
0.0025:0.0025:0.015. Verify that Strategy is set to Exhaustive Sweep.
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7. Under Setup Function, click Edit. The setup function opens in MATLAB Editor. The setup
function specifies the training data, network architecture, and training options for the experiment. In
this experiment, the setup function has three sections.

• Load Training Data defines image datastores containing the training and validation data for the
experiment. The experiment uses the Digits data set, which consists of 10,000 28-by-28 pixel
grayscale images of digits from 0 to 9, categorized by the digit they represent. For more
information on this data set, see “Image Data Sets”.

• Define Network Architecture defines the architecture for a simple convolutional neural network
for deep learning classification.

• Specify Training Options defines a trainingOptions object for the experiment. In this
experiment, the setup function loads the values for the initial learning rate from the
myInitialLearnRate entry in the hyperparameter table.

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses one of the learning rates specified in the hyperparameter table. By default,
Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run
multiple trials at the same time or offload your experiment as a batch job in a cluster.

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” and
“GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster”.

A table of results displays the accuracy and loss for each trial.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot. You can also monitor the training progress in the
MATLAB Command Window.
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To display the confusion matrix for the validation data in each completed trial, under Review
Results, click Validation Data.

When the experiment finishes, you can sort the table by column or filter trials by using the Filters
pane. You can also record observations by adding annotations to the results table. For more
information, see “Sort, Filter, and Annotate Experiment Results” on page 1-52.

To test the performance of an individual trial, export the trained network or the training information
for the trial. On the Experiment Manager toolstrip, select Export > Trained Network or Export >
Training Information, respectively. For more information, see “net” on page 1-0  and “info”
on page 1-0 . To save the contents of the results table as a table array in the MATLAB
workspace, select Export > Results Table.

To close the experiment, in the Experiment Browser pane, right-click the name of the project and
select Close Project. Experiment Manager closes all of the experiments and results contained in the
project.

Image Regression by Sweeping Hyperparameters

This example shows how to use the experiment template for image regression by sweeping
hyperparameters. With this template, you can quickly set up a built-in training experiment that uses
the trainNetwork function. For another example of solving a regression problem with Experiment
Manager, see “Create a Deep Learning Experiment for Regression”. For more information on an
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alternative strategy to sweeping hyperparameters, see “Tune Experiment Hyperparameters by Using
Bayesian Optimization”.

Open the example to load a project with a preconfigured experiment that you can inspect and run. To
open the experiment, in the Experiment Browser pane, double-click the name of the experiment
(Experiment1).

Alternatively, you can configure the experiment yourself by following these steps.

1. Open Experiment Manager. A dialog box provides links to the getting started tutorials and your
recent projects, as well as buttons to create a new project or open an example from the
documentation.
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2. Under New, select Project. A dialog box lists several templates that support workflows including
image classification, image regression, sequence classification, semantic segmentation, and custom
training loops.

3. Under Image Regression Experiments, select Image Regression by Sweeping
Hyperparameters.

4. Specify the name and location for the new project. Experiment Manager opens a new experiment
in the project. The Experiment pane displays the description, hyperparameters, setup function, and
metrics that define the experiment.

5. In the Description field, enter a description of the experiment:

Regression to predict angles of rotation of digits, using various initial learning rates.

6. Under Hyperparameters, replace the value of myInitialLearnRate with
0.001:0.001:0.006. Verify that Strategy is set to Exhaustive Sweep.
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7. Under Setup Function, click Edit. The setup function opens in MATLAB Editor. The setup
function specifies the training data, network architecture, and training options for the experiment. In
this experiment, the setup function has three sections.

• Load Training Data defines the training and validation data for the experiment as 4-D arrays.
The training and validation data each consist of 5000 images from the Digits data set. Each image
shows a digit from 0 to 9, rotated by a certain angle. The regression values correspond to the
angles of rotation. For more information on this data set, see “Image Data Sets”.

• Define Network Architecture defines the architecture for a simple convolutional neural network
for deep learning regression.

• Specify Training Options defines a trainingOptions object for the experiment. In this
experiment, the setup function loads the values for the initial learning rate from the
myInitialLearnRate entry in the hyperparameter table.

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses one of the learning rates specified in the hyperparameter table. By default,
Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run
multiple trials at the same time or offload your experiment as a batch job in a cluster.

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” and
“GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster”.

A table of results displays the root mean squared error (RMSE) and loss for each trial.

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot. You can also monitor the training progress in the
MATLAB Command Window.
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When the experiment finishes, you can sort the table by column or filter trials by using the Filters
pane. You can also record observations by adding annotations to the results table. For more
information, see “Sort, Filter, and Annotate Experiment Results” on page 1-52.

To test the performance of an individual trial, export the trained network or the training information
for the trial. On the Experiment Manager toolstrip, select Export > Trained Network or Export >
Training Information, respectively. For more information, see “net” on page 1-0  and “info”
on page 1-0 . To save the contents of the results table as a table array in the MATLAB
workspace, select Export > Results Table.

To close the experiment, in the Experiment Browser pane, right-click the name of the project and
select Close Project. Experiment Manager closes all of the experiments and results contained in the
project.

Image Classification Using Custom Training Loop

This example shows how to use the training experiment template for image classification using a
custom training loop. With this template, you can quickly set up a custom training experiment.

Open the example to load a project with a preconfigured experiment that you can inspect and run. To
open the experiment, in the Experiment Browser pane, double-click the name of the experiment
(Experiment1).
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Alternatively, you can configure the experiment yourself by following these steps.

1. Open Experiment Manager. A dialog box provides links to the getting started tutorials and your
recent projects, as well as buttons to create a new project or open an example from the
documentation.
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2. Under New, select Project. A dialog box lists several templates that support workflows including
image classification, image regression, sequence classification, semantic segmentation, and custom
training loops.

3. Under Image Classification Experiments, select Image Classification Using Custom
Training Loop.

4. Select the location and name for a new project. Experiment Manager opens a new experiment in
the project. The Experiment pane displays the description, hyperparameters, and training function
that define the experiment.

3. In the Description field, enter a description of the experiment:

Classification of digits, using various initial learning rates.

4. Under Hyperparameters, replace the value of myInitialLearnRate with
0.0025:0.0025:0.015. Verify that Strategy is set to Exhaustive Sweep.
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5. Under Training Function, click Edit. The training function opens in MATLAB Editor. The training
function specifies the training data, network architecture, training options, and training procedure
used by the experiment. In this experiment, the training function has four sections.

• Load Training Data defines the training data for the experiment as 4-D arrays. The experiment
uses the Digits data set, which consists of 5,000 28-by-28 pixel grayscale images of digits from 0
to 9, categorized by the digit they represent. For more information on this data set, see “Image
Data Sets”.

• Define Network Architecture defines the architecture for a simple convolutional neural network
for deep learning classification. To train the network with a custom training loop, the training
function represents the network as a dlnetwork object.

• Specify Training Options defines the training options used by the experiment. In this
experiment, the training function loads the values for the initial learning rate from the
myInitialLearnRate entry in the hyperparameter table.

• Train Model defines the custom training loop used by the experiment. For each epoch, the
custom training loop shuffles the data and iterates over mini-batches of data. For each mini-batch,
the custom training loop evaluates the model gradients, state, and loss, determines the learning
rate for the time-based decay learning rate schedule, and updates the network parameters. To
track the progress of the training and record the value of the training loss, the training function
uses the experiments.Monitor object monitor.

When you run the experiment, Experiment Manager trains the network defined by the training
function six times. Each trial uses one of the learning rates specified in the hyperparameter table. By
default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you
can run multiple trials at the same time or offload your experiment as a batch job in a cluster.

• To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

• To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” and
“GPU Computing Requirements” (Parallel Computing Toolbox).

• To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster”.

A table of results displays the training loss for each trial.
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To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.

When the experiment finishes, you can sort the table by column or filter trials by using the Filters
pane. You can also record observations by adding annotations to the results table. For more
information, see “Sort, Filter, and Annotate Experiment Results” on page 1-52.

To test the performance of an individual trial, export the training output for the trial. On the
Experiment Manager toolstrip, select Export > Training Output. In this experiment, the training
output is a structure that contains the values of the training loss and the trained network. To save the
contents of the results table as a table array in the MATLAB workspace, select Export > Results
Table.

To close the experiment, in the Experiment Browser pane, right-click the name of the project and
select Close Project. Experiment Manager closes all of the experiments and results contained in the
project.

Configure Built-In Training Experiment

This example shows how to set up a built-in training experiment using Experiment Manager. Built-in
training experiments rely on the trainNetwork function and support workflows such as image
classification, image regression, sequence classification, and semantic segmentation.

Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment.

In the Description field, enter a description of the experiment.

Under Hyperparameters, select the strategy to use for your experiment.

• To sweep through a range of hyperparameter values, set Strategy to Exhaustive Sweep. In the
hyperparameter table, enter the names and values of the hyperparameters used in the
experiment. Hyperparameter names must start with a letter, followed by letters, digits, or
underscores. Hyperparameter values must be scalars or vectors with numeric, logical, or string
values, or cell arrays of character vectors. For example, these are valid hyperparameter
specifications:

• 0.01
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• 0.01:0.01:0.05
• [0.01 0.02 0.04 0.08]
• ["sgdm" "rmsprop" "adam"]
• {'squeezenet' 'googlenet' 'resnet18'}

When you run the experiment, Experiment Manager trains the network using every combination
of the hyperparameter values specified in the table.

• To find optimal training options by using Bayesian optimization, set Strategy to Bayesian
Optimization. In the hyperparameter table, specify these properties of the hyperparameters
used in the experiment:

• Name — Enter a valid hyperparameter name. Hyperparameter names must start with a letter,
followed by letters, digits, or underscores.

• Range — For a real- or integer-valued hyperparameter, enter a two-element vector that gives
the lower bound and upper bound of the hyperparameter. For a categorical hyperparameter,
enter an array of strings or a cell array of character vectors that lists the possible values of the
hyperparameter.

• Type — Select real (real-valued hyperparameter), integer (integer-valued hyperparameter),
or categorical (categorical hyperparameter).

• Transform — Select none (no transform) or log (logarithmic transform). For log, the
hyperparameter must be real or integer and positive. With this option, the hyperparameter
is searched and modeled on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters. Each trial in the experiment uses a new combination of hyperparameter values
based on the results of the previous trials.

To specify the duration of your experiment, under Bayesian Optimization Options, enter the
maximum time (in seconds) and the maximum number of trials to run. Note that the actual run
time and number of trials in your experiment can exceed these settings because Experiment
Manager checks these options only when a trial finishes executing.

Bayesian optimization requires Statistics and Machine Learning Toolbox. For more information,
see “Tune Experiment Hyperparameters by Using Bayesian Optimization”.

The Setup Function configures the training data, network architecture, and training options for the
experiment. The input to the setup function is a structure with fields from the hyperparameter table.
The output of the setup function must match the input of the trainNetwork function. This table lists
the supported signatures for the setup function.

Goal of Experiment Setup Function Signature
Train a network for image classification and
regression tasks using the images and responses
specified by images and the training options
defined by options.

function [images,layers,options] = Experiment_setup(params)
...
end

Train a network using the images specified by
images and responses specified by responses.

function [images,responses,layers,options] = Experiment_setup(params)
...
end
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Goal of Experiment Setup Function Signature
Train a network for sequence or time-series
classification and regression tasks (for example,
an LSTM or GRU network) using the sequences
and responses specified by sequences.

function [sequences,layers,options] = Experiment_setup(params)
...
end

Train a network using the sequences specified by
sequences and responses specified by
responses.

function [sequences,reponses,layers,options] = Experiment_setup(params)
...
end

Train a network for feature classification or
regression tasks (for example, a multilayer
perceptron, or MLP, network) using the feature
data and responses specified by features.

function [features,layers,options] = Experiment_setup(params)
...
end

Train a network using the feature data specified
by features and responses specified by
responses.

function [features,responses,layers,options] = Experiment_setup(params)
...
end

Tip When writing your setup function, follow these guidelines:

• Load training and validation data by using an absolute path to a location that is accessible to all
your workers.

• For networks containing batch normalization layers, if the BatchNormalizationStatistics
training option is population, Experiment Manager displays final validation metric values that
are often different from the validation metrics evaluated during training. The difference in values
is the result of additional operations performed after the network finishes training. For more
information, see “Batch Normalization Layer” on page 1-232.

• The execution modes that you can use for your experiment depend on the settings you specify for
the training options ExecutionEnvironment and DispatchInBackground.

Execution Mode Valid Settings for
ExecutionEnvironment

Valid Settings for
DispatchInBackground

Sequential "auto", "cpu", "gpu",
"multi-gpu", "parallel"

true, false

Simultaneous "auto", "cpu", "gpu" false
Batch Sequential "auto", "cpu", "gpu",

"parallel"
true, false

Batch Simultaneous "auto", "cpu", "gpu" false

For more information, see “Use Experiment Manager to Train Networks in Parallel” and “Offload
Experiments as Batch Jobs to Cluster”.

The Metrics section specifies functions to evaluate the results of the experiment. The input to a
metric function is a structure with three fields:

• trainedNetwork is the SeriesNetwork object or DAGNetwork object returned by the
trainNetwork function. For more information, see Trained Network on page 1-0 .
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• trainingInfo is a structure containing the training information returned by the trainNetwork
function. For more information, see Training Information on page 1-0 .

• parameters is a structure with fields from the hyperparameter table.

The output of a metric function must be a scalar number, a logical value, or a string.

If your experiment uses Bayesian optimization, select a metric to optimize from the Optimize list. In
the Direction list, specify that you want to Maximize or Minimize this metric. Experiment Manager
uses this metric to determine the best combination of hyperparameters for your experiment. You can
choose a standard training or validation metric (such as accuracy, RMSE, or loss) or a custom metric
from the table.

Configure Custom Training Experiment

This example shows how to set up a custom training experiment using Experiment Manager. Custom
training experiments support workflows that require a training function other than trainNetwork.
These workflows include:

• Training a network that is not defined by a layer graph.
• Training a network using a custom learning rate schedule.
• Updating the learnable parameters of a network by using a custom function.
• Training a generative adversarial network (GAN).
• Training a Siamese network.

Custom training experiments consist of a description, a table of hyperparameters, and a training
function.

In the Description field, enter a description of the experiment.

Under Hyperparameters, select the strategy to use for your experiment.

• To sweep through a range of hyperparameter values, set Strategy to Exhaustive Sweep. In the
hyperparameter table, enter the names and values of the hyperparameters used in the
experiment. Hyperparameter names must start with a letter, followed by letters, digits, or
underscores. Hyperparameter values must be scalars or vectors with numeric, logical, or string
values, or cell arrays of character vectors. For example, these are valid hyperparameter
specifications:

• 0.01
• 0.01:0.01:0.05
• [0.01 0.02 0.04 0.08]
• ["sgdm" "rmsprop" "adam"]
• {'squeezenet' 'googlenet' 'resnet18'}

When you run the experiment, Experiment Manager trains the network using every combination
of the hyperparameter values specified in the table.

• To find optimal training options by using Bayesian optimization, set Strategy to Bayesian
Optimization. In the hyperparameter table, specify these properties of the hyperparameters
used in the experiment:
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• Name — Enter a valid hyperparameter name. Hyperparameter names must start with a letter,
followed by letters, digits, or underscores.

• Range — For a real- or integer-valued hyperparameter, enter a two-element vector that gives
the lower bound and upper bound of the hyperparameter. For a categorical hyperparameter,
enter an array of strings or a cell array of character vectors that lists the possible values of the
hyperparameter.

• Type — Select real (real-valued hyperparameter), integer (integer-valued hyperparameter),
or categorical (categorical hyperparameter).

• Transform — Select none (no transform) or log (logarithmic transform). For log, the
hyperparameter must be real or integer and positive. With this option, the hyperparameter
is searched and modeled on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters. Each trial in the experiment uses a new combination of hyperparameter values
based on the results of the previous trials.

To specify the duration of your experiment, under Bayesian Optimization Options, enter the
maximum time (in seconds) and the maximum number of trials to run. Note that the actual run
time and number of trials in your experiment can exceed these settings because Experiment
Manager checks these options only when a trial finishes executing.

Bayesian optimization requires Statistics and Machine Learning Toolbox. For more information,
see “Use Bayesian Optimization in Custom Training Experiments”.

The Training Function specifies the training data, network architecture, training options, and
training procedure used by the experiment. The inputs to the training function are:

• A structure with fields from the hyperparameter table
• An experiments.Monitor object that you can use to track the progress of the training, update

information fields in the results table, record values of the metrics used by the training, and
produce training plots

Experiment Manager saves the output of the training function, so you can export it to the MATLAB
workspace when the training is complete.

Tip When writing your training function, follow these guidelines:

• Load training and validation data by using an absolute path to a location that is accessible to all
your workers.

• Both information and metric columns display numerical values in the results table for your
experiment. Additionally, metric values are recorded in the training plot. Use information columns
for values that you want to display in the results table but not in the training plot.

If your experiment uses Bayesian optimization, in the Metrics section, under Optimize, enter the
name of a metric to optimize. In the Direction list, specify that you want to Maximize or Minimize
this metric. Experiment Manager uses this metric to determine the best combination of
hyperparameters for your experiment. You can choose any metric that you define using the
experiments.Monitor object for the training function.
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Stop and Restart Training

Experiment Manager provides two options for interrupting experiments:

•
 Stop marks any running trials as Stopped and saves their results. When the experiment

stops, you can display the training plot and export the training results for these trials.
•

 Cancel marks any running trials as Canceled and discards their results. When the
experiment stops, you cannot display the training plot or export the training results for these
trials.

Both options save the results of any completed trials and cancel any queued trials. Typically, Cancel
is faster than Stop.

Instead of interrupting the entire experiment, you can stop an individual trial that is running or
cancel an individual queued trial. In the Actions column of the results table, click the Stop button 
or the Cancel button  for the trial.

To reduce the size of your experiments, discard the results of trials that are no longer relevant. In the

Actions column of the results table, click the Discard button  for a trial. Experiment Manager
deletes the training results, training plot, and confusion matrix for the trial from your project.

When the training is complete, you can restart a trial that you stopped, canceled, or discarded. In the
Actions column of the results table, click the Restart button  for the trial.

Alternatively, to restart multiple trials, in the Experiment Manager toolstrip, open the Restart list,

select one or more restarting criteria, and click Restart . Restarting criteria include All
Canceled, All Stopped, All Error, and All Discarded.
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Note Stop, cancel, and restart options are not available for all experiment types, strategies, or
execution modes.

Sort, Filter, and Annotate Experiment Results

This example shows how to compare your results and record your observations after running an
experiment.

When you run an experiment, Experiment Manager trains the network defined by the setup function
multiple times. Each trial uses a different combination of hyperparameters. When the experiment
finishes, a table displays training and validation metrics (such as RMSE and loss) for each trial. To
compare the results of an experiment, you can use these metrics to sort the results table and filter
trials.

To sort the trials in the results table, use the drop-down list for the column corresponding to a
training or validation metric.

1 Point to the header of a column by which you want to sort.
2 Click the triangle icon.
3 Select Sort in Ascending Order or Sort in Descending Order.

To filter trials from the results table, use the Filters pane. This pane shows histograms for the
numeric metrics in the results table. To remove a histogram from the Filters pane, in the results
table, open the drop-down list for the corresponding column and clear the Show Filter check box.

1 On the Experiment Manager toolstrip, select Filters.
2 Adjust the sliders under the histogram for the training or validation metric by which you want to

filter.

1 Deep Learning Functions

1-52



The results table shows only the trials with a metric value in the selected range.

3 To restore all of the trials in the results table, close the Experiment Result pane and reopen the
results from the Experiment Browser pane.

To record observations about the results of your experiment, add an annotation.

1 Right-click a cell in the results table and select Add Annotation. Alternatively, select a cell in
the results table and, on the Experiment Manager toolstrip, select Annotations > Add
Annotation.

2 In the Annotations pane, enter your observations in the text box. You can add multiple
annotations for each cell in the results table.
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3 To sort annotations, use the Sort By drop-down list. You can sort by creation time or trial
number.

4 To highlight the cell that corresponds to an annotation, click the link above the annotation.
5

To delete an annotation, click the delete button  to the right of the annotation.

View Source of Past Experiment Definitions

This example shows how to inspect the configuration of an experiment that produced a given result.

After you run an experiment, you can open the Experiment Source pane to see a read-only copy of
the experiment description and hyperparameter table, as well as links to all of the functions used by
the experiment. You can use the information in this pane to track the configuration of data, network,
and training options that produces each of your results.

For instance, suppose that you run an experiment multiple times. Each time that you run the
experiment, you change the contents of the setup function but always use the same function name.
The first time that you run the experiment, you use the default network provided by the experiment
template for image classification. The second time that you run the experiment, you modify the setup
function to load a pretrained GoogLeNet network, replacing the final layers with new layers for
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transfer learning. For an example that uses these two network architectures, see “Create a Deep
Learning Experiment for Classification”.

On the first Experiment Result pane, click the View Experiment Source link. Experiment Manager
opens an Experiment Source pane that contains the experiment definition that produced the first
set of results. Click the link at the bottom of the pane to open the setup function that you used the
first time you ran the experiment. You can copy this setup function to rerun the experiment using the
simple classification network.

On the second Experiment Result pane, click the View Experiment Source link. Experiment
Manager opens an Experiment Source pane that contains the experiment definition that produced
the second set of results. Click the link at the bottom of the pane to open the setup function that you
used the second time you ran the experiment. You can copy this setup function to rerun the
experiment using transfer learning.

Experiment Manager stores a copy of all the functions that you use, so you do not have to manually
rename these functions when you modify and rerun an experiment.

• “Generate Experiment Using Deep Network Designer”
• “Create a Deep Learning Experiment for Classification”
• “Create a Deep Learning Experiment for Regression”
• “Evaluate Deep Learning Experiments by Using Metric Functions”
• “Tune Experiment Hyperparameters by Using Bayesian Optimization”
• “Use Bayesian Optimization in Custom Training Experiments”
• “Try Multiple Pretrained Networks for Transfer Learning”
• “Experiment with Weight Initializers for Transfer Learning”
• “Choose Training Configurations for LSTM Using Bayesian Optimization”
• “Run a Custom Training Experiment for Image Comparison”
• “Use Experiment Manager to Train Generative Adversarial Networks (GANs)”
• “Custom Training with Multiple GPUs in Experiment Manager”

Tips
• To visualize, build, and train a network without sweeping hyperparameters, you can use the Deep

Network Designer app. After you train your network, generate an experiment to find the optimal
training options. For more information, see “Generate Experiment Using Deep Network
Designer”.

• To run an experiment in parallel using MATLAB Online, you must have access to a Cloud Center
cluster. For more information, see “Use Parallel Computing Toolbox with Cloud Center Cluster in
MATLAB Online” (Parallel Computing Toolbox).

• To navigate Experiment Manager when using a mouse is not an option, use shortcut keyboards.
For more information, see “Keyboard Shortcuts for Experiment Manager”.

Version History
Introduced in R2020a
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Ease-of-use enhancements
Behavior changed in R2022b

• In the Experiment Manager toolstrip, the Restart list replaces the Restart All Canceled
button. To restart multiple trials of your experiment, open the Restart list, select one or more

restarting criteria, and click Restart . The restarting criteria include All Canceled, All
Stopped, All Error, and All Discarded.

• During training, the results table displays the intermediate values for standard training and
validation metrics for built-in training experiments. These metrics include loss, accuracy (for
classification experiments), and root mean squared error (for regression experiments).

• In built-in training experiments, the Execution Environment column of the results table displays
whether each trial of a built-in training experiment runs on a single CPU, a single GPU, multiple
CPUs, or multiple GPUs.

• To discard the training plot, confusion matrix, and training results for trials that are no longer

relevant, in the Actions column of the results table, click the Discard button .

Experiments as batch jobs in a cluster

If you have Parallel Computing Toolbox and MATLAB Parallel Server, you can send your experiment
as a batch job to a remote cluster. If you have only Parallel Computing Toolbox, you can use a local
cluster profile to develop and test your experiments on your client machine instead of running them
on a network cluster. For more information, see “Offload Experiments as Batch Jobs to Cluster”.

Ease-of-use enhancements
Behavior changed in R2022a

• In the Experiment Manager toolstrip, the Mode list replaces the Use Parallel button.

• To run one trial of the experiment at a time, select Sequential and click Run.
• To run multiple trials at the same time, select Simultaneous and click Run.
• To offload the experiment as a batch job, select Batch Sequential or Batch

Simultaneous, specify your cluster and pool size, and click Run.
• Manage experiments using new Experiment Browser context menu options:

• To add a new experiment to a project, right-click the name of the project and select New
Experiment.

• To create a copy of an experiment, right-click the name of the experiment and select
Duplicate.

• Specify hyperparameter values as cell arrays of character vectors. In previous releases,
Experiment Manager supported only hyperparameter specifications using scalars and vectors with
numeric, logical, or string values.

• To stop, cancel, or restart a trial, in the Action column of the results table, click the Stop ,
Cancel , or Restart  buttons. In previous releases, these buttons were located in the Progress
column. Alternatively, you can right-click the row for the trial and, in the context menu, select
Stop, Cancel, or Restart.

• When an experiment trial ends, the Status column of the results table displays one of these
reasons for stopping:

1 Deep Learning Functions

1-56



• Max epochs completed
• Met validation criterion
• Stopped by OutputFcn
• Training loss is NaN

• To sort annotations by creation time or trial number, in the Annotations pane, use the Sort By
list.

• After training completes, save the contents of the results table as a table array in the MATLAB
workspace by selecting Export > Results Table.

• To export the training information or trained network for a stopped or completed trial, right-click
the row for the trial and, in the context menu, select Export Training Information or Export
Trained Network.

Bayesian optimization in custom training experiments

If you have Statistics and Machine Learning Toolbox, you can use Bayesian optimization to determine
the best combination of hyperparameters for a custom training experiment. Previously, custom
training experiments supported only sweeping hyperparameters. For more information, see “Use
Bayesian Optimization in Custom Training Experiments”.

Experiments in MATLAB Online

Run Experiment Manager in your web browser by using MATLAB Online™. For parallel execution of
experiments, you must have access to a Cloud Center cluster.

Ease-of-use enhancements

• In the Experiment Manager toolstrip, click Cancel to stop an experiment, mark any running
trials as Canceled, and discard their results. When the training is complete, click Restart All
Canceled to restart all the trials that you canceled.

• Use keyboard shortcuts to navigate Experiment Manager when using a mouse is not an option.
For more information, see “Keyboard Shortcuts for Experiment Manager”.

Custom training experiments

Create custom training experiments to support workflows such as:

• Using a custom training loop on a dlnetwork, such as a Siamese network or a generative
adversarial network (GAN)

• Training a network by using a model function or a custom learning rate schedule
• Updating the learnable parameters of a network by using a custom function

Ease-of-use enhancements

• When you create an experiment, use a preconfigured template as a guide for defining your
experiment. Experiment templates support workflows that include image classification, image
regression, sequence classification, semantic segmentation, and custom training loops.
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• Add annotations to record observations about the results of your experiment. Right-click a cell in
the results table and select Add Annotation. For more information, see “Sort, Filter, and
Annotate Experiment Results” on page 1-52.

Bayesian optimization

If you have Statistics and Machine Learning Toolbox, you can use Bayesian optimization to determine
the best combination of hyperparameters for an experiment. For more information, see “Tune
Experiment Hyperparameters by Using Bayesian Optimization”.

Parallel execution

If you have Parallel Computing Toolbox, you can run multiple trials of an experiment at the same time
by clicking Use Parallel and then Run. Experiment Manager starts the parallel pool and executes
multiple simultaneous trials. For more information, see “Use Experiment Manager to Train Networks
in Parallel”.

See Also
Apps
Deep Network Designer

Functions
dlnetwork | trainNetwork | trainingOptions | table

Objects
experiments.Monitor

Topics
“Generate Experiment Using Deep Network Designer”
“Create a Deep Learning Experiment for Classification”
“Create a Deep Learning Experiment for Regression”
“Evaluate Deep Learning Experiments by Using Metric Functions”
“Tune Experiment Hyperparameters by Using Bayesian Optimization”
“Use Bayesian Optimization in Custom Training Experiments”
“Try Multiple Pretrained Networks for Transfer Learning”
“Experiment with Weight Initializers for Transfer Learning”
“Choose Training Configurations for LSTM Using Bayesian Optimization”
“Run a Custom Training Experiment for Image Comparison”
“Use Experiment Manager to Train Generative Adversarial Networks (GANs)”
“Custom Training with Multiple GPUs in Experiment Manager”
“Use Experiment Manager to Train Networks in Parallel”
“Offload Experiments as Batch Jobs to Cluster”
“Keyboard Shortcuts for Experiment Manager”
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activations
Compute deep learning network layer activations

Syntax
act = activations(net,images,layer)
act = activations(net,sequences,layer)
act = activations(net,features,layer)

act = activations(net,X1,...,XN,layer)
act = activations(net,mixed,layer)

act = activations( ___ ,Name=Value)

Description
You can compute deep learning network layer activations on either a CPU or GPU. Using a GPU
requires Parallel Computing Toolbox and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Specify the hardware
requirements using the ExecutionEnvironment name-value argument.

To compute activations using a trained SeriesNetwork or DAGNetwork, use the activations
function. To compute activations of a dlnetwork objects, use the forward or predict function and
specify the Outputs option.

act = activations(net,images,layer) returns the network activations for the layer with name
or number layer using the specified images.

act = activations(net,sequences,layer) returns the network activations for the layer using
the specified sequences.

act = activations(net,features,layer) returns the network activations for the layer using
the specified feature data.

act = activations(net,X1,...,XN,layer) returns the network activations for the layer using
the data in the numeric or cell arrays X1, …, XN for the multi-input network net. The input Xi
corresponds to the network input net.InputNames(i).

act = activations(net,mixed,layer) returns the network activations for the layer using the
trained network net with multiple inputs of mixed data types.

act = activations( ___ ,Name=Value) returns network activations with additional options
specified by one or more name-value pair arguments. For example, OutputAs="rows" specifies the
activation output format as "rows". Use this syntax with any of the input arguments in previous
syntaxes. Specify name-value arguments after all other input arguments.

Examples
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Feature Extraction Using SqueezeNet

This example shows how to extract learned image features from a pretrained convolutional neural
network and use those features to train an image classifier.

Feature extraction is the easiest and fastest way to use the representational power of pretrained deep
networks. For example, you can train a support vector machine (SVM) using fitcecoc (Statistics
and Machine Learning Toolbox™) on the extracted features. Because feature extraction requires only
a single pass through the data, it is a good starting point if you do not have a GPU to accelerate
network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip("MerchData.zip");

imds = imageDatastore("MerchData", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,"randomized");

This very small data set now has 55 training images and 20 validation images. Display some sample
images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);

I = imtile(imds,"Frames",idx);

figure
imshow(I)
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Load Pretrained Network

Load a pretrained SqueezeNet network. SqueezeNet is trained on more than a million images and
can classify images into 1000 object categories, for example, keyboard, mouse, pencil, and many
animals. As a result, the model has learned rich feature representations for a wide range of images.

net = squeezenet;

Analyze the network architecture.

analyzeNetwork(net)
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The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher
level features, constructed using the lower level features of earlier layers. To get the feature
representations of the training and test images, use activations on the global average pooling
layer "pool10". To get a lower level representation of the images, use an earlier layer in the
network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before inputting them to the
network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);

layer = "pool10";
featuresTrain = activations(net,augimdsTrain,layer,OutputAs="rows");
featuresTest = activations(net,augimdsTest,layer,OutputAs="rows");

Extract the class labels from the training and test data.
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TTrain = imdsTrain.Labels;
TTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,TTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test
images.

YPred = predict(mdl,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(imdsTest,idx(i));
    label = YPred(idx(i));
    
    imshow(I)
    title(label)
end
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Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

accuracy = mean(YPred == TTest)

accuracy = 0.9500

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try
transfer learning instead.

Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

images — Image data
datastore | numeric array | table

Image data, specified as one of the following.

Data Type Description Example Usage
Datastore ImageDatastore Datastore of images

saved on disk
Make predictions with
images saved on disk,
where the images are
the same size.

When the images are
different sizes, use an
AugmentedImageData
store object.

AugmentedImageData
store

Datastore that applies
random affine
geometric
transformations,
including resizing,
rotation, reflection,
shear, and translation

Make predictions with
images saved on disk,
where the images are
different sizes.

TransformedDatasto
re

Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
activations.

• Apply custom
transformations to
datastore output.
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Data Type Description Example Usage
CombinedDatastore Datastore that reads

from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric array Images specified as a
numeric array

Make predictions using
data that fits in memory
and does not require
additional processing
like resizing.

Table Images specified as a
table

Make predictions using
data stored in a table.

When you use a datastore with networks with multiple inputs, the datastore must be a
TransformedDatastore or CombinedDatastore object.

Tip For sequences of images, for example, video data, use the sequences input argument.

Datastore

Datastores read mini-batches of images and responses. Use datastores when you have data that does
not fit in memory or when you want to resize the input data.

These datastores are directly compatible with activations for image data.:

• ImageDatastore
• AugmentedImageDatastore
• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

Note that ImageDatastore objects allow for batch reading of JPG or PNG image files using
prefetching. If you use a custom function for reading the images, then ImageDatastore objects do
not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.
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Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the format required by
classify.

The required format of the datastore output depends on the network architecture.

Network Architecture Datastore Output Example Output
Single input Table or cell array, where the

first column specifies the
predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom datastores must output
tables.

data = read(ds)

data =

  4×1 table

        Predictors    
    __________________

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
data = read(ds)

data =

  4×1 cell array

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}

Multiple input Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}

The format of the predictors depends on the type of data.

Data Format
2-D images h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
images, respectively
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Data Format
3-D images h-by-w-by-d-by-c numeric array, where h, w, d,

and c are the height, width, depth, and number of
channels of the images, respectively

For more information, see “Datastores for Deep Learning”.

Numeric Array

For data that fits in memory and does not require additional processing like augmentation, you can
specify a data set of images as a numeric array.

The size and shape of the numeric array depends on the type of image data.

Data Format
2-D images h-by-w-by-c-by-N numeric array, where h, w, and

c are the height, width, and number of channels
of the images, respectively, and N is the number
of images

3-D images h-by-w-by-d-by-c-by-N numeric array, where h, w,
d, and c are the height, width, depth, and number
of channels of the images, respectively, and N is
the number of images

Table

As an alternative to datastores or numeric arrays, you can also specify images in a table.

When you specify images in a table, each row in the table corresponds to an observation.

For image input, the predictors must be in the first column of the table, specified as one of the
following:

• Absolute or relative file path to an image, specified as a character vector
• 1-by-1 cell array containing a h-by-w-by-c numeric array representing a 2-D image, where h, w,

and c correspond to the height, width, and number of channels of the image, respectively

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
table
Complex Number Support: Yes

sequences — Sequence or time series data
datastore | cell array of numeric arrays | numeric array

Sequence or time series data, specified as one of the following.
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Data Type Description Example Usage
Datastore TransformedDatasto

re
Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
activations.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric or cell array A single sequence
specified as a numeric
array or a data set of
sequences specified as
cell array of numeric
arrays

Make predictions using
data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of sequences and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with activations for sequence data:

• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by activations. For example, you can transform and combine data read from in-memory
arrays and CSV files using an ArrayDatastore and an TabularTextDatastore object,
respectively.

The datastore must return data in a table or cell array. Custom mini-batch datastores must output
tables.
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Datastore Output Example Output
Table data = read(ds)

data =

  4×2 table

        Predictors    
    __________________

    {12×50 double}
    {12×50 double}
    {12×50 double}
    {12×50 double}

Cell array data = read(ds)

data =

  4×2 cell array

    {12×50 double}
    {12×50 double}
    {12×50 double}
    {12×50 double}

The format of the predictors depends on the type of data.

Data Format of Predictors
Vector sequence c-by-s matrix, where c is the number of features

of the sequence and s is the sequence length
1-D image sequence h-by-c-by-s array, where h and c correspond to

the height and number of channels of the image,
respectively, and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

2-D image sequence h-by-w-by-c-by-s array, where h, w, and c
correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,
or a 1-by-1 cell array containing a numeric array.
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For more information, see “Datastores for Deep Learning”.

Numeric or Cell Array

For data that fits in memory and does not require additional processing like custom transformations,
you can specify a single sequence as a numeric array or a data set of sequences as a cell array of
numeric arrays.

For cell array input, the cell array must be an N-by-1 cell array of numeric arrays, where N is the
number of observations. The size and shape of the numeric array representing a sequence depends
on the type of sequence data.

Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length

1-D image sequences h-by-c-by-s arrays, where h and c correspond to
the height and number of channels of the images,
respectively, and s is the sequence length

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

features — Feature data
datastore | numeric array | table

Feature data, specified as one of the following.

Data Type Description Example Usage
Datastore TransformedDatasto

re
Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
activations.

• Apply custom
transformations to
datastore output.
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Data Type Description Example Usage
CombinedDatastore Datastore that reads

from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Table Feature data specified
as a table

Make predictions using
data stored in a table.

Numeric array Feature data specified
as numeric array

Make predictions using
data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of feature data and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with activations for feature data:

• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by activations. For more information, see “Datastores for Deep Learning”.

For networks with multiple inputs, the datastore must be a TransformedDatastore or
CombinedDatastore object.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Network Architecture Datastore Output Example Output
Single input layer Table or cell array with at least

one column, where the first
column specifies the predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

Table for network with one
input:

data = read(ds)

data =

  4×2 table

        Predictors    
    __________________

    {24×1 double}
    {24×1 double}
    {24×1 double}
    {24×1 double}

Cell array for network with one
input:

data = read(ds)

data =

  4×1 cell array

    {24×1 double}
    {24×1 double}
    {24×1 double}
    {24×1 double}

Multiple input layers Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

Cell array for network with two
inputs:

data = read(ds)

data =

  4×3 cell array

    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}

The predictors must be c-by-1 column vectors, where c is the number of features.

For more information, see “Datastores for Deep Learning”.

Table

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data and responses as a table.

Each row in the table corresponds to an observation. The arrangement of predictors in the table
columns depends on the type of task.
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Task Predictors
Feature classification Features specified in one or more columns as

scalars.

Numeric Array

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data as a numeric array.

The numeric array must be an N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input data.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
table
Complex Number Support: Yes

X1,...,XN — Numeric or cell arrays for networks with multiple inputs
numeric array | cell array

Numeric or cell arrays for networks with multiple inputs.

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

mixed — Mixed data
TransformedDatastore | CombinedDatastore | custom mini-batch datastore

Mixed data, specified as one of the following.
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Data Type Description Example Usage
TransformedDatastore Datastore that transforms

batches of data read from an
underlying datastore using a
custom transformation function

• Make predictions using
networks with multiple
inputs.

• Transform outputs of
datastores not supported by
activations so they have
the required format.

• Apply custom
transformations to datastore
output.

CombinedDatastore Datastore that reads from two
or more underlying datastores

• Make predictions using
networks with multiple
inputs.

• Combine predictors from
different data sources.

Custom mini-batch datastore Custom datastore that returns
mini-batches of data

Make predictions using data in
a format that other datastores
do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by activations. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.

Datastore Output Example Output
Cell array with numInputs columns, where
numInputs is the number of network inputs.

The order of inputs is given by the InputNames
property of the network.

data = read(ds)

data =

  4×3 cell array

    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

Tip To convert a numeric array to a datastore, use arrayDatastore.
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layer — Layer to extract activations from
numeric index | character vector

Layer to extract activations from, specified as a numeric index or a character vector.

To compute the activations of a SeriesNetwork object, specify the layer using its numeric index, or
as a character vector corresponding to the layer name.

To compute the activations of a DAGNetwork object, specify the layer as the character vector
corresponding to the layer name. If the layer has multiple outputs, specify the layer and output as the
layer name, followed by the character “/”, followed by the name of the layer output. That is, layer is
of the form 'layerName/outputName'.
Example: 3
Example: 'conv1'
Example: 'mpool/out'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MiniBatchSize=256 specifies the mini-batch size as 256.

OutputAs — Format of output activations
"channels" (default) | "rows" | "columns"

Format of output activations, specified as "channels", "rows", or "columns". For descriptions of
the output formats, see act.

For image input, if the OutputAs option is "channels", then the images in the input data can be
larger than the input size of the image input layer of the network. For other output formats, the
images in the input must have the same size as the input size of the image input layer of the network.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
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splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

Acceleration — Performance optimization
"auto" (default) | "mex" | "none"

Performance optimization, specified as one of the following:

• "auto" — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

• "mex" — Compile and execute a MEX function. This option is available only when you use a GPU.
Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
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supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If Parallel
Computing Toolbox or a suitable GPU is not available, then the software returns an error.

• "none" — Disable all acceleration.

If Acceleration is "auto", then MATLAB applies a number of compatible optimizations and does
not generate a MEX function.

The "auto" and "mex" options can offer performance benefits at the expense of an increased initial
run time. Subsequent calls with compatible parameters are faster. Use performance optimization
when you plan to call the function multiple times using new input data.

The "mex" option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The "mex" option is available when you use a single GPU.

To use the "mex" option, you must have a C/C++ compiler installed and the GPU Coder Interface for
Deep Learning Libraries support package. Install the support package using the Add-On Explorer in
MATLAB. For setup instructions, see “MEX Setup” (GPU Coder). GPU Coder is not required.

The "mex" option supports networks that contain the layers listed on the “Supported Layers” (GPU
Coder) page, except for the sequenceInputLayer and featureInputLayer objects.

MATLAB Compiler™ does not support deploying networks when you use the "mex" option.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu" | "multi-gpu" | "parallel"

Hardware resource, specified as one of the following:

• "auto" — Use a GPU if one is available; otherwise, use the CPU.
• "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU

device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

• "cpu" — Use the CPU.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform computation. If the pool does not
have GPUs, then computation takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

The "gpu", "multi-gpu", and "parallel" options require Parallel Computing Toolbox. To use a
GPU for deep learning, you must also have a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of
these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software
returns an error.
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To make predictions in parallel with networks with recurrent layers (by setting
ExecutionEnvironment to either "multi-gpu" or "parallel"), the SequenceLength option
must be "shortest" or "longest".

Networks with custom layers that contain State parameters do not support making predictions in
parallel.

Output Arguments
act — Activations from network layer
numeric array | cell array

Activations from the network layer, returned as a numeric array or a cell array of numeric arrays. The
format of act depends on the type of input data, the type of layer output, and the specified OutputAs
option.

Image or Folded Sequence Output

If the layer outputs image or folded sequence data, then act is a numeric array.

OutputAs act
"channels" For 2-D image output, act is an h-by-w-by-c-by-n array, where h, w, and c

are the height, width, and number of channels for the output of the chosen
layer, respectively, and n is the number of images. In this case,
act(:,:,:,i) contains the activations for the ith image.

For 3-D image output, act is an h-by-w-by-d-by-c-by-n array, where h, w, d,
and c are the height, width, depth, and number of channels for the output
of the chosen layer, respectively, and n is the number of images. In this
case, act(:,:,:,:,i) contains the activations for the ith image.

For folded 2-D image sequence output, act is an h-by-w-by-c-by-(n*s) array,
where h, w, and c are the height, width, and number of channels for the
output of the chosen layer, respectively, n is the number of sequences, and
s is the sequence length. In this case, act(:,:,:,(t-1)*n+k) contains
the activations for time step t of the kth sequence.

For folded 3-D image sequence output, act is an h-by-w-by-d-by-c-by-(n*s)
array, where h, w, d, and c are the height, width, depth, and number of
channels for the output of the chosen layer, respectively, n is the number of
sequences, and s is the sequence length. In this case, act(:,:,:,:,
(t-1)*n+k) contains the activations for time step t of the kth sequence.

"rows" For 2-D and 3-D image output, act is an n-by-m matrix, where n is the
number of images and m is the number of output elements from the layer.
In this case, act(i,:) contains the activations for the ith image.

For folded 2-D and 3-D image sequence output, act is an (n*s)-by-m
matrix, where n is the number of sequences, s is the sequence length, and
m is the number of output elements from the layer. In this case,
act((t-1)*n+k,:) contains the activations for time step t of the kth
sequence.
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OutputAs act
"columns" For 2-D and 3-D image output, act is an m-by-n matrix, where m is the

number of output elements from the chosen layer and n is the number of
images. In this case, act(:,i) contains the activations for the ith image.

For folded 2-D and 3-D image sequence output, act is an m-by-(n*s)
matrix, where m is the number of output elements from the chosen layer, n
is the number of sequences, and s is the sequence length. In this case,
act(:,(t-1)*n+k) contains the activations for time step t of the kth
sequence.

Sequence Output

If layer has sequence output (for example, LSTM layers with the output mode "sequence"), then
act is a cell array. In this case, the "OutputAs" option must be "channels".

OutputAs act
"channels" For vector sequence output, act is an n-by-1 cell array of c-by-s matrices,

where n is the number of sequences, c is the number of features in the
sequence, and s is the sequence length.

For 2-D image sequence output, act is an n-by-1 cell array of h-by-w-by-c-
by-s matrices, where n is the number of sequences, h, w, and c are the
height, width, and the number of channels of the images, respectively, and
s is the sequence length.

For 3-D image sequence output, act is an n-by-1 cell array of h-by-w-by-c-
by-d-by-s matrices, where n is the number of sequences, h, w, d, and c are
the height, width, depth, and the number of channels of the images,
respectively, and s is the sequence length.

In these cases, act{i} contains the activations of the ith sequence.

Feature Vector and Single Time Step Output

If layer outputs a feature vector or a single time step of a sequence (for example, an LSTM layer
with the output mode "last"), then act is a numeric array.

OutputAs act
"channels" For a feature vector or single time step containing vector data, act is a c-

by-n matrix, where n is the number of observations and c is the number of
features.

For a single time step containing 2-D image data, act is a h-by-w-by-c-by-n
array, where n is the number of sequences and h, w, and c are the height,
width, and the number of channels of the images, respectively.

For a single time step containing 3-D image data, act is a h-by-w-by-c-by-d-
by-n array, where n is the number of sequences and h, w, d, and c are the
height, width, depth, and the number of channels of the images,
respectively.
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OutputAs act
"rows" n-by-m matrix, where n is the number of observations and m is the number

of output elements from the chosen layer. In this case, act(i,:) contains
the activations for the ith sequence.

"columns" m-by-n matrix, where m is the number of output elements from the chosen
layer and n is the number of observations. In this case, act(:,i) contains
the activations for the ith image.

Algorithms
When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Version History
Introduced in R2016a

Prediction functions pad mini-batches to length of longest sequence before splitting when
you specify SequenceLength option as an integer

Starting in R2022b, when you make predictions with sequence data using the predict, classify,
predictAndUpdateState, classifyAndUpdateState, and activations functions and the
SequenceLength option is an integer, the software pads sequences to the length of the longest
sequence in each mini-batch and then splits the sequences into mini-batches with the specified
sequence length. If SequenceLength does not evenly divide the sequence length of the mini-batch,
then the last split mini-batch has a length shorter than SequenceLength. This behavior prevents
time steps that contain only padding values from influencing predictions.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, manually pad the input data such that the mini-batches
have the length of the appropriate multiple of SequenceLength. For sequence-to-sequence
workflows, you may also need to manually remove time steps of the output that correspond to
padding values.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• C++ code generation supports the following syntaxes:

• act = activations(net,images,layer), where images is a numeric array
• act = activations(net,sequences,layer), where sequences is a cell array
• act = activations(net,features,layer), where features is a numeric array
• act = activations(__,Name,Value) using any of the previous syntaxes

• For numeric inputs, the input must not have variable size. The size of the input must be fixed at
code generation time.

• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• The layer argument must be a constant during code generation.
• Only the OutputAs, MiniBatchSize, SequenceLength, SequencePaddingDirection, and

SequencePaddingValue name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• The format of the output activations must be "channels".
• Only the "longest" and "shortest" option of the SequenceLength name-value pair is

supported for code generation.
• Code generation for Intel MKL-DNN target does not support the combination of

SequenceLength="longest", SequencePaddingDirection="left", and
SequencePaddingValue=0 name-value arguments.

For more information about generating code for deep learning neural networks, see “Workflow for
Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• act = activations(net,images,layer), where images is a numeric array
• act = activations(net,sequences,layer), where sequences is a cell array or numeric

array
• act = activations(net,features,layer), where features is a numeric array
• act = activations(__,Name,Value) using any of the previous syntaxes

• For numeric inputs, the input must not have variable size. The size of the input must be fixed at
code generation time.

• GPU code generation does not support gpuArray inputs to the activations function.
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• The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only
vector input sequences. The ARM® Compute Library for GPU does not support recurrent
networks.

• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• The layer argument must be a constant during code generation.
• Only the OutputAs, MiniBatchSize, SequenceLength, SequencePaddingDirection, and

SequencePaddingValue name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• The format of the output activations must be "channels".
• Only the "longest" and "shortest" option of the SequenceLength name-value pair is

supported for code generation.
• GPU code generation for the activations function supports inputs that are defined as half-

precision floating point data types. For more information, see half.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

• The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

• A gpuArray
• A cell array containing gpuArray objects
• A table containing gpuArray objects
• A datastore that outputs cell arrays containing gpuArray objects
• A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
predict | classify | deepDreamImage | trainNetwork

Topics
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”
“Visualize Activations of LSTM Network”
“Deep Learning in MATLAB”
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AcceleratedFunction
Accelerated deep learning function

Description
An AcceleratedFunction stores traces of the underlying function

Reusing a cached trace depends on the function inputs and outputs:

• For any dlarray object or structure of dlarray object inputs, the trace depends on the size,
format, and underlying datatype of the dlarray. That is, the accelerated function triggers a new
trace for dlarray inputs with size, format, or underlying datatype not contained in the cache. Any
dlarray inputs differing only by value to a previously cached trace do not trigger a new trace.

• For any dlnetwork inputs, the trace depends on the size, format, and underlying datatype of the
dlnetwork state and learnable parameters. That is, the accelerated function triggers a new trace
for dlnetwork inputs with learnable parameters or state with size, format, and underlying
datatype not contained in the cache. Any dlnetwork inputs differing only by the value of the state
and learnable parameters to a previously cached trace do not trigger a new trace.

• For other types of input, the trace depends on the values of the input. That is, the accelerated
function triggers a new trace for other types of input with value not contained in the cache. Any
other inputs that have the same value as a previously cached trace do not trigger a new trace.

• The trace depends on the number of function outputs. That is, the accelerated function triggers a
new trace for function calls with previously unseen numbers of output arguments. Any function
calls with the same number of output arguments as a previously cached trace do not trigger a new
trace.

When necessary, the software caches any new traces by evaluating the underlying function and
caching the resulting trace in the AcceleratedFunction object.

The returned AcceleratedFunction object caches the traces of calls to the underlying function
and reuses the cached result when the same input pattern reoccurs.

Try using dlaccelerate for function calls that:

• are long-running
• have dlarray objects, structures of dlarray objects, or dlnetwork objects as inputs
• do not have side effects like writing to files or displaying output

Invoke the accelerated function as you would invoke the underlying function. Note that the
accelerated function is not a function handle.

Note When using the dlfeval function, the software automatically accelerates the forward and
predict functions for dlnetwork input. If you accelerate a deep learning function where the
majority of the computation takes place in calls to the forward or predict functions for dlnetwork
input, then you might not see an improvement in training time.
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Caution An AcceleratedFunction object is not aware of updates to the underlying function. If you
modify the function associated with the accelerated function, then clear the cache using the
clearCache object function or alternatively use the command clear functions.

Creation
To create an AcceleratedFunction object, use the dlaccelerate function.

Properties
Function — Underlying function
function handle

This property is read-only.

Underlying function, specified as a function handle.
Data Types: function_handle

Enabled — Flag to enable tracing
true (default) | false

Flag to enable tracing, specified as true or false.
Data Types: logical

CacheSize — Size of cache
50 (default) | positive integer

Size of cache, specified as a positive integer.

The cache size corresponds to the maximum number of input and output combinations to cache.
Data Types: double

HitRate — Cache hit rate
scalar in the range [0,100]

This property is read-only.

Cache hit rate, specified as a scalar in the range [0,100].

The cache hit rate corresponds to the percentage of reused evaluations.
Data Types: double

Occupancy — Cache occupancy
scalar in the range [0,100]

This property is read-only.

Cache occupancy, specified as a scalar in the range [0,100].

The cache occupancy corresponds to the percentage of the cache in use.
Data Types: double
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CheckMode — Check mode
'none' (default) | 'tolerance'

Check mode, specified as one of the following:

• 'none' – Do not check accelerated results.
• 'tolerance' – Check that the accelerated results and the results of the underlying function are

within the tolerance given by the CheckTolerance property. If the values are not within this
tolerance, then the function throws a warning.

CheckTolerance — Check tolerance
1e-4 (default) | positive scalar

Check tolerance, specified as a positive scalar.

If the CheckMode property is 'tolerance', then the function checks that the accelerated results
and the results of the underlying function are within the tolerance given by the CheckTolerance
property. If the values are not within this tolerance, then the function throws a warning.
Data Types: double

Object Functions
clearCache Clear accelerated deep learning function trace cache

Examples

Accelerate Model Gradients Function

Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

s = load("dlnetDigits.mat");
net = s.net;
classNames = s.classNames;

Accelerate the model loss function modelLoss listed at the end of the example.

fun = @modelLoss;
accfun = dlaccelerate(fun);

Clear any previously cached traces of the accelerated function using the clearCache function.

clearCache(accfun)

View the properties of the accelerated function. Because the cache is empty, the Occupancy property
is 0.

accfun

accfun = 
  AcceleratedFunction with properties:

          Function: @modelLoss
           Enabled: 1
         CacheSize: 50
           HitRate: 0
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         Occupancy: 0
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

The returned AcceleratedFunction object stores the traces of underlying function calls and
reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a
custom training loop, replace calls to the model gradients function with calls to the accelerated
function. You can invoke the accelerated function as you would invoke the underlying function. Note
that the accelerated function is not a function handle.

Evaluate the accelerated model gradients function with random data using the dlfeval function.

X = rand(28,28,1,128,"single");
X = dlarray(X,"SSCB");

T = categorical(classNames(randi(10,[128 1])));
T = onehotencode(T,2)';
T = dlarray(T,"CB");

[loss,gradients,state] = dlfeval(accfun,net,X,T);

View the Occupancy property of the accelerated function. Because the function has been evaluated,
the cache is nonempty.

accfun.Occupancy

ans = 2

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the loss, the gradients of the loss with respect to the
learnable parameters in net, and the network state. To compute the gradients, use the dlgradient
function.

function [loss,gradients,state] = modelLoss(net,X,T)

[Y,state] = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Clear Cache of Accelerated Function

Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

s = load("dlnetDigits.mat");
net = s.net;
classNames = s.classNames;

Accelerate the model loss function modelLoss listed at the end of the example.

fun = @modelLoss;
accfun = dlaccelerate(fun);
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Clear any previously cached traces of the accelerated function using the clearCache function.

clearCache(accfun)

View the properties of the accelerated function. Because the cache is empty, the Occupancy property
is 0.

accfun

accfun = 
  AcceleratedFunction with properties:

          Function: @modelLoss
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

The returned AcceleratedFunction object stores the traces of underlying function calls and
reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a
custom training loop, replace calls to the model gradients function with calls to the accelerated
function. You can invoke the accelerated function as you would invoke the underlying function. Note
that the accelerated function is not a function handle.

Evaluate the accelerated model gradients function with random data using the dlfeval function.

X = rand(28,28,1,128,"single");
X = dlarray(X,"SSCB");

T = categorical(classNames(randi(10,[128 1])));
T = onehotencode(T,2)';
T = dlarray(T,"CB");

[loss,gradients,state] = dlfeval(accfun,net,X,T);

View the Occupancy property of the accelerated function. Because the function has been evaluated,
the cache is nonempty.

accfun.Occupancy

ans = 2

Clear the cache using the clearCache function.

clearCache(accfun)

View the Occupancy property of the accelerated function. Because the cache has been cleared, the
cache is empty.

accfun.Occupancy

ans = 0

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the loss, the gradients of the loss with respect to the
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learnable parameters in net, and the network state. To compute the gradients, use the dlgradient
function.

function [loss,gradients,state] = modelLoss(net,X,T)

[Y,state] = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Check Accelerated Deep Learning Function Outputs

This example shows how to check that the outputs of accelerated functions match the outputs of the
underlying function.

In some cases, the outputs of accelerated functions differ to the outputs of the underlying function.
For example, you must take care when accelerating functions that use random number generation,
such as a function that generates random noise to add to the network input. When caching the trace
of a function that generates random numbers that are not dlarray objects, the accelerated function
caches resulting random numbers in the trace. When reusing the trace, the accelerated function uses
the cached random values. The accelerated function does not generate new random values.

To check that the outputs of the accelerated function match the outputs of the underlying function,
use the CheckMode property of the accelerated function. When the CheckMode property of the
accelerated function is 'tolerance' and the outputs differ by more than a specified tolerance, the
accelerated function throws a warning.

Accelerate the function myUnsupportedFun, listed at the end of the example using the
dlaccelerate function. The function myUnsupportedFun generates random noise and adds it to
the input. This function does not support acceleration because the function generates random
numbers that are not dlarray objects.

accfun = dlaccelerate(@myUnsupportedFun)

accfun = 
  AcceleratedFunction with properties:

          Function: @myUnsupportedFun
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

Clear any previously cached traces using the clearCache function.

clearCache(accfun)

To check that the outputs of reused cached traces match the outputs of the underlying function, set
the CheckMode property to 'tolerance'.

accfun.CheckMode = 'tolerance'
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accfun = 
  AcceleratedFunction with properties:

          Function: @myUnsupportedFun
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'tolerance'
    CheckTolerance: 1.0000e-04

Evaluate the accelerated function with an array of ones as input, specified as a dlarray input.

dlX = dlarray(ones(3,3));
dlY = accfun(dlX)

dlY = 
  3×3 dlarray

    1.8147    1.9134    1.2785
    1.9058    1.6324    1.5469
    1.1270    1.0975    1.9575

Evaluate the accelerated function again with the same input. Because the accelerated function reuses
the cached random noise values instead of generating new random values, the outputs of the reused
trace differs from the outputs of the underlying function. When the CheckMode property of the
accelerated function is 'tolerance' and the outputs differ, the accelerated function throws a
warning.

dlY = accfun(dlX)

Warning: Accelerated outputs differ from underlying function outputs.

dlY = 
  3×3 dlarray

    1.8147    1.9134    1.2785
    1.9058    1.6324    1.5469
    1.1270    1.0975    1.9575

Random number generation using the 'like' option of the rand function with a dlarray object
supports acceleration. To use random number generation in an accelerated function, ensure that the
function uses the rand function with the 'like' option set to a traced dlarray object (a dlarray
object that depends on an input dlarray object).

Accelerate the function mySupportedFun, listed at the end of the example. The function
mySupportedFun adds noise to the input by generating noise using the 'like' option with a traced
dlarray object.

accfun2 = dlaccelerate(@mySupportedFun);

Clear any previously cached traces using the clearCache function.

clearCache(accfun2)
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To check that the outputs of reused cached traces match the outputs of the underlying function, set
the CheckMode property to 'tolerance'.

accfun2.CheckMode = 'tolerance';

Evaluate the accelerated function twice with the same input as before. Because the outputs of the
reused cache match the outputs of the underlying function, the accelerated function does not throw a
warning.

dlY = accfun2(dlX)

dlY = 
  3×3 dlarray

    1.7922    1.0357    1.6787
    1.9595    1.8491    1.7577
    1.6557    1.9340    1.7431

dlY = accfun2(dlX)

dlY = 
  3×3 dlarray

    1.3922    1.7060    1.0462
    1.6555    1.0318    1.0971
    1.1712    1.2769    1.8235

Checking the outputs match requires extra processing and increases the time required for function
evaluation. After checking the outputs, set the CheckMode property to 'none'.

accfun1.CheckMode = 'none';
accfun2.CheckMode = 'none';

Example Functions

The function myUnsupportedFun generates random noise and adds it to the input. This function
does not support acceleration because the function generates random numbers that are not dlarray
objects.

function out = myUnsupportedFun(dlX)

sz = size(dlX);
noise = rand(sz);
out = dlX + noise;

end

The function mySupportedFun adds noise to the input by generating noise using the 'like' option
with a traced dlarray object.

function out = mySupportedFun(dlX)

sz = size(dlX);
noise = rand(sz,'like',dlX);
out = dlX + noise;
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end

Version History
Introduced in R2021a

See Also
dlaccelerate | clearCache | dlarray | dlgradient | dlfeval

Topics
“Deep Learning Function Acceleration for Custom Training Loops”
“Accelerate Custom Training Loop Functions”
“Check Accelerated Deep Learning Function Outputs”
“Evaluate Performance of Accelerated Deep Learning Function”
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adamupdate
Update parameters using adaptive moment estimation (Adam)

Syntax
[netUpdated,averageGrad,averageSqGrad] = adamupdate(net,grad,averageGrad,
averageSqGrad,iteration)
[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,
averageSqGrad,iteration)
[ ___ ] = adamupdate( ___ learnRate,gradDecay,sqGradDecay,epsilon)

Description
Update the network learnable parameters in a custom training loop using the adaptive moment
estimation (Adam) algorithm.

Note This function applies the Adam optimization algorithm to update network parameters in custom
training loops that use networks defined as dlnetwork objects or model functions. If you want to
train a network defined as a Layer array or as a LayerGraph, use the following functions:

• Create a TrainingOptionsADAM object using the trainingOptions function.
• Use the TrainingOptionsADAM object with the trainNetwork function.

[netUpdated,averageGrad,averageSqGrad] = adamupdate(net,grad,averageGrad,
averageSqGrad,iteration) updates the learnable parameters of the network net using the Adam
algorithm. Use this syntax in a training loop to iteratively update a network defined as a dlnetwork
object.

[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,
averageSqGrad,iteration) updates the learnable parameters in params using the Adam
algorithm. Use this syntax in a training loop to iteratively update the learnable parameters of a
network defined using functions.

[ ___ ] = adamupdate( ___ learnRate,gradDecay,sqGradDecay,epsilon) also specifies
values to use for the global learning rate, gradient decay, square gradient decay, and small constant
epsilon, in addition to the input arguments in previous syntaxes.

Examples

Update Learnable Parameters Using adamupdate

Perform a single adaptive moment estimation update step with a global learning rate of 0.05,
gradient decay factor of 0.75, and squared gradient decay factor of 0.95.

Create the parameters and parameter gradients as numeric arrays.
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params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the iteration counter, average gradient, and average squared gradient for the first iteration.

iteration = 1;
averageGrad = [];
averageSqGrad = [];

Specify custom values for the global learning rate, gradient decay factor, and squared gradient decay
factor.

learnRate = 0.05;
gradDecay = 0.75;
sqGradDecay = 0.95;

Update the learnable parameters using adamupdate.

[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);

Update the iteration counter.

iteration = iteration + 1;

Train Network Using adamupdate

Use adamupdate to train a network using the Adam algorithm.

Load Training Data

Load the digits training data.

[XTrain,TTrain] = digitTrain4DArrayData;
classes = categories(TTrain);
numClasses = numel(classes);

Define Network

Define the network and specify the average image value using the Mean option in the image input
layer.

layers = [
    imageInputLayer([28 28 1],'Mean',mean(XTrain,4))
    convolution2dLayer(5,20)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers);
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Define Model Loss Function

Create the helper function modelLoss, listed at the end of the example. The function takes a
dlnetwork object and a mini-batch of input data with corresponding labels, and returns the loss and
the gradients of the loss with respect to the learnable parameters.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;
numEpochs = 20;
numObservations = numel(TTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);

Train Network

Initialize the average gradients and squared average gradients.

averageGrad = [];
averageSqGrad = [];

Calculate the total number of iterations for the training progress monitor.

numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters using the adamupdate function. At the end of each
iteration, display the training progress.

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

iteration = 0;
epoch = 0;

while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    idx = randperm(numel(TTrain));
    XTrain = XTrain(:,:,:,idx);
    TTrain = TTrain(idx);

    i = 0;
    while i < numIterationsPerEpoch && ~monitor.Stop
        i = i + 1;
        iteration = iteration + 1;

        % Read mini-batch of data and convert the labels to dummy
        % variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
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        X = XTrain(:,:,:,idx);

        T = zeros(numClasses, miniBatchSize,"single");
        for c = 1:numClasses
            T(c,TTrain(idx)==classes(c)) = 1;
        end

        % Convert mini-batch of data to a dlarray.
        X = dlarray(single(X),"SSCB");

        % If training on a GPU, then convert data to a gpuArray.
        if canUseGPU
            X = gpuArray(X);
        end

        % Evaluate the model loss and gradients using dlfeval and the
        % modelLoss function.
        [loss,gradients] = dlfeval(@modelLoss,net,X,T);

        % Update the network parameters using the Adam optimizer.
        [net,averageGrad,averageSqGrad] = adamupdate(net,gradients,averageGrad,averageSqGrad,iteration);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Test Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.
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[XTest,TTest] = digitTest4DArrayData;

Convert the data to a dlarray with the dimension format "SSCB" (spatial, spatial, channel, batch).
For GPU prediction, also convert the data to a gpuArray.

XTest = dlarray(XTest,"SSCB");
if canUseGPU
    XTest = gpuArray(XTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.

YTest = predict(net,XTest);
[~,idx] = max(extractdata(YTest),[],1);
YTest = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YTest==TTest)

accuracy = 0.9896

Model Loss Function

The modelLoss helper function takes a dlnetwork object net and a mini-batch of input data X with
corresponding labels T, and returns the loss and the gradients of the loss with respect to the
learnable parameters in net. To compute the gradients automatically, use the dlgradient function.

function [loss,gradients] = modelLoss(net,X,T)

Y = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Input Arguments
net — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the Learnables property of the dlnetwork object. net.Learnables is a
table with three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as net.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table
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Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a
table.

If you specify params as a table, it must contain the following three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for
structures) or variables (for tables) as params.
Data Types: single | double | struct | table | cell

grad — Gradients of the loss
dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of grad depends on the input network or learnable parameters. The following table
shows the required format for grad for possible inputs to adamupdate.

Input Learnable Parameters Gradients
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables. grad must
have a Value variable
consisting of cell arrays that
contain the gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params
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Input Learnable Parameters Gradients
Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. grad must have a
Value variable consisting of cell
arrays that contain the gradient
of each learnable parameter.

You can obtain grad from a call to dlfeval that evaluates a function that contains a call to
dlgradient. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

averageGrad — Moving average of parameter gradients
[] | dlarray | numeric array | cell array | structure | table

Moving average of parameter gradients, specified as an empty array, a dlarray, a numeric array, a
cell array, a structure, or a table.

The exact form of averageGrad depends on the input network or learnable parameters. The
following table shows the required format for averageGrad for possible inputs to adamupdate.

Input Learnable Parameters Average Gradients
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables.
averageGrad must have a
Value variable consisting of cell
arrays that contain the average
gradient of each learnable
parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. averageGrad must
have a Value variable
consisting of cell arrays that
contain the average gradient of
each learnable parameter.

If you specify averageGrad and averageSqGrad as empty arrays, the function assumes no previous
gradients and runs in the same way as for the first update in a series of iterations. To update the
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learnable parameters iteratively, use the averageGrad output of a previous call to adamupdate as
the averageGrad input.

averageSqGrad — Moving average of squared parameter gradients
[] | dlarray | numeric array | cell array | structure | table

Moving average of squared parameter gradients, specified as an empty array, a dlarray, a numeric
array, a cell array, a structure, or a table.

The exact form of averageSqGrad depends on the input network or learnable parameters. The
following table shows the required format for averageSqGrad for possible inputs to adamupdate.

Input Learnable parameters Average Squared Gradients
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables.
averageSqGrad must have a
Value variable consisting of cell
arrays that contain the average
squared gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables and ordering as
params. averageSqGrad must
have a Value variable
consisting of cell arrays that
contain the average squared
gradient of each learnable
parameter.

If you specify averageGrad and averageSqGrad as empty arrays, the function assumes no previous
gradients and runs in the same way as for the first update in a series of iterations. To update the
learnable parameters iteratively, use the averageSqGrad output of a previous call to adamupdate as
the averageSqGrad input.

iteration — Iteration number
positive integer

Iteration number, specified as a positive integer. For the first call to adamupdate, use a value of 1.
You must increment iteration by 1 for each subsequent call in a series of calls to adamupdate. The
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Adam algorithm uses this value to correct for bias in the moving averages at the beginning of a set of
iterations.

learnRate — Global learning rate
0.001 (default) | positive scalar

Global learning rate, specified as a positive scalar. The default value of learnRate is 0.001.

If you specify the network parameters as a dlnetwork, the learning rate for each parameter is the
global learning rate multiplied by the corresponding learning rate factor property defined in the
network layers.

gradDecay — Gradient decay factor
0.9 (default) | positive scalar between 0 and 1

Gradient decay factor, specified as a positive scalar between 0 and 1. The default value of gradDecay
is 0.9.

sqGradDecay — Squared gradient decay factor
0.999 (default) | positive scalar between 0 and 1

Squared gradient decay factor, specified as a positive scalar between 0 and 1. The default value of
sqGradDecay is 0.999.

epsilon — Small constant
1e-8 (default) | positive scalar

Small constant for preventing divide-by-zero errors, specified as a positive scalar. The default value of
epsilon is 1e-8.

Output Arguments
netUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork object.

The function updates the Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

averageGrad — Updated moving average of parameter gradients
dlarray | numeric array | cell array | structure | table

Updated moving average of parameter gradients, returned as a dlarray, a numeric array, a cell
array, a structure, or a table.

averageSqGrad — Updated moving average of squared parameter gradients
dlarray | numeric array | cell array | structure | table
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Updated moving average of squared parameter gradients, returned as a dlarray, a numeric array, a
cell array, a structure, or a table.

More About
Adam

The function uses the adaptive moment estimation (Adam) algorithm to update the learnable
parameters. For more information, see the definition of the Adam algorithm under “Stochastic
Gradient Descent” on page 1-1628 on the trainingOptions reference page.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• grad
• averageGrad
• averageSqGrad
• params

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlnetwork | dlarray | dlupdate | rmspropupdate | sgdmupdate | forward | dlgradient |
dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”
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addInputLayer
Add input layer to network

Syntax
netUpdated = addInputLayer(net,layer)
netUpdated = addInputLayer(net,layer,inputName)
netUpdated = addInputLayer( ___ ,Initialize=tf)

Description
netUpdated = addInputLayer(net,layer) adds the input layer layer to the network net by
connecting the input layer to the first unconnected input in net. If the updated network supports
automatic initialization, then the function automatically initializes the learnable parameters of the
network.

netUpdated = addInputLayer(net,layer,inputName) also specifies which unconnected input
the function connects to the input layer.

netUpdated = addInputLayer( ___ ,Initialize=tf) also specifies whether to initialize the
output network using any of the previous syntaxes.

Examples

Add Input Layer to dlnetwork

Create an uninitialized dlnetwork object that does not have an input layer.

layers = [
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    fullyConnectedLayer(10)
    softmaxLayer];

net = dlnetwork(layers,Initialize=false)

net = 
  dlnetwork with properties:

         Layers: [5×1 nnet.cnn.layer.Layer]
    Connections: [4×2 table]
     Learnables: [4×3 table]
          State: [0×3 table]
     InputNames: {'conv'}
    OutputNames: {'softmax'}
    Initialized: 0

  View summary with summary.
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Create an image input layer with an input size of [28 28 1].

layer = imageInputLayer([28 28 1],Normalization="none");

Add the input layer to the network.

net = addInputLayer(net,layer)

net = 
  dlnetwork with properties:

         Layers: [6×1 nnet.cnn.layer.Layer]
    Connections: [5×2 table]
     Learnables: [4×3 table]
          State: [0×3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

View the Initialized property. Because the network contains all the information required for
initialization, the output network is initialized.

net.Initialized

ans = logical
   1

Connect Input Layers to Specified dlnetwork Inputs

Create an uninitialized dlnetwork object that has two unconnected inputs.

layers = [
    convolution2dLayer(5,16,Name="conv")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(50)
    flattenLayer
    concatenationLayer(1,2,Name="cat")
    fullyConnectedLayer(10)
    softmaxLayer];

net = dlnetwork(layers,Initialize=false);

Create an image input layer to connect to the convolution layer.

layer = imageInputLayer([28 28 1],Normalization="none");

Connect the image input layer to the "conv" layer. Because the network does not contain the
information required to initialize the network, the returned network is uninitialized.

net = addInputLayer(net,layer,"conv")
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net = 
  dlnetwork with properties:

         Layers: [9×1 nnet.cnn.layer.Layer]
    Connections: [8×2 table]
     Learnables: [8×3 table]
          State: [2×3 table]
     InputNames: {'imageinput'  'cat/in2'}
    OutputNames: {'softmax'}
    Initialized: 0

  View summary with summary.

Create a feature input layer to connect to the second input of the concatenation layer.

layer = featureInputLayer(1);

Connect the feature input layer to the "in2" input of the "cat" layer. Because the network now
contains the information required to initialize the network, the returned network is initialized.

net = addInputLayer(net,layer,"cat/in2")

net = 
  dlnetwork with properties:

         Layers: [10×1 nnet.cnn.layer.Layer]
    Connections: [9×2 table]
     Learnables: [8×3 table]
          State: [2×3 table]
     InputNames: {'imageinput'  'input'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Visualize the network in a plot.

figure
plot(net)
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Input Arguments
net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layer — Input layer to add
Layer object

Input layer to add, specified as a Layer object.

inputName — Unconnected network input which the function connects the layer
string scalar | character vector | cell array containing a character vector

Unconnected network input which the function connects the layer, specified as a string scalar, a
character vector, or a cell array containing a character vector.
Data Types: char | string | cell

tf — Flag to initialize output network
"auto" (default) | true or 1 | false or 0

Flag to initialize the learnable parameters of the output network, specified as one of these values:

• "auto" — If the network does contains all the required information for initialization, then the
function initializes the output network. Otherwise, the function does not initialize the output
network..

• 1 (true) — Initialize the output network. If the network does not contain all the required
information for initialization, then the function errors.

• 0 (false) — Do not initialize the output network.
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Output Arguments
netUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork object.

The function reorders the layers in the Layers property of the network such that the input layer
appears immediately before the layer that it is connected to.

Version History
Introduced in R2022b

See Also
dlnetwork | dlarray | dlgradient | dlfeval | forward | predict | layerGraph | initialize

Topics
“Train Network Using Custom Training Loop”
“List of Deep Learning Layers”
“Define Custom Training Loops, Loss Functions, and Networks”
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additionLayer
Addition layer

Description
An addition layer adds inputs from multiple neural network layers element-wise.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names
'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers. All inputs to an
addition layer must have the same dimension.

Creation

Syntax
layer = additionLayer(numInputs)
layer = additionLayer(numInputs,'Name',name)

Description

layer = additionLayer(numInputs) creates an addition layer that adds numInputs inputs
element-wise. This function also sets the NumInputs property.

layer = additionLayer(numInputs,'Name',name) also sets the Name property.

Properties
NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer greater than or equal to 2.

The inputs have the names 'in1','in2',...,'inN', where N is NumInputs. For example, if
NumInputs is 3, then the inputs have the names 'in1','in2', and 'in3'. Use the input names
when connecting or disconnecting the layer using the connectLayers or disconnectLayers
functions.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string
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InputNames — Input Names
{'in1','in2',…,'inN'} (default)

Input names, specified as {'in1','in2',...,'inN'}, where N is the number of inputs of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect Addition Layer

Create an addition layer with two inputs and the name 'add_1'.

add = additionLayer(2,'Name','add_1')

add = 
  AdditionLayer with properties:

          Name: 'add_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs
from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,add);

lgraph = connectLayers(lgraph,'relu_1','add_1/in1');
lgraph = connectLayers(lgraph,'relu_2','add_1/in2');

plot(lgraph)
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Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. To easily add connections
later, specify names for the first ReLU layer and the addition layer.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(5,16,'Padding','same')
    batchNormalizationLayer
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
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    reluLayer
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the third
ReLU layer. This arrangement enables the addition layer to add the outputs of the third ReLU layer
and the 1-by-1 convolutional layer. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The third ReLU layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the third ReLU layer and the 'skipConv'
layer. To check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16x1 nnet.cnn.layer.Layer]
    Connections: [16x2 table]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9934
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Version History
Introduced in R2017b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | layerGraph | depthConcatenationLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Set Up Parameters and Train Convolutional Neural Network”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
“List of Deep Learning Layers”
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addLayers
Package: nnet.cnn

Add layers to layer graph or network

Syntax
lgraphUpdated = addLayers(lgraph,larray)
netUpdated = addLayers(net,larray)

Description
lgraphUpdated = addLayers(lgraph,larray) adds the network layers in larray to the layer
graph lgraph. The updated layer graph lgraphUpdated contains the layers and connections of
lgraph together with the layers in larray, connected sequentially. The layer names in larray must
be unique, nonempty, and different from the names of the layers in lgraph.

netUpdated = addLayers(net,larray) adds the network layers in larray to the dlnetwork
object net. The updated network netUpdated contains the layers and connections of net together
with the layers in larray, connected sequentially. The layer names in larray must be unique,
nonempty, and different from the names of the layers in net.

Examples

Add Layers to Layer Graph

Create an empty layer graph and an array of layers. Add the layers to the layer graph and plot the
graph. addLayers connects the layers sequentially.

lgraph = layerGraph;

layers = [
    imageInputLayer([32 32 3],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

lgraph = addLayers(lgraph,layers);
figure
plot(lgraph)
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

larray — Network layers
Layer array

Network layers, specified as a Layer array.

For a list of built-in layers, see “List of Deep Learning Layers”.

Output Arguments
lgraphUpdated — Updated layer graph
LayerGraph object

Updated layer graph, returned as a LayerGraph object.
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netUpdated — Updated network
dlnetwork object

Updated network, returned as an uninitialized dlnetwork object.

To initialize the learnable parameters of a dlnetwork object, use the initialize function.

Version History
Introduced in R2017b

See Also
layerGraph | removeLayers | connectLayers | disconnectLayers | plot | assembleNetwork
| replaceLayer | dlnetwork

Topics
“Train Deep Learning Network to Classify New Images”
“Train Network with Multiple Outputs”
“Classify Videos Using Deep Learning”
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addMetrics
Compute additional classification performance metrics

Syntax
UpdatedROCObj = addMetrics(rocObj,metrics)

Description
rocmetrics computes the false positive rates (FPR), true positive rates (TPR), and additional
metrics specified by the AdditionalMetrics name-value argument. After creating a rocmetrics
object, you can compute additional classification performance metrics by using the addMetrics
function.

UpdatedROCObj = addMetrics(rocObj,metrics) computes additional classification
performance metrics specified in metrics using the classification model information stored in the
rocmetrics object rocObj.

UpdatedROCObj contains all the information in rocObj plus additional performance metrics
computed by addMetrics. The function attaches the additional computed metrics (metrics) as new
variables in the table of the Metrics property.

If you compute confidence intervals when you create rocObj, the addMetrics function computes
the confidence intervals for the additional metrics. The new variables in the Metrics property
contain a three-column matrix in which the first column corresponds to the metric values, and the
second and third columns correspond to the lower and upper bounds, respectively. Using confidence
intervals requires Statistics and Machine Learning Toolbox.

Examples

Compute Additional Metrics

Compute the performance metrics (FPR, TPR, and expected cost) for a multiclass classification
problem when you create a rocmetrics object. Compute additional metrics, the positive predictive
value (PPV) and the negative predictive value (NPV), and add them to the object.

Load a sample of true labels and the prediction scores for a classification problem. For this example,
there are five classes: daisy, dandelion, roses, sunflowers, and tulips. The class names are stored in
classNames. The scores are the softmax prediction scores generated using the predict function.
scores is an N-by-K array where N is the number of observations and K is the number of classes.
The column order of scores follows the class order stored in classNames.

load('flowersDataResponses.mat')

scores = flowersData.scores;
trueLabels = flowersData.trueLabels;

classNames = flowersData.classNames;
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Create a rocmetrics object by using the true labels and the classification scores. Specify the
column order of scores using classNames. By default, rocmetrics computes the FPR and TPR.
Specify AdditionalMetrics="ExpectedCost" to compute the expected cost as well.

rocObj = rocmetrics(trueLabels,scores,classNames, ...
    AdditionalMetrics="ExpectedCost");

The table in the Metrics property of rocObj contains performance metric values for each of the
classes, vertically concatenated according to the class order. Find and display the top rows for the
second class in the table.

idx = rocObj.Metrics.ClassName == classNames(2);
head(rocObj.Metrics(idx,:))

    ClassName    Threshold    FalsePositiveRate    TruePositiveRate    ExpectedCost
    _________    _________    _________________    ________________    ____________

    dandelion        1                0                      0           0.045287  
    dandelion        1                0                0.23889           0.034469  
    dandelion        1                0                0.26111           0.033462  
    dandelion        1                0                0.27222           0.032959  
    dandelion        1                0                0.28889           0.032204  
    dandelion        1                0                0.29444           0.031953  
    dandelion        1                0                    0.3           0.031701  
    dandelion        1                0                0.31111           0.031198  

The table in Metrics contains the variables for the class names, threshold, false positive rate, true
positive rate, and expected cost (the additional metric).

After creating a rocmetrics object, you can compute additional metrics using the classification
model information stored in the object. Compute the PPV and NPV by using the addMetrics
function. To overwrite the input argument rocObj, assign the output of addMetrics to the input.

rocObj = addMetrics(rocObj,["PositivePredictiveValue","NegativePredictiveValue"]);

Display the Metrics property for the top rows.

head(rocObj.Metrics(idx,:))

    ClassName    Threshold    FalsePositiveRate    TruePositiveRate    ExpectedCost    PositivePredictiveValue    NegativePredictiveValue
    _________    _________    _________________    ________________    ____________    _______________________    _______________________

    dandelion        1                0                      0           0.045287                NaN                       0.7551        
    dandelion        1                0                0.23889           0.034469                  1                      0.80202        
    dandelion        1                0                0.26111           0.033462                  1                      0.80669        
    dandelion        1                0                0.27222           0.032959                  1                      0.80904        
    dandelion        1                0                0.28889           0.032204                  1                      0.81259        
    dandelion        1                0                0.29444           0.031953                  1                      0.81378        
    dandelion        1                0                    0.3           0.031701                  1                      0.81498        
    dandelion        1                0                0.31111           0.031198                  1                      0.81738        

The table in Metrics now includes the PositivePredictiveValue and
NegativePredictiveValue variables in the last two columns, in the order you specified. Note that
the positive predictive value (PPV = TP/(TP+FP)) is NaN for the reject-all threshold (largest
threshold), and the negative predictive value (NPV = TN/(TN+FN)) is NaN for the accept-all
threshold (lowest threshold). TP, FP, TN, and FN represent the number of true positives, false
positives, true negatives, and false negatives, respectively.
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Input Arguments
rocObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, specified as a rocmetrics object.

metrics — Additional model performance metrics
character vector | string array | function handle | cell array

Additional model performance metrics to compute, specified as a character vector or string scalar of
the built-in metric name, string array of names, function handle (@metricName), or cell array of
names or function handles. A rocmetrics object always computes the false positive rates (FPR) and
the true positive rates (TPR) to obtain a ROC curve. Therefore, you do not have to specify to compute
FPR and TPR.

• Built-in metrics — Specify one of the following built-in metric names by using a character vector
or string scalar. You can specify more than one by using a string array.

Name Description
"TruePositives" or "tp" Number of true positives (TP)
"FalseNegatives" or "fn" Number of false negatives (FN)
"FalsePositives" or "fp" Number of false positives (FP)
"TrueNegatives" or "tn" Number of true negatives (TN)
"SumOfTrueAndFalsePosit
ives" or "tp+fp"

Sum of TP and FP

"RateOfPositivePredicti
ons" or "rpp"

Rate of positive predictions (RPP), (TP+FP)/(TP+FN+FP+TN)

"RateOfNegativePredicti
ons" or "rnp"

Rate of negative predictions (RNP), (TN+FN)/(TP+FN+FP
+TN)

"Accuracy" or "accu" Accuracy, (TP+TN)/(TP+FN+FP+TN)
"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or miss rate, FN/(TP+FN)

"TrueNegativeRate",
"tnr", or "spec"

True negative rate (TNR), or specificity, TN/(TN+FP)

"PositivePredictiveValu
e", "ppv", or "prec"

Positive predictive value (PPV), or precision, TP/(TP+FP)

"NegativePredictiveValu
e" or "npv"

Negative predictive value (NPV), TN/(TN+FN)
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Name Description
"ExpectedCost" or
"ecost"

Expected cost, (TP*cost(P|P)+FN*cost(N|P)
+FP*cost(P|N)+TN*cost(N|N))/(TP+FN+FP+TN), where
cost is a 2-by-2 misclassification cost matrix containing
[0,cost(N|P);cost(P|N),0]. cost(N|P) is the cost of
misclassifying a positive class (P) as a negative class (N), and
cost(P|N) is the cost of misclassifying a negative class as a
positive class.

The software converts the K-by-K matrix specified by the Cost
name-value argument of rocmetrics to a 2-by-2 matrix for
each one-versus-all binary problem. For details, see
“Misclassification Cost Matrix”.

The software computes the scale vector using the prior class probabilities (Prior) and the
number of classes in Labels, and then scales the performance metrics according to this scale
vector. For details, see “Performance Metrics”.

• Custom metric — Specify a custom metric by using a function handle. A custom function that
returns a performance metric must have this form:

metric = customMetric(C,scale,cost)

• The output argument metric is a scalar value.
• A custom metric is a function of the confusion matrix (C), scale vector (scale), and cost matrix

(cost). The software finds these input values for each one-versus-all binary problem. For
details, see “Performance Metrics”.

• C is a 2-by-2 confusion matrix consisting of [TP,FN;FP,TN].
• scale is a 2-by-1 scale vector.
• cost is a 2-by-2 misclassification cost matrix.

The software does not support cross-validation for a custom metric. Instead, you can specify to use
bootstrap when you create a rocmetrics object.

Note that the positive predictive value (PPV) is NaN for the reject-all threshold for which TP = FP = 0,
and the negative predictive value (NPV) is NaN for the accept-all threshold for which TN = FN = 0. For
more details, see “Thresholds, Fixed Metric, and Fixed Metric Values”.
Example: ["Accuracy","PositivePredictiveValue"]
Example: {"Accuracy",@m1,@m2} specifies the accuracy metric and the custom metrics m1 and m2
as additional metrics. addMetrics stores the custom metric values as variables named
CustomMetric1 and CustomMetric2 in the Metrics property.
Data Types: char | string | cell | function_handle

Output Arguments
UpdatedROCObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, returned as a rocmetrics object.
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To overwrite the input argument rocObj, assign the output of addMetrics to rocObj:

rocObj = addMetrics(rocObj,metrics);

Version History
Introduced in R2022b

See Also
rocmetrics | average | plot

Topics
“ROC Curve and Performance Metrics”
“Compare Deep Learning Models Using ROC Curves”
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addParameter
Add parameter to ONNXParameters object

Syntax
params = addParameter(params,name,value,type)
params = addParameter(params,name,value,type,NumDimensions)

Description
params = addParameter(params,name,value,type) adds the network parameter specified by
name, value, and type to the ONNXParameters object params. The returned params object
contains the model parameters of the input argument params together with the added parameter,
stacked sequentially. The added parameter name must be unique, nonempty, and different from the
parameter names in params.

params = addParameter(params,name,value,type,NumDimensions) adds the network
parameter specified by name, value, type, and NumDimensions to params.

Examples

Add Parameters to Imported ONNX Model Function

Import a network saved in the ONNX format as a function and modify the network parameters.

Import the pretrained simplenet3fc.onnx network as a function. simplenet3fc is a simple
convolutional neural network trained on digit image data. For more information on how to create a
network similar to simplenet3fc, see “Create Simple Image Classification Network”.

Import simplenet3fc.onnx using importONNXFunction, which returns an ONNXParameters
object that contains the network parameters. The function also creates a new model function in the
current folder that contains the network architecture. Specify the name of the model function as
simplenetFcn.

params = importONNXFunction('simplenet3fc.onnx','simplenetFcn');

A function containing the imported ONNX network has been saved to the file simplenetFcn.m.
To learn how to use this function, type: help simplenetFcn.

Display the parameters that are updated during training (params.Learnables) and the parameters
that remain unchanged during training (params.Nonlearnables).

params.Learnables

ans = struct with fields:
    imageinput_Mean: [1×1 dlarray]
             conv_W: [5×5×1×20 dlarray]
             conv_B: [20×1 dlarray]
    batchnorm_scale: [20×1 dlarray]
        batchnorm_B: [20×1 dlarray]

 addParameter

1-123



             fc_1_W: [24×24×20×20 dlarray]
             fc_1_B: [20×1 dlarray]
             fc_2_W: [1×1×20×20 dlarray]
             fc_2_B: [20×1 dlarray]
             fc_3_W: [1×1×20×10 dlarray]
             fc_3_B: [10×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            ConvStride1004: [2×1 dlarray]
    ConvDilationFactor1005: [2×1 dlarray]
           ConvPadding1006: [4×1 dlarray]
            ConvStride1007: [2×1 dlarray]
    ConvDilationFactor1008: [2×1 dlarray]
           ConvPadding1009: [4×1 dlarray]
            ConvStride1010: [2×1 dlarray]
    ConvDilationFactor1011: [2×1 dlarray]
           ConvPadding1012: [4×1 dlarray]
            ConvStride1013: [2×1 dlarray]
    ConvDilationFactor1014: [2×1 dlarray]
           ConvPadding1015: [4×1 dlarray]

The network has parameters that represent three fully connected layers. You can add a fully
connected layer in the original parameters params between layers fc_2 and fc_3. The new layer
might increase the classification accuracy.

To see the parameters of the convolutional layers fc_2 and fc_3, open the model function
simplenetFcn.

open simplenetFcn

Scroll down to the layer definitions in the function simplenetFcn. The code below shows the
definitions for layers fc_2 and fc_3.

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_2] = prepareConvArgs(Vars.fc_2_W, Vars.fc_2_B, Vars.ConvStride1010, Vars.ConvDilationFactor1011, Vars.ConvPadding1012, 1, NumDims.fc_1, NumDims.fc_2_W);
Vars.fc_2 = dlconv(Vars.fc_1, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_3] = prepareConvArgs(Vars.fc_3_W, Vars.fc_3_B, Vars.ConvStride1013, Vars.ConvDilationFactor1014, Vars.ConvPadding1015, 1, NumDims.fc_2, NumDims.fc_3_W);
Vars.fc_3 = dlconv(Vars.fc_2, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

Name the new layer fc_4, because each added parameter name must be unique. The addParameter
function always adds a new parameter sequentially to the params.Learnables or
params.Nonlearnables structure. The order of the layers in the model function simplenetFcn
determines the order in which the network layers are executed. The names and order of the
parameters do not influence the execution order.

Add a new fully connected layer fc_4 with the same parameters as fc_2.

params = addParameter(params,'fc_4_W',params.Learnables.fc_2_W,'Learnable');
params = addParameter(params,'fc_4_B',params.Learnables.fc_2_B,'Learnable');
params = addParameter(params,'fc_4_Stride',params.Nonlearnables.ConvStride1010,'Nonlearnable');
params = addParameter(params,'fc_4_DilationFactor',params.Nonlearnables.ConvDilationFactor1011,'Nonlearnable');
params = addParameter(params,'fc_4_Padding',params.Nonlearnables.ConvPadding1012,'Nonlearnable');
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Display the updated learnable and nonlearnable parameters.

params.Learnables

ans = struct with fields:
    imageinput_Mean: [1×1 dlarray]
             conv_W: [5×5×1×20 dlarray]
             conv_B: [20×1 dlarray]
    batchnorm_scale: [20×1 dlarray]
        batchnorm_B: [20×1 dlarray]
             fc_1_W: [24×24×20×20 dlarray]
             fc_1_B: [20×1 dlarray]
             fc_2_W: [1×1×20×20 dlarray]
             fc_2_B: [20×1 dlarray]
             fc_3_W: [1×1×20×10 dlarray]
             fc_3_B: [10×1 dlarray]
             fc_4_W: [1×1×20×20 dlarray]
             fc_4_B: [20×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            ConvStride1004: [2×1 dlarray]
    ConvDilationFactor1005: [2×1 dlarray]
           ConvPadding1006: [4×1 dlarray]
            ConvStride1007: [2×1 dlarray]
    ConvDilationFactor1008: [2×1 dlarray]
           ConvPadding1009: [4×1 dlarray]
            ConvStride1010: [2×1 dlarray]
    ConvDilationFactor1011: [2×1 dlarray]
           ConvPadding1012: [4×1 dlarray]
            ConvStride1013: [2×1 dlarray]
    ConvDilationFactor1014: [2×1 dlarray]
           ConvPadding1015: [4×1 dlarray]
               fc_4_Stride: [2×1 dlarray]
       fc_4_DilationFactor: [2×1 dlarray]
              fc_4_Padding: [4×1 dlarray]

Modify the architecture of the model function to reflect the changes in params so you can use the
network for prediction with the new parameters or retrain the network. Open the model function
simplenetFcn. Then, add the fully connected layer fc_4 between layers fc_2 and fc_3, and
change the input data of the convolution operation dlconv for layer fc_3 to Vars.fc_4.

open simplenetFcn

The code below shows the new layer fc_4 in its position, as well as layers fc_2 and fc_3.

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_2] = prepareConvArgs(Vars.fc_2_W, Vars.fc_2_B, Vars.ConvStride1010, Vars.ConvDilationFactor1011, Vars.ConvPadding1012, 1, NumDims.fc_1, NumDims.fc_2_W);
Vars.fc_2 = dlconv(Vars.fc_1, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

% Conv
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_4] = prepareConvArgs(Vars.fc_4_W, Vars.fc_4_B, Vars.fc_4_Stride, Vars.fc_4_DilationFactor, Vars.fc_4_Padding, 1, NumDims.fc_2, NumDims.fc_4_W);
Vars.fc_4 = dlconv(Vars.fc_2, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

% Conv:
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[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_3] = prepareConvArgs(Vars.fc_3_W, Vars.fc_3_B, Vars.ConvStride1013, Vars.ConvDilationFactor1014, Vars.ConvPadding1015, 1, NumDims.fc_4, NumDims.fc_3_W);
Vars.fc_3 = dlconv(Vars.fc_4, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

Input Arguments
params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX™ model.

name — Name of parameter
character vector | string scalar

Name of the parameter, specified as a character vector or string scalar.
Example: 'conv2_W'
Example: 'conv2_Padding'

value — Value of parameter
numeric array | character vector | string scalar

Value of the parameter, specified as a numeric array, character vector, or string scalar. To duplicate
an existing network layer (stored in params), copy the parameter values of the network layer.
Example: params.Learnables.conv1_W
Example: params.Nonlearnables.conv1_Padding
Data Types: single | double | char | string

type — Type of parameter
'Learnable' | 'Nonlearnable' | 'State'

Type of parameter, specified as 'Learnable', 'Nonlearnable', or 'State'.

• The value 'Learnable' specifies a parameter that is updated by the network during training (for
example, weights and bias of convolution).

• The value 'Nonlearnable' specifies a parameter that remains unchanged during network
training (for example, padding).

• The value 'State' specifies a parameter that contains information remembered by the network
between iterations and updated across multiple training batches.

Data Types: char | string

NumDimensions — Number of dimensions for every parameter
structure

Number of dimensions for every parameter, specified as a structure. NumDimensions includes
trailing singleton dimensions.
Example: params.NumDimensions.conv1_W
Example: 4
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Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by addParameter.

Version History
Introduced in R2020b

See Also
importONNXFunction | ONNXParameters | removeParameter
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alexnet
AlexNet convolutional neural network

Syntax
net = alexnet
net = alexnet('Weights','imagenet')

layers = alexnet('Weights','none')

Description
AlexNet is a convolutional neural network that is 8 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 227-by-227. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the AlexNet network. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with AlexNet.

For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp.

net = alexnet returns an AlexNet network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for AlexNet Network support package. If this
support package is not installed, the function provides a download link. Alternatively, see Deep
Learning Toolbox Model for AlexNet Network.

For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

net = alexnet('Weights','imagenet') returns an AlexNet network trained on the ImageNet
data set. This syntax is equivalent to net = alexnet.

layers = alexnet('Weights','none') returns the untrained AlexNet network architecture.
The untrained model does not require the support package.

Examples

Download AlexNet Support Package

Download and install Deep Learning Toolbox Model for AlexNet Network support package.

Type alexnet at the command line.

alexnet

If Deep Learning Toolbox Model for AlexNet Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
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support package, click the link, and then click Install. Check that the installation is successful by
typing alexnet at the command line.

alexnet

ans = 

  SeriesNetwork with properties:

    Layers: [25×1 nnet.cnn.layer.Layer]

If the required support package is installed, then the function returns a SeriesNetwork object.

Visualize the network using Deep Network Designer.

deepNetworkDesigner(alexnet)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Transfer Learning Using AlexNet

This example shows how to fine-tune a pretrained AlexNet convolutional neural network to perform
classification on a new collection of images.

 alexnet
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AlexNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

Load Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

This very small data set now contains 55 training images and 20 validation images. Display some
sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imdsTrain,idx(i));
    imshow(I)
end
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Load Pretrained Network

Load the pretrained AlexNet neural network. If Deep Learning Toolbox™ Model for AlexNet Network
is not installed, then the software provides a download link. AlexNet is trained on more than one
million images and can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the model has learned rich feature representations for a wide range of
images.

net = alexnet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(net)
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The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Replace Final Layers

The last three layers of the pretrained network net are configured for 1000 classes. These three
layers must be fine-tuned for the new classification problem. Extract all layers, except the last three,
from the pretrained network.

layersTransfer = net.Layers(1:end-3);

Transfer the layers to the new classification task by replacing the last three layers with a fully
connected layer, a softmax layer, and a classification output layer. Specify the options of the new fully
connected layer according to the new data. Set the fully connected layer to have the same size as the
number of classes in the new data. To learn faster in the new layers than in the transferred layers,
increase the WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected
layer.

numClasses = numel(categories(imdsTrain.Labels))
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numClasses = 5

layers = [
    layersTransfer
    fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)
    softmaxLayer
    classificationLayer];

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the fully connected layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',10, ...
    'MaxEpochs',6, ...
    'InitialLearnRate',1e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available, otherwise, it uses a CPU. Training on a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). You can also specify the execution environment by
using the 'ExecutionEnvironment' name-value pair argument of trainingOptions.

netTransfer = trainNetwork(augimdsTrain,layers,options);
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Classify Validation Images

Classify the validation images using the fine-tuned network.

[YPred,scores] = classify(netTransfer,augimdsValidation);

Display four sample validation images with their predicted labels.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end
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Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the
network predicts correctly.

YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 1

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks”.

Classify an Image Using AlexNet

Read, resize, and classify an image using AlexNet. First, load a pretrained AlexNet model.

net = alexnet;

Read the image using imread.

I = imread('peppers.png');
figure
imshow(I)
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The pretrained model requires the image size to be the same as the input size of the network.
Determine the input size of the network using the InputSize property of the first layer of the
network.

sz = net.Layers(1).InputSize

sz = 1×3

   227   227     3

Resize the image to the input size of the network.

I = imresize(I,sz(1:2));
figure
imshow(I)
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Classify the image using classify.

label = classify(net,I)

label = categorical
     bell pepper 

Show the image and classification result together.

figure
imshow(I)
title(label)
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Feature Extraction Using AlexNet

This example shows how to extract learned image features from a pretrained convolutional neural
network, and use those features to train an image classifier. Feature extraction is the easiest and
fastest way to use the representational power of pretrained deep networks. For example, you can
train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™)
on the extracted features. Because feature extraction only requires a single pass through the data, it
is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip('MerchData.zip');

imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');

There are now 55 training images and 20 validation images in this very small data set. Display some
sample images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);

for i = 1:16
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    I{i} = readimage(imdsTrain,idx(i));
end

figure
imshow(imtile(I))

Load Pretrained Network

Load a pretrained AlexNet network. If the Deep Learning Toolbox Model for AlexNet Network
support package is not installed, then the software provides a download link. AlexNet is trained on
more than a million images and can classify images into 1000 object categories. For example,
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keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature
representations for a wide range of images.

net = alexnet;

Display the network architecture. The network has five convolutional layers and three fully connected
layers.

net.Layers

ans = 
  25x1 Layer array with layers:

     1   'data'     Image Input                   227x227x3 images with 'zerocenter' normalization
     2   'conv1'    Convolution                   96 11x11x3 convolutions with stride [4  4] and padding [0  0  0  0]
     3   'relu1'    ReLU                          ReLU
     4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     5   'pool1'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv2'    Grouped Convolution           2 groups of 128 5x5x48 convolutions with stride [1  1] and padding [2  2  2  2]
     7   'relu2'    ReLU                          ReLU
     8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     9   'pool2'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv3'    Convolution                   384 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    11   'relu3'    ReLU                          ReLU
    12   'conv4'    Grouped Convolution           2 groups of 192 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu4'    ReLU                          ReLU
    14   'conv5'    Grouped Convolution           2 groups of 128 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu5'    ReLU                          ReLU
    16   'pool5'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    17   'fc6'      Fully Connected               4096 fully connected layer
    18   'relu6'    ReLU                          ReLU
    19   'drop6'    Dropout                       50% dropout
    20   'fc7'      Fully Connected               4096 fully connected layer
    21   'relu7'    ReLU                          ReLU
    22   'drop7'    Dropout                       50% dropout
    23   'fc8'      Fully Connected               1000 fully connected layer
    24   'prob'     Softmax                       softmax
    25   'output'   Classification Output         crossentropyex with 'tench' and 999 other classes

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher-
level features, constructed using the lower-level features of earlier layers. To get the feature
representations of the training and test images, use activations on the fully connected layer
'fc7'. To get a lower-level representation of the images, use an earlier layer in the network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before they are input to the
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network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);

layer = 'fc7';
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');

Extract the class labels from the training and test data.

YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,YTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test
images.

YPred = predict(mdl,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(imdsTest,idx(i));
    label = YPred(idx(i));
    
    imshow(I)
    title(label)
end
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Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

accuracy = mean(YPred == YTest)

accuracy = 1

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try
transfer learning instead.

Output Arguments
net — Pretrained AlexNet convolutional neural network
SeriesNetwork object

Pretrained AlexNet convolutional neural network, returned as a SeriesNetwork object.

layers — Untrained AlexNet convolutional neural network architecture
Layer array

Untrained AlexNet convolutional neural network architecture, returned as a Layer array.

Tips
• For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp.
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Version History
Introduced in R2017a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = alexnet or by passing the
alexnet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('alexnet').

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax alexnet('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = alexnet or by passing
the alexnet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('alexnet').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax alexnet('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | resnet18 | resnet50 | densenet201 | googlenet |
inceptionresnetv2 | squeezenet | importKerasNetwork | importCaffeNetwork

Topics
“Deep Learning in MATLAB”
“Classify Webcam Images Using Deep Learning”
“Pretrained Deep Neural Networks”
“Train Deep Learning Network to Classify New Images”
“Transfer Learning with Deep Network Designer”
“Deep Learning Tips and Tricks”
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analyzeNetwork
Analyze deep learning network architecture

Syntax
analyzeNetwork(layers)
analyzeNetwork(layers,TargetUsage=target)
analyzeNetwork(layers,X1,...,Xn,TargetUsage="dlnetwork")
analyzeNetwork(net)
analyzeNetwork(net,X1,...,Xn)

Description
Use analyzeNetwork to visualize and understand the architecture of a network, check that you have
defined the architecture correctly, and detect problems before training. Problems that
analyzeNetwork detects include missing or unconnected layers, incorrectly sized layer inputs, an
incorrect number of layer inputs, and invalid graph structures.

Tip To interactively visualize, analyze, and train a network, use deepNetworkDesigner(net). For
more information, see Deep Network Designer.

analyzeNetwork(layers) analyzes the network layers given by the layer array or layer graph
layers and also detects errors and issues for trainNetwork workflows. The function displays an
interactive visualization of the network architecture and provides detailed information about the
network layers. The layer information includes the layer type, the size and format of the layer
activations, and the size and number of learnable and state parameters.

Each activation dimension has one of the following labels: S (spatial), C (channel), B (batch), T (time
or sequence), or U (unspecified).

analyzeNetwork(layers,TargetUsage=target) analyzes the network layers given by the layer
array or layer graph layers for the specified target workflow. Use this syntax when analyzing the
layers for dlnetwork workflows.

analyzeNetwork(layers,X1,...,Xn,TargetUsage="dlnetwork") analyzes the layer array or
layer graph layers using the example networks inputs X1,...,Xn. The software propagates the
example inputs through the network to determine the size and format of layer activations, the size
and number of learnable and state parameters, and the total number of learnables. Use this syntax to
analyze a network that has one or more inputs that are not connected to an input layer.

analyzeNetwork(net) analyzes the SeriesNetwork, DAGNetwork, or dlnetwork object net.

analyzeNetwork(net,X1,...,Xn) analyzes the dlnetwork object net using example networks
inputs X1,...,Xn. The software propagates the example inputs through the network to determine
the size and format of layer activations, the size and number of learnable and state parameters, and
the total number of learnables. Use this syntax to analyze an uninitialized dlnetwork that has one or
more inputs that are not connected to an input layer.
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Examples

Analyze Trained Network

Load a pretrained GoogLeNet convolutional neural network.

net = googlenet;

Analyze the network. analyzeNetwork displays an interactive plot of the network architecture and a
table containing information about the network layers.

analyzeNetwork(net)

Investigate the network architecture using the plot to the left. Select a layer in the plot. The selected
layer is highlighted in the plot and in the layer table.

In the table, view layer information such as layer properties, layer type, and sizes of the layer
activations and learnable parameters. The activations of a layer are the outputs of that layer. Each
activation dimension has one of the following labels:

• S — Spatial
• C — Channel
• B — Batch observations
• T — Time or sequence
• U — Unspecified
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View the dimension labels to understand how data propagates through the network and how the
layers modify the size and layout of activations.

Select a deeper layer in the network. Notice that activations in deeper layers are smaller in the
spatial dimensions (the first two dimensions) and larger in the channel dimension (the last
dimension). Using this structure enables convolutional neural networks to gradually increase the
number of extracted image features while decreasing the spatial resolution.

The Deep Learning Network Analyzer shows the total number of learnable parameters in the
network, to one decimal place. To see the exact number of learnable parameters, pause on total
learnables. To show the number of learnable parameters in each layer, click the arrow in the top-
right corner of the layer table and select Number of Learnables. To sort the layer table by column
value, hover the mouse over the column heading and click the arrow that appears. For example, you
can determine which layer contains the most parameters by sorting the layers by the number of
learnable parameters.

Fix Errors in Network Architecture

Create a simple convolutional network with some skip connections. Create a layer array containing
the main branch of the network.

layers = [
    imageInputLayer([32 32 3])
    convolution2dLayer(5,16,Padding="same")
    reluLayer(Name="relu_1")
    convolution2dLayer(3,16,Padding="same",Stride=2)
    reluLayer
    additionLayer(2,Name="add_1")
    convolution2dLayer(3,16,Padding="same",Stride=2)
    reluLayer
    additionLayer(3,Name="add_2")
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

lgraph = layerGraph(layers);

Convert the layer array to a layer graph and add the skip connections. One of the skip connections
contains a single 1-by-1 convolutional layer conv_skip.

layer = convolution2dLayer(1,16,Stride=2,Name="conv_skip");
lgraph = addLayers(lgraph,layer);
lgraph = connectLayers(lgraph,"relu_1","add_1/in2");
lgraph = connectLayers(lgraph,"add_1","add_2/in2");

Analyze the network architecture using the analyzeNetwork function. The function finds issues with
three layers in the network.

analyzeNetwork(lgraph)
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Investigate and fix the errors in the network. In this example, the following issues cause the errors:

• The layer conv_skip is not connected to the rest of the network. It should be a part of the
shortcut connection between the add_1 and add_2 layers. To fix this error, connect add_1 to
conv_skip and conv_skip to add_2.

• The add_2 layer is specified to have three inputs, but the layer only has two inputs. To fix the
error, specify the number of inputs as 2.

• All the inputs to an addition layer must have the same size, but the add_1 layer has two inputs
with different sizes. Because the conv_2 layer has a Stride value of 2, this layer downsamples
the activations by a factor of two in the first two dimensions (the spatial dimensions). To resize the
input from the relu2 layer so that it has the same size as the input from relu_1, remove the
downsampling by removing the Stride value of the conv_2 layer.

Apply these modifications to the layer graph construction from the beginning of this example and
create a new layer graph.

layers = [
    imageInputLayer([32 32 3])
    convolution2dLayer(5,16,Padding="same")
    reluLayer(Name="relu_1")
    convolution2dLayer(3,16,Padding="same")
    reluLayer
    additionLayer(2,Name="add_1")
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    convolution2dLayer(3,16,Padding="same",Stride=2)
    reluLayer
    additionLayer(2,Name="add_2")
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

lgraph = layerGraph(layers);

layer = convolution2dLayer(1,16,Stride=2,Name="conv_skip");
lgraph = addLayers(lgraph,layer);
lgraph = connectLayers(lgraph,"relu_1","add_1/in2");
lgraph = connectLayers(lgraph,"add_1","conv_skip");
lgraph = connectLayers(lgraph,"conv_skip","add_2/in2");

Analyze the new architecture. The new network does not contain any errors and is ready to be
trained.

analyzeNetwork(lgraph)

Analyze Layers for Custom Training Loop

Create a layer array for a custom training loop. For custom training loop workflows, the network must
not have an output layer.

layers = [
    imageInputLayer([28 28 1],Normalization="none")
    convolution2dLayer(5,20,Padding="same")
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    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer];

Analyze the layer array using the analyzeNetwork function and set the TargetUsage option to
"dlnetwork".

analyzeNetwork(layers,TargetUsage="dlnetwork")

Here, the function does not report any issues with the layer array.

Analyze Network Using Example Inputs

To analyze a network that has an input that is not connected to an input layer, you can provide
example network inputs to the analyzeNetwork function. You can provide example inputs when you
analyze dlnetwork objects, or when you analyze Layer arrays or LayerGraph objects for custom
training workflows by setting the TargetUsage option to "dlnetwork".

Define the network architecture. Construct a network with two branches. The network takes two
inputs, with one input per branch. Connect the branches using an addition layer.
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numFilters = 24;
inputSize = [64 64 3];

layersBranch1 = [
    convolution2dLayer(3,6*numFilters,Padding="same",Stride=2)
    groupNormalizationLayer("all-channels")
    reluLayer
    convolution2dLayer(3,numFilters,Padding="same")
    groupNormalizationLayer("channel-wise")
    additionLayer(2,Name="add")
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer];

layersBranch2 = [
    convolution2dLayer(1,numFilters,Name="conv_branch")
    groupNormalizationLayer("all-channels",Name="gn_branch")];

lgraph = layerGraph(layersBranch1);
lgraph = addLayers(lgraph,layersBranch2);
lgraph = connectLayers(lgraph,"gn_branch","add/in2");

Create the dlnetwork. Because this network contains an unconnected input, create an uninitialized
dlnetwork object by setting the Initialize option to false.

net = dlnetwork(lgraph,Initialize=false);

View the network input names.

net.InputNames

ans = 1×2 cell
    {'conv_1'}    {'conv_branch'}

Create example network inputs of the same size and format as typical inputs for this network using
random dlarray objects. For both inputs, use a batch size of 32. Use an input of size 64-by-64 with
three channels for the input to the layer "input". Use an input of size 64-by-64 with 18 channels for
the input to the layer "conv_branch".

X1 = dlarray(rand([inputSize 32]),"SSCB");
X2 = dlarray(rand([32 32 18 32]),"SSCB");

Analyze the network. Provide the example inputs in the same order as the InputNames property of
the dlnetwork. You must provide an example input for all network inputs, including inputs that are
connected to an input layer.

analyzeNetwork(net,X1,X2)
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Input Arguments
layers — Network layers
Layer array | LayerGraph object

Network layers, specified as a Layer array or a LayerGraph object.

For a list of built-in layers, see “List of Deep Learning Layers”.

net — Deep learning network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Deep learning network, specified as a SeriesNetwork, DAGNetwork, or dlnetwork object.

target — Target workflow
"trainNetwork" (default) | "dlnetwork"

Target workflow, specified as one of the following:

• "trainNetwork" — Analyze layer graph for usage with the trainNetwork function. For
example, the function checks that the layer graph has an output layer and no disconnected layer
outputs.

• "dlnetwork" — Analyze layer graph for usage with dlnetwork objects. For example, the
function checks that the layer graph does not have any output layers.
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X1,...,Xn — Example network inputs
dlarray

Example network inputs, specified as formatted dlarray objects. The software propagates the
example inputs through the network to determine the size and format of layer activations, the size
and number of learnable and state parameters, and the total number of learnables.

Use example inputs when you want to analyze a network that does not have any input layers or that
has inputs that are not connected to an input layer.

The order in which you must specify the example inputs depends on the type of network you are
analyzing:

• Layer array — Provide example inputs in the same order that the layers that require inputs
appear in the Layer array.

• LayerGraph — Provide example inputs in the same order as the layers that require inputs appear
in the Layers property of the LayerGraph.

• dlnetwork — Provide example inputs in the same order as the inputs are listed in the
InputNames property of the dlnetwork.

If a layer has multiple unconnected inputs, then example inputs for that layer must be specified
separately in the same order as they appear in the layer’s InputNames property.

You must specify one example input for each input to the network, even if that input is connected to
an input layer.

Version History
Introduced in R2018a

See Also
Deep Network Designer | SeriesNetwork | DAGNetwork | LayerGraph | trainNetwork | plot |
assembleNetwork | summary

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning with Deep Network Designer”
“Build Networks with Deep Network Designer”
“Train Deep Learning Network to Classify New Images”
“Pretrained Deep Neural Networks”
“Visualize Activations of a Convolutional Neural Network”
“Deep Learning in MATLAB”
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assembleNetwork
Assemble deep learning network from pretrained layers

Syntax
assembledNet = assembleNetwork(layers)

Description
assembleNetwork creates deep learning networks from layers without training.

Use assembleNetwork for the following tasks:

• Convert a layer array or layer graph to a network ready for prediction.
• Assemble networks from imported layers.
• Modify the weights of a trained network.

To train a network from scratch, use trainNetwork.

assembledNet = assembleNetwork(layers) assembles the layer array or layer graph layers
into a deep learning network ready to use for prediction.

Examples

Assemble Network from Pretrained Keras Layers

Import the layers from a pretrained Keras network, replace the unsupported layers with custom
layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox™. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers and display their Keras configurations.

placeholderLayers = findPlaceholderLayers(lgraph);
placeholderLayers.KerasConfiguration
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ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Define a custom Gaussian noise layer by saving the file gaussianNoiseLayer.m in the current
folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras
layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Specify Class Names

The imported classification layer does not contain the classes, so you must specify these before
assembling the network. If you do not specify the classes, then the software automatically sets the
classes to 1, 2, ..., N, where N is the number of classes.

The classification layer has the name 'ClassificationLayer_activation_1'. Set the classes to
0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer = lgraph.Layers(end);
cLayer.Classes = string(0:9);
lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Input Arguments
layers — Network layers
Layer array | LayerGraph object
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Network layers, specified as a Layer array or a LayerGraph object.

To create a network with all layers connected sequentially, you can use a Layer array as the input
argument. In this case, the returned network is a SeriesNetwork object.

A directed acyclic graph (DAG) network has a complex structure in which layers can have multiple
inputs and outputs. To create a DAG network, specify the network architecture as a LayerGraph
object and then use that layer graph as the input argument to assembleNetwork.

The assembleNetwork function supports networks with at most one sequence input layer.

For a list of built-in layers, see “List of Deep Learning Layers”.

Output Arguments
assembledNet — Assembled network
SeriesNetwork object | DAGNetwork object

Assembled network ready for prediction, returned as a SeriesNetwork object or a DAGNetwork
object. The returned network depends on the layers input argument:

• If layers is a Layer array, then assembledNet is a SeriesNetwork object.
• If layers is a LayerGraph object, then assembledNet is a DAGNetwork object.

Version History
Introduced in R2018b

See Also
trainNetwork | importKerasNetwork | replaceLayer | importKerasLayers |
findPlaceholderLayers | functionLayer

Topics
“Assemble Network from Pretrained Keras Layers”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Define Custom Deep Learning Layers”
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attention
Dot-product attention

Syntax
Y = attention(queries,keys,values,numHeads)
[Y,weights] = attention(queries,keys,values,numHeads)
[Y,weights] = attention(queries,keys,values,numHeads,DataFormat=FMT)
[Y,weights] = attention(queries,keys,values,numHeads,Name=Value)

Description
The attention operation focuses on parts of the input using weighted multiplication operations.

Y = attention(queries,keys,values,numHeads) applies the dot-product attention operation
to the specified queries, keys, and values using the number of attention heads numHeads. The input
argument queries must be a formatted dlarray object.

[Y,weights] = attention(queries,keys,values,numHeads) applies the dot-product
attention operation and also returns the attention weights..

[Y,weights] = attention(queries,keys,values,numHeads,DataFormat=FMT) applies the
dot-product attention operation to the unformatted dlarray object queries with format specified by
FMT. For example, DataFormat="CBT" specifies data with format "CBT" (channel, batch, time).

[Y,weights] = attention(queries,keys,values,numHeads,Name=Value) specifies
additional options using one or more name-value arguments. For example,
DropoutProbability=0.01 specifies a dropout probability of 0.01.

Examples

Apply Attention Operation

Specify the sizes of the queries, keys, and values.

querySize = 100;
valueSize = 120;
numQueries = 64;
numValues = 80;
numObservations = 32;

Create random arrays containing the queries, keys, and values. For the queries, specify the dlarray
format "CBT" (channel, batch, time).

queries = dlarray(rand(querySize,numObservations, numQueries),"CBT");
keys = dlarray(rand(querySize,numObservations, numValues));
values = dlarray(rand(valueSize,numObservations, numValues));

Specify the number of attention heads.
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numHeads = 5;

Apply the attention operation.

[Y,weights] = attention(queries,keys,values,numHeads);

View the sizes and format of the output.

size(Y)

ans = 1×3

   120    32    64

dims(Y)

ans = 
'CBT'

View the sizes and format of the weights.

size(weights)

ans = 1×4

    80    64     5    32

dims(weights)

ans =

  0×0 empty char array

Create Multihead Self Attention Function

You can use the attention function to implement the multihead self attention operation [1] that
focuses on parts of the input.

Create the multiheadSelfAttention function, listed in the Multihead Self Attention Function on
page 1-158 section of the example. The multiheadSelfAttention function takes as input the input
data X, the number of heads, and the learnable weights for the queries, keys, values, and output data,
and returns the multihead attention values.

The input X must be an unformatted dlarray object, where the first dimension corresponds to the
input channels, the second dimension corresponds to the time or spatial dimension, and the third
dimension corresponds to the batch dimension.

Create an array of sequence data.

numChannels = 10;
numObservations = 128;
numTimeSteps = 100;

X = rand(numChannels,numObservations,numTimeSteps);
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X = dlarray(X);
size(X)

ans = 1×3

    10   128   100

Specify the number of heads for multihead attention.

numHeads = 8;

Initialize the learnable parameters for multihead attention.

• The learnable query, key, and value weights must be (numChannels*numHeads)-by-
numChannels arrays.

• The learnable output weights must be a (numChannels*numHeads)-by-
(numChannels*numHeads) array.

outputSize = numChannels*numHeads;

WQ = rand(outputSize,numChannels);
WK = rand(outputSize,numChannels);
WV = rand(outputSize,numChannels);
WO = rand(outputSize,outputSize);

Apply the multihead self attention operation.

Y = multiheadSelfAttention(X,numHeads,WQ,WK,WV,WO);

View the size of the output. The output has size (numChannels*numHeads)-by-numObservations-
by-(numTimeSteps).

size(Y)

ans = 1×3

    80   128   100

Multihead Self Attention Function

The multiheadSelfAttention function takes as input the input data X, the number of heads, and
the learnable weights for the queries, keys, values, and output data, and returns the multihead
attention values.

• The input X must be an unformatted dlarray object, where the first dimension corresponds to
the input channels, the second dimension corresponds to the time or spatial dimension, and the
third dimension corresponds to the batch dimension.

• The learnable query, key, and value weight matrices are (numChannels*numHeads)-by-
numChannels matrices.

• The learnable output weights matrix is a (numChannels*numHeads)-by-
(numChannels*numHeads) matrix.

function Y = multiheadSelfAttention(X,numHeads,WQ,WK,WV,WO)

queries = pagemtimes(WQ,X);
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keys = pagemtimes(WK,X);
values = pagemtimes(WV,X);

A = attention(queries,keys,values,numHeads,DataFormat="CTB");

Y = pagemtimes(WO,A);

end

Create Luong Attention Function

You can use the attention function to create a function that applies the Luong attention operation
to its input. Create the luongAttention function, listed at the end of the example, that applies the
Luong attention operation.

Specify the array sizes.

numHiddenUnits = 100;
latentSize = 16;

Create random arrays containing the input data.

hiddenState = dlarray(rand(numHiddenUnits,1));
Z = dlarray(rand(latentSize,1));
weights = dlarray(rand(numHiddenUnits,latentSize));

Apply the luongAttention function.

[context,attentionScores] = luongAttention(hiddenState,Z,weights);

View the sizes of the outputs.

size(context)

ans = 1×2

    16     1

size(attentionScores)

ans = 1×2

     1     1

Luong Attention Function

The luongAttention function returns the context vector and attention scores according to the
Luong "general" scoring [2]. This is equivalent to dot-product attention with queries, keys, and values
specified as the hidden state, the weighted latent representation, and the latent representation,
respectively.

function [context,attentionScores] = luongAttention(hiddenState,Z,weights)

numHeads = 1;
queries = hiddenState;
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keys = pagemtimes(weights,Z);
values = Z;

[context,attentionScores] = attention(queries,keys,values,numHeads,Scale=1,DataFormat="CBT");

end

Input Arguments
queries — Queries
dlarray object

Queries, specified as a dlarray object.

queries can have at most one "S" (spatial) or "T" (time) dimension. Any dimensions in queries
labeled "U" (unspecified) must be singleton. If queries is an unformatted dlarray object, then
specify the data format using the DataFormat option.

The size of the "C" (channel) dimension in keys must match the size of the corresponding dimension
in queries.

The size of the "B" (batch) dimension in queries, keys, and values must match.

keys — Keys
dlarray object | numeric array

Keys, specified as a dlarray object or a numeric array.

If keys is a formatted dlarray object, then its format must match the format of queries. If keys is
not a formatted dlarray, then the function uses the same format as queries.
The size of any "S" (spatial) or "T" (time) dimensions in keys must match the size of the
corresponding dimension in values.

The size of the "C" (channel) dimension in keys must match the size of the corresponding dimension
in queries.

The size of the "B" (batch) dimension in queries, keys, and values must match.

values — Values
dlarray object | numeric array

Values, specified as a dlarray object or a numeric array.

If values is a formatted dlarray object, then its format must match the format of queries.
Otherwise, the function uses the same format as queries.

The size of any "S" (spatial) or "T" (time) dimensions in keys must match the size of the
corresponding dimension in values.

The size of the "B" (batch) dimension in queries, keys, and values must match.

numHeads — Number of heads
positive integer

Number of heads, specified as a positive integer. The value of numHeads must evenly divide the size
of the "C" (channel) dimension of queries, keys, and values.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: attention(queries,keys,values,numHeads,DataFormat="CBT") applies the
attention operation for unformatted data and specifies the data format "CBT" (channel, batch, time).

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can use the labels "C" and "B" at most once and one dimension labeled either "S" or "T".

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

Scale — Multiplicative factor for scaled dot-product attention
"auto" (default) | numeric scalar

Multiplicative factor for scaled dot-product attention [1], specified as one of these values:

• "auto" — Multiply the dot-product by λ = 1
dk

, where dk denotes the number of channels in the

keys divided by the number of heads.
• Numeric scalar — Multiply the dot-product by the specified scale factor.

Data Types: single | double | char | string

PaddingMask — Mask indicating which elements of the input correspond to padding values
dlarray object | logical array | numeric array

Mask indicating which elements of the input correspond to padding values, specified as a dlarray
object, a logical array, or a numeric array consisting of 0 and 1 values.

The function prevents and allows attention to elements of input data key-value pairs when the
corresponding element in PaddingMask is 0 and 1, respectively.

If PaddingMask is a formatted dlarray, then its format must match that of keys. If PaddingMask
is not a formatted dlarray, then the function uses the same format as keys. The size of the "S"
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(spatial), "T" (time), and "B" (batch) dimensions in PaddingMask must match the size of the
corresponding dimensions in keys and values.

The default value is a logical array of ones with the same size as keys.

AttentionMask — Attention mask
"none" (default) | "causal" | numeric array | logical array

Attention mask indicating which elements to include when applying the attention operation, specified
as one of these values:

• "none" — Do not prevent attention to elements with respect to their positions. If
AttentionMask is "none", then the software prevents attention using PaddingMask only.

• "causal" — Prevent elements in position M in the "S" (spatial) or "T" (time) dimension of
queries from providing attention to the elements in positions n>M in the corresponding
dimension of keys and values. Use this option for auto-regressive models.

• Logical or numeric array — Prevent attention to elements of keys and values when the
corresponding element in the array is 0, where AttentionMask is a Nk-by-Nq matrix or a Nk-by-
Nq-by-numObservations array, Nk is the size of the "S" (spatial) or "T" (time) dimension of
keys, Nq is the size of the corresponding dimension in queries, and numObservations is the
size of the "B" dimension in queries.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

DropoutProbability — Dropout probability
0 (default) | nonnegative scalar less than 1

Dropout probability for the attention weights, specified as a nonnegative scalar less than 1.
Data Types: single | double

Output Arguments
Y — Output data
dlarray object

Output data, returned as a dlarray object.

If queries is a formatted dlarray object, then Y is a formatted dlarray object with the same
dimension labels as queries. The size of the "C" (channel) dimension of Y is the same as the size of
the corresponding dimension in values. The size of the "S" (spatial)

or "T" dimension of Y is the same size as the corresponding dimension in queries.

If queries is not a formatted dlarray object, the Y is an unformatted dlarray object.

weights — Attention weights
unformatted dlarray object

Attention weights, returned as an unformatted dlarray object.

weights is a Nk-by-Nq-by-numHeads-by-numObservations, where Nk is the size of the "S" (spatial)
or "T" (time) dimension of keys, Nq is the size of the corresponding dimension in queries, and
numObservations is the size of the "B" (batch) dimension in queries.
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Algorithms
Dot-Product Attention

The attention operation focuses on parts of the input using weighted multiplication operations.

The single-head dot-product attention operation is given by

attention(Q, K, V) = dropout softmax mask λQK⊤, M , p V,

where Q, K, and V correspond to the queries, keys, and values, respectively, λ denotes the scaling
factor, M is a mask array of ones and zeros, and p is the dropout probability. The mask operation
includes and excludes the values of the matrix multiplication setting values of the input to −∞ for
zero-valued mask elements. The mask is the union of the padding and attention masks. The dropout
operation sets elements to zero with probability p.

Multihead Self Attention

The multihead self attention operation for the input X is given by

multiheadSelfAttention(X, h, WQ, WK, WV, WO) = concatenate(head1, …, headh)WO,

where h is the number of heads, WQ, WK, WV, and WO are learnable projection matrices for the
queries, keys, values, and output, respectively. Each weight matrix is composed of concatenated
weight matrices Wi for each head. Each headi denotes the output of the head operation given by

headi = attention XWi
Q, XWi

K, XWi
V .

Version History
Introduced in R2022b

References
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.
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• queries
• keys
• values

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
padsequences | dlarray | dlgradient | dlfeval | lstm | gru | embed

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”
“Image Captioning Using Attention”
“Multilabel Graph Classification Using Graph Attention Networks”
“Language Translation Using Deep Learning”
“List of Functions with dlarray Support”
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augment
Apply identical random transformations to multiple images

Syntax
augI = augment(augmenter,I)

Description
augI = augment(augmenter,I) augments image I using a random transformation from the set of
image preprocessing options defined by image data augmenter, augmenter. If I consists of multiple
images, then augment applies an identical transformation to all images.

Examples

Augment Image Data with Custom Rotation Range

Create an image augmenter that rotates images by a random angle. To use a custom range of valid
rotation angles, you can specify a function handle when you create the augmenter. This example
specifies a function called myrange (defined at the end of the example) that selects an angle from
within two disjoint intervals.

imageAugmenter = imageDataAugmenter('RandRotation',@myrange);

Read multiple images into the workspace, and display the images.

img1 = imread('peppers.png');
img2 = imread('corn.tif',2);
inImg = imtile({img1,img2});
imshow(inImg)
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Augment the images with identical augmentations. The randomly selected rotation angle is returned
in a temporary variable, angle.

outCellArray = augment(imageAugmenter,{img1,img2});

angle = 8.1158

View the augmented images.

outImg = imtile(outCellArray);
imshow(outImg);

Supporting Function

This example defines the myrange function that first randomly selects one of two intervals (-10, 10)
and (170, 190) with equal probability. Within the selected interval, the function returns a single
random number from a uniform distribution.

function angle = myrange()
    if randi([0 1],1)
        a = -10;
        b = 10;
    else
        a = 170;
        b = 190;
    end
    angle = a + (b-a).*rand(1)
end

Input Arguments
augmenter — Augmentation options
imageDataAugmenter object

Augmentation options, specified as an imageDataAugmenter object.

I — Images to augment
numeric array | cell array of numeric and categorical images
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Images to augment, specified as one of the following.

• Numeric array, representing a single grayscale or color image.
• Cell array of numeric and categorical images. Images can be different sizes and types.

Output Arguments
augI — Augmented images
numeric array | cell array of numeric and categorical images

Augmented images, returned as a numeric array or cell array of numeric and categorical images,
consistent with the format of the input images I.

Tips
• You can use the augment function to preview the transformations applied to sample images.
• To perform image augmentation during training, create an augmentedImageDatastore and

specify preprocessing options by using the 'DataAugmentation' name-value pair with an
imageDataAugmenter. The augmented image datastore automatically applies random
transformations to the training data.

Version History
Introduced in R2018b

See Also
augmentedImageDatastore | trainNetwork

Topics
“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”
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augmentedImageDatastore
Transform batches to augment image data

Description
An augmented image datastore transforms batches of training, validation, test, and prediction data,
with optional preprocessing such as resizing, rotation, and reflection. Resize images to make them
compatible with the input size of your deep learning network. Augment training image data with
randomized preprocessing operations to help prevent the network from overfitting and memorizing
the exact details of the training images.

To train a network using augmented images, supply the augmentedImageDatastore to
trainNetwork. For more information, see “Preprocess Images for Deep Learning”.

• When you use an augmented image datastore as a source of training images, the datastore
randomly perturbs the training data for each epoch, so that each epoch uses a slightly different
data set. The actual number of training images at each epoch does not change. The transformed
images are not stored in memory.

• An imageInputLayer normalizes images using the mean of the augmented images, not the mean
of the original data set. This mean is calculated once for the first augmented epoch. All other
epochs use the same mean, so that the average image does not change during training.

By default, an augmentedImageDatastore only resizes images to fit the output size. You can
configure options for additional image transformations using an imageDataAugmenter.

Creation
Syntax
auimds = augmentedImageDatastore(outputSize,imds)
auimds = augmentedImageDatastore(outputSize,X,Y)
auimds = augmentedImageDatastore(outputSize,X)
auimds = augmentedImageDatastore(outputSize,tbl)
auimds = augmentedImageDatastore(outputSize,tbl,responseNames)
auimds = augmentedImageDatastore( ___ ,Name,Value)

Description

auimds = augmentedImageDatastore(outputSize,imds) creates an augmented image
datastore for classification problems using images from image datastore imds, and sets the
OutputSize property.

auimds = augmentedImageDatastore(outputSize,X,Y) creates an augmented image
datastore for classification and regression problems. The array X contains the predictor variables and
the array Y contains the categorical labels or numeric responses.

auimds = augmentedImageDatastore(outputSize,X) creates an augmented image datastore
for predicting responses of image data in array X.
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auimds = augmentedImageDatastore(outputSize,tbl) creates an augmented image
datastore for classification and regression problems. The table, tbl, contains predictors and
responses.

auimds = augmentedImageDatastore(outputSize,tbl,responseNames) creates an
augmented image datastore for classification and regression problems. The table, tbl, contains
predictors and responses. The responseNames argument specifies the response variables in tbl.

auimds = augmentedImageDatastore( ___ ,Name,Value) creates an augmented image
datastore, using name-value pairs to set the ColorPreprocessing, DataAugmentation,
OutputSizeMode, and DispatchInBackground properties. You can specify multiple name-value
pairs. Enclose each property name in quotes.

For example,
augmentedImageDatastore([28,28],myTable,'OutputSizeMode','centercrop') creates
an augmented image datastore that crops images from the center.

Input Arguments

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.

Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and
channels, and the last dimension indexes the individual images.

If the array contains NaNs, then they are propagated through the training. However, in most cases,
the training fails to converge.
Data Types: single | double | uint8 | int8 | uint16 | int16 | uint32 | int32

Y — Responses for classification or regression
array of categorical responses | numeric matrix | 4-D numeric array

Responses for classification or regression, specified as one of the following:

• For a classification problem, Y is a categorical vector containing the image labels.
• For a regression problem, Y can be an:

• n-by-r numeric matrix. n is the number of observations and r is the number of responses.
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• h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number
of observations.

Responses must not contain NaNs.
Data Types: categorical | double

tbl — Input data
table

Input data, specified as a table. tbl must contain the predictors in the first column as either absolute
or relative image paths or images. The type and location of the responses depend on the problem:

• For a classification problem, the response must be a categorical variable containing labels for the
images. If the name of the response variable is not specified in the call to
augmentedImageDatastore, the responses must be in the second column. If the responses are
in a different column of tbl, then you must specify the response variable name using the
responseNames argument.

• For a regression problem, the responses must be numerical values in the column or columns after
the first one. The responses can be either in multiple columns as scalars or in a single column as
numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name
of the response variable or variables, augmentedImageDatastore accepts the remaining
columns of tbl as the response variables. You can specify the response variable names using the
responseNames argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated
through the training, however, in most cases the training fails to converge.
Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array

Names of the response variables in the input table, specified as one of the following:

• For classification or regression tasks with a single response, responseNames must be a character
vector or string scalar containing the response variable in the input table.

For regression tasks with multiple responses, responseNames must be string array or cell array
of character vectors containing the response variables in the input table.

Data Types: char | cell | string

Properties
ColorPreprocessing — Preprocessing color operations
'none' (default) | 'gray2rgb' | 'rgb2gray'

Preprocessing color operations performed on input grayscale or RGB images, specified as 'none',
'gray2rgb', or 'rgb2gray'. When the image datastore contains a mixture of grayscale and RGB
images, use ColorPreprocessing to ensure that all output images have the number of channels
required by imageInputLayer.
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No color preprocessing operation is performed when an input image already has the required number
of color channels. For example, if you specify the value 'gray2rgb' and an input image already has
three channels, then no color preprocessing occurs.

Note The augmentedImageDatastore object converts RGB images to grayscale by using the
rgb2gray function. If an image has three channels that do not correspond to red, green, and blue
channels (such as an image in the L*a*b* color space), then using ColorPreprocessing can give
poor results.

No color preprocessing operation is performed when the input images do not have 1 or 3 channels,
such as for multispectral or hyperspectral images. In this case, all input images must have the same
number of channels.
Data Types: char | string

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as an imageDataAugmenter object or 'none'.
When DataAugmentation is 'none', no preprocessing is applied to input images.

DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, or classification, specified as
false or true. To use background dispatching, you must have Parallel Computing Toolbox.

Augmented image datastores only perform background dispatching when used with trainNetwork
and inference functions such as predict and classify. Background dispatching does not occur
when you call the read function of the datastore directly.

MiniBatchSize — Number of observations in each batch
128 | positive integer

Number of observations that are returned in each batch. You can change the value of
MiniBatchSize only after you create the datastore. For training, prediction, and classification, the
MiniBatchSize property is set to the mini-batch size defined in trainingOptions.

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the augmented image datastore. The number of observations is the
length of one training epoch.

OutputSize — Size of output images
vector of two positive integers

Size of output images, specified as a vector of two positive integers. The first element specifies the
number of rows in the output images, and the second element specifies the number of columns.

Note If you create an augmentedImageDatastore by specifying the image output size as a three-
element vector, then the datastore ignores the third element. Instead, the datastore uses the value of
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ColorPreprocessing to determine the dimensionality of output images. For example, if you specify
OutputSize as [28 28 1] but set ColorPreprocessing as 'gray2rgb', then the output images
have size 28-by-28-by-3.

OutputSizeMode — Method used to resize output images
'resize' (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as one of the following.

• 'resize' — Scale the image using bilinear interpolation to fit the output size.

Note augmentedImageDatastore uses the bilinear interpolation method of imresize with
antialiasing. Bilinear interpolation enables fast image processing while avoiding distortions such
as caused by nearest-neighbor interpolation. In contrast, by default imresize uses bicubic
interpolation with antialiasing to produce a high-quality resized image at the cost of longer
processing time.

• 'centercrop' — Take a crop from the center of the training image. The crop has the same size
as the output size.

• 'randcrop' — Take a random crop from the training image. The random crop has the same size
as the output size.

Data Types: char | string

Object Functions
combine Combine data from multiple datastores
hasdata Determine if data is available to read
numpartitions Number of datastore partitions
partition Partition a datastore
partitionByIndex Partition augmentedImageDatastore according to indices
preview Preview subset of data in datastore
read Read data from augmentedImageDatastore
readall Read all data in datastore
readByIndex Read data specified by index from augmentedImageDatastore
reset Reset datastore to initial state
shuffle Shuffle data in augmentedImageDatastore
subset Create subset of datastore or FileSet
transform Transform datastore
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent
the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;
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digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Create an imageDataAugmenter object that specifies preprocessing options for image
augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images
up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

imageAugmenter = imageDataAugmenter( ...
    'RandRotation',[-20,20], ...
    'RandXTranslation',[-3 3], ...
    'RandYTranslation',[-3 3])

imageAugmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [-20 20]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [-3 3]
    RandYTranslation: [-3 3]

Create an augmentedImageDatastore object to use for network training and specify the image
output size. During training, the datastore performs image augmentation and resizes the images. The
datastore augments the images without saving any images to memory. trainNetwork updates the
network parameters and then discards the augmented images.

imageSize = [28 28 1];
augimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter);

Specify the convolutional neural network architecture.

layers = [
    imageInputLayer(imageSize)
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
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    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
    'MaxEpochs',15, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{XValidation,YValidation});

Train the network. Because the validation images are not augmented, the validation accuracy is
higher than the training accuracy.

net = trainNetwork(augimds,layers,opts);
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Tips
• You can visualize many transformed images in the same figure by using the imtile function. For

example, this code displays one mini-batch of transformed images from an augmented image
datastore called auimds.

minibatch = read(auimds);
imshow(imtile(minibatch.input))

• By default, resizing is the only image preprocessing operation performed on images. Enable
additional preprocessing operations by using the DataAugmentation name-value pair argument
with an imageDataAugmenter object. Each time images are read from the augmented image
datastore, a different random combination of preprocessing operations are applied to each image.

Version History
Introduced in R2018a

See Also
imageDataAugmenter | imageInputLayer | trainNetwork

Topics
“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”
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augmentedImageSource
(To be removed) Generate batches of augmented image data

Note augmentedImageSource will be removed in a future release. Create an augmented image
datastore using the augmentedImageDatastore function instead. For more information, see
“Compatibility Considerations”.

Syntax
auimds = augmentedImageSource(outputSize,imds)
auimds = augmentedImageSource(outputSize,X,Y)
auimds = augmentedImageSource(outputSize,tbl)
auimds = augmentedImageSource(outputSize,tbl,responseNames)
auimds = augmentedImageSource( ___ ,Name,Value)

Description
auimds = augmentedImageSource(outputSize,imds) creates an augmented image datastore,
auimds, for classification problems using images from image datastore imds, with output image size
outputSize.

auimds = augmentedImageSource(outputSize,X,Y) creates an augmented image datastore
for classification and regression problems. The array X contains the predictor variables and the array
Y contains the categorical labels or numeric responses.

auimds = augmentedImageSource(outputSize,tbl) creates an augmented image datastore
for classification and regression problems. The table, tbl, contains predictors and responses.

auimds = augmentedImageSource(outputSize,tbl,responseNames) creates an augmented
image datastore for classification and regression problems. The table, tbl, contains predictors and
responses. The responseNames argument specifies the response variable in tbl.

auimds = augmentedImageSource( ___ ,Name,Value) creates an augmented image datastore,
using name-value pairs to configure the image preprocessing done by the augmented image
datastore. You can specify multiple name-value pairs.

Examples

Train Network with Rotational Invariance Using augmentedImageSource

Preprocess images using random rotation so that the trained convolutional neural network has
rotational invariance. This example uses the augmentedImageSource function to create an
augmented image datastore object. For an example of the recommended workflow that uses the
augmentedImageDatastore function to create an augmented image datastore object, see “Train
Network with Augmented Images” on page 1-172.

Load the sample data, which consists of synthetic images of handwritten numbers.
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[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels
• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Create an image augmenter that rotates images during training. This image augmenter rotates each
image by a random angle.

imageAugmenter = imageDataAugmenter('RandRotation',[-180 180])

imageAugmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [-180 180]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [0 0]
    RandYTranslation: [0 0]

Use the augmentedImageSource function to create an augmented image datastore. Specify the size
of augmented images, the training data, and the image augmenter.
imageSize = [28 28 1];
auimds = augmentedImageSource(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter)

auimds = 
  augmentedImageDatastore with properties:

         NumObservations: 5000
           MiniBatchSize: 128
        DataAugmentation: [1x1 imageDataAugmenter]
      ColorPreprocessing: 'none'
              OutputSize: [28 28]
          OutputSizeMode: 'resize'
    DispatchInBackground: 0

Specify the convolutional neural network architecture.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer
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    maxPooling2dLayer(2,'Stride',2)
       
    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
       
    convolution2dLayer(3,64,'Padding',1)
    batchNormalizationLayer
    reluLayer
        
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
    'MaxEpochs',10, ...
    'Shuffle','every-epoch', ...
    'InitialLearnRate',1e-3);

Train the network.

net = trainNetwork(auimds,layers,opts);

Training on single CPU.
Initializing image normalization.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:01 |        7.81% |       2.4151 |          0.0010 |
|       2 |          50 |       00:00:23 |       52.34% |       1.4930 |          0.0010 |
|       3 |         100 |       00:00:44 |       74.22% |       1.0148 |          0.0010 |
|       4 |         150 |       00:01:05 |       78.13% |       0.8153 |          0.0010 |
|       6 |         200 |       00:01:26 |       76.56% |       0.6903 |          0.0010 |
|       7 |         250 |       00:01:45 |       87.50% |       0.4891 |          0.0010 |
|       8 |         300 |       00:02:06 |       87.50% |       0.4874 |          0.0010 |
|       9 |         350 |       00:02:30 |       87.50% |       0.4866 |          0.0010 |
|      10 |         390 |       00:02:46 |       89.06% |       0.4021 |          0.0010 |
|========================================================================================|

Input Arguments
outputSize — Size of output images
vector of two positive integers

Size of output images, specified as a vector of two positive integers. The first element specifies the
number of rows in the output images, and the second element specifies the number of columns. This
value sets the OutputSize on page 1-0  property of the returned augmented image datastore,
auimds.

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.
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Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.

Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and
channels, and the last dimension indexes the individual images.

If the array contains NaNs, then they are propagated through the training. However, in most cases,
the training fails to converge.
Data Types: single | double | uint8 | int8 | uint16 | int16 | uint32 | int32

Y — Responses for classification or regression
array of categorical responses | numeric matrix | 4-D numeric array

Responses for classification or regression, specified as one of the following:

• For a classification problem, Y is a categorical vector containing the image labels.
• For a regression problem, Y can be an:

• n-by-r numeric matrix. n is the number of observations and r is the number of responses.
• h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number

of observations.

Responses must not contain NaNs.
Data Types: categorical | double

tbl — Input data
table

Input data, specified as a table. tbl must contain the predictors in the first column as either absolute
or relative image paths or images. The type and location of the responses depend on the problem:

• For a classification problem, the response must be a categorical variable containing labels for the
images. If the name of the response variable is not specified in the call to
augmentedImageSource, the responses must be in the second column. If the responses are in a
different column of tbl, then you must specify the response variable name using the
responseNames argument.

• For a regression problem, the responses must be numerical values in the column or columns after
the first one. The responses can be either in multiple columns as scalars or in a single column as
numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name
of the response variable or variables, augmentedImageSource accepts the remaining columns of
tbl as the response variables. You can specify the response variable names using the
responseNames argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated
through the training, however, in most cases the training fails to converge.
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Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array

Names of the response variables in the input table, specified as one of the following:

• For classification or regression tasks with a single response, responseNames must be a character
vector or string scalar containing the response variable in the input table.

For regression tasks with multiple responses, responseNames must be string array or cell array
of character vectors containing the response variables in the input table.

Data Types: char | cell | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: augmentedImageSource([28,28],myTable,'OutputSizeMode','centercrop')
creates an augmented image datastore that sets the OutputSizeMode property to crop images from
the center.

ColorPreprocessing — Preprocessing color operations
'none' (default) | 'gray2rgb' | 'rgb2gray'

Preprocessing operations performed on color channels of input images, specified as the comma-
separated pair consisting of 'ColorPreprocessing' and 'none', 'gray2rgb', or 'rgb2gray'.
This argument sets the ColorPreprocessing on page 1-0  property of the returned
augmented image datastore, auimds. The ColorPreprocessing property ensures that all output
images from the augmented image datastore have the number of color channels required by
inputImageLayer.

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as the comma-separated pair consisting of
'DataAugmentation' and an imageDataAugmenter object or 'none'. This argument sets the
DataAugmentation on page 1-0  property of the returned augmented image datastore,
auimds. When DataAugmentation is 'none', no preprocessing is applied to input images.

OutputSizeMode — Method used to resize output images
'resize' (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as the comma-separated pair consisting of
'OutputSizeMode' and one of the following. This argument sets the OutputSizeMode on page
1-0  property of the returned augmented image datastore, auimds.

• 'resize' — Scale the image to fit the output size. For more information, see imresize.
• 'centercrop' — Take a crop from the center of the training image. The crop has the same size

as the output size.
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• 'randcrop' — Take a random crop from the training image. The random crop has the same size
as the output size.

Data Types: char | string

BackgroundExecution — Perform augmentation in parallel
false (default) | true

Perform augmentation in parallel, specified as the comma-separated pair consisting of
'BackgroundExecution' and false or true. This argument sets the DispatchInBackground
on page 1-0  property of the returned augmented image datastore, auimds. If
'BackgroundExecution' is true, and you have Parallel Computing Toolbox software installed,
then the augmented image datastore auimds performs image augmentation in parallel.

Output Arguments
auimds — Augmented image datastore
augmentedImageDatastore object

Augmented image datastore, returned as an augmentedImageDatastore object.

Version History
Introduced in R2017b

augmentedImageSource object is removed

In R2017b, you could create an augmentedImageSource object to preprocess images for training
deep learning networks. Starting in R2018a, the augmentedImageSource object has been removed.
Use an augmentedImageDatastore object instead.

An augmentedImageDatastore has additional properties and methods to assist with data
preprocessing. Unlike augmentedImageSource, which could be used for training only, you can use
an augmentedImageDatastore for both training and prediction.

To create an augmentedImageDatastore object, you can use either the
augmentedImageDatastore function (recommended) or the augmentedImageSource function.

augmentedImageSource function will be removed
Not recommended starting in R2018a

The augmentedImageSource function will be removed in a future release. Create an
augmentedImageDatastore using the augmentedImageDatastore function instead.

To update your code, change instances of the function name augmentedImageSource to
augmentedImageDatastore. You do not need to change the input arguments.

See Also
augmentedImageDatastore

 augmentedImageSource

1-181



average
Compute performance metrics for average receiver operating characteristic (ROC) curve in
multiclass problem

Syntax
[FPR,TPR,Thresholds,AUC] = average(rocObj,type)

Description
[FPR,TPR,Thresholds,AUC] = average(rocObj,type) computes the averages of performance
metrics stored in the rocmetrics object rocObj for a multiclass classification problem using the
averaging method specified in type. The function returns the average false positive rate (FPR) and
the average true positive rate (TPR) for each threshold value in Thresholds. The function also
returns AUC, the area under the ROC curve composed of FPR and TPR.

Examples

Find Average ROC Curve

Compute the performance metrics for a multiclass classification problem by creating a rocmetrics
object, and then compute the average values for the metrics by using the average function. Plot the
average ROC curve using the outputs of average.

Load a sample of true labels and the prediction scores for a classification problem. For this example,
there are five classes: daisy, dandelion, roses, sunflowers, and tulips. The class names are stored in
classNames. The scores are the softmax prediction scores generated using the predict function.
scores is an N-by-K array where N is the number of observations and K is the number of classes.
The column order of scores follows the class order stored in classNames.

load('flowersDataResponses.mat')

scores = flowersData.scores;
trueLabels = flowersData.trueLabels;

classNames = flowersData.classNames;

Create a rocmetrics object by using the true labels in trueLabels and the classification scores in
scores. Specify the column order of scores using classNames.

rocObj = rocmetrics(trueLabels,scores,classNames);

rocmetrics computes the FPR and TPR at different thresholds and finds the AUC value for each
class.

Compute the average performance metric values, including the FPR and TPR at different thresholds
and the AUC value, using the macro-averaging method.

[FPR,TPR,Thresholds,AUC] = average(rocObj,"macro");
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Plot the average ROC curve and display the average AUC value. Include (0,0) so that the curve starts
from the origin (0,0).

plot([0;FPR],[0;TPR])
xlabel("False Positive Rate")
ylabel("True Positive Rate")
title("Average ROC Curve")
hold on
plot([0,1],[0,1],"k--")
legend(join(["Macro-average (AUC =",AUC,")"]), ...
    Location="southeast")
axis padded
hold off

Alternatively, you can create the average ROC curve by using the plot function. Specify
AverageROCType="macro" to compute the metrics for the average ROC curve using the macro-
averaging method.

plot(rocObj,AverageROCType="macro",ClassNames=[])
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Input Arguments
rocObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, specified as a rocmetrics object.

type — Averaging method
"micro" | "macro" | "weighted"

Averaging method, specified as "micro", "macro", or "weighted".

• "micro" (micro-averaging) — average finds the average performance metrics by treating all
one-versus-all on page 1-186 binary classification problems as one binary classification problem.
The function computes the confusion matrix components for the combined binary classification
problem, and then computes the average FPR and TPR using the values of the confusion matrix.

• "macro" (macro-averaging) — average computes the average values for FPR and TPR by
averaging the values of all one-versus-all binary classification problems.

• "weighted" (weighted macro-averaging) — average computes the weighted average values for
FPR and TPR using the macro-averaging method and using the prior class probabilities (the
Prior property of rocObj) as weights.

The algorithm type determines the length of the vectors for the output arguments (FPR, TPR, and
Thresholds). For more details, see “Average of Performance Metrics”.
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Data Types: char | string

Output Arguments
FPR — Average false positive rates
numeric vector

Average false positive rates, returned as a numeric vector.

TPR — Average true positive rates
numeric vector

Average true positive rates, returned as a numeric vector.

Thresholds — Thresholds on classification scores
numeric vector

Thresholds on classification scores at which the function finds each of the average performance
metric values (FPR and TPR), returned as a vector.

AUC — Area under average ROC curve
numeric scalar

Area under the average ROC curve on page 1-186 composed of FPR and TPR, returned as a numeric
scalar.

More About
Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate versus the false positive rate for different thresholds of
classification scores.

The true positive rate and the false positive rate are defined as follows:

• True positive rate (TPR), also known as recall or sensitivity — TP/(TP+FN), where TP is the
number of true positives and FN is the number of false negatives

• False positive rate (FPR), also known as fallout or 1-specificity — FP/(TN+FP), where FP is the
number of false positives and TN is the number of true negatives

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs. For each class, rocmetrics uses all distinct adjusted score on
page 1-186 values as threshold values to create a ROC curve.

For a multiclass classification problem, rocmetrics formulates a set of one-versus-all on page 1-186
binary classification problems to have one binary problem for each class, and finds a ROC curve for
each class using the corresponding binary problem. Each binary problem assumes one class as
positive and the rest as negative.

For a binary classification problem, if you specify the classification scores as a matrix, rocmetrics
formulates two one-versus-all binary classification problems. Each of these problems treats one class
as a positive class and the other class as a negative class, and rocmetrics finds two ROC curves.
Use one of the curves to evaluate the binary classification problem.
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For more details, see “ROC Curve and Performance Metrics”.

Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
classification and evaluates the performance on each class by using the binary classification that the
class is positive.

For example, the OVA coding design for three classes formulates three binary classifications:

Binary 1 Binary 2 Binary 3
Class 1 1 −1 −1
Class 2 −1 1 −1
Class 3 −1 −1 1

Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

Algorithms
Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s1,s2,s3] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s1-max(s2,s3),s2-max(s1,s3),s3-max(s1,s2)].

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.
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Alternative Functionality
• You can use the plot function to create the average ROC curve. The function returns a ROCCurve

object containing the XData, YData, Thresholds, and AUC properties, which correspond to the
output arguments FPR, TPR, Thresholds, and AUC of the average function, respectively. For an
example, see “Plot ROC Curve” on page 1-1305.

Version History
Introduced in R2022b

References
[1] Sebastiani, Fabrizio. "Machine Learning in Automated Text Categorization." ACM Computing

Surveys 34, no. 1 (March 2002): 1–47.

See Also
rocmetrics | addMetrics | plot

Topics
“ROC Curve and Performance Metrics”
“Compare Deep Learning Models Using ROC Curves”
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averagePooling1dLayer
1-D average pooling layer

Description
A 1-D average pooling layer performs downsampling by dividing the input into 1-D pooling regions,
then computing the average of each region.

The dimension that the layer pools over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Creation
Syntax
layer = averagePooling1dLayer(poolSize)
layer = averagePooling1dLayer(poolSize,Name=Value)

Description

layer = averagePooling1dLayer(poolSize) creates a 1-D average pooling layer and sets the
PoolSize property.

layer = averagePooling1dLayer(poolSize,Name=Value) also specifies the padding or sets
the Stride and Name properties using one or more optional name-value arguments. For example,
averagePooling1dLayer(3,Padding=1,Stride=2) creates a 1-D average pooling layer with a
pool size of 3, a stride of 2, and padding of size 1 on both the left and right of the input.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: averagePooling1dLayer(3,Padding=1) creates a 1-D average pooling layer with a
pool size of 3 and padding of size 1 on the left and right of the layer input.

Padding — Padding to apply to input
[0 0] (default) | "same" | nonnegative integer | vector of nonnegative integers

Padding to apply to the input, specified as one of the following:
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• "same" — Apply padding such that the output size is ceil(inputSize/stride), where
inputSize is the length of the input. When Stride is 1, the output is the same size as the input.

• Nonnegative integer sz — Add padding of size sz to both ends of the input.
• Vector [l r] of nonnegative integers — Add padding of size l to the left and r to the right of the

input.

Example: Padding=[2 1] adds padding of size 2 to the left and size 1 to the right.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Properties
Average Pooling

PoolSize — Width of pooling regions
positive integer

Width of the pooling regions, specified as a positive integer.

The width of the pooling regions PoolSize must be greater than or equal to the padding dimensions
PaddingSize.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stride — Step size for traversing input
1 (default) | positive integer

Step size for traversing the input, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PaddingSize — Size of padding
[0 0] (default) | vector of two nonnegative integers

Size of padding to apply to each side of the input, specified as a vector [l r] of two nonnegative
integers, where l is the padding applied to the left and r is the padding applied to the right.

When you create a layer, use the Padding name-value argument to specify the padding size.
Data Types: double

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

This property is read-only.

Method to determine padding size, specified as one of the following:

• 'manual' – Pad using the integer or vector specified by Padding.
• 'same' – Apply padding such that the output size is ceil(inputSize/Stride), where

inputSize is the length of the input. When Stride is 1, the output is the same as the input.

To specify the layer padding, use the Padding name-value argument.
Data Types: char
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PaddingValue — Value used to pad input
0 (default) | "mean"

Value used to pad input, specified as 0 or "mean".

When you use the Padding option to add padding to the input, the value of the padding applied can
be one of the following:

• 0 — Input is padded with zeros at the positions specified by the Padding property. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.

• "mean" — Input is padded with the mean of the pooling region at the positions specified by the
Padding option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

1 Deep Learning Functions

1-190



Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 1-D Average Pooling Layer

Create a 1-D average pooling layer with a pool size of 3.

layer = averagePooling1dLayer(3)

layer = 
  AveragePooling1DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: 3
          Stride: 1
     PaddingMode: 'manual'
     PaddingSize: [0 0]
    PaddingValue: 0

Include a 1-D average pooling layer in a layer array.

layers = [
    sequenceInputLayer(12)
    convolution1dLayer(11,96)
    reluLayer
    averagePooling1dLayer(3)
    convolution1dLayer(11,96)
    reluLayer
    globalMaxPooling1dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  10x1 Layer array with layers:

     1   ''   Sequence Input           Sequence input with 12 dimensions
     2   ''   1-D Convolution          96 11 convolutions with stride 1 and padding [0  0]
     3   ''   ReLU                     ReLU
     4   ''   1-D Average Pooling      average pooling with pool size 3, stride 1, and padding [0  0]
     5   ''   1-D Convolution          96 11 convolutions with stride 1 and padding [0  0]
     6   ''   ReLU                     ReLU
     7   ''   1-D Global Max Pooling   1-D global max pooling
     8   ''   Fully Connected          10 fully connected layer
     9   ''   Softmax                  softmax
    10   ''   Classification Output    crossentropyex

 averagePooling1dLayer

1-191



Algorithms
1-D Average Pooling Layer

A 1-D average pooling layer performs downsampling by dividing the input into 1-D pooling regions,
then computing the average of each region. The layer pools the input by moving the pooling regions
along the input horizontally.

The dimension that the layer pools over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Version History
Introduced in R2021b

See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | bilstmLayer |
gruLayer | convolution1dLayer | maxPooling1dLayer | globalMaxPooling1dLayer |
globalAveragePooling1dLayer

Topics
“Sequence Classification Using 1-D Convolutions”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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averagePooling2dLayer
Average pooling layer

Description
A 2-D average pooling layer performs downsampling by dividing the input into rectangular pooling
regions, then computing the average of each region.

Creation

Syntax
layer = averagePooling2dLayer(poolSize)
layer = averagePooling2dLayer(poolSize,Name,Value)

Description

layer = averagePooling2dLayer(poolSize) creates an average pooling layer and sets the
PoolSize property.

layer = averagePooling2dLayer(poolSize,Name,Value) sets the optional Stride and Name
properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair
argument. For example, averagePooling2dLayer(2,'Stride',2) creates an average pooling
layer with pool size [2 2] and stride [2 2]. You can specify multiple name-value pairs. Enclose each
property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along
the edges of the layer input or to set the Stride and Name properties. Enclose names in single
quotes.
Example: averagePooling2dLayer(2,'Stride',2) creates an average pooling layer with pool
size [2 2] and stride [2 2].

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If
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the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input

and padding of size b to the left and right.
• Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l

to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Average Pooling

PoolSize — Dimensions of pooling regions
vector of two positive integers

Dimensions of the pooling regions, specified as a vector of two positive integers [h w], where h is
the height and w is the width. When creating the layer, you can specify PoolSize as a scalar to use
the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 1] specifies pooling regions of height 2 and width 1.

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector of two positive
integers [a b], where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b l r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, l is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
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Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

PaddingValue — Value used to pad input
0 (default) | "mean"

Value used to pad input, specified as 0 or "mean".

When you use the Padding option to add padding to the input, the value of the padding applied can
be one of the following:

• 0 — Input is padded with zeros at the positions specified by the Padding property. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.

• "mean" — Input is padded with the mean of the pooling region at the positions specified by the
Padding option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Padding — Size of padding
[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When
creating a layer, use the 'Padding' name-value pair argument to specify the padding size.

Size of padding to apply to input borders vertically and horizontally, specified as a vector [a b] of
two nonnegative integers, where a is the padding applied to the top and bottom of the input data and
b is the padding applied to the left and right.
Example: [1 1] adds one row of padding to the top and bottom, and one column of padding to the
left and right of the input.

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Average Pooling Layer

Create an average pooling layer with the name 'avg1'.

layer = averagePooling2dLayer(2,'Name','avg1')

layer = 
  AveragePooling2DLayer with properties:

            Name: 'avg1'

   Hyperparameters
        PoolSize: [2 2]
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          Stride: [1 1]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
    PaddingValue: 0

Include an average pooling layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer(2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Average Pooling     2x2 average pooling with stride [1  1] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Average Pooling Layer with Nonoverlapping Pooling Regions

Create an average pooling layer with nonoverlapping pooling regions.

layer = averagePooling2dLayer(2,'Stride',2)

layer = 
  AveragePooling2DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [2 2]
          Stride: [2 2]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
    PaddingValue: 0

The height and width of the rectangular regions (pool size) are both 2. The pooling regions do not
overlap because the step size for traversing the images vertically and horizontally (stride) is also 2.

Include an average pooling layer with nonoverlapping regions in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
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    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Average Pooling     2x2 average pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Average Pooling Layer with Overlapping Pooling Regions

Create an average pooling layer with overlapping pooling regions.

layer = averagePooling2dLayer([3 2],'Stride',2)

layer = 
  AveragePooling2DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [3 2]
          Stride: [2 2]
     PaddingMode: 'manual'
     PaddingSize: [0 0 0 0]
    PaddingValue: 0

This layer creates pooling regions of size [3 2] and takes the average of the six elements in each
region. The pooling regions overlap because Stride includes dimensions that are less than the
respective pooling dimensions PoolSize.

Include an average pooling layer with overlapping pooling regions in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer([3 2],'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
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     4   ''   2-D Average Pooling     3x2 average pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Algorithms
2-D Average Pooling Layer

A 2-D average pooling layer performs downsampling by dividing the input into rectangular pooling
regions, then computing the average of each region.

The dimensions that the layer pools over depends on the layer input:

• For 2-D image input (data with four dimensions corresponding to pixels in two spatial dimensions,
the channels, and the observations), the layer pools over the spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
dimensions.

• For 1-D image sequence input (data with four dimensions corresponding to the pixels in one
spatial dimension, the channels, the observations, and the time steps), the layer pools over the
spatial and time dimensions.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of AveragePooling2DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.
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Input Format Output Format
"SSCB" (spatial, spatial, channel, batch) "SSCB" (channel, batch)
"SCBT" (spatial, channel, batch, time) "SCB" (channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCBT" (channel, batch, time)

Version History
Introduced in R2016a

References
[1] Nagi, J., F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M.

Gambardella. ''Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture
Recognition''. IEEE International Conference on Signal and Image Processing Applications
(ICSIPA2011), 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
convolution2dLayer | globalAveragePooling2dLayer | maxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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averagePooling3dLayer
3-D average pooling layer

Description
A 3-D average pooling layer performs downsampling by dividing three-dimensional input into
cuboidal pooling regions, then computing the average values of each region.

The dimensions that the layer pools over depends on the layer input:

• For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer pools over the spatial dimensions.

• For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer pools over the
spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
and time dimensions.

Creation
Syntax
layer = averagePooling3dLayer(poolSize)
layer = averagePooling3dLayer(poolSize,Name,Value)

Description

layer = averagePooling3dLayer(poolSize) creates an average pooling layer and sets the
PoolSize property.

layer = averagePooling3dLayer(poolSize,Name,Value) sets the optional Stride and Name
properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair
argument. For example, averagePooling3dLayer(2,'Stride',2) creates a 3-D average pooling
layer with pool size [2 2 2] and stride [2 2 2]. You can specify multiple name-value pairs. Enclose
each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: averagePooling3dLayer(2,'Stride',2) creates a 3-D average pooling layer with pool
size [2 2 2] and stride [2 2 2].
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Padding — Input edge padding
0 (default) | array of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of
the input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, to the left and right, and to the front and back, if
possible. If the padding in a given dimension has an odd value, then the software adds the extra
padding to the input as postpadding. In other words, the software adds extra vertical padding to
the bottom, extra horizontal padding to the right, and extra depth padding to the back of the
input.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Three-element vector [a b c] of nonnegative integers — Add padding of size a to the top and

bottom, padding of size b to the left and right, and padding of size c to the front and back of the
input.

• 2-by-3 matrix [t l f;b r k] of nonnegative integers — Add padding of size t to the top, b to
the bottom, l to the left, r to the right, f to the front, and k to the back of the input. In other
words, the top row specifies the prepadding and the second row defines the postpadding in the
three dimensions.

Example: 'Padding',1 adds one row of padding to the top and bottom, one column of padding to
the left and right, and one plane of padding to the front and back of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Average Pooling

PoolSize — Dimensions of pooling regions
vector of three positive integers

Dimensions of the pooling regions, specified as a vector of three positive integers [h w d], where h
is the height, w is the width, and d is the depth. When creating the layer, you can specify PoolSize
as a scalar to use the same value for all three dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 1 1] specifies pooling regions of height 2, width 1, and depth 1.

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
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depth direction. When creating the layer, you can specify Stride as a scalar to use the same value
for step sizes in all three directions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.

PaddingSize — Size of padding
[0 0 0;0 0 0] (default) | 2-by-3 matrix of nonnegative integers

Size of padding to apply to input borders, specified as 2-by-3 matrix [t l f;b r k] of nonnegative
integers, where t and b are the padding applied to the top and bottom in the vertical direction, l and
r are the padding applied to the left and right in the horizontal direction, and f and k are the padding
applied to the front and back along the depth. In other words, the top row specifies the prepadding
and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 2 4;1 2 4] adds one row of padding to the top and bottom, two columns of padding
to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify
when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and
stride is the stride in the corresponding dimension. The software adds the same amount of
padding to the top and bottom, to the left and right, and to the front and back, if possible. If the
padding in a given dimension has an odd value, then the software adds the extra padding to the
input as postpadding. In other words, the software adds extra vertical padding to the bottom,
extra horizontal padding to the right, and extra depth padding to the back of the input.

PaddingValue — Value used to pad input
0 (default) | "mean"

Value used to pad input, specified as 0 or "mean".

When you use the Padding option to add padding to the input, the value of the padding applied can
be one of the following:

• 0 — Input is padded with zeros at the positions specified by the Padding property. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.
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• "mean" — Input is padded with the mean of the pooling region at the positions specified by the
Padding option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples
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Create 3-D Average Pooling Layer

Create a 3-D average pooling layer with nonoverlapping pooling regions that downsamples by a
factor of 2.

layer = averagePooling3dLayer(2,'Stride',2)

layer = 
  AveragePooling3DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [2 2 2]
          Stride: [2 2 2]
     PaddingMode: 'manual'
     PaddingSize: [2x3 double]
    PaddingValue: 0

Include a 3-D average pooling layer in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    averagePooling3dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input         28x28x28x3 images with 'zerocenter' normalization
     2   ''   3-D Convolution         20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   3-D Average Pooling     2x2x2 average pooling with stride [2  2  2] and padding [0  0  0; 0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create 3-D Average Pooling Layer with Overlapping Pooling Regions

Create a 3-D average pooling layer with overlapping pooling regions and padding for the top and
bottom of the input.

layer = averagePooling3dLayer([3 2 2],'Stride',2,'Padding',[1 0 0])

layer = 
  AveragePooling3DLayer with properties:

            Name: ''

   Hyperparameters
        PoolSize: [3 2 2]
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          Stride: [2 2 2]
     PaddingMode: 'manual'
     PaddingSize: [2x3 double]
    PaddingValue: 0

This layer creates pooling regions of size 3-by-2-by-2 and takes the average of the twelve elements in
each region. The stride is 2 in all dimensions. The pooling regions overlap because there are stride
dimensions Stride that are less than the respective pooling dimensions PoolSize.

Algorithms
3-D Average Pooling Layer

A 3-D average pooling layer extends the functionality of an average pooling layer to a third
dimension, depth. An average pooling layer performs down-sampling by dividing the input into
rectangular or cuboidal pooling regions, and computing the average of each region. To learn more,
see the “2-D Average Pooling Layer” on page 1-199 section of the averagePooling2dLayer
reference page.

The dimensions that the layer pools over depends on the layer input:

• For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer pools over the spatial dimensions.

• For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer pools over the
spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
and time dimensions.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.
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This table shows the supported input formats of AveragePooling3DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SSSCB" (spatial, spatial, spatial, channel, batch) "SSSCB" (spatial, spatial, spatial, channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCBT" (spatial, spatial, channel, batch, time)
"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

Version History
Introduced in R2019a

See Also
averagePooling2dLayer | convolution3dLayer | maxPooling3dLayer |
globalAveragePooling3dLayer

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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avgpool
Pool data to average values over spatial dimensions

Syntax
Y = avgpool(X,poolsize)
Y = avgpool(X,'global')
Y = avgpool( ___ ,'DataFormat',FMT)
Y = avgpool( ___ ,Name,Value)

Description
The average pooling operation performs downsampling by dividing the input into pooling regions and
computing the average value of each region.

The avgpool function applies the average pooling operation to dlarray data. Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note To apply average pooling within a layerGraph object or Layer array, use one of the following
layers:

• averagePooling2dLayer
• averagePooling3dLayer
• globalAveragePooling2dLayer
• globalAveragePooling3dLayer

Y = avgpool(X,poolsize) applies the average pooling operation to the formatted dlarray object
X. The function downsamples the input by dividing it into regions defined by poolsize and
calculating the average value of the data in each region. The output Y is a formatted dlarray with
the same dimension format as X.

The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T' dimension using the
'PoolFormat' option.

Y = avgpool(X,'global') computes the global average over the spatial dimensions of the input
X. This syntax is equivalent to setting poolsize in the previous syntax to the size of the 'S'
dimensions of X.

Y = avgpool( ___ ,'DataFormat',FMT) applies the average pooling operation to the unformatted
dlarray object X with format specified by FMT using any of the previous syntaxes. The output Y is an
unformatted dlarray object with dimensions in the same order as X. For example,
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'DataFormat','SSCB' specifies data for 2-D average pooling with format 'SSCB' (spatial, spatial,
channel, batch).

Y = avgpool( ___ ,Name,Value) specifies options using one or more name-value pair arguments.
For example, 'PoolFormat','T' specifies a pooling region for 1-D pooling with format 'T' (time).

Examples

Perform 2-D Average Pooling

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X,'SSCB');

View the size and format of the input data.

size(dlX)

ans = 1×4

    28    28     3   128

dims(dlX)

ans = 
'SSCB'

Apply 2-D average pooling with 2-by-2 pooling regions using the avgpool function.

poolSize = [2 2];
dlY = avgpool(dlX,poolSize);

View the size and format of the output.

size(dlY)

ans = 1×4

    27    27     3   128

dims(dlY)

ans = 
'SSCB'
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Perform 2-D Global Average Pooling

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X,'SSCB');

View the size and format of the input data.

size(dlX)

ans = 1×4

    28    28     3   128

dims(dlX)

ans = 
'SSCB'

Apply 2-D global average pooling using the avgpool function by specifying the 'global' option.

dlY = avgpool(dlX,'global');

View the size and format of the output.

size(dlY)

ans = 1×4

     1     1     3   128

dims(dlY)

ans = 
'SSCB'

Perform 1-D Average Pooling

Create a formatted dlarray object containing a batch of 128 sequences of length 100 with 12
channels. Specify the format 'CBT' (channel, batch, time).

miniBatchSize = 128;
sequenceLength = 100;
numChannels = 12;
X = rand(numChannels,miniBatchSize,sequenceLength);
dlX = dlarray(X,'CBT');

View the size and format of the input data.

size(dlX)
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ans = 1×3

    12   128   100

dims(dlX)

ans = 
'CBT'

Apply 1-D average pooling with pooling regions of size 2 with a stride of 2 using the avgpool
function by specifying the 'PoolFormat' and 'Stride' options.

poolSize = 2;
dlY = avgpool(dlX,poolSize,'PoolFormat','T','Stride',2);

View the size and format of the output.

size(dlY)

ans = 1×3

    12   128    50

dims(dlY)

ans = 
'CBT'

Input Arguments
X — Input data
dlarray

Input data, specified as a formatted or unformatted dlarray object.

If X is an unformatted dlarray, then you must specify the format using the DataFormat option.

The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T' dimension using the
'PoolFormat' option.

poolsize — Size of pooling regions
positive integer | vector of positive integers

Size of the pooling regions, specified as a numeric scalar or numeric vector.

To pool using a pooling region with edges of the same size, specify poolsize as a scalar. The pooling
regions have the same size along all dimensions specified by 'PoolFormat'.

To pool using a pooling region with edges of different sizes, specify poolsize as a vector, where
poolsize(i) is the size of corresponding dimension in 'PoolFormat'.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Stride',2 specifies the stride of the pooling regions as 2.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

PoolFormat — Dimension order of pooling region
character vector | string scalar

Dimension order of the pooling region, specified as the comma-separated pair consisting of
'PoolFormat' and a character vector or string scalar that provides a label for each dimension of the
pooling region.

The default value of 'PoolFormat' depends on the task:

Task Default
1-D pooling 'S' (spatial)
2-D pooling 'SS' (spatial, spatial)
3-D pooling 'SSS' (spatial, spatial, spatial)

The format must have either no 'S' (spatial) dimensions, or as many 'S' (spatial) dimensions as the
input data.

The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T' dimension using the
'PoolFormat' option.
Example: 'PoolFormat','T'
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Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of
'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same
value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the
number of spatial dimensions of the input data, the vector values are used for the corresponding
spatial dimensions.

The default value of 'Stride' is 1. If 'Stride' is less than poolsize in any dimension, then the
pooling regions overlap.

The Stride parameter is not supported for global pooling using the 'global' option.
Example: 'Stride',3
Data Types: single | double

Padding — Size of padding applied to edges of data
0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of
'Padding' and one of the following:

• 'same' — Padding size is set so that the output size is the same as the input size when the stride
is 1. More generally, the output size of each spatial dimension is ceil(inputSize/stride),
where inputSize is the size of the input along a spatial dimension.

• Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.
• Numeric vector — A different amount of padding is applied along each spatial dimension. Use a

vector of size d, where d is the number of spatial dimensions of the input data. The ith element of
the vector specifies the size of padding applied to the start and the end along the ith spatial
dimension.

• Numeric matrix — A different amount of padding is applied to the start and end of each spatial
dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input
data. The element (1,d) specifies the size of padding applied to the start of spatial dimension d.
The element (2,d) specifies the size of padding applied to the end of spatial dimension d. For
example, in 2-D, the format is [top, left; bottom, right].

The 'Padding' parameter is not supported for global pooling using the 'global' option.
Example: 'Padding','same'
Data Types: single | double

PaddingValue — Value used to pad input
0 (default) | "mean"

Value used to pad input, specified as 0 or "mean".

When you use the Padding option to add padding to the input, the value of the padding applied can
be one of the following:

• 0 — Input is padded with zeros at the positions specified by the Padding property. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.
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• "mean" — Input is padded with the mean of the pooling region at the positions specified by the
Padding option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Output Arguments
Y — Pooled data
dlarray

Pooled data, returned as a dlarray with the same underlying data type as X.

If the input data X is a formatted dlarray, then Y has the same format as X. If the input data is not a
formatted dlarray, then Y is an unformatted dlarray with the same dimension order as the input
data.

More About
Average Pooling

The avgpool function pools the input data to average values. For more information, see the “2-D
Average Pooling Layer” on page 1-199 section of the averagePooling2dLayer reference page.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlconv | maxpool | dlarray | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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batchnorm
Normalize data across all observations for each channel independently

Syntax
Y = batchnorm(X,offset,scaleFactor)
[Y,popMu,popSigmaSq] = batchnorm(X,offset,scaleFactor)
[Y,updatedMu,updatedSigmaSq] = batchnorm(X,offset,scaleFactor,runningMu,
runningSigmaSq)
Y = batchnorm(X,offset,scaleFactor,trainedMu,trainedSigmaSq)
[ ___ ] = batchnorm( ___ ,'DataFormat',FMT)
[ ___ ] = batchnorm( ___ ,Name,Value)

Description
The batch normalization operation normalizes the input data across all observations for each channel
independently. To speed up training of the convolutional neural network and reduce the sensitivity to
network initialization, use batch normalization between convolution and nonlinear operations such as
relu.

After normalization, the operation shifts the input by a learnable offset β and scales it by a learnable
scale factor γ.

The batchnorm function applies the batch normalization operation to dlarray data. Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note To apply batch normalization within a layerGraph object or Layer array, use
batchNormalizationLayer.

Y = batchnorm(X,offset,scaleFactor) applies the batch normalization operation to the input
data X using the population mean and variance of the input data and the specified offset and scale
factor.

The function normalizes over the 'S' (spatial), 'T' (time), 'B' (batch), and 'U' (unspecified)
dimensions of X for each channel in the 'C' (channel) dimension, independently.

For unformatted input data, use the 'DataFormat' option.

[Y,popMu,popSigmaSq] = batchnorm(X,offset,scaleFactor) applies the batch
normalization operation and also returns the population mean and variance of the input data X.

[Y,updatedMu,updatedSigmaSq] = batchnorm(X,offset,scaleFactor,runningMu,
runningSigmaSq) applies the batch normalization operation and also returns the updated moving
mean and variance statistics. runningMu and runningSigmaSq are the mean and variance values
after the previous training iteration, respectively.
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Use this syntax to maintain running values for the mean and variance statistics during training. When
you have finished training, use the final updated values of the mean and variance for the batch
normalization operation during prediction and classification.

Y = batchnorm(X,offset,scaleFactor,trainedMu,trainedSigmaSq) applies the batch
normalization operation using the mean trainedMu and variance trainedSigmaSq.

Use this syntax during classification and prediction, where trainedMu and trainedSigmaSq are
the final values of the mean and variance after you have finished training, respectively.

[ ___ ] = batchnorm( ___ ,'DataFormat',FMT) applies the batch normalization operation to
unformatted input data with format specified by FMT using any of the input or output combinations in
previous syntaxes. The output Y is an unformatted dlarray object with dimensions in the same order
as X. For example, 'DataFormat','SSCB' specifies data for 2-D image input with the format
'SSCB' (spatial, spatial, channel, batch).

[ ___ ] = batchnorm( ___ ,Name,Value) specifies additional options using one or more name-
value pair arguments. For example, 'MeanDecay',0.3 sets the decay rate of the moving average
computation.

Examples

Apply Batch Normalization

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X,'SSCB');

View the size and format of the input data.

size(dlX)

ans = 1×4

    28    28     3   128

dims(dlX)

ans = 
'SSCB'

Initialize the scale and offset for batch normalization. For the scale, specify a vector of ones. For the
offset, specify a vector of zeros.

scaleFactor = ones(numChannels,1);
offset = zeros(numChannels,1);

Apply the batch normalization operation using the batchnorm function and return the mini-batch
statistics.
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[dlY,mu,sigmaSq] = batchnorm(dlX,offset,scaleFactor);

View the size and format of the output dlY.

size(dlY)

ans = 1×4

    28    28     3   128

dims(dlY)

ans = 
'SSCB'

View the mini-batch mean mu.

mu

mu = 3×1

    0.4998
    0.4993
    0.5011

View the mini-batch variance sigmaSq.

sigmaSq

sigmaSq = 3×1

    0.0831
    0.0832
    0.0835

Update Mean and Variance over Multiple Batches of Data

Use the batchnorm function to normalize several batches of data and update the statistics of the
whole data set after each normalization.

Create three batches of data. The data consists of 10-by-10 random arrays with five channels. Each
batch contains 20 observations. The second and third batches are scaled by a multiplicative factor of
1.5 and 2.5, respectively, so the mean of the data set increases with each batch.

height = 10;
width = 10;
numChannels = 5;
observations = 20;

X1 = rand(height,width,numChannels,observations);
dlX1 = dlarray(X1,"SSCB");

X2 = 1.5*rand(height,width,numChannels,observations);
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dlX2 = dlarray(X2,"SSCB");

X3 = 2.5*rand(height,width,numChannels,observations);
dlX3 = dlarray(X3,"SSCB");

Create the learnable parameters.

offset = zeros(numChannels,1);
scale = ones(numChannels,1);

Normalize the first batch of data dlX1 using batchnorm. Obtain the values of the mean and variance
of this batch as outputs.

[dlY1,mu,sigmaSq] = batchnorm(dlX1,offset,scale);

Normalize the second batch of data dlX2. Use mu and sigmaSq as inputs to obtain the values of the
combined mean and variance of the data in batches dlX1 and dlX2.

[dlY2,datasetMu,datasetSigmaSq] = batchnorm(dlX2,offset,scale,mu,sigmaSq);

Normalize the final batch of data dlX3. Update the data set statistics datasetMu and
datasetSigmaSq to obtain the values of the combined mean and variance of all data in batches
dlX1, dlX2, and dlX3.

[dlY3,datasetMuFull,datasetSigmaSqFull] = batchnorm(dlX3,offset,scale,datasetMu,datasetSigmaSq);

Observe the change in the mean of each channel as each batch is normalized.

plot([mu datasetMu datasetMuFull]')
legend("Channel " + string(1:5),"Location","southeast")
xticks([1 2 3])
xlabel("Number of Batches")
xlim([0.9 3.1])
ylabel("Per-Channel Mean")
title("Data Set Mean")
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Input Arguments
X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

If X is an unformatted dlarray or a numeric array, then you must specify the format using the
DataFormat option. If X is a numeric array, then either scaleFactor or offset must be a dlarray
object.

X must have a 'C' (channel) dimension.

offset — Offset
dlarray | numeric array

Offset β, specified as a formatted dlarray, an unformatted dlarray, or a numeric array with one
nonsingleton dimension with size matching the size of the 'C' (channel) dimension of the input X.

If offset is a formatted dlarray object, then the nonsingleton dimension must have label 'C'
(channel).

scaleFactor — Scale factor
dlarray | numeric array
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Scale factor γ, specified as a formatted dlarray, an unformatted dlarray, or a numeric array with
one nonsingleton dimension with size matching the size of the 'C' (channel) dimension of the input
X.

If scaleFactor is a formatted dlarray object, then the nonsingleton dimension must have label
'C' (channel).

runningMu — Running value of mean statistic
numeric vector

Running value of mean statistic, specified as a numeric vector of the same length as the 'C'
dimension of the input data.

To maintain a running value for the mean during training, provide runningMu as the updatedMu
output of the previous training iteration.
Data Types: single | double

runningSigmaSq — Running value of variance statistic
numeric vector

Running value of variance statistic, specified as a numeric vector of the same length as the 'C'
dimension of the input data.

To maintain a running value for the variance during training, provide runningSigmaSq as the
updatedSigmaSq output of the previous training iteration.
Data Types: single | double

trainedMu — Final value of mean statistic after training
numeric vector

Final value of mean statistic after training, specified as a numeric vector of the same length as the
'C' dimension of the input data.

During classification and prediction, provide trainedMu as the updatedMu output of the final
training iteration.
Data Types: single | double

trainedSigmaSq — Final value of variance statistic after training
numeric vector

Final value of variance statistic after training, specified as a numeric vector of the same length as the
'C' dimension of the input data.

During classification and prediction, provide trainedSigmaSq as the updatedSigmaSq output of
the final training iteration.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MeanDecay',0.3,'VarianceDecay',0.5 sets the decay rate for the moving average
computations of the mean and variance of several batches of data to 0.3 and 0.5, respectively.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

Epsilon — Variance offset
1e-5 (default) | numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting
of 'Epsilon' and a numeric scalar greater than or equal to 1e-5.
Data Types: single | double

MeanDecay — Decay value for moving mean computation
0.1 (default) | numeric scalar between 0 and 1

Decay value for the moving mean computation, specified as a numeric scalar between 0 and 1.

The function updates the moving mean value using

μ* = λμμ + (1 − λμ)μ,

where μ* denotes the updated mean updatedMu, λμ denotes the mean decay value 'MeanDecay', μ
denotes the mean of the input data, and μ denotes the current value of the mean mu.
Data Types: single | double

VarianceDecay — Decay value for moving variance computation
0.1 (default) | numeric scalar between 0 and 1

Decay value for the moving variance computation, specified as a numeric scalar between 0 and 1.

The function updates the moving variance value using
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σ2* = λσ2σ2 + (1 − λσ2)σ2,

where σ2* denotes the updated variance updatedSigmaSq, λσ2 denotes the variance decay value

'VarianceDecay', σ2 denotes the variance of the input data, and σ2 denotes the current value of
the variance sigmaSq.
Data Types: single | double

Output Arguments
Y — Normalized data
dlarray

Normalized data, returned as a dlarray with the same underlying data type as X.

If the input data X is a formatted dlarray, then Y has the same format as X. If the input data is not a
formatted dlarray, then Y is an unformatted dlarray with the same dimension order as the input
data.

The size of the output Y matches the size of the input X.

popMu — Per-channel mean
numeric column vector

Per-channel mean of the input data, returned as a numeric column vector with length equal to the
size of the 'C' dimension of the input data.

popSigmaSq — Per-channel variance
numeric column vector

Per-channel variance of the input data, returned as a numeric column vector with length equal to the
size of the 'C' dimension of the input data.

updatedMu — Updated mean statistic
numeric vector

Updated mean statistic, returned as a numeric vector with length equal to the size of the 'C'
dimension of the input data.

The function updates the moving mean value using

μ* = λμμ + (1 − λμ)μ,

where μ* denotes the updated mean updatedMu, λμ denotes the mean decay value 'MeanDecay', μ
denotes the mean of the input data, and μ denotes the current value of the mean mu.

updatedSigmaSq — Updated variance statistic
numeric vector

Updated variance statistic, returned as a numeric vector with length equal to the size of the 'C'
dimension of the input data.

The function updates the moving variance value using
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σ2* = λσ2σ2 + (1 − λσ2)σ2,

where σ2* denotes the updated variance updatedSigmaSq, λσ2 denotes the variance decay value

'VarianceDecay', σ2 denotes the variance of the input data, and σ2 denotes the current value of
the variance sigmaSq.

Algorithms
The batch normalization operation normalizes the elements xi of the input by first calculating the
mean μB and variance σB

2 over the spatial, time, and observation dimensions for each channel
independently. Then, it calculates the normalized activations as

xi =
xi− μB

σB
2 + ϵ

,

where ϵ is a constant that improves numerical stability when the variance is very small.

To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
operations that follow batch normalization, the batch normalization operation further shifts and
scales the activations using the transformation

yi = γx i + β,

where the offset β and scale factor γ are learnable parameters that are updated during network
training.

To make predictions with the network after training, batch normalization requires a fixed mean and
variance to normalize the data. This fixed mean and variance can be calculated from the training data
after training, or approximated during training using running statistic computations.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• X
• offset
• scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
relu | fullyconnect | dlconv | dlarray | dlgradient | dlfeval | groupnorm | layernorm

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Update Batch Normalization Statistics Using Model Function”
“Train Network Using Model Function”
“Train Network with Multiple Outputs”
“List of Functions with dlarray Support”
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batchNormalizationLayer
Batch normalization layer

Description
A batch normalization layer normalizes a mini-batch of data across all observations for each channel
independently. To speed up training of the convolutional neural network and reduce the sensitivity to
network initialization, use batch normalization layers between convolutional layers and
nonlinearities, such as ReLU layers.

After normalization, the layer scales the input with a learnable scale factor γ and shifts it by a
learnable offset β.

Creation

Syntax
layer = batchNormalizationLayer
layer = batchNormalizationLayer(Name,Value)

Description

layer = batchNormalizationLayer creates a batch normalization layer.

layer = batchNormalizationLayer(Name,Value) creates a batch normalization layer and sets
the optional TrainedMean, TrainedVariance, Epsilon, “Parameters and Initialization” on page 1-
227, “Learning Rate and Regularization” on page 1-230, and Name properties using one or more
name-value pairs. For example, batchNormalizationLayer('Name','batchnorm') creates a
batch normalization layer with the name 'batchnorm'.

Properties
Batch Normalization

TrainedMean — Mean statistic used for prediction
numeric vector

Mean statistic used for prediction, specified as a numeric vector of per-channel mean values.

Depending on the type of layer input, the trainNetwork, assembleNetwork, layerGraph, and
dlnetwork functions automatically reshape this property to have of the following sizes:

Layer Input Property Size
feature input NumChannels-by-1
vector sequence input
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Layer Input Property Size
1-D image input 1-by-NumChannels
1-D image sequence input
2-D image input 1-by-1-by-NumChannels
2-D image sequence input
3-D image input 1-by-1-by-1-by-NumChannels
3-D image sequence input

If the BatchNormalizationStatistics training option is 'moving', then the software
approximates the batch normalization statistics during training using a running estimate and, after
training, sets the TrainedMean and TrainedVariance properties to the latest values of the moving
estimates of the mean and variance, respectively.

If the BatchNormalizationStatistics training option is 'population', then after network
training finishes, the software passes through the data once more and sets the TrainedMean and
TrainedVariance properties to the mean and variance computed from the entire training data set,
respectively.

The layer uses TrainedMean and TrainedVariance to normalize the input during prediction.
Data Types: single | double

TrainedVariance — Variance statistic used for prediction
numeric vector

Variance statistic used for prediction, specified as a numeric vector of per-channel variance values.

Depending on the type of layer input, the trainNetwork, assembleNetwork, layerGraph, and
dlnetwork functions automatically reshape this property to have of the following sizes:

Layer Input Property Size
feature input NumChannels-by-1
vector sequence input
1-D image input 1-by-NumChannels
1-D image sequence input
2-D image input 1-by-1-by-NumChannels
2-D image sequence input
3-D image input 1-by-1-by-1-by-NumChannels
3-D image sequence input

If the BatchNormalizationStatistics training option is 'moving', then the software
approximates the batch normalization statistics during training using a running estimate and, after
training, sets the TrainedMean and TrainedVariance properties to the latest values of the moving
estimates of the mean and variance, respectively.

If the BatchNormalizationStatistics training option is 'population', then after network
training finishes, the software passes through the data once more and sets the TrainedMean and
TrainedVariance properties to the mean and variance computed from the entire training data set,
respectively.
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The layer uses TrainedMean and TrainedVariance to normalize the input during prediction.
Data Types: single | double

Epsilon — Constant to add to mini-batch variances
1e-5 (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than
1e-5.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical
stability and avoid division by zero.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumChannels — Number of input channels
'auto' (default) | positive integer

This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

ScaleInitializer — Function to initialize channel scale factors
'ones' (default) | 'narrow-normal' | function handle

Function to initialize the channel scale factors, specified as one of the following:

• 'ones' – Initialize the channel scale factors with ones.
• 'zeros' – Initialize the channel scale factors with zeros.
• 'narrow-normal' – Initialize the channel scale factors by independently sampling from a normal

distribution with a mean of zero and standard deviation of 0.01.
• Function handle – Initialize the channel scale factors with a custom function. If you specify a

function handle, then the function must be of the form scale = func(sz), where sz is the size
of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the Scale property is empty.
Data Types: char | string | function_handle

OffsetInitializer — Function to initialize channel offsets
'zeros' (default) | 'ones' | 'narrow-normal' | function handle

Function to initialize the channel offsets, specified as one of the following:
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• 'zeros' – Initialize the channel offsets with zeros.
• 'ones' – Initialize the channel offsets with ones.
• 'narrow-normal' – Initialize the channel offsets by independently sampling from a normal

distribution with a mean of zero and standard deviation of 0.01.
• Function handle – Initialize the channel offsets with a custom function. If you specify a function

handle, then the function must be of the form offset = func(sz), where sz is the size of the
scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.
Data Types: char | string | function_handle

Scale — Channel scale factors
[] (default) | numeric vector

Channel scale factors γ, specified as a numeric vector.

The channel scale factors are learnable parameters. When you train a network, if Scale is nonempty,
then trainNetwork uses the Scale property as the initial value. If Scale is empty, then
trainNetwork uses the initializer specified by ScaleInitializer.

Depending on the type of layer input, the trainNetwork, assembleNetwork, layerGraph, and
dlnetwork functions automatically reshape this property to have of the following sizes:

Layer Input Property Size
feature input NumChannels-by-1
vector sequence input
1-D image input 1-by-NumChannels
1-D image sequence input
2-D image input 1-by-1-by-NumChannels
2-D image sequence input
3-D image input 1-by-1-by-1-by-NumChannels
3-D image sequence input

Data Types: single | double

Offset — Channel offsets
[] (default) | numeric vector

Channel offsets β, specified as a numeric vector.

The channel offsets are learnable parameters. When you train a network, if Offset is nonempty, then
trainNetwork uses the Offset property as the initial value. If Offset is empty, then
trainNetwork uses the initializer specified by OffsetInitializer.

Depending on the type of layer input, the trainNetwork, assembleNetwork, layerGraph, and
dlnetwork functions automatically reshape this property to have of the following sizes:
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Layer Input Property Size
feature input NumChannels-by-1
vector sequence input
1-D image input 1-by-NumChannels
1-D image sequence input
2-D image input 1-by-1-by-NumChannels
2-D image sequence input
3-D image input 1-by-1-by-1-by-NumChannels
3-D image sequence input

Data Types: single | double

MeanDecay — Decay value for moving mean computation
0.1 (default) | numeric scalar between 0 and 1

Decay value for the moving mean computation, specified as a numeric scalar between 0 and 1.

When the BatchNormalizationStatistics training option is 'moving', at each iteration, the
layer updates the moving mean value using

μ* = λμμ + (1 − λμ)μ,

where μ* denotes the updated mean, λμ denotes the mean decay value, μ  denotes the mean of the
layer input, and μ denotes the latest value of the moving mean value.

If the BatchNormalizationStatistics training option is 'population', then this option has no
effect.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

VarianceDecay — Decay value for moving variance computation
0.1 (default) | numeric scalar between 0 and 1

Decay value for the moving variance computation, specified as a numeric scalar between 0 and 1.

When the BatchNormalizationStatistics training option is 'moving', at each iteration, the
layer updates the moving variance value using

σ2* = λσ2σ2 + (1 − λσ2)σ2,

where σ2* denotes the updated variance, λσ2 denotes the variance decay value, σ2 denotes the
variance of the layer input, and σ2 denotes the latest value of the moving variance value.

If the BatchNormalizationStatistics training option is 'population', then this option has no
effect.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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Learning Rate and Regularization

ScaleLearnRateFactor — Learning rate factor for scale factors
1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the
scale factors in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OffsetLearnRateFactor — Learning rate factor for offsets
1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
offsets in a layer. For example, if OffsetLearnRateFactor is 2, then the learning rate for the
offsets in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScaleL2Factor — L2 regularization factor for scale factors
1 (default) | nonnegative scalar

L2 regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the scale factors in a layer. For example, if ScaleL2Factor is 2, then the L2 regularization
for the offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OffsetL2Factor — L2 regularization factor for offsets
1 (default) | nonnegative scalar

L2 regularization factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the offsets in a layer. For example, if OffsetL2Factor is 2, then the L2 regularization for the
offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Batch Normalization Layer

Create a batch normalization layer with the name 'BN1'.

layer = batchNormalizationLayer('Name','BN1')

layer = 
  BatchNormalizationLayer with properties:

               Name: 'BN1'
        NumChannels: 'auto'

   Hyperparameters
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          MeanDecay: 0.1000
      VarianceDecay: 0.1000
            Epsilon: 1.0000e-05

   Learnable Parameters
             Offset: []
              Scale: []

   State Parameters
        TrainedMean: []
    TrainedVariance: []

  Show all properties

Include batch normalization layers in a Layer array.

layers = [
    imageInputLayer([32 32 3]) 
  
    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding',1)
    batchNormalizationLayer
    reluLayer
          
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
    ]

layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             32x32x3 images with 'zerocenter' normalization
     2   ''   2-D Convolution         16 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     3   ''   Batch Normalization     Batch normalization
     4   ''   ReLU                    ReLU
     5   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   2-D Convolution         32 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     7   ''   Batch Normalization     Batch normalization
     8   ''   ReLU                    ReLU
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

Algorithms
Batch Normalization Layer

A batch normalization layer normalizes a mini-batch of data across all observations for each channel
independently. To speed up training of the convolutional neural network and reduce the sensitivity to
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network initialization, use batch normalization layers between convolutional layers and
nonlinearities, such as ReLU layers.

The layer first normalizes the activations of each channel by subtracting the mini-batch mean and
dividing by the mini-batch standard deviation. Then, the layer shifts the input by a learnable offset β
and scales it by a learnable scale factor γ. β and γ are themselves learnable parameters that are
updated during network training.

Batch normalization layers normalize the activations and gradients propagating through a neural
network, making network training an easier optimization problem. To take full advantage of this fact,
you can try increasing the learning rate. Since the optimization problem is easier, the parameter
updates can be larger and the network can learn faster. You can also try reducing the L2 and dropout
regularization. With batch normalization layers, the activations of a specific image during training
depend on which images happen to appear in the same mini-batch. To take full advantage of this
regularizing effect, try shuffling the training data before every training epoch. To specify how often to
shuffle the data during training, use the 'Shuffle' name-value pair argument of
trainingOptions.

The batch normalization operation normalizes the elements xi of the input by first calculating the
mean μB and variance σB

2 over the spatial, time, and observation dimensions for each channel
independently. Then, it calculates the normalized activations as

xi =
xi− μB

σB
2 + ϵ

,

where ϵ is a constant that improves numerical stability when the variance is very small.

To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
operations that follow batch normalization, the batch normalization operation further shifts and
scales the activations using the transformation

yi = γx i + β,

where the offset β and scale factor γ are learnable parameters that are updated during network
training.

To make predictions with the network after training, batch normalization requires a fixed mean and
variance to normalize the data. This fixed mean and variance can be calculated from the training data
after training, or approximated during training using running statistic computations.

If the BatchNormalizationStatistics training option is 'moving', then the software
approximates the batch normalization statistics during training using a running estimate and, after
training, sets the TrainedMean and TrainedVariance properties to the latest values of the moving
estimates of the mean and variance, respectively.

If the BatchNormalizationStatistics training option is 'population', then after network
training finishes, the software passes through the data once more and sets the TrainedMean and
TrainedVariance properties to the mean and variance computed from the entire training data set,
respectively.

The layer uses TrainedMean and TrainedVariance to normalize the input during prediction.
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Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of BatchNormalizationLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"CB" (channel, batch) "CB" (channel, batch)
"SCB" (spatial, channel, batch) "SCB" (spatial, channel, batch)
"SSCB" (spatial, spatial, channel, batch) "SSCB" (spatial, spatial, channel, batch)
"SSSCB" (spatial, spatial, spatial, channel, batch) "SSSCB" (spatial, spatial, spatial, channel, batch)
"CBT" (channel, batch, time) "CBT" (channel, batch, time)
"SCBT" (spatial, spatial, channel, batch) "SCBT" (spatial, spatial, channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCBT" (spatial, spatial, channel, batch, time)
"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

Version History
Introduced in R2017b

References
[1] Ioffe, Sergey, and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift.” Preprint, submitted March 2, 2015. https://
arxiv.org/abs/1502.03167.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | trainingOptions | reluLayer | convolution2dLayer |
fullyConnectedLayer | groupNormalizationLayer | layerNormalizationLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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bilstmLayer
Bidirectional long short-term memory (BiLSTM) layer

Description
A bidirectional LSTM (BiLSTM) layer learns bidirectional long-term dependencies between time steps
of time series or sequence data. These dependencies can be useful when you want the network to
learn from the complete time series at each time step.

Creation
Syntax
layer = bilstmLayer(numHiddenUnits)
layer = bilstmLayer(numHiddenUnits,Name,Value)

Description

layer = bilstmLayer(numHiddenUnits) creates a bidirectional LSTM layer and sets the
NumHiddenUnits property.

layer = bilstmLayer(numHiddenUnits,Name,Value) sets additional OutputMode,
“Activations” on page 1-237, “State” on page 1-238, “Parameters and Initialization” on page 1-239,
“Learning Rate and Regularization” on page 1-241, and Name properties using one or more name-
value pair arguments. You can specify multiple name-value pair arguments. Enclose each property
name in quotes.

Properties
BiLSTM

NumHiddenUnits — Number of hidden units
positive integer

This property is read-only.

Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time
steps (the hidden state). The hidden state can contain information from all previous time steps,
regardless of the sequence length. If the number of hidden units is too large, then the layer might
overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split
your sequences into smaller sequences for when using the trainNetwork function, use the
SequenceLength training option.

The layer outputs data with NumHiddenUnits channels.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputMode — Output mode
'sequence' (default) | 'last'

This property is read-only.

Output mode, specified as one of the following:

• 'sequence' – Output the complete sequence.
• 'last' – Output the last time step of the sequence.

HasStateInputs — Flag for state inputs to layer
0 (false) (default) | 1 (true)

This property is read-only.

Flag for state inputs to the layer, specified as 0 (false) or 1 (true).

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.

HasStateOutputs — Flag for state outputs from layer
0 (false) (default) | 1 (true)

This property is read-only.

Flag for state outputs from the layer, specified as 0 (false) or 1 (true).

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

InputSize — Input size
'auto' (default) | positive integer

This property is read-only.

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software
automatically assigns the input size at training time.
Data Types: double | char

Activations

StateActivationFunction — Activation function to update the cell and hidden state
'tanh' (default) | 'softsign'

 bilstmLayer

1-237



This property is read-only.

Activation function to update the cell and hidden state, specified as one of the following:

• 'tanh' – Use the hyperbolic tangent function (tanh).
• 'softsign' – Use the softsign function softsign(x) = x

1 + x .

The layer uses this option as the function σc in the calculations to update the cell and hidden state.
For more information on how activation functions are used in an LSTM layer, see “Long Short-Term
Memory Layer” on page 1-1149.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | 'hard-sigmoid'

This property is read-only.

Activation function to apply to the gates, specified as one of the following:

• 'sigmoid' – Use the sigmoid function σ(x) = (1 + e−x)−1.
• 'hard-sigmoid' – Use the hard sigmoid function

σ(x) =
0
0.2x + 0.5
1

if x < − 2.5
if−2.5 ≤ x ≤ 2.5
if x > 2.5

.

The layer uses this option as the function σg in the calculations for the layer gates.

State

CellState — Cell state
numeric vector

Cell state to use in the layer operation, specified as a 2*NumHiddenUnits-by-1 numeric vector. This
value corresponds to the initial cell state when data is passed to the layer.

After setting this property manually, calls to the resetState function set the cell state to this value.

If HasStateInputs is true, then the CellState property must be empty.
Data Types: single | double

HiddenState — Hidden state
numeric vector

Hidden state to use in the layer operation, specified as a 2*NumHiddenUnits-by-1 numeric vector.
This value corresponds to the initial hidden state when data is passed to the layer.

After setting this property manually, calls to the resetState function set the hidden state to this
value.

If HasStateInputs is true, then the HiddenState property must be empty.
Data Types: single | double
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Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input weights, specified as one of the following:

• 'glorot' – Initialize the input weights with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(InputSize + numOut), where numOut = 8*NumHiddenUnits.

• 'he' – Initialize the input weights with the He initializer [2]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'narrow-normal' – Initialize the input weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the input weights with zeros.
• 'ones' – Initialize the input weights with ones.
• Function handle – Initialize the input weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
input weights.

The layer only initializes the input weights when the InputWeights property is empty.
Data Types: char | string | function_handle

RecurrentWeightsInitializer — Function to initialize recurrent weights
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the recurrent weights, specified as one of the following:

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'glorot' – Initialize the recurrent weights with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(numIn + numOut), where numIn = NumHiddenUnits and numOut =
8*NumHiddenUnits.

• 'he' – Initialize the recurrent weights with the He initializer [2]. The He initializer samples from
a normal distribution with zero mean and variance 2/NumHiddenUnits.

• 'narrow-normal' – Initialize the recurrent weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the recurrent weights with zeros.
• 'ones' – Initialize the recurrent weights with ones.
• Function handle – Initialize the recurrent weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.

 bilstmLayer

1-239



Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'unit-forget-gate' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'unit-forget-gate' – Initialize the forget gate bias with ones and the remaining biases with
zeros.

• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with
zero mean and standard deviation 0.01.

• 'ones' – Initialize the bias with ones.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

InputWeights — Input weights
[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the eight input weight matrices for the components
(gates) in the bidirectional LSTM layer. The eight matrices are concatenated vertically in the
following order:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

The input weights are learnable parameters. When training a network, if InputWeights is
nonempty, then trainNetwork uses the InputWeights property as the initial value. If
InputWeights is empty, then trainNetwork uses the initializer specified by
InputWeightsInitializer.

At training time, InputWeights is an 8*NumHiddenUnits-by-InputSize matrix.
Data Types: single | double

RecurrentWeights — Recurrent weights
[] (default) | matrix

Recurrent weights, specified as a matrix.
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The recurrent weight matrix is a concatenation of the eight recurrent weight matrices for the
components (gates) in the bidirectional LSTM layer. The eight matrices are concatenated vertically in
the following order:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is
nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If
RecurrentWeights is empty, then trainNetwork uses the initializer specified by
RecurrentWeightsInitializer.

At training time, RecurrentWeights is an 8*NumHiddenUnits-by-NumHiddenUnits matrix.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric vector

Layer biases, specified as a numeric vector.

The bias vector is a concatenation of the eight bias vectors for the components (gates) in the
bidirectional LSTM layer. The eight vectors are concatenated vertically in the following order:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is an 8*NumHiddenUnits-by-1 numeric vector.
Data Types: single | double

Learning Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights
1 (default) | numeric scalar | 1-by-8 numeric vector
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Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the
learning rate factor for the input weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in InputWeights,
assign a 1-by-8 vector, where the entries correspond to the learning rate factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | numeric scalar | 1-by-8 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the
learning rate for the recurrent weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learn rate for the four individual matrices in RecurrentWeights, assign a
1-by-8 vector, where the entries correspond to the learning rate factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-8 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in Bias, assign a 1-
by-8 vector, where the entries correspond to the learning rate factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InputWeightsL2Factor — L2 regularization factor for input weights
1 (default) | numeric scalar | 1-by-8 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2,
then the L2 regularization factor for the input weights of the layer is twice the current global L2
regularization factor. The software determines the L2 regularization factor based on the settings
specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in InputWeights,
assign a 1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights
1 (default) | numeric scalar | 1-by-8 numeric vector

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the recurrent weights of the layer. For example, if
RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the
layer is twice the current global L2 regularization factor. The software determines the L2
regularization factor based on the settings specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in
RecurrentWeights, assign a 1-by-8 vector, where the entries correspond to the L2 regularization
factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar | 1-by-8 numeric vector

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in Bias, assign a
1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
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7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 | 3

This property is read-only.

Number of inputs of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.
Data Types: double

InputNames — Input names
{'in'} | {'in','hidden','cell'}

This property is read-only.

Input names of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.

NumOutputs — Number of outputs
1 | 3

This property is read-only.
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Number of outputs of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.
Data Types: double

OutputNames — Output names
{'out'} | {'out','hidden','cell'}

This property is read-only.

Output names of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

Examples

Create Bidirectional LSTM Layer

Create a bidirectional LSTM layer with the name 'bilstm1' and 100 hidden units.

layer = bilstmLayer(100,'Name','bilstm1')

layer = 
  BiLSTMLayer with properties:

                       Name: 'bilstm1'
                 InputNames: {'in'}
                OutputNames: {'out'}
                  NumInputs: 1
                 NumOutputs: 1
             HasStateInputs: 0
            HasStateOutputs: 0

   Hyperparameters
                  InputSize: 'auto'
             NumHiddenUnits: 100
                 OutputMode: 'sequence'
    StateActivationFunction: 'tanh'
     GateActivationFunction: 'sigmoid'

   Learnable Parameters
               InputWeights: []
           RecurrentWeights: []
                       Bias: []
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   State Parameters
                HiddenState: []
                  CellState: []

  Show all properties

Include a bidirectional LSTM layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    bilstmLayer(numHiddenUnits)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   BiLSTM                  BiLSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Algorithms
Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of BiLSTMLayer objects and the corresponding output
format. If the output of the layer is passed to a custom layer that does not inherit from the
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nnet.layer.Formattable class, or a FunctionLayer object with the Formattable option set to
false, then the layer receives an unformatted dlarray object with dimensions ordered
corresponding to the formats outlined in this table.

Input Format OutputMode Output Format
'CB' (channel, batch) 'sequence' 'CB' (channel, batch)

'last'
'CBT' (channel, batch, time) 'sequence' 'CBT' (channel, batch, time)

'last' 'CB' (channel, batch)

In dlnetwork objects, BiLSTMLayer objects also support the following input and output format
combinations.

Input Format OutputMode Output Format
'SCB' (spatial, channel, batch) 'sequence' 'CB' (channel, batch)

'last'
'SSCB' (spatial, spatial,
channel)

'sequence' 'CB' (channel, batch)
'last'

'SSSCB' (spatial, spatial,
spatial, channel)

'sequence' 'CB' (channel, batch)
'last'

'SCBT' (spatial, channel, batch) 'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

'SSCBT' (spatial, spatial,
channel, batch, time)

'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

'SSSCBT' (spatial, spatial,
spatial, channel, batch, time)

'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

To use these input formats in trainNetwork workflows, first convert the data to 'CBT' (channel,
batch, time) format using flattenLayer.

If the HasStateInputs property is 1 (true), then the layer has two additional inputs with names
'hidden' and 'cell', which correspond to the hidden state and cell state, respectively. These
additional inputs expect input format 'CB' (channel, batch).

If the HasStateOutputs property is 1 (true), then the layer has two additional outputs with names
'hidden' and 'cell', which correspond to the hidden state and cell state, respectively. These
additional outputs have output format 'CB' (channel, batch).

Version History
Introduced in R2018a

Default input weights initialization is Glorot
Behavior changed in R2019a
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Starting in R2019a, the software, by default, initializes the layer input weights of this layer using the
Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer input weights using the by sampling
from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'InputWeightsInitializer' option of the layer to 'narrow-normal'.

Default recurrent weights initialization is orthogonal
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer recurrent weights of this layer with
Q, the orthogonal matrix given by the QR decomposition of Z = QR for a random matrix Z sampled
from a unit normal distribution. This behavior helps stabilize training and usually reduces the training
time of deep networks.

In previous releases, the software, by default, initializes the layer recurrent weights using the by
sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior,
set the 'RecurrentWeightsInitializer' option of the layer to 'narrow-normal'.

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When generating code with Intel MKL-DNN:

• The StateActivationFunction property must be set to 'tanh'.
• The GateActivationFunction property must be set to 'sigmoid'.
• The HasStateInputs and HasStateOutputs properties must be set to 0 (false).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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• For GPU code generation, the StateActivationFunction property must be set to 'tanh'.
• For GPU code generation, the GateActivationFunction property must be set to 'sigmoid'.
• The HasStateInputs and HasStateOutputs properties must be set to 0 (false).

See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | gruLayer |
convolution1dLayer | maxPooling1dLayer | averagePooling1dLayer |
globalMaxPooling1dLayer | globalAveragePooling1dLayer

Topics
“Sequence Classification Using Deep Learning”
“Sequence Classification Using 1-D Convolutions”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Classify Videos Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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calibrate
Simulate and collect ranges of a deep neural network

Syntax
calResults = calibrate(quantObj,calData)
calResults = calibrate(quantObj,calData,Name,Value)

Description
calResults = calibrate(quantObj,calData) exercises the network and collects the dynamic
ranges of the weights and biases in the convolution and fully connected layers of the network and the
dynamic ranges of the activations in all layers of the network specified by dlquantizer object,
quantObj, using the data specified by calData.

calResults = calibrate(quantObj,calData,Name,Value) calibrates the network with
additional options specified by one or more name-value pair arguments.

This function requires Deep Learning Toolbox Model Quantization Library. To learn about the
products required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Examples

Quantize a Neural Network for GPU Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network for GPU and explore the behavior of the quantized network. In this example, you quantize
the squeezenet neural network after retraining the network to classify new images according to the
Train Deep Learning Network to Classify New Images example. In this example, the memory required
for the network is reduced approximately 75% through quantization while the accuracy of the
network is not affected.

Load the pretrained network. net is the output network of the Train Deep Learning Network to
Classify New Images example.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
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layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
This example uses the hComputeModelAccuracy metric function.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn',{@(x)hComputeModelAccuracy(x, net, aug_valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug_calData)

calResults=121×5 table
        Optimized Layer Name         Network Layer Name     Learnables / Activations    MinValue     MaxValue
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    ____________________________    ____________________    ________________________    _________    ________

    {'conv1_Weights'           }    {'conv1'           }           "Weights"             -0.91985     0.88489
    {'conv1_Bias'              }    {'conv1'           }           "Bias"                -0.07925     0.26343
    {'fire2-squeeze1x1_Weights'}    {'fire2-squeeze1x1'}           "Weights"                -1.38      1.2477
    {'fire2-squeeze1x1_Bias'   }    {'fire2-squeeze1x1'}           "Bias"                -0.11641     0.24273
    {'fire2-expand1x1_Weights' }    {'fire2-expand1x1' }           "Weights"              -0.7406     0.90982
    {'fire2-expand1x1_Bias'    }    {'fire2-expand1x1' }           "Bias"               -0.060056     0.14602
    {'fire2-expand3x3_Weights' }    {'fire2-expand3x3' }           "Weights"             -0.74397     0.66905
    {'fire2-expand3x3_Bias'    }    {'fire2-expand3x3' }           "Bias"               -0.051778    0.074239
    {'fire3-squeeze1x1_Weights'}    {'fire3-squeeze1x1'}           "Weights"              -0.7712     0.68917
    {'fire3-squeeze1x1_Bias'   }    {'fire3-squeeze1x1'}           "Bias"                -0.10138     0.32675
    {'fire3-expand1x1_Weights' }    {'fire3-expand1x1' }           "Weights"             -0.72035      0.9743
    {'fire3-expand1x1_Bias'    }    {'fire3-expand1x1' }           "Bias"               -0.067029     0.30425
    {'fire3-expand3x3_Weights' }    {'fire3-expand3x3' }           "Weights"             -0.61443      0.7741
    {'fire3-expand3x3_Bias'    }    {'fire3-expand3x3' }           "Bias"               -0.053613     0.10329
    {'fire4-squeeze1x1_Weights'}    {'fire4-squeeze1x1'}           "Weights"              -0.7422      1.0877
    {'fire4-squeeze1x1_Bias'   }    {'fire4-squeeze1x1'}           "Bias"                -0.10885     0.13881
      ⋮

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults = struct with fields:
       NumSamples: 20
    MetricResults: [1×1 struct]
       Statistics: [2×2 table]

Examine the validation output to see the performance of the quantized network.

valResults.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}           1      
     {'Quantized'     }           1      

valResults.Statistics

ans=2×2 table
    NetworkImplementation    LearnableParameterMemory(bytes)
    _____________________    _______________________________

     {'Floating-Point'}                2.9003e+06           
     {'Quantized'     }                7.3393e+05           

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.
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The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network and explore the behavior of the quantized network. In this example, you quantize the logo
recognition network (LogoNet). Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

This example uses the products listed under FPGA in “Quantization Workflow Prerequisites”.

Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Load the pretrained network.

snet = getLogoNetwork();

snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an imageDatastore, then
split the data into calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
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 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData,validationData] = splitEachLabel(imageData,0.5,'randomized');

Create a dlquantizer object and specify the network to quantize. Set the execution environment for
the quantized network to FPGA.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)

ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer.
hTarget = dlhdl.Target('Intel','Interface','JTAG');

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeModelAccuracy(predictionScores,net,dataStore)
%% hComputeModelAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare predicted label with ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function and FPGA execution environment options in a dlquantizationOptions
object.
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options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x,snet,validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

Compile and deploy the quantized network. Use the validate function to quantize the learnable
parameters in the convolution layers of the network and exercise the network. This function uses the
output of the compile function to program the FPGA board by using the programming file. It also
downloads the network weights and biases. The deploy function checks for the Intel Quartus® tool
and the supported tool version. It then programs the FPGA device using the sof file, displays progress
messages, and the time it takes to deploy the network. The validate function uses the metric
function defined in the dlquantizationOptions object to compare the results of the network
before and after quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
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        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
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    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
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    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

Quantize a Neural Network for CPU Target

This example shows how to quantize and validate a neural network for a CPU target. This workflow is
similar to other execution environments, but before validating you must establish a raspi
connection.

First, load your network. This example uses the pretrained network squeezenet.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Then define your calibration and validation data, calDS and valDS respectively.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227],calData);
aug_valData = augmentedImageDatastore([227 227],valData);
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Create the dlquantizer object and specify a CPU execution environment.

dq =  dlquantizer(net,'ExecutionEnvironment','CPU') 

dq = 
  dlquantizer with properties:

           NetworkObject: [1×1 DAGNetwork]
    ExecutionEnvironment: 'CPU'

Calibrate the network.

calResults = calibrate(dq,aug_calData)

Attempt to calibrate with host GPU errored with the message: 
Unable to find a supported GPU device. For more information on GPU support, see GPU Support by Release. 
Reverting to use host CPU. 

calResults=121×5 table
        Optimized Layer Name         Network Layer Name     Learnables / Activations    MinValue     MaxValue
    ____________________________    ____________________    ________________________    _________    ________

    {'conv1_Weights'           }    {'conv1'           }           "Weights"             -0.91985     0.88489
    {'conv1_Bias'              }    {'conv1'           }           "Bias"                -0.07925     0.26343
    {'fire2-squeeze1x1_Weights'}    {'fire2-squeeze1x1'}           "Weights"                -1.38      1.2477
    {'fire2-squeeze1x1_Bias'   }    {'fire2-squeeze1x1'}           "Bias"                -0.11641     0.24273
    {'fire2-expand1x1_Weights' }    {'fire2-expand1x1' }           "Weights"              -0.7406     0.90982
    {'fire2-expand1x1_Bias'    }    {'fire2-expand1x1' }           "Bias"               -0.060056     0.14602
    {'fire2-expand3x3_Weights' }    {'fire2-expand3x3' }           "Weights"             -0.74397     0.66905
    {'fire2-expand3x3_Bias'    }    {'fire2-expand3x3' }           "Bias"               -0.051778    0.074239
    {'fire3-squeeze1x1_Weights'}    {'fire3-squeeze1x1'}           "Weights"              -0.7712     0.68917
    {'fire3-squeeze1x1_Bias'   }    {'fire3-squeeze1x1'}           "Bias"                -0.10138     0.32675
    {'fire3-expand1x1_Weights' }    {'fire3-expand1x1' }           "Weights"             -0.72035      0.9743
    {'fire3-expand1x1_Bias'    }    {'fire3-expand1x1' }           "Bias"               -0.067029     0.30425
    {'fire3-expand3x3_Weights' }    {'fire3-expand3x3' }           "Weights"             -0.61443      0.7741
    {'fire3-expand3x3_Bias'    }    {'fire3-expand3x3' }           "Bias"               -0.053613     0.10329
    {'fire4-squeeze1x1_Weights'}    {'fire4-squeeze1x1'}           "Weights"              -0.7422      1.0877
    {'fire4-squeeze1x1_Bias'   }    {'fire4-squeeze1x1'}           "Bias"                -0.10885     0.13881
      ⋮

Use the MATLAB Support Package for Raspberry Pi function, raspi, to create a connection to the
Raspberry Pi. In the following code, replace:

• raspiname with the name or address of your Raspberry Pi
• username with your user name
• password with your password

%  r = raspi('raspiname','username','password');

Validate the quantized network with the validate function.

valResults = validate(dq,aug_valData)

### Starting application: 'codegen/lib/validate_predict_int8/pil/validate_predict_int8.elf'
    To terminate execution: clear validate_predict_int8_pil
### Launching application validate_predict_int8.elf...
### Host application produced the following standard output (stdout) and standard error (stderr) messages:
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valResults = struct with fields:
       NumSamples: 20
    MetricResults: [1×1 struct]
       Statistics: []

Examine the validation output to see the performance of the quantized network.

valResults.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}          0.95    
     {'Quantized'     }          0.95    

Input Arguments
quantObj — Network to quantize
dlquantizer object

Network to quantize, specified as a dlquantizer object.

calData — Data to use for calibration of quantized network
imageDatastore object | augmentedImageDatastore object | pixelLabelImageDatastore
object | CombinedImageDatastore object

Data to use for calibration of quantized network, specified as an imageDatastore object, an
augmentedImageDatastore object, a pixelLabelImageDatastore object, or a
CombinedDatastore object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: calResults = calibrate(quantObj,calData,'UseGPU','on')

MiniBatchSize — Size of mini-batches
32 (default) | positive integer

Size of the mini-batches to use for calibration, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster calibration.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

UseGPU — Whether to use host GPU for calibration
'auto' (default) | 'on' | 'off

Whether to use host GPU for calibration, specified as one of the following:
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• 'auto' — Use host GPU for calibration if one is available. Otherwise, use host CPU for
calibration.

• 'on' — Use host GPU for calibration.
• 'off' — Use host CPU for calibration.

Data Types: char

Output Arguments
calResults — Dynamic ranges of network
table

Dynamic ranges of layers of the network, returned as a table. Each row in the table displays the
minimum and maximum values of a learnable parameter of a convolution layer of the optimized
network. The software uses these minimum and maximum values to determine the scaling for the
data type of the quantized parameter.

Version History
Introduced in R2020a

Calibrate on host GPU or host CPU

You can now choose whether to calibrate your network using the host GPU or host CPU. By default,
the calibrate function and the Deep Network Quantizer app will calibrate on the host GPU if one
is available.

In previous versions, it was required that the execution environment was the same as the
instrumentation environment used for the calibration step of quantization.

Specify mini-batch size to use for calibration

Use MiniBatchSize to specify the size of mini-batches to use for calibration.

ARM Cortex-A calibration support

The Deep Learning Toolbox Model Quantization Library now supports calibration of a network for
quantization and deployment on ARM Cortex®-A microcontrollers.

See Also
Apps
Deep Network Quantizer

Functions
validate | dlquantizer | dlquantizationOptions | quantize | quantizationDetails |
estimateNetworkMetrics

Topics
“Quantization Workflow Prerequisites”
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“Quantization of Deep Neural Networks”
“Quantize Residual Network Trained for Image Classification and Generate CUDA Code”
“Deploy INT8 Network to FPGA” (Deep Learning HDL Toolbox)
“Generate int8 Code for Deep Learning Networks” (MATLAB Coder)
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checkLayer
Check validity of custom or function layer

Syntax
checkLayer(layer,validInputSize)
checkLayer(layer,validInputSize,Name=Value)

Description
checkLayer(layer,validInputSize) checks the validity of a custom or function layer using
generated data of the sizes in validInputSize. For layers with a single input, set
validInputSize to a typical size of input data to the layer. For layers with multiple inputs, set
validInputSize to a cell array of typical sizes, where each element corresponds to a layer input.

checkLayer(layer,validInputSize,Name=Value) specifies additional options using one or
more name-value arguments.

Examples

Check Custom Layer Validity

Check the validity of the example custom layer preluLayer.

The custom layer preluLayer, attached to this example as a supporting file, applies the PReLU
operation to the input data. To access this layer, open this example as a live script.

Create an instance of the layer.

layer = preluLayer;

Because the layer has a custom initialize function, initialize the layer using a networkDataFormat
object that specifies the expected input size and format of a single observation of typical input to the
layer.

Specify a valid input size of [24 24 20], where the dimensions correspond to the height, width, and
number of channels of the previous layer output.

validInputSize = [24 24 20];
layout = networkDataLayout(validInputSize,"SSC");
layer = initialize(layer,layout);

Check the layer validity using checkLayer. Specify the valid input size as the size as the size as used
to initialize the layer. When you pass data through the network, the layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

checkLayer(layer,validInputSize)

Skipping multi-observation tests. To enable tests with multiple observations, specify the 'ObservationDimension' option.
For 2-D image data, set 'ObservationDimension' to 4.
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For 3-D image data, set 'ObservationDimension' to 5.
For sequence data, set 'ObservationDimension' to 2.
 
Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ..
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     12 Passed, 0 Failed, 0 Incomplete, 16 Skipped.
     Time elapsed: 0.054851 seconds.

The results show the number of passed, failed, and skipped tests. If you do not specify the
ObservationsDimension option, or do not have a GPU, then the function skips the corresponding
tests.

Check Multiple Observations

For multi-observation image input, the layer expects an array of observations of size h-by-w-by-c-by-
N, where h, w, and c are the height, width, and number of channels, respectively, and N is the
number of observations.

To check the layer validity for multiple observations, specify the typical size of an observation and set
the ObservationDimension option to 4.

checkLayer(layer,validInputSize,ObservationDimension=4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ........
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     18 Passed, 0 Failed, 0 Incomplete, 10 Skipped.
     Time elapsed: 0.030498 seconds.

In this case, the function does not detect any issues with the layer.

Check Function Layer Validity

Create a function layer object that applies the softsign operation to the input. The softsign operation
is given by the function f x = x

1 + x .

layer = functionLayer(@(X) X./(1 + abs(X)))

layer = 
  FunctionLayer with properties:
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             Name: ''
       PredictFcn: @(X)X./(1+abs(X))
      Formattable: 0
    Acceleratable: 0

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Check that the layer it is valid using the checkLayer function. Set the valid input size to the typical
size of a single observation input to the layer. For example, for a single input, the layer expects
observations of size h-by-w-by-c, where h, w, and c are the height, width, and number of channels of
the previous layer output, respectively.

Specify validInputSize as the typical size of an input array.

validInputSize = [5 5 20];
checkLayer(layer,validInputSize)

Skipping multi-observation tests. To enable tests with multiple observations, specify the 'ObservationDimension' option.
For 2-D image data, set 'ObservationDimension' to 4.
For 3-D image data, set 'ObservationDimension' to 5.
For sequence data, set 'ObservationDimension' to 2.
 
Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ..
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     12 Passed, 0 Failed, 0 Incomplete, 16 Skipped.
     Time elapsed: 0.31986 seconds.

The results show the number of passed, failed, and skipped tests. If you do not specify the
ObservationsDimension option, or do not have a GPU, then the function skips the corresponding
tests.

Check Multiple Observations

For multi-observation image input, the layer expects an array of observations of size h-by-w-by-c-by-
N, where h, w, and c are the height, width, and number of channels, respectively, and N is the
number of observations.

To check the layer validity for multiple observations, specify the typical size of an observation and set
the ObservationDimension option to 4.
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layer = functionLayer(@(X) X./(1 + abs(X)));
validInputSize = [5 5 20];
checkLayer(layer,validInputSize,ObservationDimension=4)

Skipping GPU tests. No compatible GPU device found.
 
Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... ........
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     18 Passed, 0 Failed, 0 Incomplete, 10 Skipped.
     Time elapsed: 0.2407 seconds.

In this case, the function does not detect any issues with the layer.

Check Custom Layer for Code Generation Compatibility

Check the code generation compatibility of the custom layer codegenPreluLayer.

The custom layer codegenPreluLayer, attached to this is example as a supporting file, applies the
PReLU operation to the input data. To access this layer, open this example as a live script.

Create an instance of the layer and check its validity using checkLayer. Specify the valid input size
as the size of a single observation of typical input to the layer. The layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

Specify the typical size of the input of an observation and set the 'ObservationDimension' option
to 4. To check for code generation compatibility, set the CheckCodegenCompatibility option to
true. The checkLayer function does not check for functions that are not compatible with code
generation. To check that the custom layer definition is supported for code generation, first use the
Code Generation Readiness app. For more information, see “Check Code by Using the Code
Generation Readiness Tool” (MATLAB Coder).

layer = codegenPreluLayer(20,"prelu");
validInputSize = [24 24 20];
checkLayer(layer,validInputSize,ObservationDimension=4,CheckCodegenCompatibility=true)

Skipping GPU tests. No compatible GPU device found.
 
Running nnet.checklayer.TestLayerWithoutBackward
.......... .......... ...
Done nnet.checklayer.TestLayerWithoutBackward
__________

Test Summary:
     23 Passed, 0 Failed, 0 Incomplete, 5 Skipped.
     Time elapsed: 1.114 seconds.

The function does not detect any issues with the layer.
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Input Arguments
layer — Layer to check
nnet.layer.Layer object | nnet.layer.ClassificationLayer object |
nnet.layer.RegressionLayer object

Layer to check, specified as an nnet.layer.Layer, nnet.layer.ClassificationLayer,
nnet.layer.RegressionLayer, or FunctionLayer object.

If layer has learnable or state parameters, then the layer must be initialized. If the layer has a
custom initialize function, then first initialize the layer using the initialize function using
networkDataLayout objects.

The checkLayer function does not support layers that inherit from nnet.layer.Formattable.

For an example showing how to define your own custom layer, see “Define Custom Deep Learning
Layer with Learnable Parameters”. To create a layer that applies a specified function, use
functionLayer.

validInputSize — Valid input sizes
vector of positive integers | cell array of vectors of positive integers

Valid input sizes of the layer, specified as a vector of positive integers or cell array of vectors of
positive integers.

• For layers with a single input, specify validInputSize as a vector of integers corresponding to
the dimensions of the input data. For example, [5 5 10] corresponds to valid input data of size
5-by-5-by-10.

• For layers with multiple inputs, specify validInputSize as a cell array of vectors, where each
vector corresponds to a layer input and the elements of the vectors correspond to the dimensions
of the corresponding input data. For example, {[24 24 20],[24 24 10]} corresponds to the
valid input sizes of two inputs, where 24-by-24-by-20 is a valid input size for the first input and 24-
by-24-by-10 is a valid input size for the second input.

For more information, see “Layer Input Sizes” on page 1-269.

For large input sizes, the gradient checks take longer to run. To speed up the check, specify a smaller
valid input size.
Example: [5 5 10]
Example: {[24 24 20],[24 24 10]}
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationDimension=4 sets the observation dimension to 4

ObservationDimension — Observation dimension
positive integer
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Observation dimension, specified as a positive integer.

The observation dimension specifies which dimension of the layer input data corresponds to
observations. For example, if the layer expects input data is of size h-by-w-by-c-by-N, where h, w, and
c correspond to the height, width, and number of channels of the input data, respectively, and N
corresponds to the number of observations, then the observation dimension is 4. For more
information, see “Layer Input Sizes” on page 1-269.

If you specify the observation dimension, then the checkLayer function checks that the layer
functions are valid using generated data with mini-batches of size 1 and 2. If you do not specify the
observation dimension, then the function skips the corresponding tests.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CheckCodegenCompatibility — Flag to enable code generation tests
0 (false) (default) | 1 (true)

Flag to enable code generation tests, specified as 0 (false) or 1 (true).

If CheckCodegenCompatibility is 1 (true), then you must specify the ObservationDimension
option.

Code generation supports intermediate layers with 2-D image or feature input only. Code generation
does not support layers with state properties (properties with attribute State).

The checkLayer function does not check that functions used by the layer are compatible with code
generation. To check that functions used by the custom layer also support code generation, first use
the Code Generation Readiness app. For more information, see “Check Code by Using the Code
Generation Readiness Tool” (MATLAB Coder).

For an example showing how to define a custom layer that supports code generation, see “Define
Custom Deep Learning Layer for Code Generation”.
Data Types: logical

More About
Layer Input Sizes

For each layer, the valid input size and the observation dimension depend on the output of the
previous layer.

Intermediate Layers

For intermediate layers (layers of type nnet.layer.Layer), the valid input size and the observation
dimension depend on the type of data input to the layer.

• For layers with a single input, specify validInputSize as a vector of integers corresponding to
the dimensions of the input data.

• For layers with multiple inputs, specify validInputSize as a cell array of vectors, where each
vector corresponds to a layer input and the elements of the vectors correspond to the dimensions
of the corresponding input data.

For large input sizes, the gradient checks take longer to run. To speed up the check, specify a smaller
valid input size.

 checkLayer

1-269



Layer Input Input Size Observation Dimension
Feature vectors c-by-N, where c corresponds to

the number of channels and N is
the number of observations

2

2-D images h-by-w-by-c-by-N, where h, w,
and c correspond to the height,
width, and number of channels
of the images, respectively, and
N is the number of observations

4

3-D images h-by-w-by-d-by-c-by-N, where h,
w, d, and c correspond to the
height, width, depth, and
number of channels of the 3-D
images, respectively, and N is
the number of observations

5

Vector sequences c-by-N-by-S, where c is the
number of features of the
sequences, N is the number of
observations, and S is the
sequence length

2

2-D image sequences h-by-w-by-c-by-N-by-S, where h,
w, and c correspond to the
height, width, and number of
channels of the images,
respectively, N is the number of
observations, and S is the
sequence length

4

3-D image sequences h-by-w-by-d-by-c-by-N-by-S,
where h, w, d, and c correspond
to the height, width, depth, and
number of channels of the 3-D
images, respectively, N is the
number of observations, and S
is the sequence length

5

For example, for 2-D image classification problems, set validInputSize to [h w c], where h, w,
and c correspond to the height, width, and number of channels of the images, respectively, and
ObservationDimension to 4.

Code generation supports intermediate layers with 2-D image input only.

Output Layers

For output layers (layers of type nnet.layer.ClassificationLayer or
nnet.layer.RegressionLayer), set validInputSize to the typical size of a single input
observation Y to the layer.

For classification problems, the valid input size and the observation dimension of Y depend on the
type of problem:
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Classification Task Input Size Observation Dimension
2-D image classification 1-by-1-by-K-by-N, where K is the

number of classes and N is the
number of observations

4

3-D image classification 1-by-1-by-1-by-K-by-N, where K
is the number of classes and N
is the number of observations

5

Sequence-to-label classification K-by-N, where K is the number
of classes and N is the number
of observations

2

Sequence-to-sequence
classification

K-by-N-by-S, where K is the
number of classes, N is the
number of observations, and S
is the sequence length

2

For example, for 2-D image classification problems, set validInputSize to [1 1 K], where K is the
number of classes, and ObservationDimension to 4.

For regression problems, the dimensions of Y also depend on the type of problem. The following table
describes the dimensions of Y.

Regression Task Input Size Observation Dimension
2-D image regression 1-by-1-by-R-by-N, where R is the

number of responses and N is
the number of observations

4

2-D Image-to-image regression h-by-w-by-c-by-N, where h, w,
and c are the height, width, and
number of channels of the
output, respectively, and N is
the number of observations

4

3-D image regression 1-by-1-by-1-by-R-by-N, where R
is the number of responses and
N is the number of observations

5

3-D Image-to-image regression h-by-w-by-d-by-c-by-N, where h,
w, d, and c are the height,
width, depth, and number of
channels of the output,
respectively, and N is the
number of observations

5

Sequence-to-one regression R-by-N, where R is the number
of responses and N is the
number of observations

2

Sequence-to-sequence
regression

R-by-N-by-S, where R is the
number of responses, N is the
number of observations, and S
is the sequence length

2
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For example, for 2-D image regression problems, set validInputSize to [1 1 R], where R is the
number of responses, and ObservationDimension to 4.

Algorithms
List of Tests

The checkLayer function checks the validity of a custom layer by performing a series of tests,
described in these tables. For more information on the tests used by checkLayer, see “Check
Custom Layer Validity”.

Intermediate Layers

The checkLayer function uses these tests to check the validity of custom intermediate layers (layers
of type nnet.layer.Layer).

Test Description
functionSyntaxesAreCorrect The syntaxes of the layer functions are correctly

defined.
predictDoesNotError predict function does not error.
forwardDoesNotError When specified, the forward function does not

error.
forwardPredictAreConsistentInSize When forward is specified, forward and

predict output values of the same size.
backwardDoesNotError When specified, backward does not error.
backwardIsConsistentInSize When backward is specified, the outputs of

backward are consistent in size:

• The derivatives with respect to each input are
the same size as the corresponding input.

• The derivatives with respect to each learnable
parameter are the same size as the
corresponding learnable parameter.

predictIsConsistentInType The outputs of predict are consistent in type
with the inputs.

forwardIsConsistentInType When forward is specified, the outputs of
forward are consistent in type with the inputs.

backwardIsConsistentInType When backward is specified, the outputs of
backward are consistent in type with the inputs.

gradientsAreNumericallyCorrect When backward is specified, the gradients
computed in backward are consistent with the
numerical gradients.

backwardPropagationDoesNotError When backward is not specified, the derivatives
can be computed using automatic differentiation.

predictReturnsValidStates For layers with state properties, the predict
function returns valid states.
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Test Description
forwardReturnsValidStates For layers with state properties, the forward

function, if specified, returns valid states.
resetStateDoesNotError For layers with state properties, the resetState

function, if specified, does not error and resets
the states to valid states.

codegenPragmaDefinedInClassDef The pragma "%#codegen" for code generation is
specified in class file.

layerPropertiesSupportCodegen The layer properties support code generation.
predictSupportsCodegen predict is valid for code generation.
doesNotHaveStateProperties For code generation, the layer does not have

state properties.
functionLayerSupportsCodegen For code generation, the layer function must be a

named function on the path and the
Formattable property must be 0 (false).

Some tests run multiple times. These tests also check different data types and for GPU compatibility:

• predictIsConsistentInType
• forwardIsConsistentInType
• backwardIsConsistentInType

To execute the layer functions on a GPU, the functions must support inputs and outputs of type
gpuArray with the underlying data type single.

Output Layers

The checkLayer function uses these tests to check the validity of custom output layers (layers of
type nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer).

Test Description
forwardLossDoesNotError forwardLoss does not error.
backwardLossDoesNotError backwardLoss does not error.
forwardLossIsScalar The output of forwardLoss is scalar.
backwardLossIsConsistentInSize When backwardLoss is specified, the output of

backwardLoss is consistent in size: dLdY is the
same size as the predictions Y.

forwardLossIsConsistentInType The output of forwardLoss is consistent in type:
loss is the same type as the predictions Y.

backwardLossIsConsistentInType When backwardLoss is specified, the output of
backwardLoss is consistent in type: dLdY must
be the same type as the predictions Y.

gradientsAreNumericallyCorrect When backwardLoss is specified, the gradients
computed in backwardLoss are numerically
correct.
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Test Description
backwardPropagationDoesNotError When backwardLoss is not specified, the

derivatives can be computed using automatic
differentiation.

The forwardLossIsConsistentInType and backwardLossIsConsistentInType tests also
check for GPU compatibility. To execute the layer functions on a GPU, the functions must support
inputs and outputs of type gpuArray with the underlying data type single.

Version History
Introduced in R2018a

See Also
trainNetwork | trainingOptions | analyzeNetwork

Topics
“Check Custom Layer Validity”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Define Custom Deep Learning Layer with Multiple Inputs”
“Define Custom Classification Output Layer”
“Define Custom Regression Output Layer”
“Define Custom Deep Learning Layer for Code Generation”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”

1 Deep Learning Functions

1-274



classificationLayer
Classification output layer

Syntax
layer = classificationLayer
layer = classificationLayer(Name,Value)

Description
A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes.

The layer infers the number of classes from the output size of the previous layer. For example, to
specify the number of classes K of the network, you can include a fully connected layer with output
size K and a softmax layer before the classification layer.

layer = classificationLayer creates a classification layer.

layer = classificationLayer(Name,Value) sets the optional Name, ClassWeights, and
Classes properties using one or more name-value pairs. For example,
classificationLayer('Name','output') creates a classification layer with the name
'output'.

Examples

Create Classification Layer

Create a classification layer with the name 'output'.

layer = classificationLayer('Name','output')

layer = 
  ClassificationOutputLayer with properties:

            Name: 'output'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Include a classification output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
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    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Weighted Classification Layer

Create a weighted classification layer for three classes with names "cat", "dog", and "fish", with
weights 0.7, 0.2, and 0.1, respectively.

classes = ["cat" "dog" "fish"];
classWeights = [0.7 0.2 0.1];

layer = classificationLayer( ...
    'Classes',classes, ...
    'ClassWeights',classWeights)

layer = 
  ClassificationOutputLayer with properties:

            Name: ''
         Classes: [cat    dog    fish]
    ClassWeights: [3x1 double]
      OutputSize: 3

   Hyperparameters
    LossFunction: 'crossentropyex'

Include a weighted classification output layer in a Layer array.

numClasses = numel(classes);

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer('Classes',classes,'ClassWeights',classWeights)]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
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     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         3 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   Class weighted crossentropyex with 'cat' and 2 other classes

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: classificationLayer('Name','output') creates a classification layer with the name
'output'

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

ClassWeights — Class weights for weighted cross-entropy loss
'none' (default) | vector of positive numbers

Class weights for weighted cross-entropy loss, specified as a vector of positive numbers or 'none'.

For vector class weights, each element represents the weight for the corresponding class in the
Classes property. To specify a vector of class weights, you must also specify the classes using
'Classes'.

If the ClassWeights property is 'none', then the layer applies unweighted cross-entropy loss.

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at
training time. If you specify the string array or cell array of character vectors str, then the software
sets the classes of the output layer to categorical(str,str).
Data Types: char | categorical | string | cell

Output Arguments
layer — Classification layer
ClassificationOutputLayer object
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Classification layer, returned as a ClassificationOutputLayer object.

For information on concatenating layers to construct convolutional neural network architecture, see
Layer.

More About
Classification Layer

A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes.

For typical classification networks, the classification layer usually follows a softmax layer. In the
classification layer, trainNetwork takes the values from the softmax function and assigns each input
to one of the K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme
[1]:

loss = − 1
N ∑

n = 1

N ∑
i = 1

K

witnilnyni,

where N is the number of samples, K is the number of classes, wi is the weight for class i, tni is the
indicator that the nth sample belongs to the ith class, and yni is the output for sample n for class i,
which in this case, is the value from the softmax function. In other words, yni is the probability that
the network associates the nth input with class i.

Version History
Introduced in R2016a

References
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainingOptions | trainNetwork | ClassificationOutputLayer | softmaxLayer |
regressionLayer

Topics
“Train Sequence Classification Network Using Data With Imbalanced Classes”
“Deep Learning in MATLAB”
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“List of Deep Learning Layers”
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ClassificationOutputLayer
Classification layer

Description
A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes.

Creation
Create a classification layer using classificationLayer.

Properties
Classification Output

ClassWeights — Class weights for weighted cross-entropy loss
'none' (default) | vector of positive numbers

Class weights for weighted cross-entropy loss, specified as a vector of positive numbers or 'none'.

For vector class weights, each element represents the weight for the corresponding class in the
Classes property. To specify a vector of class weights, you must also specify the classes using
'Classes'.

If the ClassWeights property is 'none', then the layer applies unweighted cross-entropy loss.

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at
training time. If you specify the string array or cell array of character vectors str, then the software
sets the classes of the output layer to categorical(str,str).
Data Types: char | categorical | string | cell

OutputSize — Size of the output
'auto' (default) | positive integer

This property is read-only.

Size of the output, specified as a positive integer. This value is the number of labels in the data.
Before the training, the output size is set to 'auto'.

LossFunction — Loss function for training
'crossentropyex'

This property is read-only.
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Loss function for training, specified as 'crossentropyex', which stands for Cross Entropy Function
for k Mutually Exclusive Classes.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
0 (default)

Number of outputs of the layer. The layer has no outputs.
Data Types: double

OutputNames — Output names
{} (default)

Output names of the layer. The layer has no outputs.
Data Types: cell

Examples
Create Classification Layer

Create a classification layer with the name 'output'.

layer = classificationLayer('Name','output')

layer = 
  ClassificationOutputLayer with properties:

            Name: 'output'
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         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Include a classification output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Weighted Classification Layer

Create a weighted classification layer for three classes with names "cat", "dog", and "fish", with
weights 0.7, 0.2, and 0.1, respectively.

classes = ["cat" "dog" "fish"];
classWeights = [0.7 0.2 0.1];

layer = classificationLayer( ...
    'Classes',classes, ...
    'ClassWeights',classWeights)

layer = 
  ClassificationOutputLayer with properties:

            Name: ''
         Classes: [cat    dog    fish]
    ClassWeights: [3x1 double]
      OutputSize: 3

   Hyperparameters
    LossFunction: 'crossentropyex'

Include a weighted classification output layer in a Layer array.
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numClasses = numel(classes);

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer('Classes',classes,'ClassWeights',classWeights)]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         3 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   Class weighted crossentropyex with 'cat' and 2 other classes

More About
Classification Output Layer

A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes.

For typical classification networks, the classification layer usually follows a softmax layer. In the
classification layer, trainNetwork takes the values from the softmax function and assigns each input
to one of the K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme
[1]:

loss = − 1
N ∑

n = 1

N ∑
i = 1

K

witnilnyni,

where N is the number of samples, K is the number of classes, wi is the weight for class i, tni is the
indicator that the nth sample belongs to the ith class, and yni is the output for sample n for class i,
which in this case, is the value from the softmax function. In other words, yni is the probability that
the network associates the nth input with class i.

Version History
Introduced in R2016a

ClassNames property will be removed
Not recommended starting in R2018b

ClassNames will be removed. Use Classes instead. To update your code, replace all instances of
ClassNames with Classes. There are some differences between the properties that require
additional updates to your code.
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The ClassNames property of the output layer is a cell array of character vectors. The Classes
property is a categorical array. To use the value of Classes with functions that require cell array
input, convert the classes using the cellstr function.

References
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

See Also
regressionLayer | softmaxLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Train Sequence Classification Network Using Data With Imbalanced Classes”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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classify
Classify data using trained deep learning neural network

Syntax
Y = classify(net,images)
Y = classify(net,sequences)
Y = classify(net,features)

Y = classify(net,X1,...,XN)
Y = classify(net,mixed)

[Y,scores] = classify( ___ )
___  = classify( ___ ,Name=Value)

Description
You can make predictions using a trained neural network for deep learning on either a CPU or GPU.
Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Specify the
hardware requirements using the ExecutionEnvironment name-value argument.

For networks with multiple outputs, use the predict function instead and set the
ReturnCategorical option to true.

Y = classify(net,images) predicts the class labels of the specified images using the trained
network net.

Y = classify(net,sequences) predicts the class labels of the specified sequences using the
trained network net.

Y = classify(net,features) predicts the class labels of the specified feature data using the
trained network net.

Y = classify(net,X1,...,XN) predicts the class labels for the data in the numeric arrays or cell
arrays X1, …, XN for the multi-input network net. The input Xi corresponds to the network input
net.InputNames(i).

Y = classify(net,mixed) predicts the class labels using the trained network net with multiple
inputs of mixed data types.

[Y,scores] = classify( ___ ) also returns the classification scores corresponding to the class
labels using any of the previous input arguments.

___  = classify( ___ ,Name=Value) predicts class labels with additional options specified by
one or more name-value arguments.

Tip When you make predictions with sequences of different lengths, the mini-batch size can impact
the amount of padding added to the input data, which can result in different predicted values. Try
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using different values to see which works best with your network. To specify mini-batch size and
padding options, use the MiniBatchSize and SequenceLength options, respectively.

Examples

Classify Images Using Trained Convolutional Neural Network

Load the pretrained network digitsNet. This network is a classification convolutional neural
network that classifies handwritten digits.

load digitsNet

View the network layers. The output layer of the network is a classification layer.

layers = net.Layers

layers = 
  15x1 Layer array with layers:

     1   'imageinput'    Image Input             28x28x1 images with 'zerocenter' normalization
     2   'conv_1'        2-D Convolution         8 3x3x1 convolutions with stride [1  1] and padding 'same'
     3   'batchnorm_1'   Batch Normalization     Batch normalization with 8 channels
     4   'relu_1'        ReLU                    ReLU
     5   'maxpool_1'     2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv_2'        2-D Convolution         16 3x3x8 convolutions with stride [1  1] and padding 'same'
     7   'batchnorm_2'   Batch Normalization     Batch normalization with 16 channels
     8   'relu_2'        ReLU                    ReLU
     9   'maxpool_2'     2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv_3'        2-D Convolution         32 3x3x16 convolutions with stride [1  1] and padding 'same'
    11   'batchnorm_3'   Batch Normalization     Batch normalization with 32 channels
    12   'relu_3'        ReLU                    ReLU
    13   'fc'            Fully Connected         10 fully connected layer
    14   'softmax'       Softmax                 softmax
    15   'classoutput'   Classification Output   crossentropyex with '0' and 9 other classes

Load the test images.

digitDatasetPath = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");
imdsTest = imageDatastore(digitDatasetPath,IncludeSubfolders=true);

Classify the images using the classify function.

YTest = classify(net,imdsTest);

View some of the test images at random with their predictions.

numImages = 9;
idx = randperm(numel(imdsTest.Files),numImages);

figure
tiledlayout("flow")
for i = 1:numImages
    nexttile
    imshow(imdsTest.Files{idx(i)});
    title("Predicted Label: " + string(YTest(idx(i))))
end

1 Deep Learning Functions

1-286



Classify Sequences Using Trained LSTM Network

Load the pretrained network JapaneseVowelsNet. This network is a pretrained LSTM network
trained on the Japanese Vowels data set as described in [1] and [2]. It was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,TTest] = japaneseVowelsTestData;
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Classify the test data.

YTest = classify(net,XTest);

View the predictions in a confusion chart.

figure
confusionchart(TTest,YTest)

Calculate the classification accuracy of the predictions.

accuracy = mean(YTest == TTest)

accuracy = 0.8595

Classify Feature Data Using Trained Network

Load the pretrained network TransmissionCasingNet. This network classifies the gear tooth
condition of a transmission system given a mixture of numeric sensor readings, statistics, and
categorical inputs.

load TransmissionCasingNet

View the network architecture.

net.Layers
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ans = 
  7x1 Layer array with layers:

     1   'input'         Feature Input           22 features with 'zscore' normalization
     2   'fc_1'          Fully Connected         50 fully connected layer
     3   'batchnorm'     Batch Normalization     Batch normalization with 50 channels
     4   'relu'          ReLU                    ReLU
     5   'fc_2'          Fully Connected         2 fully connected layer
     6   'softmax'       Softmax                 softmax
     7   'classoutput'   Classification Output   crossentropyex with classes 'No Tooth Fault' and 'Tooth Fault'

Read the transmission casing data from the CSV file "transmissionCasingData.csv".

filename = "transmissionCasingData.csv";
tbl = readtable(filename,TextType="string");

Convert the labels for prediction to categorical using the convertvars function.

labelName = "GearToothCondition";
tbl = convertvars(tbl,labelName,"categorical");

To make predictions using categorical features, you must first convert the categorical features to
numeric. First, convert the categorical predictors to categorical using the convertvars function by
specifying a string array containing the names of all the categorical input variables. This data set has
two categorical features named "SensorCondition" and "ShaftCondition".

categoricalInputNames = ["SensorCondition" "ShaftCondition"];
tbl = convertvars(tbl,categoricalInputNames,"categorical");

Loop over the categorical input variables. For each variable:

• Convert the categorical values to one-hot encoded vectors using the onehotencode function.
• Add the one-hot vectors to the table using the addvars function. Specify insertion of the vectors

after the column containing the corresponding categorical data.
• Remove the corresponding column containing the categorical data.

for i = 1:numel(categoricalInputNames)
    name = categoricalInputNames(i);
    oh = onehotencode(tbl(:,name));
    tbl = addvars(tbl,oh,After=name);
    tbl(:,name) = [];
end

Split the vectors into separate columns using the splitvars function.

tbl = splitvars(tbl);

View the first few rows of the table.

head(tbl)

    SigMean     SigMedian    SigRMS    SigVar     SigPeak    SigPeak2Peak    SigSkewness    SigKurtosis    SigCrestFactor    SigMAD     SigRangeCumSum    SigCorrDimension    SigApproxEntropy    SigLyapExponent    PeakFreq    HighFreqPower    EnvPower    PeakSpecKurtosis    No Sensor Drift    Sensor Drift    No Shaft Wear    Shaft Wear    GearToothCondition
    ________    _________    ______    _______    _______    ____________    ___________    ___________    ______________    _______    ______________    ________________    ________________    _______________    ________    _____________    ________    ________________    _______________    ____________    _____________    __________    __________________

    -0.94876     -0.9722     1.3726    0.98387    0.81571       3.6314        -0.041525       2.2666           2.0514         0.8081        28562              1.1429             0.031581            79.931            0          6.75e-06       3.23e-07         162.13                0                1                1              0           No Tooth Fault  
    -0.97537    -0.98958     1.3937    0.99105    0.81571       3.6314        -0.023777       2.2598           2.0203        0.81017        29418              1.1362             0.037835            70.325            0          5.08e-08       9.16e-08         226.12                0                1                1              0           No Tooth Fault  
      1.0502      1.0267     1.4449    0.98491     2.8157       3.6314         -0.04162       2.2658           1.9487        0.80853        31710              1.1479             0.031565            125.19            0          6.74e-06       2.85e-07         162.13                0                1                0              1           No Tooth Fault  
      1.0227      1.0045     1.4288    0.99553     2.8157       3.6314        -0.016356       2.2483           1.9707        0.81324        30984              1.1472             0.032088             112.5            0          4.99e-06        2.4e-07         162.13                0                1                0              1           No Tooth Fault  
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      1.0123      1.0024     1.4202    0.99233     2.8157       3.6314        -0.014701       2.2542           1.9826        0.81156        30661              1.1469              0.03287            108.86            0          3.62e-06       2.28e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0275      1.0102     1.4338     1.0001     2.8157       3.6314         -0.02659       2.2439           1.9638        0.81589        31102              1.0985             0.033427            64.576            0          2.55e-06       1.65e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0464      1.0275     1.4477     1.0011     2.8157       3.6314        -0.042849       2.2455           1.9449        0.81595        31665              1.1417             0.034159            98.838            0          1.73e-06       1.55e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0459      1.0257     1.4402    0.98047     2.8157       3.6314        -0.035405       2.2757            1.955        0.80583        31554              1.1345               0.0353            44.223            0          1.11e-06       1.39e-07         230.39                0                1                0              1           No Tooth Fault  

Extract the test labels from the table.

TTest = tbl{:,labelName};

Predict the labels of the test data using the trained network and calculate the accuracy. Specify the
same mini-batch size used for training.

YTest = classify(net,tbl(:,1:end-1));

Visualize the predictions in a confusion matrix.

figure
confusionchart(TTest,YTest)

Calculate the classification accuracy. The accuracy is the proportion of the labels that the network
predicts correctly.

accuracy = mean(YTest == TTest)

accuracy = 0.9952
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Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

images — Image data
datastore | numeric array | table

Image data, specified as one of the following.

Data Type Description Example Usage
Datastore ImageDatastore Datastore of images

saved on disk
Make predictions with
images saved on disk,
where the images are
the same size.

When the images are
different sizes, use an
AugmentedImageData
store object.

AugmentedImageData
store

Datastore that applies
random affine
geometric
transformations,
including resizing,
rotation, reflection,
shear, and translation

Make predictions with
images saved on disk,
where the images are
different sizes.

TransformedDatasto
re

Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
classify.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.
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Data Type Description Example Usage
Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric array Images specified as a
numeric array

Make predictions using
data that fits in memory
and does not require
additional processing
like resizing.

Table Images specified as a
table

Make predictions using
data stored in a table.

When you use a datastore with networks with multiple inputs, the datastore must be a
TransformedDatastore or CombinedDatastore object.

Tip For sequences of images, for example, video data, use the sequences input argument.

Datastore

Datastores read mini-batches of images and responses. Use datastores when you have data that does
not fit in memory or when you want to resize the input data.

These datastores are directly compatible with classify for image data.:

• ImageDatastore
• AugmentedImageDatastore
• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

Note that ImageDatastore objects allow for batch reading of JPG or PNG image files using
prefetching. If you use a custom function for reading the images, then ImageDatastore objects do
not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.

Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the format required by
classify.
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The required format of the datastore output depends on the network architecture.

Network Architecture Datastore Output Example Output
Single input Table or cell array, where the

first column specifies the
predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom datastores must output
tables.

data = read(ds)

data =

  4×1 table

        Predictors    
    __________________

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
data = read(ds)

data =

  4×1 cell array

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}

Multiple input Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}

The format of the predictors depends on the type of data.

Data Format
2-D images h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
images, respectively

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the images, respectively

For more information, see “Datastores for Deep Learning”.
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Numeric Array

For data that fits in memory and does not require additional processing like augmentation, you can
specify a data set of images as a numeric array.

The size and shape of the numeric array depends on the type of image data.

Data Format
2-D images h-by-w-by-c-by-N numeric array, where h, w, and

c are the height, width, and number of channels
of the images, respectively, and N is the number
of images

3-D images h-by-w-by-d-by-c-by-N numeric array, where h, w,
d, and c are the height, width, depth, and number
of channels of the images, respectively, and N is
the number of images

Table

As an alternative to datastores or numeric arrays, you can also specify images in a table.

When you specify images in a table, each row in the table corresponds to an observation.

For image input, the predictors must be in the first column of the table, specified as one of the
following:

• Absolute or relative file path to an image, specified as a character vector
• 1-by-1 cell array containing a h-by-w-by-c numeric array representing a 2-D image, where h, w,

and c correspond to the height, width, and number of channels of the image, respectively

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
table
Complex Number Support: Yes

sequences — Sequence or time series data
datastore | cell array of numeric arrays | numeric array

Sequence or time series data, specified as one of the following.
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Data Type Description Example Usage
Datastore TransformedDatasto

re
Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
classify.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric or cell array A single sequence
specified as a numeric
array or a data set of
sequences specified as
cell array of numeric
arrays

Make predictions using
data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of sequences and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with classify for sequence data:

• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by classify. For example, you can transform and combine data read from in-memory
arrays and CSV files using an ArrayDatastore and an TabularTextDatastore object,
respectively.

The datastore must return data in a table or cell array. Custom mini-batch datastores must output
tables.
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Datastore Output Example Output
Table data = read(ds)

data =

  4×2 table

        Predictors    
    __________________

    {12×50 double}
    {12×50 double}
    {12×50 double}
    {12×50 double}

Cell array data = read(ds)

data =

  4×2 cell array

    {12×50 double}
    {12×50 double}
    {12×50 double}
    {12×50 double}

The format of the predictors depends on the type of data.

Data Format of Predictors
Vector sequence c-by-s matrix, where c is the number of features

of the sequence and s is the sequence length
1-D image sequence h-by-c-by-s array, where h and c correspond to

the height and number of channels of the image,
respectively, and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

2-D image sequence h-by-w-by-c-by-s array, where h, w, and c
correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,
or a 1-by-1 cell array containing a numeric array.
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For more information, see “Datastores for Deep Learning”.

Numeric or Cell Array

For data that fits in memory and does not require additional processing like custom transformations,
you can specify a single sequence as a numeric array or a data set of sequences as a cell array of
numeric arrays.

For cell array input, the cell array must be an N-by-1 cell array of numeric arrays, where N is the
number of observations. The size and shape of the numeric array representing a sequence depends
on the type of sequence data.

Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length

1-D image sequences h-by-c-by-s arrays, where h and c correspond to
the height and number of channels of the images,
respectively, and s is the sequence length

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

features — Feature data
datastore | numeric array | table

Feature data, specified as one of the following.

Data Type Description Example Usage
Datastore TransformedDatasto

re
Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
classify.

• Apply custom
transformations to
datastore output.
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Data Type Description Example Usage
CombinedDatastore Datastore that reads

from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Table Feature data specified
as a table

Make predictions using
data stored in a table.

Numeric array Feature data specified
as numeric array

Make predictions using
data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of feature data and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with classify for feature data:

• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by classify. For more information, see “Datastores for Deep Learning”.

For networks with multiple inputs, the datastore must be a TransformedDatastore or
CombinedDatastore object.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Network Architecture Datastore Output Example Output
Single input layer Table or cell array with at least

one column, where the first
column specifies the predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

Table for network with one
input:

data = read(ds)

data =

  4×2 table

        Predictors    
    __________________

    {24×1 double}
    {24×1 double}
    {24×1 double}
    {24×1 double}

Cell array for network with one
input:

data = read(ds)

data =

  4×1 cell array

    {24×1 double}
    {24×1 double}
    {24×1 double}
    {24×1 double}

Multiple input layers Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

Cell array for network with two
inputs:

data = read(ds)

data =

  4×3 cell array

    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}

The predictors must be c-by-1 column vectors, where c is the number of features.

For more information, see “Datastores for Deep Learning”.

Table

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data and responses as a table.

Each row in the table corresponds to an observation. The arrangement of predictors in the table
columns depends on the type of task.
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Task Predictors
Feature classification Features specified in one or more columns as

scalars.

Numeric Array

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data as a numeric array.

The numeric array must be an N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input data.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
table
Complex Number Support: Yes

X1,...,XN — Numeric or cell arrays for networks with multiple inputs
numeric array | cell array

Numeric or cell arrays for networks with multiple inputs.

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

mixed — Mixed data
TransformedDatastore | CombinedDatastore | custom mini-batch datastore

Mixed data, specified as one of the following.
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Data Type Description Example Usage
TransformedDatastore Datastore that transforms

batches of data read from an
underlying datastore using a
custom transformation function

• Make predictions using
networks with multiple
inputs.

• Transform outputs of
datastores not supported by
classify so they have the
required format.

• Apply custom
transformations to datastore
output.

CombinedDatastore Datastore that reads from two
or more underlying datastores

• Make predictions using
networks with multiple
inputs.

• Combine predictors from
different data sources.

Custom mini-batch datastore Custom datastore that returns
mini-batches of data

Make predictions using data in
a format that other datastores
do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by classify. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.

Datastore Output Example Output
Cell array with numInputs columns, where
numInputs is the number of network inputs.

The order of inputs is given by the InputNames
property of the network.

data = read(ds)

data =

  4×3 cell array

    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

Tip To convert a numeric array to a datastore, use arrayDatastore.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MiniBatchSize=256 specifies the mini-batch size as 256.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

When you make predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data, which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the MiniBatchSize and SequenceLength options, respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Acceleration — Performance optimization
"auto" (default) | "mex" | "none"

Performance optimization, specified as one of the following:

• "auto" — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

• "mex" — Compile and execute a MEX function. This option is available only when you use a GPU.
Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If Parallel
Computing Toolbox or a suitable GPU is not available, then the software returns an error.

• "none" — Disable all acceleration.

If Acceleration is "auto", then MATLAB applies a number of compatible optimizations and does
not generate a MEX function.

The "auto" and "mex" options can offer performance benefits at the expense of an increased initial
run time. Subsequent calls with compatible parameters are faster. Use performance optimization
when you plan to call the function multiple times using new input data.

The "mex" option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The "mex" option is available when you use a single GPU.

To use the "mex" option, you must have a C/C++ compiler installed and the GPU Coder Interface for
Deep Learning Libraries support package. Install the support package using the Add-On Explorer in
MATLAB. For setup instructions, see “MEX Setup” (GPU Coder). GPU Coder is not required.

The "mex" option supports networks that contain the layers listed on the “Supported Layers” (GPU
Coder) page, except for the sequenceInputLayer and featureInputLayer objects.
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MATLAB Compiler does not support deploying networks when you use the "mex" option.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu" | "multi-gpu" | "parallel"

Hardware resource, specified as one of the following:

• "auto" — Use a GPU if one is available; otherwise, use the CPU.
• "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU

device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

• "cpu" — Use the CPU.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform computation. If the pool does not
have GPUs, then computation takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

The "gpu", "multi-gpu", and "parallel" options require Parallel Computing Toolbox. To use a
GPU for deep learning, you must also have a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of
these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software
returns an error.

To make predictions in parallel with networks with recurrent layers (by setting
ExecutionEnvironment to either "multi-gpu" or "parallel"), the SequenceLength option
must be "shortest" or "longest".

Networks with custom layers that contain State parameters do not support making predictions in
parallel.

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.
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To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
Y — Predicted class labels
categorical vector | cell array of categorical vectors

Predicted class labels, returned as a categorical vector or a cell array of categorical vectors. The
format of Y depends on the type of task.

The following table describes the format for classification tasks.

Task Format
Image or feature classification N-by-1 categorical vector of labels, where N is

the number of observationsSequence-to-label classification
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Task Format
Sequence-to-sequence classification N-by-1 cell array of categorical sequences of

labels, where N is the number of observations.
Each sequence has the same number of time
steps as the corresponding input sequence after
the SequenceLength option is applied to each
mini-batch independently.

For sequence-to-sequence classification tasks
with one observation, sequences can be a
matrix. In this case, Y is a categorical sequence of
labels.

scores — Predicted class scores
matrix | cell array of matrices

Predicted scores or responses, returned as a matrix or a cell array of matrices. The format of scores
depends on the type of task.

The following table describes the format of scores.

Task Format
Image classification N-by-K matrix, where N is the number of

observations and K is the number of classesSequence-to-label classification
Feature classification
Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the

number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after the SequenceLength option is applied to
each mini-batch independently.

For sequence-to-sequence classification tasks with one observation, sequences can be a matrix. In
this case, scores is a matrix of predicted class scores.

For an example exploring classification scores, see “Classify Webcam Images Using Deep Learning”.

Algorithms
When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Alternatives
To classify data using a network with multiple output layers, use the predict function and set the
ReturnCategorical option to 1 (true).
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To compute the predicted classification scores, you can also use the predict function.

To compute the activations from a network layer, use the activations function.

For recurrent networks such as LSTM networks, you can make predictions and update the network
state using classifyAndUpdateState and predictAndUpdateState.

Version History
Introduced in R2016a

Prediction functions pad mini-batches to length of longest sequence before splitting when
you specify SequenceLength option as an integer

Starting in R2022b, when you make predictions with sequence data using the predict, classify,
predictAndUpdateState, classifyAndUpdateState, and activations functions and the
SequenceLength option is an integer, the software pads sequences to the length of the longest
sequence in each mini-batch and then splits the sequences into mini-batches with the specified
sequence length. If SequenceLength does not evenly divide the sequence length of the mini-batch,
then the last split mini-batch has a length shorter than SequenceLength. This behavior prevents
time steps that contain only padding values from influencing predictions.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, manually pad the input data such that the mini-batches
have the length of the appropriate multiple of SequenceLength. For sequence-to-sequence
workflows, you may also need to manually remove time steps of the output that correspond to
padding values.

References
[1] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using

Passing-through Regions.” Pattern Recognition Letters 20, no. 11–13 (November 1999): 1103–
11. https://doi.org/10.1016/S0167-8655(99)00077-X.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• C++ code generation supports the following syntaxes:

• [Y,scores] = classify(net,images), where images is a numeric array
• [Y,scores] = classify(net,sequences), where sequences is a cell array
• [Y,scores] = classify(net,features), where features is a numeric array
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• [Y,scores] = classify(__,Name=Value) using any of the previous syntaxes.
• C++ code generation for the classify function is not supported for regression networks and

networks with multiple outputs.
• For vector sequence inputs, the number of features must be a constant during code generation.

The sequence length can be variable sized.
• For image sequence inputs, the height, width, and the number of channels must be a constant

during code generation.
• Only the MiniBatchSize, SequenceLength, SequencePaddingDirection, and

SequencePaddingValue name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• Only the "longest" and "shortest" option of the SequenceLength name-value pair is
supported for code generation.

• If you use a GCC C/C++ compiler version 8.2 or above, you might get a -Wstringop-overflow
warning.

• Code generation for Intel MKL-DNN target does not support the combination of
SequenceLength="longest", SequencePaddingDirection="left", and
SequencePaddingValue=0 name-value arguments.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• Y = classify(net,images), where images is a numeric array
• Y = classify(net,sequences), where sequences is a cell array or numeric array
• Y = classify(net,features), where features is a numeric array
• [Y,scores] = classify(__) using any of the previous syntaxes.
• [Y,scores] = classify(__,Name=Value) using any of the previous syntaxes.

• GPU code generation for the classify function is not supported for regression networks and
networks with multiple outputs.

• GPU code generation does not support gpuArray inputs to the classify function.
• The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only

vector input sequences. The ARM Compute Library for GPU does not support recurrent
networks.

• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• Only the MiniBatchSize, SequenceLength, SequencePaddingDirection, and
SequencePaddingValue name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

• Only the "longest" and "shortest" option of the SequenceLength name-value pair is
supported for code generation.

• GPU code generation for the classify function supports inputs that are defined as half-precision
floating point data types. For more information, see half.
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• If you use a GCC C/C++ compiler version 8.2 or above, you might get a -Wstringop-overflow
warning.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run computations in parallel, set the ExecutionEnvironment option to "multi-gpu" or
"parallel".

For details, see “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

• The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

• A gpuArray
• A cell array containing gpuArray objects
• A table containing gpuArray objects
• A datastore that outputs cell arrays containing gpuArray objects
• A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
predict | activations | classifyAndUpdateState | predictAndUpdateState

Topics
“Classify Image Using GoogLeNet”
“Classify Webcam Images Using Deep Learning”
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classifyAndUpdateState
Classify data using a trained recurrent neural network and update the network state

Syntax
[updatedNet,Y] = classifyAndUpdateState(recNet,sequences)
[updatedNet,Y] = classifyAndUpdateState(recNet,X1,...,XN)
[updatedNet,Y] = classifyAndUpdateState(recNet,mixed)
[updatedNet,Y,scores] = classifyAndUpdateState( ___ )
___  = classifyAndUpdateState( ___ ,Name=Value)

Description
You can make predictions using a trained deep learning network on either a CPU or GPU. Using a
GPU requires Parallel Computing Toolbox and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Specify the hardware
requirements using the ExecutionEnvironment name-value argument.

For networks with multiple outputs, use the predictAndUpdateState function instead and set the
ReturnCategorical option to true.

[updatedNet,Y] = classifyAndUpdateState(recNet,sequences) classifies the data in
sequences using the trained recurrent neural network recNet and updates the network state.

This function supports recurrent neural networks only. The input recNet must have at least one
recurrent layer such as an LSTM layer or a custom layer with state parameters.

[updatedNet,Y] = classifyAndUpdateState(recNet,X1,...,XN) predicts the class labels
for the data in the numeric arrays or cell arrays X1, …, XN for the multi-input network recNet. The
input Xi corresponds to the network input recNet.InputNames(i).

[updatedNet,Y] = classifyAndUpdateState(recNet,mixed) predicts the class labels for the
multi-input network recNet with data of mixed data types.

[updatedNet,Y,scores] = classifyAndUpdateState( ___ ) also returns the classification
scores corresponding to the class labels using any of the previous syntaxes.

___  = classifyAndUpdateState( ___ ,Name=Value) predicts class labels with additional
options specified by one or more name-value arguments using any of the previous syntaxes. For
example, MiniBatchSize=27 classifies data using mini-batches of size 27.

Tip When you make predictions with sequences of different lengths, the mini-batch size can impact
the amount of padding added to the input data, which can result in different predicted values. Try
using different values to see which works best with your network. To specify mini-batch size and
padding options, use the MiniBatchSize and SequenceLength options, respectively.

“Classify and Update Network State” on page 1-310
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Examples

Classify and Update Network State

Classify data using a recurrent neural network and update the network state.

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,TTest] = japaneseVowelsTestData;

Loop over the time steps in a sequence. Classify each time step and update the network state.

X = XTest{94};
numTimeSteps = size(X,2);
for i = 1:numTimeSteps
    v = X(:,i);
    [net,label,score] = classifyAndUpdateState(net,v);
    labels(i) = label;
end

Plot the predicted labels in a stair plot. The plot shows how the predictions change between time
steps.

figure
stairs(labels,"-o")
xlim([1 numTimeSteps])
xlabel("Time Step")
ylabel("Predicted Class")
title("Classification Over Time Steps")

Compare the predictions with the true label. Plot a horizontal line showing the true label of the
observation.

trueLabel = TTest(94)

trueLabel = categorical
     3 
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hold on
line([1 numTimeSteps],[trueLabel trueLabel], ...
    Color="red", ...
    LineStyle="--")
legend(["Prediction" "True Label"])

Input Arguments
recNet — Trained recurrent neural network
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a SeriesNetwork or a DAGNetwork object. You can
get a trained network by importing a pretrained network or by training your own network using the
trainNetwork function.

recNet is a recurrent neural network. It must have at least one recurrent layer (for example, an
LSTM network).

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, a numeric array representing a single sequence, or a datastore.
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For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.

Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

1-D image sequences h-by-c-by-s arrays, where h and c correspond to
the height and number of channels of the images,
respectively, and s is the sequence length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first
column contains sequences. The dimensions of the sequence data must correspond to the table
above.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

X1,...,XN — Numeric or cell arrays for networks with multiple inputs
numeric array | cell array

Numeric or cell arrays for networks with multiple inputs.

For sequence predictor input, the input must be a numeric array representing a single sequence or a
cell array of sequences, where the format of the predictors match the formats described in the
sequences argument description. For image and feature predictor input, the input must be a
numeric array and the format of the predictors must match the one of the following:

Data Format
2-D images h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
images, respectively.

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the images, respectively.
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Data Format
Feature data c-by-1 column vectors, where c is the number of

features.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

mixed — Mixed data
TransformedDatastore | CombinedDatastore | custom mini-batch datastore

Mixed data, specified as one of the following.

Data Type Description Example Usage
TransformedDatastore Datastore that transforms

batches of data read from an
underlying datastore using a
custom transformation function

• Make predictions using
networks with multiple
inputs.

• Transform outputs of
datastores not supported by
classifyAndUpdateState
so they have the required
format.

• Apply custom
transformations to datastore
output.

CombinedDatastore Datastore that reads from two
or more underlying datastores

• Make predictions using
networks with multiple
inputs.

• Combine predictors from
different data sources.

Custom mini-batch datastore Custom datastore that returns
mini-batches of data

Make predictions using data in
a format that other datastores
do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by classifyAndUpdateState. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Datastore Output Example Output
Cell array with numInputs columns, where
numInputs is the number of network inputs.

The order of inputs is given by the InputNames
property of the network.

data = read(ds)

data =

  4×3 cell array

    {12×50 double}    {28×1 double}
    {12×50 double}    {28×1 double}
    {12×50 double}    {28×1 double}
    {12×50 double}    {28×1 double}

For sequence predictor input, the input must be a numeric array representing a single sequence or a
cell array of sequences, where the format of the predictors match the formats described in the
sequences argument description. For image and feature predictor input, the input must be a
numeric array and the format of the predictors must match the one of the following:

Data Format
2-D images h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
images, respectively.

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the images, respectively.

Feature data c-by-1 column vectors, where c is the number of
features.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

Tip To convert a numeric array to a datastore, use ArrayDatastore.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [updatedNet,Y] = classifyAndUpdateState(recNet,C,MiniBatchSize=27)
classifies data using mini-batches of size 27.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

When you make predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data, which can result in different predicted values. Try using
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different values to see which works best with your network. To specify mini-batch size and padding
options, use the MiniBatchSize and SequenceLength options, respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Acceleration — Performance optimization
"auto" (default) | "none"

Performance optimization, specified as one of the following:

• "auto" — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

• "none" — Disable all acceleration.

Using the Acceleration option "auto" can offer performance benefits, but at the expense of an
increased initial run time. Subsequent calls with compatible parameters are faster. Use performance
optimization when you plan to call the function multiple times using new input data.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource, specified as one of the following:

• "auto" — Use a GPU if one is available; otherwise, use the CPU.
• "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU

device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

• "cpu" — Use the CPU.

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string
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SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
updatedNet — Updated network
SeriesNetwork object | DAGNetwork object

Updated network. updatedNet is the same type of network as the input network.

Y — Predicted class labels
categorical vector | cell array of categorical vectors

Predicted class labels, returned as a categorical vector, or a cell array of categorical vectors. The
format of Y depends on the type of problem.

The following table describes the format of Y.

Task Format
Sequence-to-label classification N-by-1 categorical vector of labels, where N is

the number of observations.
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Task Format
Sequence-to-sequence classification N-by-1 cell array of categorical sequences of

labels, where N is the number of observations.
Each sequence has the same number of time
steps as the corresponding input sequence after
applying the SequenceLength option to each
mini-batch independently.

For sequence-to-sequence classification problems
with one observation, sequences can be a
matrix. In this case, YPred is a categorical
sequence of labels.

scores — Predicted class scores
matrix | cell array of matrices

Predicted class scores, returned as a matrix or a cell array of matrices. The format of scores
depends on the type of problem.

The following table describes the format of scores.

Task Format
Sequence-to-label classification N-by-K matrix, where N is the number of

observations, and K is the number of classes.
Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the

number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after applying the SequenceLength option to
each mini-batch independently.

For sequence-to-sequence classification problems with one observation, sequences can be a matrix.
In this case, scores is a matrix of predicted class scores.

Algorithms
When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Version History
Introduced in R2017b

Prediction functions pad mini-batches to length of longest sequence before splitting when
you specify SequenceLength option as an integer
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Starting in R2022b, when you make predictions with sequence data using the predict, classify,
predictAndUpdateState, classifyAndUpdateState, and activations functions and the
SequenceLength option is an integer, the software pads sequences to the length of the longest
sequence in each mini-batch and then splits the sequences into mini-batches with the specified
sequence length. If SequenceLength does not evenly divide the sequence length of the mini-batch,
then the last split mini-batch has a length shorter than SequenceLength. This behavior prevents
time steps that contain only padding values from influencing predictions.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, manually pad the input data such that the mini-batches
have the length of the appropriate multiple of SequenceLength. For sequence-to-sequence
workflows, you may also need to manually remove time steps of the output that correspond to
padding values.

References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• C++ code generation supports the following syntaxes:

• [updatedNet,Y] = classifyAndUpdateState(recNet,sequences), where sequences
is cell array or numeric array.

• [updatedNet,Y,scores] = classifyAndUpdateState(recNet,sequences), where
sequences is cell array.

• __ = classifyAndUpdateState(recNet,sequences,Name=Value) using any of the
previous syntaxes

• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• Only the MiniBatchSize, SequenceLength, SequencePaddingDirection, and
SequencePaddingValue name-value arguments are supported for code generation. All name-
value arguments must be compile-time constants.

• Only the "longest" and "shortest" option of the SequenceLength name-value argument is
supported for code generation.

• Code generation for Intel MKL-DNN target does not support the combination of
SequenceLength="longest", SequencePaddingDirection="left", and
SequencePaddingValue=0 name-value arguments.
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GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• [updatedNet,Y] = classifyAndUpdateState(recNet,sequences), where sequences
is cell array.

• [updatedNet,Y,scores] = classifyAndUpdateState(recNet,sequences), where
sequences is cell array.

• __ = classifyAndUpdateState(__,Name=Value) using any of the previous syntaxes
• GPU code generation for the classifyAndUpdateState function is only supported for recurrent

neural networks targeting cuDNN and TensorRT libraries.
• GPU code generation does not support gpuArray inputs to the classifyAndUpdateState

function.
• For vector sequence inputs, the number of features must be a constant during code generation.

The sequence length can be variable sized.
• For image sequence inputs, the height, width, and the number of channels must be a constant

during code generation.
• Only the MiniBatchSize, SequenceLength, SequencePaddingDirection, and

SequencePaddingValue name-value arguments are supported for code generation. All name-
value arguments must be compile-time constants.

• Only the "longest" and "shortest" options of the SequenceLength name-value argument is
supported for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

• The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

• A gpuArray
• A cell array containing gpuArray objects
• A table containing gpuArray objects
• A datastore that outputs cell arrays containing gpuArray objects
• A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
sequenceInputLayer | lstmLayer | bilstmLayer | gruLayer | predictAndUpdateState |
predict | classify | resetState

Topics
“Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
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“Deep Learning in MATLAB”

1 Deep Learning Functions

1-320



clearCache
Clear accelerated deep learning function trace cache

Syntax
clearCache(accfun)

Description
clearCache(accfun) clears the trace cache of the AcceleratedFunction object accfun

Examples

Clear Cache of Accelerated Function

Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

s = load("dlnetDigits.mat");
net = s.net;
classNames = s.classNames;

Accelerate the model loss function modelLoss listed at the end of the example.

fun = @modelLoss;
accfun = dlaccelerate(fun);

Clear any previously cached traces of the accelerated function using the clearCache function.

clearCache(accfun)

View the properties of the accelerated function. Because the cache is empty, the Occupancy property
is 0.

accfun

accfun = 
  AcceleratedFunction with properties:

          Function: @modelLoss
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

The returned AcceleratedFunction object stores the traces of underlying function calls and
reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a
custom training loop, replace calls to the model gradients function with calls to the accelerated
function. You can invoke the accelerated function as you would invoke the underlying function. Note
that the accelerated function is not a function handle.
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Evaluate the accelerated model gradients function with random data using the dlfeval function.

X = rand(28,28,1,128,"single");
X = dlarray(X,"SSCB");

T = categorical(classNames(randi(10,[128 1])));
T = onehotencode(T,2)';
T = dlarray(T,"CB");

[loss,gradients,state] = dlfeval(accfun,net,X,T);

View the Occupancy property of the accelerated function. Because the function has been evaluated,
the cache is nonempty.

accfun.Occupancy

ans = 2

Clear the cache using the clearCache function.

clearCache(accfun)

View the Occupancy property of the accelerated function. Because the cache has been cleared, the
cache is empty.

accfun.Occupancy

ans = 0

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the loss, the gradients of the loss with respect to the
learnable parameters in net, and the network state. To compute the gradients, use the dlgradient
function.

function [loss,gradients,state] = modelLoss(net,X,T)

[Y,state] = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Input Arguments
accfun — Accelerated function
AcceleratedFunction object

Accelerated function, specified as an AcceleratedFunction object.

Version History
Introduced in R2021a
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See Also
dlaccelerate | AcceleratedFunction | dlarray | dlgradient | dlfeval

Topics
“Deep Learning Function Acceleration for Custom Training Loops”
“Accelerate Custom Training Loop Functions”
“Check Accelerated Deep Learning Function Outputs”
“Evaluate Performance of Accelerated Deep Learning Function”
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clippedReluLayer
Clipped Rectified Linear Unit (ReLU) layer

Description
A clipped ReLU layer performs a threshold operation, where any input value less than zero is set to
zero and any value above the clipping ceiling is set to that clipping ceiling.

This operation is equivalent to:

f (x) =
0, x < 0
x, 0 ≤ x < ceiling
ceiling, x ≥ ceiling

.

This clipping prevents the output from becoming too large.

Creation

Syntax
layer = clippedReluLayer(ceiling)
layer = clippedReluLayer(ceiling,'Name',Name)

Description

layer = clippedReluLayer(ceiling) returns a clipped ReLU layer with the clipping ceiling
equal to ceiling.

layer = clippedReluLayer(ceiling,'Name',Name) sets the optional Name property.

Properties
Clipped ReLU

Ceiling — Ceiling for input clipping
positive scalar

Ceiling for input clipping, specified as a positive scalar.
Example: 10

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Clipped ReLU Layer

Create a clipped ReLU layer with the name 'clip1' and the clipping ceiling equal to 10.

layer = clippedReluLayer(10,'Name','clip1')

layer = 
  ClippedReLULayer with properties:

       Name: 'clip1'

   Hyperparameters
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    Ceiling: 10

Include a clipped ReLU layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    clippedReluLayer(10)
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Clipped ReLU            Clipped ReLU with ceiling 10
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Version History
Introduced in R2017b

References
[1] Hannun, Awni, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan

Prenger, et al. "Deep speech: Scaling up end-to-end speech recognition." Preprint, submitted
17 Dec 2014. http://arxiv.org/abs/1412.5567

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | reluLayer | leakyReluLayer | swishLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Activation Layers”
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“List of Deep Learning Layers”
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concatenationLayer
Concatenation layer

Description
A concatenation layer takes inputs and concatenates them along a specified dimension. The inputs
must have the same size in all dimensions except the concatenation dimension.

Specify the number of inputs to the layer when you create it. The inputs have the names
'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers.

Creation

Syntax
layer = concatenationLayer(dim,numInputs)
layer = concatenationLayer(dim,numInputs,'Name',name)

Description

layer = concatenationLayer(dim,numInputs) creates a concatenation layer that
concatenates numInputs inputs along the specified dimension, dim. This function also sets the Dim
and NumInputs properties.

layer = concatenationLayer(dim,numInputs,'Name',name) also sets the Name property.

Properties
Concatenation

Dim — Concatenation dimension
positive integer

Concatenation dimension, specified as a positive integer.
Example: 4

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string
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NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer greater than or equal to 2.

The inputs have the names 'in1','in2',...,'inN', where N is NumInputs. For example, if
NumInputs is 3, then the inputs have the names 'in1','in2', and 'in3'. Use the input names
when connecting or disconnecting the layer using the connectLayers or disconnectLayers
functions.

InputNames — Input Names
{'in1','in2',…,'inN'} (default)

Input names, specified as {'in1','in2',...,'inN'}, where N is the number of inputs of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect Concatenation Layer

Create a concatenation layer that concatenates two inputs along the fourth dimension (channels).
Name the concatenation layer 'concat'.

concat = concatenationLayer(4,2,'Name','concat')

concat = 
  ConcatenationLayer with properties:

          Name: 'concat'
           Dim: 4
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the concatenation layer. The concatenation layer
concatenates the outputs from the ReLU layers.
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relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph();
lgraph = addLayers(lgraph, relu_1);
lgraph = addLayers(lgraph, relu_2);
lgraph = addLayers(lgraph, concat);

lgraph = connectLayers(lgraph, 'relu_1', 'concat/in1');
lgraph = connectLayers(lgraph, 'relu_2', 'concat/in2');
plot(lgraph)

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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See Also
trainNetwork | layerGraph | additionLayer | connectLayers | disconnectLayers

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
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confusionchart
Create confusion matrix chart for classification problem

Syntax
confusionchart(trueLabels,predictedLabels)
confusionchart(m)
confusionchart(m,classLabels)
confusionchart(parent, ___ )
confusionchart( ___ ,Name,Value)
cm = confusionchart( ___ )

Description
confusionchart(trueLabels,predictedLabels) creates a confusion matrix chart from true
labels trueLabels and predicted labels predictedLabels and returns a ConfusionMatrixChart
object. The rows of the confusion matrix correspond to the true class and the columns correspond to
the predicted class. Diagonal and off-diagonal cells correspond to correctly and incorrectly classified
observations, respectively. Use cm to modify the confusion matrix chart after it is created. For a list of
properties, see ConfusionMatrixChart Properties.

confusionchart(m) creates a confusion matrix chart from the numeric confusion matrix m. Use this
syntax if you already have a numeric confusion matrix in the workspace.

confusionchart(m,classLabels) specifies class labels that appear along the x-axis and y-axis.
Use this syntax if you already have a numeric confusion matrix and class labels in the workspace.

confusionchart(parent, ___ ) creates the confusion chart in the figure, panel, or tab specified
by parent.

confusionchart( ___ ,Name,Value) specifies additional ConfusionMatrixChart properties
using one or more name-value pair arguments. Specify the properties after all other input arguments.
For a list of properties, see ConfusionMatrixChart Properties.

cm = confusionchart( ___ ) returns the ConfusionMatrixChart object. Use cm to modify
properties of the chart after creating it. For a list of properties, see ConfusionMatrixChart Properties.

Examples

Create Confusion Matrix Chart

Load a sample of predicted and true labels for a classification problem. trueLabels is the true
labels for an image classification problem and predictedLabels is the predictions of a
convolutional neural network.

load('Cifar10Labels.mat','trueLabels','predictedLabels');

Create a confusion matrix chart.
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figure
cm = confusionchart(trueLabels,predictedLabels);

Modify the appearance and behavior of the confusion matrix chart by changing property values. Add
column and row summaries and a title. A column-normalized column summary displays the number of
correctly and incorrectly classified observations for each predicted class as percentages of the
number of observations of the corresponding predicted class. A row-normalized row summary
displays the number of correctly and incorrectly classified observations for each true class as
percentages of the number of observations of the corresponding true class.

cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
cm.Title = 'CIFAR-10 Confusion Matrix';
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Create Confusion Matrix Chart from Numeric Confusion Matrix

You can use confusionchart to create a confusion matrix chart from a numeric confusion matrix.

Load a sample confusion matrix m and the associated class labels classLabels.

load('Cifar10ConfusionMat.mat','m','classLabels');
m

m = 10×10

   923     4    21     8     4     1     5     5    23     6
     5   972     2     0     0     0     0     1     5    15
    26     2   892    30    13     8    17     5     4     3
    12     4    32   826    24    48    30    12     5     7
     5     1    28    24   898    13    14    14     2     1
     7     2    28   111    18   801    13    17     0     3
     5     0    16    27     3     4   943     1     1     0
     9     1    14    13    22    17     3   915     2     4
    37    10     4     4     0     1     2     1   931    10
    20    39     3     3     0     0     2     1     9   923

classLabels
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classLabels = 10x1 categorical
     airplane 
     automobile 
     bird 
     cat 
     deer 
     dog 
     frog 
     horse 
     ship 
     truck 

Create a confusion matrix chart from the numeric confusion matrix and the class labels.

cm = confusionchart(m,classLabels);

Sort Classes by Precision or Recall

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network. Create a confusion matrix chart with column and row summaries

load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
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cm = confusionchart(trueLabels,predictedLabels, ...
    'ColumnSummary','column-normalized', ...
    'RowSummary','row-normalized');

To sort the classes of the confusion matrix by class-wise recall (true positive rate), normalize the cell
values across each row, that is, by the number of observations that have the same true class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the row summaries to the right
are decreasing.

cm.Normalization = 'row-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
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To sort the classes by class-wise precision (positive predictive value), normalize the cell values across
each column, that is, by the number of observations that have the same predicted class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the column summaries at the
bottom are decreasing.

cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
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Input Arguments
trueLabels — True labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

True labels of classification problem, specified as a categorical vector, numeric vector, string vector,
character array, cell array of character vectors, or logical vector. If trueLabels is a vector, then
each element corresponds to one observation. If trueLabels is a character array, then it must be
two-dimensional with each row corresponding to the label of one observation.

predictedLabels — Predicted labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

Predicted labels of classification problem, specified as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. If predictedLabels is a
vector, then each element corresponds to one observation. If predictedLabels is a character array,
then it must be two-dimensional with each row corresponding to the label of one observation.

m — Confusion matrix
matrix

Confusion matrix, specified as a matrix. m must be square and its elements must be positive integers.
The element m(i,j) is the number of times an observation of the ith true class was predicted to be
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of the jth class. Each colored cell of the confusion matrix chart corresponds to one element of the
confusion matrix m.

classLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

Class labels of the confusion matrix chart, specified as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. If classLabels is a vector,
then it must have the same number of elements as the confusion matrix has rows and columns. If
classLabels is a character array, then it must be two-dimensional with each row corresponding to
the label of one class.

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cm = confusionchart(trueLabels,predictedLabels,'Title','My Title
Text','ColumnSummary','column-normalized')

Note The properties listed here are only a subset. For a complete list, see ConfusionMatrixChart
Properties.

Title — Title
'' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.
Example: cm = confusionchart(__,'Title','My Title Text')
Example: cm.Title = 'My Title Text'

ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a column summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each
predicted class.
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Option Description
'column-normalized' Display the number of correctly and incorrectly

classified observations for each predicted class as
percentages of the number of observations of the
corresponding predicted class. The percentages
of correctly classified observations can be
thought of as class-wise precisions (or positive
predictive values).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'ColumnSummary','column-normalized')
Example: cm.ColumnSummary = 'column-normalized'

RowSummary — Row summary
'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a row summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each true
class.

'row-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the number of observations of the
corresponding true class. The percentages of
correctly classified observations can be thought
of as class-wise recalls (or true positive rates).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'RowSummary','row-normalized')
Example: cm.RowSummary = 'row-normalized'

Normalization — Normalization of cell values
'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:

Option Description
'absolute' Display the total number of observations in each

cell.
'column-normalized' Normalize each cell value by the number of

observations that has the same predicted class.
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Option Description
'row-normalized' Normalize each cell value by the number of

observations that has the same true class.
'total-normalized' Normalize each cell value by the total number of

observations.

Modifying the normalization of cell values also affects the colors of the cells.
Example: cm = confusionchart(__,'Normalization','total-normalized')
Example: cm.Normalization = 'total-normalized'

Output Arguments
cm — Confusion matrix chart object
ConfusionMatrixChart object

ConfusionMatrixChart object, which is a standalone visualization on page 1-341. Use cm to set
properties of the confusion matrix chart after creating it.

Limitations
• MATLAB code generation is not supported for ConfusionMatrixChart objects.

More About
Standalone Visualization

A standalone visualization is a chart designed for a special purpose that works independently from
other charts. Unlike other charts such as plot and surf, a standalone visualization has a
preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:

• It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.

• The gca function can return the chart object as the current axes.
• You can pass the chart object to many MATLAB functions that accept an axes object as an input

argument. For example, you can pass the chart object to the title function.

Tips
• If you have one-hot (one-of-N) data, use onehotdecode to prepare your data for use with

confusionchart. For example, suppose you have true labels targets and predicted labels
outputs, with observations in columns. You can create a confusion matrix chart using

numClasses = size(targets,1);
trueLabels = onehotdecode(targets,1:numClasses,1);
predictedLabels = onehotdecode(outputs,1:numClasses,1);
confusionchart(trueLabels,predictedLabels)
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• If you have Statistics and Machine Learning Toolbox, you can create a confusion matrix chart for
tall arrays. For details, see confusionchart and “Confusion Matrix for Classification Using Tall
Arrays” (Statistics and Machine Learning Toolbox).

Version History
Introduced in R2018b

See Also
Functions
categorical | sortClasses | classify | confusionmat

Properties
ConfusionMatrixChart Properties

Topics
“Compare Deep Learning Models Using ROC Curves”
“Deep Learning in MATLAB”
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confusionmat
Compute confusion matrix for classification problem

Syntax
C = confusionmat(group,grouphat)
C = confusionmat(group,grouphat,'Order',grouporder)
[C,order] = confusionmat( ___ )

Description
C = confusionmat(group,grouphat) returns the confusion matrix C determined by the known
and predicted groups in group and grouphat, respectively.

C = confusionmat(group,grouphat,'Order',grouporder) uses grouporder to order the
rows and columns of C.

[C,order] = confusionmat( ___ ) also returns the order of the rows and columns of C in the
variable order using any of the input arguments in previous syntaxes.

Examples

Calculate Confusion Matrix

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network.

load('Cifar10Labels.mat','trueLabels','predictedLabels');

Calculate the numeric confusion matrix. order is the order of the classes in the confusion matrix.

[m,order] = confusionmat(trueLabels,predictedLabels)

m = 10×10

   923     4    21     8     4     1     5     5    23     6
     5   972     2     0     0     0     0     1     5    15
    26     2   892    30    13     8    17     5     4     3
    12     4    32   826    24    48    30    12     5     7
     5     1    28    24   898    13    14    14     2     1
     7     2    28   111    18   801    13    17     0     3
     5     0    16    27     3     4   943     1     1     0
     9     1    14    13    22    17     3   915     2     4
    37    10     4     4     0     1     2     1   931    10
    20    39     3     3     0     0     2     1     9   923

order = 10x1 categorical
     airplane 
     automobile 
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     bird 
     cat 
     deer 
     dog 
     frog 
     horse 
     ship 
     truck 

You can use confusionchart to plot the confusion matrix as a confusion matrix chart.

figure
cm = confusionchart(m,order);

You do not need to calculate the confusion matrix first and then plot it. Instead, plot a confusion
matrix chart directly from the true and predicted labels. You can also add column and row summaries
and a title.

figure
cm = confusionchart(trueLabels,predictedLabels, ...
    'Title','My Title', ...
    'RowSummary','row-normalized', ...
    'ColumnSummary','column-normalized');
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The ConfusionMatrixChart object stores the numeric confusion matrix in the NormalizedValues
property and classes in the ClassLabels property.

cm.NormalizedValues

ans = 10×10

   923     4    21     8     4     1     5     5    23     6
     5   972     2     0     0     0     0     1     5    15
    26     2   892    30    13     8    17     5     4     3
    12     4    32   826    24    48    30    12     5     7
     5     1    28    24   898    13    14    14     2     1
     7     2    28   111    18   801    13    17     0     3
     5     0    16    27     3     4   943     1     1     0
     9     1    14    13    22    17     3   915     2     4
    37    10     4     4     0     1     2     1   931    10
    20    39     3     3     0     0     2     1     9   923

cm.ClassLabels

ans = 10x1 categorical
     airplane 
     automobile 
     bird 
     cat 
     deer 
     dog 
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     frog 
     horse 
     ship 
     truck 

Input Arguments
group — Known groups
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Known groups for categorizing observations, specified as a numeric vector, logical vector, character
array, string array, cell array of character vectors, or categorical vector.

group is a grouping variable of the same type as grouphat. The group argument must have the
same number of observations as grouphat, as described in “Grouping Variables” (Statistics and
Machine Learning Toolbox). The confusionmat function treats character arrays and string arrays as
cell arrays of character vectors. Additionally, confusionmat treats NaN, empty, and 'undefined'
values in group as missing values and does not count them as distinct groups or categories.
Example: {'Male','Female','Female','Male','Female'}
Data Types: single | double | logical | char | string | cell | categorical

grouphat — Predicted groups
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Predicted groups for categorizing observations, specified as a numeric vector, logical vector,
character array, string array, cell array of character vectors, or categorical vector.

grouphat is a grouping variable of the same type as group. The grouphat argument must have the
same number of observations as group, as described in “Grouping Variables” (Statistics and Machine
Learning Toolbox). The confusionmat function treats character arrays and string arrays as cell
arrays of character vectors. Additionally, confusionmat treats NaN, empty, and 'undefined' values
in grouphat as missing values and does not count them as distinct groups or categories.
Example: [1 0 0 1 0]
Data Types: single | double | logical | char | string | cell | categorical

grouporder — Group order
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Group order, specified as a numeric vector, logical vector, character array, string array, cell array of
character vectors, or categorical vector.

grouporder is a grouping variable containing all the distinct elements in group and grouphat.
Specify grouporder to define the order of the rows and columns of C. If grouporder contains
elements that are not in group or grouphat, the corresponding entries in C are 0.

By default, the group order depends on the data type of s = [group;grouphat]:
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• For numeric and logical vectors, the order is the sorted order of s.
• For categorical vectors, the order is the order returned by categories(s).
• For other data types, the order is the order of first appearance in s.

Example: 'order',{'setosa','versicolor','virginica'}
Data Types: single | double | logical | char | string | cell | categorical

Output Arguments
C — Confusion matrix
matrix

Confusion matrix, returned as a square matrix with size equal to the total number of distinct elements
in the group and grouphat arguments. C(i,j) is the count of observations known to be in group i
but predicted to be in group j.

The rows and columns of C have identical ordering of the same group indices. By default, the group
order depends on the data type of s = [group;grouphat]:

• For numeric and logical vectors, the order is the sorted order of s.
• For categorical vectors, the order is the order returned by categories(s).
• For other data types, the order is the order of first appearance in s.

To change the order, specify grouporder,

The confusionmat function treats NaN, empty, and 'undefined' values in the grouping variables
as missing values and does not include them in the rows and columns of C.

order — Order of rows and columns
numeric vector | logical vector | categorical vector | cell array of character vectors

Order of rows and columns in C, returned as a numeric vector, logical vector, categorical vector, or
cell array of character vectors. If group and grouphat are character arrays, string arrays, or cell
arrays of character vectors, then the variable order is a cell array of character vectors. Otherwise,
order is of the same type as group and grouphat.

Alternative Functionality
• Use confusionchart to calculate and plot a confusion matrix. Additionally, confusionchart

displays summary statistics about your data and sorts the classes of the confusion matrix
according to the class-wise precision (positive predictive value), class-wise recall (true positive
rate), or total number of correctly classified observations.

See Also
categories | classify | confusionchart

Topics
“Deep Learning in MATLAB”
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ConfusionMatrixChart Properties
Confusion matrix chart appearance and behavior

Description
ConfusionMatrixChart properties control the appearance and behavior of a
ConfusionMatrixChart object. By changing property values, you can modify certain aspects of the
confusion matrix chart. For example, you can add a title:

cm = confusionchart([1 3 5; 2 4 6; 11 7 3]);
cm.Title = 'My Confusion Matrix Title';

Properties
Labels

Title — Title
'' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.
Example: cm = confusionchart(__,'Title','My Title Text')
Example: cm.Title = 'My Title Text'

XLabel — Label for x-axis
'Predicted class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.
Example: cm = confusionchart(__,'XLabel','My Label')
Example: cm.XLabel = 'My Label'

YLabel — Label for y-axis
'True class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.
Example: cm = confusionchart(__,'YLabel','My Label')
Example: cm.YLabel = 'My Label'

ClassLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

This property is read-only.

Class labels of the confusion matrix chart, stored as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector.
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Row and Column Summaries

ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a column summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each
predicted class.

'column-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the number of observations of the
corresponding predicted class. The percentages
of correctly classified observations can be
thought of as class-wise precisions (or positive
predictive values).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'ColumnSummary','column-normalized')
Example: cm.ColumnSummary = 'column-normalized'

RowSummary — Row summary
'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a row summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each true
class.

'row-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the number of observations of the
corresponding true class. The percentages of
correctly classified observations can be thought
of as class-wise recalls (or true positive rates).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'RowSummary','row-normalized')
Example: cm.RowSummary = 'row-normalized'
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Data

NormalizedValues — Values of the confusion matrix
numeric matrix

This property is read-only.

Values of the confusion matrix, stored as a numeric matrix. This property equals the values of the
confusion matrix normalized using the method of the Normalization property. The software
recalculates the normalized values of the confusion matrix each time you modify the Normalization
property.

Normalization — Normalization of cell values
'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:

Option Description
'absolute' Display the total number of observations in each

cell.
'column-normalized' Normalize each cell value by the number of

observations that has the same predicted class.
'row-normalized' Normalize each cell value by the number of

observations that has the same true class.
'total-normalized' Normalize each cell value by the total number of

observations.

Modifying the normalization of cell values also affects the colors of the cells.
Example: cm = confusionchart(__,'Normalization','total-normalized')
Example: cm.Normalization = 'total-normalized'

Color and Styling

GridVisible — State of grid visibility
'on' (default) | on/off logical value

State of grid visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of
this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display grid lines between the chart cells.
• 'off' — Do not display grid lines between the chart cells.

Example: cm = confusionchart(__,'GridVisible','off')
Example: cm.GridVisible = 'off'

DiagonalColor — Color for diagonal cells
[0 0.4471 0.7412] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color for diagonal cells, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The color of each diagonal cell is proportional to the cell value and the DiagonalColor
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property, normalized to the largest cell value of the confusion matrix chart. Cells with positive values
are colored with a minimum amount of color, proportional to the DiagonalColor property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'DiagonalColor','blue')
Example: cm.DiagonalColor = 'blue'

OffDiagonalColor — Color for off-diagonal cells
[0.8510 0.3255 0.0980] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...
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Color for off-diagonal cells, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The color of each diagonal cell is proportional to the cell value and the
OffDiagonalColor property, normalized to the largest cell value of the confusion matrix chart.
Cells with positive values are colored with a minimum amount of color, proportional to the
OffDiagonalColor property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'OffDiagonalColor','blue')
Example: cm.OffDiagonalColor = 'blue'
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FontColor — Text color for title, axis labels, and class labels
[0.1500 0.1500 0.1500] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color for title, axis labels, and class labels, specified as an RGB triplet, a hexadecimal color code,
a color name, or a short name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'FontColor','blue')
Example: cm.FontColor = 'blue'
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Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the specific
operating system and locale.
Example: cm = confusionchart(__,'FontName','Cambria')
Example: cm.FontName = 'Cambria'

FontSize — Font size
positive scalar

Font size used for the title, axis labels, class labels, and cell labels, specified as a positive scalar. The
default font depends on the specific operating system and locale.

The title and axis labels use a slightly larger font size (scaled up by 10%). If there is not enough room
to display the cell labels within the cells, then the cell labels use a smaller font size. If the cell labels
become too small, then they are hidden.
Example: cm = confusionchart(__,'FontSize',12)
Example: cm.FontSize = 12

Position

PositionConstraint — Position to hold constant
'outerposition' | 'innerposition'

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

• 'outerposition' — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

• 'innerposition' — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and position
[0 0 1 1] (default) | four-element vector

Outer size and position within the parent container (a figure, panel, or tab), specified as a four-
element vector of the form [left bottom width height]. The outer position includes the title,
axis labels, and class labels.

• The left and bottom elements define the distance from the lower left corner of the container to
the lower left corner of the chart.

• The width and height elements are the chart dimensions, which include the chart cells, plus a
margin for the surrounding text.
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The default value of [0 0 1 1] is the whole interior of the container.

By default, the values are normalized to the container. To change the units, set the Units property.
Example: cm = confusionchart(__,'OuterPosition',[0.1 0.1 0.8 0.8])
Example: cm.OuterPosition = [0.1 0.1 0.8 0.8]

InnerPosition — Inner size and position
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a
four-element vector of the form [left bottom width height]. The inner position does not
include the title, axis labels, or class labels.

• The left and bottom elements define the distance from the lower left corner of the container to
the lower left corner of the chart.

• The width and height elements are the chart dimensions, which include only the chart cells.

Example: cm = confusionchart(__,'InnerPosition',[0.1 0.1 0.8 0.8])
Example: cm.InnerPosition = [0.1 0.1 0.8 0.8]

Position — Inner size and position
four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a
four-element vector of the form [left bottom width height]. This property is equivalent to the
InnerPosition property.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters'

Position units, specified as one of these values:

Units Description
'normalized' Normalized with respect to the container, which

is typically the figure or a panel. The lower left
corner of the container maps to (0,0), and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between the

baselines of two lines of text.
'points' Typography points. One point equals 1/72 inch.
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Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows® and Macintosh systems:

• On Windows systems, a pixel is 1/96th of an
inch.

• On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value pair during object creation, you must set the Units
property before specifying the properties that you want to use these units for, such as
OuterPosition.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. This
property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the Tile and TileSpan properties on
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

This code places the chart c in the third tile of the grid..

c.Layout.Tile = 3;
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To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as 'north', 'south',
'east', or 'west'. For example, setting the value to 'east' places the chart in the tile to the right
of the grid.

c.Layout.Tile = 'east';

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object.
For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a
figure or panel) then this property is empty and has no effect.

Visible — State of visibility
'on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display the chart.
• 'off' — Hide the chart without deleting it. You still can access the properties of an invisible

chart.

Parent/Child

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the chart object handle in the Children property of the parent, specified as one of these
values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended

changes to the UI by another function. To temporarily hide the handle during the execution of that
function, set the HandleVisibility to 'off'.

• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
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Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles, regardless of their HandleVisibility property setting.

Version History
Introduced in R2018b

See Also
Functions
categorical | confusionchart | sortClasses

Topics
“Deep Learning in MATLAB”
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connectLayers
Package: nnet.cnn

Connect layers in layer graph or network

Syntax
lgraphUpdated = connectLayers(lgraph,s,d)
netUpdated = connectLayers(net,s,d)

Description
lgraphUpdated = connectLayers(lgraph,s,d) connects the source layer s to the destination
layer d in the layer graph lgraph. The updated layer graph, lgraphUpdated, contains the same
layers as lgraph and includes the new connection.

netUpdated = connectLayers(net,s,d) connects the source layer s to the destination layer d
in the dlnetwork object net. The updated network, netUpdated, contains the same layers as net
and includes the new connection.

Examples

Create and Connect Addition Layer

Create an addition layer with two inputs and the name 'add_1'.

add = additionLayer(2,'Name','add_1')

add = 
  AdditionLayer with properties:

          Name: 'add_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs
from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,add);

lgraph = connectLayers(lgraph,'relu_1','add_1/in1');
lgraph = connectLayers(lgraph,'relu_2','add_1/in2');

plot(lgraph)
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Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. To easily add connections
later, specify names for the first ReLU layer and the addition layer.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(5,16,'Padding','same')
    batchNormalizationLayer
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
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    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the third
ReLU layer. This arrangement enables the addition layer to add the outputs of the third ReLU layer
and the 1-by-1 convolutional layer. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The third ReLU layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the third ReLU layer and the 'skipConv'
layer. To check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16x1 nnet.cnn.layer.Layer]
    Connections: [16x2 table]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9934
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

s — Connection source
character vector | string scalar

Connection source, specified as a character vector or a string scalar.

• If the source layer has a single output, then s is the name of the layer.
• If the source layer has multiple outputs, then s is the layer name followed by the character / and

the name of the layer output: 'layerName/outputName'.

Example: 'conv1'
Example: 'mpool/indices'

d — Connection destination
character vector | string scalar

Connection destination, specified as a character vector or a string scalar.

• If the destination layer has a single input, then d is the name of the layer.
• If the destination layer has multiple inputs, then d is the layer name followed by the character /

and the name of the layer input: 'layerName/inputName'.

Example: 'fc'
Example: 'addlayer1/in2'

Output Arguments
lgraphUpdated — Updated layer graph
LayerGraph object

Updated layer graph, returned as a LayerGraph object.

netUpdated — Updated network
dlnetwork object

Updated network, returned as an uninitialized dlnetwork object.

To initialize the learnable parameters of a dlnetwork object, use the initialize function.

Version History
Introduced in R2017b
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See Also
layerGraph | addLayers | removeLayers | replaceLayer | disconnectLayers | plot |
assembleNetwork | dlnetwork

Topics
“Train Deep Learning Network to Classify New Images”
“Train Network with Multiple Outputs”
“Classify Videos Using Deep Learning”
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convolution1dLayer
1-D convolutional layer

Description
A 1-D convolutional layer applies sliding convolutional filters to 1-D input. The layer convolves the
input by moving the filters along the input and computing the dot product of the weights and the
input, then adding a bias term.

The dimension that the layer convolves over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer convolves over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer convolves over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer convolves over the spatial dimension.

Creation

Syntax
layer = convolution1dLayer(filterSize,numFilters)
layer = convolution1dLayer(filterSize,numFilters,Name=Value)

Description

layer = convolution1dLayer(filterSize,numFilters) creates a 1-D convolutional layer
and sets the FilterSize and NumFilters properties.

layer = convolution1dLayer(filterSize,numFilters,Name=Value) also sets the optional
Stride, DilationFactor, NumChannels, “Parameters and Initialization” on page 1-370, “Learning
Rate and Regularization” on page 1-371, and Name properties using one or more name-value
arguments. To specify input padding, use the Padding name-value argument. For example,
convolution1dLayer(11,96,Padding=1) creates a 1-D convolutional layer with 96 filters of size
11, and specifies padding of size 1 on the left and right of the layer input.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: convolution1dLayer(11,96,Padding=1) creates a 1-D convolutional layer with 96
filters of size 11, and specifies padding of size 1 on the left and right of the layer input.
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Padding — Padding to apply to input
[0 0] (default) | "same" | "causal" | nonnegative integer | vector of nonnegative integers

Padding to apply to the input, specified as one of the following:

• "same" — Apply padding such that the output size is ceil(inputSize/stride), where
inputSize is the length of the input. When Stride is 1, the output is the same size as the input.

• "causal" — Apply left padding to the input, equal to (FilterSize - 1) .*
DilationFactor. When Stride is 1, the output is the same size as the input.

• Nonnegative integer sz — Add padding of size sz to both ends of the input.
• Vector [l r] of nonnegative integers — Add padding of size l to the left and r to the right of the

input.

Example: Padding=[2 1] adds padding of size 2 to the left and size 1 to the right of the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Properties
Convolution

FilterSize — Width of filters
positive integer

This property is read-only.

Width of the filters, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFilters — Number of filters
positive integer

This property is read-only.

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the layer output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stride — Step size for traversing input
1 (default) | positive integer

Step size for traversing the input, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DilationFactor — Factor for dilated convolution
1 (default) | positive integer

Factor for dilated convolution (also known as atrous convolution), specified as a positive integer.

Use dilated convolutions to increase the receptive field (the area of the input that the layer can see)
of the layer without increasing the number of parameters or computation.
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The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input, or equivalently, the upsampling factor of the filter. It
corresponds to an effective filter size of (FilterSize – 1) .* DilationFactor + 1. For
example, a 1-by-3 filter with a dilation factor of 2 is equivalent to a 1-by-5 filter with zeros between
the elements.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PaddingSize — Size of padding
[0 0] (default) | vector of two nonnegative integers

Size of padding to apply to each side of the input, specified as a vector [l r] of two nonnegative
integers, where l is the padding applied to the left and r is the padding applied to the right.

When you create a layer, use the Padding name-value argument to specify the padding size.
Data Types: double

PaddingMode — Method to determine padding size
'manual' (default) | 'same' | 'causal'

This property is read-only.

Method to determine padding size, specified as one of the following:

• 'manual' – Pad using the integer or vector specified by Padding.
• 'same' – Apply padding such that the output size is ceil(inputSize/Stride), where

inputSize is the length of the input. When Stride is 1, the output is the same as the input.
• 'causal' – Apply causal padding. Pad the left of the input with padding size (FilterSize -

1) .* DilationFactor.

To specify the layer padding, use the Padding name-value argument.
Data Types: char

PaddingValue — Value to pad data
0 (default) | scalar | 'symmetric-include-edge' | 'symmetric-exclude-edge' | 'replicate'

This property is read-only.

Value to pad data, specified as one of the following:

PaddingValue Description Example
Scalar Pad with the specified scalar

value.
3 1 4 0 0 3 1 4 0 0

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values.

3 1 3 1 3 3 1 4 4 1

'symmetric-exclude-edge' Pad using mirrored values of the
input, excluding the edge
values.

3 1 4 4 1 3 1 4 1 3

'replicate' Pad using repeated border
elements of the input.

3 1 3 3 3 3 1 4 4 4
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NumChannels — Number of input channels
'auto' (default) | positive integer

This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' — Initialize the weights with the Glorot initializer [1] (also known as the Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with a mean
of zero and a variance of 2/(numIn + numOut), where numIn = FilterSize*NumChannels
and numOut = FilterSize*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with a mean of zero and a variance of 2/numIn, where numIn =
FilterSize*NumChannels.

• 'narrow-normal' — Initialize the weights by independently sampling from a normal distribution
with a mean of zero and a standard deviation of 0.01.

• 'zeros' — Initialize the weights with zeros.
• 'ones' — Initialize the weights with ones.
• Function handle — Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
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• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution
with a mean of zero and a standard deviation of 0.01.

• Function handle — Initialize the bias with a custom function. If you specify a function handle, then
the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the transposed convolution operation, specified as a FilterSize-by-
NumChannels-by-numFilters numeric array or [].

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the transposed convolutional operation, specified as a 1-by-NumFilters numeric
array or [].

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
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in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell
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NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 1-D Convolutional Layer

Create a 1-D convolutional layer with 96 filters of width of 11.

layer = convolution1dLayer(11,96)

layer = 
  Convolution1DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: 11
       NumChannels: 'auto'
        NumFilters: 96
            Stride: 1
    DilationFactor: 1
       PaddingMode: 'manual'
       PaddingSize: [0 0]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Include a 1-D convolutional layer in a Layer array.

layers = [
    sequenceInputLayer(3,MinLength=12)
    convolution1dLayer(11,96)
    reluLayer
    globalMaxPooling1dLayer
    fullyConnectedLayer(10)
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    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Sequence Input           Sequence input with 3 dimensions
     2   ''   1-D Convolution          96 11 convolutions with stride 1 and padding [0  0]
     3   ''   ReLU                     ReLU
     4   ''   1-D Global Max Pooling   1-D global max pooling
     5   ''   Fully Connected          10 fully connected layer
     6   ''   Softmax                  softmax
     7   ''   Classification Output    crossentropyex

Algorithms
1-D Convolutional Layer

A 1-D convolutional layer applies sliding convolutional filters to 1-D input. The layer convolves the
input by moving the filters along the input and computing the dot product of the weights and the
input, then adding a bias term.

The dimension that the layer convolves over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer convolves over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer convolves over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer convolves over the spatial dimension.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.
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This table shows the supported input formats of Convolution1DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SCB" (spatial, channel, batch) "SCB" (spatial, channel, batch)
"CBT" (channel, batch, time) "CBT" (channel, batch, time)
"SCBT" (spatial, channel, batch, time) "SCBT" (spatial, channel, batch, time)

Version History
Introduced in R2021b

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | bilstmLayer |
gruLayer | maxPooling1dLayer | averagePooling1dLayer | globalMaxPooling1dLayer |
globalAveragePooling1dLayer | transposedConv1dLayer

Topics
“Sequence Classification Using 1-D Convolutions”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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convolution2dLayer
2-D convolutional layer

Description
A 2-D convolutional layer applies sliding convolutional filters to 2-D input. The layer convolves the
input by moving the filters along the input vertically and horizontally and computing the dot product
of the weights and the input, and then adding a bias term.

The dimensions that the layer convolves over depends on the layer input:

• For 2-D image input (data with four dimensions corresponding to pixels in two spatial dimensions,
the channels, and the observations), the layer convolves over the spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer convolves over the two
spatial dimensions.

• For 1-D image sequence input (data with four dimensions corresponding to the pixels in one
spatial dimension, the channels, the observations, and the time steps), the layer convolves over
the spatial and time dimensions.

Creation

Syntax
layer = convolution2dLayer(filterSize,numFilters)
layer = convolution2dLayer(filterSize,numFilters,Name,Value)

Description

layer = convolution2dLayer(filterSize,numFilters) creates a 2-D convolutional layer
and sets the FilterSize and NumFilters properties.

layer = convolution2dLayer(filterSize,numFilters,Name,Value) sets the optional
Stride, DilationFactor, NumChannels, “Parameters and Initialization” on page 1-380, “Learning
Rate and Regularization” on page 1-382, and Name properties using name-value pairs. To specify
input padding, use the 'Padding' name-value pair argument. For example,
convolution2dLayer(11,96,'Stride',4,'Padding',1) creates a 2-D convolutional layer with
96 filters of size [11 11], a stride of [4 4], and padding of size 1 along all edges of the layer input.
You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: convolution2dLayer(3,16,'Padding','same') creates a 2-D convolutional layer
with 16 filters of size [3 3] and 'same' padding. At training time, the software calculates and sets
the size of the padding so that the layer output has the same size as the input.

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If
the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input

and padding of size b to the left and right.
• Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l

to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
2-D Convolution

FilterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector [h w] of two positive integers, where h is the
height and w is the width. FilterSize defines the size of the local regions to which the neurons
connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the height
and width.
Example: [5 5] specifies filters with a height of 5 and a width of 5.

NumFilters — Number of filters
positive integer

This property is read-only.
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Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the layer output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector [a b] of two
positive integers, where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both step sizes.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

DilationFactor — Factor for dilated convolution
[1 1] (default) | vector of two positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector [h w] of two
positive integers, where h is the vertical dilation and w is the horizontal dilation. When creating the
layer, you can specify DilationFactor as a scalar to use the same value for both horizontal and
vertical dilations.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3
filter with the dilation factor [2 2] is equivalent to a 5-by-5 filter with zeros between the elements.
Example: [2 3]

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b l r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, l is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
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size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

Padding — Size of padding
[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When
creating a layer, use the 'Padding' name-value pair argument to specify the padding size.

Size of padding to apply to input borders vertically and horizontally, specified as a vector [a b] of
two nonnegative integers, where a is the padding applied to the top and bottom of the input data and
b is the padding applied to the left and right.
Example: [1 1] adds one row of padding to the top and bottom, and one column of padding to the
left and right of the input.

PaddingValue — Value to pad data
0 (default) | scalar | 'symmetric-include-edge' | 'symmetric-exclude-edge' | 'replicate'

Value to pad data, specified as one of the following:

PaddingValue Description Example
Scalar Pad with the specified scalar

value.
3 1 4
1 5 9
2 6 5

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 3 1 4 0 0
0 0 1 5 9 0 0
0 0 2 6 5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values.

3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5
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PaddingValue Description Example
'symmetric-exclude-edge' Pad using mirrored values of the

input, excluding the edge
values. 3 1 4

1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3

'replicate' Pad using repeated border
elements of the input

3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NumChannels — Number of input channels
'auto' (default) | positive integer

This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [4] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*NumFilters.

• 'he' – Initialize the weights with the He initializer [5]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*NumChannels.
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• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-NumChannels-by-
NumFilters array.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-NumFilters array.
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Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Convolutional Layer

Create a convolutional layer with 96 filters, each with a height and width of 11. Use a stride (step
size) of 4 in the horizontal and vertical directions.

layer = convolution2dLayer(11,96,'Stride',4)

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
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        FilterSize: [11 11]
       NumChannels: 'auto'
        NumFilters: 96
            Stride: [4 4]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Include a convolutional layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Specify Initial Weights and Biases in Convolutional Layer

To specify the weights and bias initializer functions, use the WeightsInitializer and
BiasInitializer properties respectively. To specify the weights and biases directly, use the
Weights and Bias properties respectively.

Specify Initialization Functions

Create a convolutional layer with 32 filters, each with a height and width of 5 and specify the weights
initializer to be the He initializer.

filterSize = 5;
numFilters = 32;
layer = convolution2dLayer(filterSize,numFilters, ...
    'WeightsInitializer','he')

layer = 
  Convolution2DLayer with properties:
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              Name: ''

   Hyperparameters
        FilterSize: [5 5]
       NumChannels: 'auto'
        NumFilters: 32
            Stride: [1 1]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Note that the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Custom Initialization Functions

To specify your own initialization function for the weights and biases, set the WeightsInitializer
and BiasInitializer properties to a function handle. For these properties, specify function
handles that take the size of the weights and biases as input and output the initialized value.

Create a convolutional layer with 32 filters, each with a height and width of 5 and specify initializers
that sample the weights and biases from a Gaussian distribution with a standard deviation of 0.0001.

filterSize = 5;
numFilters = 32;

layer = convolution2dLayer(filterSize,numFilters, ...
    'WeightsInitializer', @(sz) rand(sz) * 0.0001, ...
    'BiasInitializer', @(sz) rand(sz) * 0.0001)

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5]
       NumChannels: 'auto'
        NumFilters: 32
            Stride: [1 1]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []
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  Show all properties

Again, the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Weights and Bias Directly

Create a fully connected layer with an output size of 10 and set the weights and bias to W and b in the
MAT file Conv2dWeights.mat respectively.

filterSize = 5;
numFilters = 32;
load Conv2dWeights

layer = convolution2dLayer(filterSize,numFilters, ...
    'Weights',W, ...
    'Bias',b)

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5]
       NumChannels: 3
        NumFilters: 32
            Stride: [1 1]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [0 0 0 0]
      PaddingValue: 0

   Learnable Parameters
           Weights: [5x5x3x32 double]
              Bias: [1x1x32 double]

  Show all properties

Here, the Weights and Bias properties contain the specified values. At training time, if these
properties are non-empty, then the software uses the specified values as the initial weights and
biases. In this case, the software does not use the initializer functions.

Create Convolutional Layer That Fully Covers Input

Suppose the size of the input is 28-by-28-by-1. Create a convolutional layer with 16 filters, each with
a height of 6 and a width of 4. Set the horizontal and vertical stride to 4.

Make sure the convolution covers the input completely. For the convolution to fully cover the input,
both the horizontal and vertical output dimensions must be integer numbers. For the horizontal
output dimension to be an integer, one row of padding is required on the top and bottom of the
image: (28 – 6+ 2 * 1)/4 + 1 = 7. For the vertical output dimension to be an integer, no zero padding
is required: (28 – 4+ 2 * 0)/4 + 1 = 7.
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Construct the convolutional layer.

layer = convolution2dLayer([6 4],16,'Stride',4,'Padding',[1 0])

layer = 
  Convolution2DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [6 4]
       NumChannels: 'auto'
        NumFilters: 16
            Stride: [4 4]
    DilationFactor: [1 1]
       PaddingMode: 'manual'
       PaddingSize: [1 1 0 0]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Algorithms
2-D Convolutional Layer

A 2-D convolutional layer applies sliding convolutional filters to 2-D input. The layer convolves the
input by moving the filters along the input vertically and horizontally, computing the dot product of
the weights and the input, and then adding a bias term.

The dimensions that the layer convolves over depends on the layer input:

• For 2-D image input (data with four dimensions corresponding to pixels in two spatial dimensions,
the channels, and the observations), the layer convolves over the spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer convolves over the two
spatial dimensions.

• For 1-D image sequence input (data with four dimensions corresponding to the pixels in one
spatial dimension, the channels, the observations, and the time steps), the layer convolves over
the spatial and time dimensions.

The convolutional layer consists of various components.1

Filters and Stride

A convolutional layer consists of neurons that connect to subregions of the input images or the
outputs of the previous layer. The layer learns the features localized by these regions while scanning
through an image. When creating a layer using the convolution2dLayer function, you can specify
the size of these regions using the filterSize input argument.

1 Image credit: Convolution arithmetic (License)
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For each region, the trainNetwork function computes a dot product of the weights and the input,
and then adds a bias term. A set of weights that is applied to a region in the image is called a filter.
The filter moves along the input image vertically and horizontally, repeating the same computation for
each region. In other words, the filter convolves the input.

This image shows a 3-by-3 filter scanning through the input. The lower map represents the input and
the upper map represents the output.

The step size with which the filter moves is called a stride. You can specify the step size with the
Stride name-value pair argument. The local regions that the neurons connect to can overlap
depending on the filterSize and 'Stride' values.

This image shows a 3-by-3 filter scanning through the input with a stride of 2. The lower map
represents the input and the upper map represents the output.

The number of weights in a filter is h * w * c, where h is the height, and w is the width of the filter,
respectively, and c is the number of channels in the input. For example, if the input is a color image,
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the number of color channels is 3. The number of filters determines the number of channels in the
output of a convolutional layer. Specify the number of filters using the numFilters argument with
the convolution2dLayer function.

Dilated Convolutions

A dilated convolution is a convolution in which the filters are expanded by spaces inserted between
the elements of the filter. Specify the dilation factor using the 'DilationFactor' property.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3
filter with the dilation factor [2 2] is equivalent to a 5-by-5 filter with zeros between the elements.

This image shows a 3-by-3 filter dilated by a factor of two scanning through the input. The lower map
represents the input and the upper map represents the output.

Feature Maps

As a filter moves along the input, it uses the same set of weights and the same bias for the
convolution, forming a feature map. Each feature map is the result of a convolution using a different
set of weights and a different bias. Hence, the number of feature maps is equal to the number of
filters. The total number of parameters in a convolutional layer is ((h*w*c + 1)*Number of Filters),
where 1 is the bias.
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Padding

You can also apply padding to input image borders vertically and horizontally using the 'Padding'
name-value pair argument. Padding is values appended to the borders of a the input to increase its
size. By adjusting the padding, you can control the output size of the layer.

This image shows a 3-by-3 filter scanning through the input with padding of size 1. The lower map
represents the input and the upper map represents the output.

Output Size

The output height and width of a convolutional layer is (Input Size – ((Filter Size – 1)*Dilation Factor
+ 1) + 2*Padding)/Stride + 1. This value must be an integer for the whole image to be fully covered.
If the combination of these options does not lead the image to be fully covered, the software by
default ignores the remaining part of the image along the right and bottom edges in the convolution.
Number of Neurons

The product of the output height and width gives the total number of neurons in a feature map, say
Map Size. The total number of neurons (output size) in a convolutional layer is Map Size*Number of
Filters.

For example, suppose that the input image is a 32-by-32-by-3 color image. For a convolutional layer
with eight filters and a filter size of 5-by-5, the number of weights per filter is 5 * 5 * 3 = 75, and the
total number of parameters in the layer is (75 + 1) * 8 = 608. If the stride is 2 in each direction and
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padding of size 2 is specified, then each feature map is 16-by-16. This is because (32 – 5 + 2 * 2)/2 +
1 = 16.5, and some of the outermost padding to the right and bottom of the image is discarded.
Finally, the total number of neurons in the layer is 16 * 16 * 8 = 2048.

Usually, the results from these neurons pass through some form of nonlinearity, such as rectified
linear units (ReLU).

Learnable Parameters

You can adjust the learning rates and regularization options for the layer using name-value pair
arguments while defining the convolutional layer. If you choose not to specify these options, then
trainNetwork uses the global training options defined with the trainingOptions function. For
details on global and layer training options, see “Set Up Parameters and Train Convolutional Neural
Network”.

Number of Layers

A convolutional neural network can consist of one or multiple convolutional layers. The number of
convolutional layers depends on the amount and complexity of the data.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of Convolution2DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SSCB" (spatial, spatial, channel, batch) "SSCB" (spatial, spatial, channel, batch)
"SCBT" (spatial, channel, batch, time) "SCBT" (spatial, channel, batch, time)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCBT" (spatial, spatial, channel, batch, time)
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Version History
Introduced in R2016a

Default weights initialization is Glorot
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot
initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of the layer to 'narrow-normal'.

References
[1] LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.

"Handwritten Digit Recognition with a Back-Propagation Network." In Advances in Neural
Information Processing Systems 2 (D. Touretzky, ed.). San Francisco: Morgan Kaufmann,
1990.

[2] LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. ''Gradient-Based Learning Applied to Document
Recognition.'' Proceedings of the IEEE. Vol. 86, Number 11, 1998, pp. 2278–2324.

[3] Murphy, K. P. Machine Learning: A Probabilistic Perspective. Cambridge, MA: MIT Press, 2012.

[4] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward
Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[5] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation, the PaddingValue parameter must be equal to 0, which is the default value.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, the PaddingValue parameter must be equal to 0, which is the default value.
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See Also
trainNetwork | reluLayer | batchNormalizationLayer | maxPooling2dLayer |
fullyConnectedLayer | groupedConvolution2dLayer | Deep Network Designer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”
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convolution3dLayer
3-D convolutional layer

Description
A 3-D convolutional layer applies sliding cuboidal convolution filters to 3-D input. The layer convolves
the input by moving the filters along the input vertically, horizontally, and along the depth, computing
the dot product of the weights and the input, and then adding a bias term.

The dimensions that the layer convolves over depends on the layer input:

• For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer convolves over the spatial dimensions.

• For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer convolves over
the spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer convolves over the
spatial and time dimensions.

Creation

Syntax
layer = convolution3dLayer(filterSize,numFilters)
layer = convolution3dLayer(filterSize,numFilters,Name,Value)

Description

layer = convolution3dLayer(filterSize,numFilters) creates a 3-D convolutional layer
and sets the FilterSize and NumFilters properties.

layer = convolution3dLayer(filterSize,numFilters,Name,Value) sets the optional
Stride, DilationFactor, NumChannels, “Parameters and Initialization” on page 1-398, “Learning
Rate and Regularization” on page 1-399, and Name properties using name-value pairs. To specify
input padding, use the 'Padding' name-value pair argument. For example,
convolution3dLayer(11,96,'Stride',4,'Padding',1) creates a 3-D convolutional layer with
96 filters of size [11 11 11], a stride of [4 4 4], and padding of size 1 along all edges of the layer
input. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: convolution3dLayer(3,16,'Padding','same') creates a 3-D convolutional layer
with 16 filters of size [3 3 3] and 'same' padding. At training time, the software calculates and
sets the size of the padding so that the layer output has the same size as the input.

Padding — Input edge padding
0 (default) | array of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of
the input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, to the left and right, and to the front and back, if
possible. If the padding in a given dimension has an odd value, then the software adds the extra
padding to the input as postpadding. In other words, the software adds extra vertical padding to
the bottom, extra horizontal padding to the right, and extra depth padding to the back of the
input.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Three-element vector [a b c] of nonnegative integers — Add padding of size a to the top and

bottom, padding of size b to the left and right, and padding of size c to the front and back of the
input.

• 2-by-3 matrix [t l f;b r k] of nonnegative integers — Add padding of size t to the top, b to
the bottom, l to the left, r to the right, f to the front, and k to the back of the input. In other
words, the top row specifies the prepadding and the second row defines the postpadding in the
three dimensions.

Example: 'Padding',1 adds one row of padding to the top and bottom, one column of padding to
the left and right, and one plane of padding to the front and back of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
3-D Convolution

FilterSize — Height, width, and depth of filters
vector of three positive integers

Height, width, and depth of the filters, specified as a vector [h w d] of three positive integers,
where h is the height, w is the width, and d is the depth. FilterSize defines the size of the local
regions to which the neurons connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the
height, width, and depth.
Example: [5 5 5] specifies filters with a height, width, and depth of 5.

NumFilters — Number of filters
positive integer
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This property is read-only.

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the layer output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
depth. When creating the layer, you can specify Stride as a scalar to use the same value for step
sizes in all three directions.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DilationFactor — Factor for dilated convolution
[1 1 1] (default) | vector of three positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector [h w d] of
three positive integers, where h is the vertical dilation, w is the horizontal dilation, and d is the
dilation along the depth. When creating the layer, you can specify DilationFactor as a scalar to
use the same value for dilation in all three directions.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3-
by-3 filter with the dilation factor [2 2 2] is equivalent to a 5-by-5-by-5 filter with zeros between the
elements.
Example: [2 3 1] dilates the filter vertically by a factor of 2, horizontally by a factor of 3, and along
the depth by a factor of 1.

PaddingSize — Size of padding
[0 0 0;0 0 0] (default) | 2-by-3 matrix of nonnegative integers

Size of padding to apply to input borders, specified as 2-by-3 matrix [t l f;b r k] of nonnegative
integers, where t and b are the padding applied to the top and bottom in the vertical direction, l and
r are the padding applied to the left and right in the horizontal direction, and f and k are the padding
applied to the front and back along the depth. In other words, the top row specifies the prepadding
and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 2 4;1 2 4] adds one row of padding to the top and bottom, two columns of padding
to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'
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Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify
when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and
stride is the stride in the corresponding dimension. The software adds the same amount of
padding to the top and bottom, to the left and right, and to the front and back, if possible. If the
padding in a given dimension has an odd value, then the software adds the extra padding to the
input as postpadding. In other words, the software adds extra vertical padding to the bottom,
extra horizontal padding to the right, and extra depth padding to the back of the input.

PaddingValue — Value to pad data
0 (default) | scalar | 'symmetric-include-edge' | 'symmetric-exclude-edge' | 'replicate'

Value to pad data, specified as one of the following:

PaddingValue Description Example
Scalar Pad with the specified scalar

value.
3 1 4
1 5 9
2 6 5

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 3 1 4 0 0
0 0 1 5 9 0 0
0 0 2 6 5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values.

3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5

'symmetric-exclude-edge' Pad using mirrored values of the
input, excluding the edge
values. 3 1 4

1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
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PaddingValue Description Example
'replicate' Pad using repeated border

elements of the input
3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NumChannels — Number of input channels
'auto' (default) | positive integer

This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.
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The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-FilterSize(3)-by-
NumChannels-by-NumFilters array.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-1-by-NumFilters array.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.
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The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)
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This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 3-D Convolution Layer

Create a 3-D convolution layer with 16 filters, each with a height, width, and depth of 5. Use a stride
(step size) of 4 in all three directions.

layer = convolution3dLayer(5,16,'Stride',4)

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5 5]
       NumChannels: 'auto'
        NumFilters: 16
            Stride: [4 4 4]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]
      PaddingValue: 0
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   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Include a 3-D convolution layer in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,16,'Stride',4)
    reluLayer
    maxPooling3dLayer(2,'Stride',4)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input         28x28x28x3 images with 'zerocenter' normalization
     2   ''   3-D Convolution         16 5x5x5 convolutions with stride [4  4  4] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   3-D Max Pooling         2x2x2 max pooling with stride [4  4  4] and padding [0  0  0; 0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Specify Initial Weights and Biases in 3-D Convolutional Layer

To specify the weights and bias initializer functions, use the WeightsInitializer and
BiasInitializer properties respectively. To specify the weights and biases directly, use the
Weights and Bias properties respectively.

Specify Initialization Functions

Create a 3-D convolutional layer with 32 filters, each with a height, width, and depth of 5. Specify the
weights initializer to be the He initializer.

filterSize = 5;
numFilters = 32;
layer = convolution3dLayer(filterSize,numFilters, ...
    'WeightsInitializer','he')

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5 5]
       NumChannels: 'auto'
        NumFilters: 32
            Stride: [1 1 1]
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    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Note that the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Custom Initialization Functions

To specify your own initialization function for the weights and biases, set the WeightsInitializer
and BiasInitializer properties to a function handle. For these properties, specify function
handles that take the size of the weights and biases as input and output the initialized value.

Create a convolutional layer with 32 filters, each with a height, width, and depth of 5. Specify
initializers that sample the weights and biases from a Gaussian distribution with a standard deviation
of 0.0001.

filterSize = 5;
numFilters = 32;

layer = convolution3dLayer(filterSize,numFilters, ...
    'WeightsInitializer', @(sz) rand(sz) * 0.0001, ...
    'BiasInitializer', @(sz) rand(sz) * 0.0001)

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5 5]
       NumChannels: 'auto'
        NumFilters: 32
            Stride: [1 1 1]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Again, the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.
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Specify Weights and Bias Directly

Create a 3-D convolutional layer compatible with color images. Set the weights and bias to W and b in
the MAT file Conv3dWeights.mat respectively.

filterSize = 5;
numFilters = 32;
load Conv3dWeights

layer = convolution3dLayer(filterSize,numFilters, ...
    'Weights',W, ...
    'Bias',b)

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [5 5 5]
       NumChannels: 3
        NumFilters: 32
            Stride: [1 1 1]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]
      PaddingValue: 0

   Learnable Parameters
           Weights: [5-D double]
              Bias: [1x1x1x32 double]

  Show all properties

Here, the Weights and Bias properties contain the specified values. At training time, if these
properties are non-empty, then the software uses the specified values as the initial weights and
biases. In this case, the software does not use the initializer functions.

Create Convolutional Layer That Fully Covers 3-D Input

Suppose the size of the input is 28-by-28-by-28-by-1. Create a 3-D convolutional layer with 16 filters,
each with a height of 6, a width of 4, and a depth of 5. Set the stride in all dimensions to 4.

Make sure the convolution covers the input completely. For the convolution to fully cover the input,
the output dimensions must be integer numbers. When there is no dilation, the i-th output dimension
is calculated as (imageSize(i) - filterSize(i) + padding(i)) / stride(i) + 1.

• For the horizontal output dimension to be an integer, two rows of padding are required: (28 – 6 +
2)/4 + 1 = 7. Distribute the padding symmetrically by adding one row of padding at the top and
bottom of the image.

• For the vertical output dimension to be an integer, no padding is required: (28 – 4+ 0)/4 + 1 = 7.
• For the depth output dimension to be an integer, one plane of padding is required: (28 – 5 + 1)/4 +

1 = 7. You must distribute the padding asymmetrically across the front and back of the image.
This example adds one plane of padding to the back of the image.
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Construct the convolutional layer. Specify 'Padding' as a 2-by-3 matrix. The first row specifies
prepadding and the second row specifies postpadding in the three dimensions.

layer = convolution3dLayer([6 4 5],16,'Stride',4,'Padding',[1 0 0;1 0 1])

layer = 
  Convolution3DLayer with properties:

              Name: ''

   Hyperparameters
        FilterSize: [6 4 5]
       NumChannels: 'auto'
        NumFilters: 16
            Stride: [4 4 4]
    DilationFactor: [1 1 1]
       PaddingMode: 'manual'
       PaddingSize: [2x3 double]
      PaddingValue: 0

   Learnable Parameters
           Weights: []
              Bias: []

  Show all properties

Algorithms
3-D Convolutional Layer

A convolutional layer applies sliding convolutional filters to the input. A 3-D convolutional layer
extends the functionality of a 2-D convolutional layer to a third dimension, depth. The layer convolves
the input by moving the filters along the input vertically, horizontally, and along the depth, computing
the dot product of the weights and the input, and then adding a bias term. To learn more, see the
definition of convolutional layer on page 1-387 on the convolution2dLayer reference page.

The dimensions that the layer convolves over depends on the layer input:

• For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer convolves over the spatial dimensions.

• For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer convolves over
the spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer convolves over the
spatial and time dimensions.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:
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• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of Convolution3DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SSSCB" (spatial, spatial, spatial, channel, batch) "SSSCB" (spatial, spatial, spatial, channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCBT" (spatial, spatial, channel, batch, time)
"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

Version History
Introduced in R2019a

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

See Also
convolution2dLayer | globalAveragePooling3dLayer | maxPooling3dLayer |
image3dInputLayer | averagePooling3dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
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“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”
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crop2dLayer
2-D crop layer

Description
A 2-D crop layer applies 2-D cropping to the input.

There are two inputs to this layer:

• 'in' — The feature map that will be cropped
• 'ref' — A reference layer used to determine the size, [height width], of the cropped output

Once you create this layer, you can add it to a layerGraph to make serial connections between
layers. To connect the crop layer to other layers, call connectLayers and specify the input names.
The connectLayers function returns a connected LayerGraph object ready to train a network.
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Creation

Syntax
layer = crop2dLayer(Mode)
layer = crop2dLayer(Location)
layer = crop2dLayer( ___ ,'Name',Name)

Description

layer = crop2dLayer(Mode) returns a layer that crops an input feature map, and sets the Mode
property.

layer = crop2dLayer(Location) returns a layer that crops an input feature map using a
rectangular window, and sets the Location property that indicates the position of the window.

layer = crop2dLayer( ___ ,'Name',Name) creates a layer for cropping and sets the optional
Name property.

Properties
Mode — Cropping mode
'centercrop' (default) | 'custom'

Cropping mode, specified as 'centercrop' or 'custom'.

Mode Description
'centercrop' The location of the cropping window is the center of the input

feature map.
'custom' The location of the cropping window is based on the Location

property. This value is automatically set when the Location
property is specified as a 2-element row vector.

Data Types: char

Location — Cropping window location
'auto' (default) | 2-element row vector

Cropping window location, specified as 'auto' or a 2-element row vector.

Location Description
2-element row vector in the format
[x y]

The upper-left corner of the cropping window is at the location
[x y] of the input feature map. x indicates the location in the
horizontal direction and y is the vertical direction.

'auto' The cropping window is located at the center of the input
feature map. This value is automatically set when the Mode
property is specified as 'centercrop'.

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames — Input names
{'in' 'ref'} (default)

Input names of the layer. This layer has two inputs, named 'in' and 'ref'.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 2-D Crop Layer

Create a 2-D crop layer and connect both of the inputs using a layerGraph object.

Create the layers.

layers = [
     imageInputLayer([32 32 3],'Name','image')
     crop2dLayer('centercrop','Name','crop')]

layers = 
  2x1 Layer array with layers:

     1   'image'   Image Input   32x32x3 images with 'zerocenter' normalization
     2   'crop'    Crop 2D       center crop
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Create a layerGraph. The first input of crop2dLayer is automatically connected to the first output
of the image input layer.

lgraph = layerGraph(layers)

lgraph = 
  LayerGraph with properties:

         Layers: [2x1 nnet.cnn.layer.Layer]
    Connections: [1x2 table]
     InputNames: {'image'}
    OutputNames: {1x0 cell}

Connect the image input layer to the "ref" input of the 2-D crop layer.

lgraph = connectLayers(lgraph,'image','crop/ref')  

lgraph = 
  LayerGraph with properties:

         Layers: [2x1 nnet.cnn.layer.Layer]
    Connections: [2x2 table]
     InputNames: {'image'}
    OutputNames: {1x0 cell}

Version History
Introduced in R2017b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
pixelClassificationLayer | layerGraph | fcnLayers | segnetLayers | unetLayers |
trainNetwork | semanticseg | deeplabv3plusLayers

Topics
“Getting Started with Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)
“Deep Learning in MATLAB”
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crop3dLayer
3-D crop layer

Description
A 3-D crop layer crops a 3-D volume to the size of the input feature map.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names
'in' and 'ref'. Use the input names when connecting or disconnecting the layer by using
connectLayers or disconnectLayers. All inputs to a 3-D crop layer must have the same number
of dimensions.

Creation

Syntax
layer = crop3dLayer
layer = crop3dLayer([X Y Z])
layer = crop3dLayer( ___ ,'Name',Name)

Description

layer = crop3dLayer creates a 3-D crop layer that crops an input feature map from the center of
the feature map. The size of the cropped region is equal to the size of a second reference input
feature map.

layer = crop3dLayer([X Y Z]) also sets the cropLocation property with the (X,Y,Z) coordinate
of the crop window. X is the coordinate in the horizontal direction, Y is the coordinate in the vertical
direction, and Z is the coordinate in the depth direction.

layer = crop3dLayer( ___ ,'Name',Name) also sets the Name property. To create a network
containing a 3-D crop layer, you must specify a layer name.

Properties
Crop

cropLocation — Crop location
'centercrop' (default) | three-element numeric vector

Crop location, specified as 'centercrop' or a three-element numeric vector representing the (x,y,z)
coordinate of the crop window.

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer accepts two inputs.
Data Types: double

InputNames — Input names
{'in','ref'} (default)

Input names of the layer, specified as {'in','ref'}. This layer accepts two inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect 3-D Crop Layer

Create a 3-D crop layer and connect both of its inputs using a layerGraph object.

layers = [
    image3dInputLayer([32 32 32 3],'Name','image')
    convolution3dLayer(3,16,'Padding','same','Name','conv')
    crop3dLayer('Name','crop')
    concatenationLayer(4,2,'Name','concat')
    ]

layers = 
  4x1 Layer array with layers:

     1   'image'    3-D Image Input   32x32x32x3 images with 'zerocenter' normalization
     2   'conv'     3-D Convolution   16 3x3x3 convolutions with stride [1  1  1] and padding 'same'
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     3   'crop'     Crop 3D           center crop
     4   'concat'   Concatenation     Concatenation of 2 inputs along dimension 4

Create a layer graph. The first input of the 3-D crop layer is automatically connected to the output of
the 3-D convolutional layer.

lgraph = layerGraph(layers);

Add a max pooling layer to the layer graph.

maxPool = maxPooling3dLayer(2,'stride',2,'Name','pool');
lgraph = addLayers(lgraph,maxPool);
lgraph = connectLayers(lgraph,'image','pool');

Connect the second input of the crop layer to the output of the max pooling layer.

lgraph = connectLayers(lgraph,'pool','crop/ref');

Concatenate the crop layer output and the max pooling layer output.

lgraph = connectLayers(lgraph,'pool','concat/in2');

Display the layer graph.

plot(lgraph)
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Version History
Introduced in R2019b

See Also
trainNetwork | layerGraph | crop2dLayer

Topics
“Deep Learning in MATLAB”
“Set Up Parameters and Train Convolutional Neural Network”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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crossChannelNormalizationLayer
Channel-wise local response normalization layer

Description
A channel-wise local response (cross-channel) normalization layer carries out channel-wise
normalization.

Creation
Syntax
layer = crossChannelNormalizationLayer(windowChannelSize)
layer = crossChannelNormalizationLayer(windowChannelSize,Name,Value)

Description

layer = crossChannelNormalizationLayer(windowChannelSize) creates a channel-wise
local response normalization layer and sets the WindowChannelSize property.

layer = crossChannelNormalizationLayer(windowChannelSize,Name,Value) sets the
optional properties WindowChannelSize, Alpha, Beta, K, and Name using name-value pairs. For
example, crossChannelNormalizationLayer(5,'K',1) creates a local response normalization
layer for channel-wise normalization with a window size of 5 and K hyperparameter 1. You can specify
multiple name-value pairs. Enclose each property name in single quotes.

Properties
Cross-Channel Normalization

WindowChannelSize — Size of the channel window
positive integer

Size of the channel window, which controls the number of channels that are used for the
normalization of each element, specified as a positive integer.

If WindowChannelSize is even, then the window is asymmetric. The software looks at the previous
floor((w-1)/2) channels and the following floor(w/2) channels. For example, if
WindowChannelSize is 4, then the layer normalizes each element by its neighbor in the previous
channel and by its neighbors in the next two channels.
Example: 5

Alpha — α hyperparameter in normalization
0.0001 (default) | numeric scalar

α hyperparameter in the normalization (the multiplier term), specified as a numeric scalar.
Example: 0.0002
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Beta — β hyperparameter in normalization
0.75 (default) | numeric scalar

β hyperparameter in the normalization, specified as a numeric scalar. The value of Beta must be
greater than or equal to 0.01.
Example: 0.8

K — K hyperparameter in the normalization
2 (default) | numeric scalar

K hyperparameter in the normalization, specified as a numeric scalar. The value of K must be greater
than or equal to 10-5.
Example: 2.5

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.
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Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Local Response Normalization Layer

Create a local response normalization layer for channel-wise normalization, where a window of five
channels normalizes each element, and the additive constant for the normalizer K is 1.

layer = crossChannelNormalizationLayer(5,'K',1)

layer = 
  CrossChannelNormalizationLayer with properties:

                 Name: ''

   Hyperparameters
    WindowChannelSize: 5
                Alpha: 1.0000e-04
                 Beta: 0.7500
                    K: 1

Include a local response normalization layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    crossChannelNormalizationLayer(3)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input                   28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution               20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                          ReLU
     4   ''   Cross Channel Normalization   cross channel normalization with 3 channels per element
     5   ''   Fully Connected               10 fully connected layer
     6   ''   Softmax                       softmax
     7   ''   Classification Output         crossentropyex

Limitations
• This layer does not support 3-D image inputs or vector sequence inputs.
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More About
Local Response Normalization

A channel-wise local response (cross-channel) normalization layer carries out channel-wise
normalization.

This layer performs a channel-wise local response normalization. It usually follows the ReLU
activation layer. This layer replaces each element with a normalized value it obtains using the
elements from a certain number of neighboring channels (elements in the normalization window).
That is, for each element x in the input, trainNetwork computes a normalized value x′ using

x′ = x
K + α * ss

windowChannelSize
β ,

where K, α, and β are the hyperparameters in the normalization, and ss is the sum of squares of the
elements in the normalization window [1]. You must specify the size of the normalization window
using the windowChannelSize argument of the crossChannelNormalizationLayer function.
You can also specify the hyperparameters using the Alpha, Beta, and K name-value pair arguments.

The previous normalization formula is slightly different than what is presented in [1]. You can obtain
the equivalent formula by multiplying the alpha value by the windowChannelSize.

Version History
Introduced in R2016a

References
[1] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional

Neural Networks." Advances in Neural Information Processing Systems. Vol 25, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
averagePooling2dLayer | convolution2dLayer | maxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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crosschannelnorm
Cross channel square-normalize using local responses

Syntax
Y = crosschannelnorm(X,windowSize)
Y = crosschannelnorm(X,windowSize,'DataFormat',FMT)
Y = crosschannelnorm( ___ ,Name,Value)

Description
The cross-channel normalization operation uses local responses in different channels to normalize
each activation. Cross-channel normalization typically follows a relu operation. Cross-channel
normalization is also known as local response normalization.

Note This function applies the cross-channel normalization operation to dlarray data. If you want
to apply cross-channel normalization within a layerGraph object or Layer array, use the following
layer:

• crossChannelNormalizationLayer

Y = crosschannelnorm(X,windowSize) normalizes each element of X with respect to local
values in the same position in nearby channels. The normalized elements in Y are calculated from the
elements in X using the following formula.

y = x
K + α * ss

windowSize
β

where y is an element of Y, x is the corresponding element of X, ss is the sum of the squares of the
elements in the channel region defined by windowSize, and α, β, and K are hyperparameters in the
normalization.

Y = crosschannelnorm(X,windowSize,'DataFormat',FMT) also specifies the dimension
format FMT when X is an unformatted dlarray, in addition to the input arguments the previous
syntax. The output Y is an unformatted dlarray with the same dimension order as X.

Y = crosschannelnorm( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example, 'Beta',0.8 sets
the value of the β contrast constant to 0.8.

Examples

Normalize Data Using Values of Adjacent Channels

Use crosschannelnorm to normalize each observation of a mini-batch using values from adjacent
channels.
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Create the input data as ten observations of random values with a height and width of eight and six
channels.

height = 8;
width = 8;
channels = 6;
observations = 10;

X = rand(height,width,channels,observations);
X = dlarray(X,'SSCB');

Compute the cross-channel normalization using a channel window size of three.

Y = crosschannelnorm(X,3);

Each value in each observation of X is normalized using the element in the previous channel and the
element in the next channel.

Compare Normalized and Original Data

Values at the edges of an array are normalized using contributions from fewer channels, depending
on the size of the channel window.

Create the input data as an array of ones with a height and width of two and three channels.

height = 2;
width = 2;
channels = 3;

X = ones(height,width,channels);
dlX = dlarray(X);

Normalize the data using a channel-window size of 3, an α of 1, a β of 1, and a K of 1e-5. Specify a
data format of 'SSC'.

dlY = crosschannelnorm(dlX,3,'Alpha',1,'Beta',1,'K',1e-5,'DataFormat','SSC');

Compare the values in the original and the normalized data by reshaping the three-channel arrays
into 2-D matrices.

dlX = reshape(dlX,2,6)

dlX = 
  2x6 dlarray

     1     1     1     1     1     1
     1     1     1     1     1     1

dlY = reshape(dlY,2,6)

dlY = 
  2x6 dlarray

    1.5000    1.5000    1.0000    1.0000    1.5000    1.5000
    1.5000    1.5000    1.0000    1.0000    1.5000    1.5000
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For the first and last channels, the sum of squares is calculated using only two values. For the middle
channel, the sum of squares contains the values of all three channels.

Use Cross-Channel Normalization in a Model Function

Typically, the cross-channel normalization operation follows a ReLU operation. For example, the
GoogLeNet architecture contains convolutional operations followed by ReLU and cross-channel
normalization operations.

The function modelFunction defined at the end of this example shows how you can use cross-
channel normalization in a model. Use modelFunction to find the grouped convolution and ReLU
activation of some input data and then normalize the result using cross-channel normalization with a
window size of 5.

Create the input data as a single observation of random values with a height and width of ten and
four channels.

height = 10;
width = 10;
channels = 4;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Create the parameters for the grouped convolution operation. For the weights, use a filter height and
width of three, two channels per group, three filters per group, and two groups. Use a value of zero
for the bias.

filterSize = [3 3];
numChannelsPerGroup = 2;
numFiltersPerGroup = 3 ;
numGroups = 2;

params = struct;
params.conv.weights = rand(filterSize(1),filterSize(2),numChannelsPerGroup,numFiltersPerGroup,numGroups);
params.conv.bias = 0;

Apply the modelFunction to the data dlX.

dlY = modelFunction(dlX,params);

function dlY = modelFunction(dlX,params)

dlY = dlconv(dlX,params.conv.weights,params.conv.bias);
dlY = relu(dlY);
dlY = crosschannelnorm(dlY,5);

end
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Input Arguments
X — Input data
dlarray

Input data, specified as a dlarray with or without data format. When X is an unformatted dlarray,
you must specify the data format using the 'DataFormat',FMT name-value pair.

You can specify up to two dimensions in X as 'S' dimensions.
Data Types: single | double

windowSize — Size of channel window
scalar integer

Size of the channel window, which controls the number of channels that are used for the
normalization of each element, specified as a positive integer.

If windowSize is even, then the window is asymmetric. The software looks at the previous
floor((windowSize-1)/2) channels and the following floor((windowSize)/2) channels. For
example, if windowSize is 4, then the function normalizes each element by its neighbor in the
previous channel and by its neighbors in the next two channels.
Example: 3
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',2e-4,'Beta',0.8 sets the multiplicative normalization constant to 0.0002 and
the contrast constant exponent to 0.8.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.
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You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

Alpha — Normalization constant (α)
1e-4 (default) | numeric scalar

Normalization constant (α) that multiplies the sum of the squared values, specified as the comma-
separated pair consisting of 'Alpha' and a numeric scalar. The default value is 1e-4.
Example: 'Alpha',2e-4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Beta — Contrast constant (β)
0.75 (default) | numeric scalar greater than or equal to 0.01

Contrast constant (β), specified as the comma-separated pair consisting of 'Beta' and a numeric
scalar greater than or equal to 0.01. The default value is 0.75.
Example: 'Beta',0.8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

K — Normalization hyperparameter (K)
2 (default) | numeric scalar greater than or equal to 1e-5

Normalization hyperparameter (K) used to avoid singularities in the normalization, specified as the
comma-separated pair consisting of 'K' and a numeric scalar greater than or equal to 1e-5. The
default value is 2.
Example: 'K',2.5
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Output Arguments
Y — Normalized data
dlarray

Normalized data, returned as a dlarray. The output Y has the same underlying data type as the
input X.

If the input data X is a formatted dlarray, Y has the same dimension labels as X. If the input data is
an unformatted dlarray, Y is an unformatted dlarray with the same dimension order as the input
data.

More About
Cross-Channel Normalization

The crosschannelnorm function normalizes each activation response based on the local responses
in a specified channel window. For more information, see the definition of “Local Response
Normalization” on page 1-419 on the crossChannelNormalizationLayer reference page.
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Version History
Introduced in R2020a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlgradient | dlfeval | avgpool | dlconv | maxpool

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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crossentropy
Cross-entropy loss for classification tasks

Syntax
loss = crossentropy(Y,targets)
loss = crossentropy(Y,targets,weights)
loss = crossentropy( ___ ,'DataFormat',FMT)
loss = crossentropy( ___ ,Name,Value)

Description
The cross-entropy operation computes the cross-entropy loss between network predictions and target
values for single-label and multi-label classification tasks.

The crossentropy function computes the cross-entropy loss between predictions and targets
represented as dlarray data. Using dlarray objects makes working with high dimensional data
easier by allowing you to label the dimensions. For example, you can label which dimensions
correspond to spatial, time, channel, and batch dimensions using the "S", "T", "C", and "B" labels,
respectively. For unspecified and other dimensions, use the "U" label. For dlarray object functions
that operate over particular dimensions, you can specify the dimension labels by formatting the
dlarray object directly, or by using the DataFormat option.

Note To calculate the cross-entropy loss within a layerGraph object or Layer array for use with
the trainNetwork function, use classificationLayer.

loss = crossentropy(Y,targets) returns the categorical cross-entropy loss between the
formatted dlarray object Y containing the predictions and the target values targets for single-
label classification tasks. The output loss is an unformatted scalar dlarray scalar.

For unformatted input data, use the 'DataFormat' option.

loss = crossentropy(Y,targets,weights) applies weights to the calculated loss values. Use
this syntax to weight the contributions of classes, observations, regions, or individual elements of the
input to the calculated loss values.

loss = crossentropy( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when
Y is not a formatted dlarray.

loss = crossentropy( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example,
'TargetCategories','independent' computes the cross-entropy loss for a multi-label
classification task.

Examples
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Cross-Entropy Loss for Single-Label Classification

Create an array of prediction scores for 12 observations over 10 classes.

numClasses = 10;
numObservations = 12;

Y = rand(numClasses,numObservations);
dlY = dlarray(Y,'CB');
dlY = softmax(dlY);

View the size and format of the prediction scores.

size(dlY)

ans = 1×2

    10    12

dims(dlY)

ans = 
'CB'

Create an array of targets encoded as one-hot vectors.

labels = randi(numClasses,[1 numObservations]);
targets = onehotencode(labels,1,'ClassNames',1:numClasses);

View the size of the targets.

size(targets)

ans = 1×2

    10    12

Compute the cross-entropy loss between the predictions and the targets.

loss = crossentropy(dlY,targets)

loss = 
  1x1 dlarray

    2.3343

Cross-Entropy Loss for Multi-Label Classification

Create an array of prediction scores for 12 observations over 10 classes.

numClasses = 10;
numObservations = 12;
Y = rand(numClasses,numObservations);
dlY = dlarray(Y,'CB');
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View the size and format of the prediction scores.

size(dlY)

ans = 1×2

    10    12

dims(dlY)

ans = 
'CB'

Create a random array of targets encoded as a numeric array of zeros and ones. Each observation
can have multiple classes.

targets = rand(numClasses,numObservations) > 0.75;
targets = single(targets);

View the size of the targets.

size(targets)

ans = 1×2

    10    12

Compute the cross-entropy loss between the predictions and the targets. To specify cross-entropy loss
for multi-label classification, set the 'TargetCategories' option to 'independent'.

loss = crossentropy(dlY,targets,'TargetCategories','independent')

loss = 
  1x1 single dlarray

    9.8853

Weighted Cross-Entropy Loss

Create an array of prediction scores for 12 observations over 10 classes.

numClasses = 10;
numObservations = 12;

Y = rand(numClasses,numObservations);
dlY = dlarray(Y,'CB');
dlY = softmax(dlY);

View the size and format of the prediction scores.

size(dlY)

ans = 1×2

1 Deep Learning Functions

1-428



    10    12

dims(dlY)

ans = 
'CB'

Create an array of targets encoded as one-hot vectors.

labels = randi(numClasses,[1 numObservations]);
targets = onehotencode(labels,1,'ClassNames',1:numClasses);

View the size of the targets.

size(targets)

ans = 1×2

    10    12

Compute the weighted cross-entropy loss between the predictions and the targets using a vector
class weights. Specify a weights format of 'UC' (unspecified, channel) using the 'WeightsFormat'
option.

weights = rand(1,numClasses);
loss = crossentropy(dlY,targets,weights,'WeightsFormat','UC')

loss = 
  1x1 dlarray

    1.1261

Input Arguments
Y — Predictions
dlarray | numeric array

Predictions, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When Y
is not a formatted dlarray, you must specify the dimension format using the DataFormat option.

If Y is a numeric array, targets must be a dlarray.

targets — Target classification labels
dlarray | numeric array

Target classification labels, specified as a formatted or unformatted dlarray or a numeric array.

Specify the targets as an array containing one-hot encoded labels with the same size and format as Y.
For example, if Y is a numObservations-by-numClasses array, then targets(n,i) = 1 if
observation n belongs to class i targets(n,i) = 0 otherwise.

If targets is a formatted dlarray, then its format must be the same as the format of Y, or the same
as DataFormat if Y is unformatted.
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If targets is an unformatted dlarray or a numeric array, then the function applies the format of Y
or the value of DataFormat to targets.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
order "S" (spatial), "C" (channel), "B" (batch), "T" (time), then "U" (unspecified). To ensure that the
dimensions of Y and targets are consistent, when Y is a formatted dlarray, also specify targets
as a formatted dlarray.

weights — Weights
dlarray | numeric array

Weights, specified as a dlarray or a numeric array.

To specify class weights, specify a vector with a 'C' (channel) dimension with size matching the 'C'
(channel) dimension of the X. Specify the 'C' (channel) dimension of the class weights by using a
formatted dlarray object or by using the 'WeightsFormat' option.

To specify observation weights, specify a vector with a 'B' (batch) dimension with size matching the
'B' (batch) dimension of the Y. Specify the 'B' (batch) dimension of the class weights by using a
formatted dlarray object or by using the 'WeightsFormat' option.

To specify weights for each element of the input independently, specify the weights as an array of the
same size as Y. In this case, if weights is not a formatted dlarray object, then the function uses the
same format as Y. Alternatively, specify the weights format using the 'WeightsFormat' option.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'TargetCategories','independent','DataFormat','CB' evaluates the cross-
entropy loss for multi-label classification tasks and specifies the dimension order of the input data as
'CB'

TargetCategories — Type of classification task
'exclusive' (default) | 'independent'

Type of classification task, specified as the comma-separated pair consisting of
'TargetCategories' and one of the following:

• 'exclusive' — Single-label classification. Each observation in the predictions Y is exclusively
assigned to one category. The function computes the loss between the target value for the single
category specified by targets and the corresponding prediction in Y, averaged over the number
of observations.

• 'independent'— Multi-label classification. Each observation in the predictions Y can be
assigned to one or more independent categories. The function computes the sum of the loss
between each category specified by targets and the predictions in Y for those categories,
averaged over the number of observations. Cross-entropy loss for this type of classification task is
also known as binary cross-entropy loss.
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Mask — Mask indicating which elements to include for loss computation
dlarray | logical array | numeric array

Mask indicating which elements to include for loss computation, specified as a dlarray object, a
logical array, or a numeric array with the same size as Y.

The function includes and excludes elements of the input data for loss computation when the
corresponding value in the mask is 1 and 0, respectively.

If Mask is a formatted dlarray object, then its format must match that of Y. If Mask is not a
formatted dlarray object, then the function uses the same format as Y.

If you specify the DataFormat option, then the function also uses the specified format for the mask.

The size of each dimension of Mask must match the size of the corresponding dimension in Y. The
default value is a logical array of ones.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
this order: "S" (spatial), "C" (channel), "B" (batch), "T" (time), and "U" (unspecified). For example,
dlarray objects automatically permute the dimensions of data with format "TSCSBS" to have format
"SSSCBT".

To ensure that the dimensions of Y and the mask are consistent, when Y is a formatted dlarray, also
specify the mask as a formatted dlarray.

Reduction — Mode for reducing array of loss values
"sum" (default) | "none"

Mode for reducing the array of loss values, specified as one of the following:

• "sum" — Sum all of the elements in the array of loss values. In this case, the output loss is
scalar.

• "none" — Do not reduce the array of loss values. In this case, the output loss is an unformatted
dlarray object with the same size as Y.

NormalizationFactor — Divisor for normalizing reduced loss
"batch-size" (default) | "all-elements" | "mask-included" | "none"

Divisor for normalizing the reduced loss when Reduction is "sum", specified as one of the following:

• "batch-size" — Normalize the loss by dividing it by the number of observations in X.
• "all-elements" — Normalize the loss by dividing it by the number of elements of X.
• "mask-included" — Normalize the loss by dividing the loss values by the number of included

elements specified by the mask for each observation independently. To use this option, you must
specify a mask using the Mask option.

• "none" — Do not normalize the loss.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.
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When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

WeightsFormat — Dimension order of weights
character vector | string scalar

Dimension order of the weights, specified as a character vector or string scalar that provides a label
for each dimension of the weights.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify WeightsFormat when weights is a numeric vector and Y has two or more
nonsingleton dimensions.

If weights is not a vector, or both weights and Y are vectors, then default value of WeightsFormat
is the same as the format of Y.
Data Types: char | string

Output Arguments
loss — Cross-entropy loss
dlarray

Cross-entropy loss, returned as an unformatted dlarray. The output loss is an unformatted
dlarray with the same underlying data type as the input Y.

The size of loss depends on the 'Reduction' option.
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Algorithms
Cross-Entropy Loss

For each element Yj of the input, the crossentropy function computes the corresponding cross-
entropy element-wise loss values using the formula

loss j = − T jlnY j + (1 − T j)ln(1 − Y j) ,

where Tj is the corresponding target value to Yj.

To reduce the loss values to a scalar, the function then reduces the element-wise loss using the
formula

loss = 1
N∑j m jw jloss j,

where N is the normalization factor, mj is the mask value for element j, and wj is the weight value for
element j.

If you do not opt to reduce the loss, then the function applies the mask and the weights to the loss
values directly:

loss j* = m jw jloss j

This table shows the loss formulations for different tasks.

Task Description Loss
Single-label classification Cross-entropy loss for mutually

exclusive classes. This is useful
when observations must have a
single label only.

loss =

− 1
N ∑

n = 1

N ∑
i = 1

K

TnilnYni,

where N and K are the numbers
of observations, and classes,
respectively.

Multi-label classification Cross-entropy loss for
independent classes. This is
useful when observations can
have multiple labels.

loss = − 1
N ∑

n = 1

N
∑

i = 1

K

Tniln(Yni) + (1 − Tni)ln(1

− Yni) ,

where N and K are the numbers
of observations and classes,
respectively.
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Task Description Loss
Single-label classification with
weighted classes

Cross-entropy loss with class
weights. This is useful for
datasets with imbalanced
classes.

loss =

− 1
N ∑

n = 1

N ∑
i = 1

K

wiTnilnYni,

where N and K are the numbers
of observations and classes,
respectively, and wi denotes the
weight for class i.

Sequence-to-sequence
classification

Cross-entropy loss with masked
time-steps. This is useful for
ignoring loss values that
correspond to padded data.

loss =

− 1
N ∑

n = 1

N ∑
t = 1

S

mnt∑
i = 1

K

TntilnYnti,

where N, S, and K are the
numbers of observations, time
steps, and classes, mnt denotes
the mask value for time step t of
observation n.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• Y
• targets
• weights
• 'Mask'

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
dlarray | dlgradient | dlfeval | softmax | sigmoid | huber | mse | l1loss | l2loss

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Network Using Model Function”
“Train Network with Multiple Outputs”
“List of Functions with dlarray Support”
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ctc
Connectionist temporal classification (CTC) loss for unaligned sequence classification

Syntax
loss = ctc(Y,targets,YMask,targetsMask)
loss = ctc(Y,targets,YMask,targetsMask,'DataFormat',FMT)
loss = ctc( ___ ,Name,Value)

Description
The CTC operation computes the connectionist temporal classification (CTC) loss between unaligned
sequences.

The ctc function computes the CTC loss between predictions and targets represented as dlarray
data. Using dlarray objects makes working with high dimensional data easier by allowing you to
label the dimensions. For example, you can label which dimensions correspond to spatial, time,
channel, and batch dimensions using the "S", "T", "C", and "B" labels, respectively. For unspecified
and other dimensions, use the "U" label. For dlarray object functions that operate over particular
dimensions, you can specify the dimension labels by formatting the dlarray object directly, or by
using the DataFormat option.

loss = ctc(Y,targets,YMask,targetsMask) returns the CTC loss between the formatted
dlarray object Y containing the predictions and the target values targets using the prediction and
target masks YMask and targetsMask, respectively.

For unformatted input data, use the 'DataFormat' option.

loss = ctc(Y,targets,YMask,targetsMask,'DataFormat',FMT) also specifies the
dimension format FMT when Y is not a formatted dlarray.

loss = ctc( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in previous syntaxes. For example, 'BlankIndex','last' specifies
a blank index corresponding to the last element of the vocabulary.

Examples

CTC Loss for Unaligned Sequences

Create an array of 2 target sequences of different lengths over 10 classes. The target sequences must
not contain the blank index which is 1 by default.

numObservations = 2;
numClasses = 10;

targets = cell(numObservations,1);
targets{1} = [2 3 5 7 9 2 3 5 3 2 3];
targets{2} = [2 3 3 3 4 4 4 6 8 8 8 10 3];
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Create random arrays of prediction sequences. The length of the prediction sequences must be
greater than or equal to the length plus the number of repeated indices of the corresponding target
sequence. In this case, the first sequence has length 11 with no repeated indices, the second
sequence has length 13 with 6 repeated indices.

Y = cell(numObservations,1);

Y{1} = rand(numClasses,11);
Y{2} = rand(numClasses,13 + 6);

View the cell arrays of predictions and targets

Y

Y=2×1 cell array
    {10×11 double}
    {10×19 double}

targets

targets=2×1 cell array
    {[     2 3 5 7 9 2 3 5 3 2 3]}
    {[2 3 3 3 4 4 4 6 8 8 8 10 3]}

Pad the prediction and target sequences in the second dimension using the padsequences function
and also return the corresponding mask.

[Y,YMask] = padsequences(Y,2);

Pad the targets using the padsequences function. The targets must be positive integers between 1
and the number of classes, and must not contain the blank index, so specify a padding value of 2.

[targets,targetsMask] = padsequences(targets,2,'PaddingValue',2);

The ctc function requires the targets and target mask specified as 2-D arrays, remove the singleton
channel dimension using the squeeze function.

targets = squeeze(targets);
targetsMask = squeeze(targetsMask);

Convert the padded prediction sequences and mask to dlarray with format 'CTB' (channel, time,
batch). Because formatted dlarray objects automatically sort the dimensions, keep the dimensions
of the targets and mask consistent by also converting them to a formatted dlarray objects with the
same formats.

dlY = dlarray(Y,'CTB');
YMask = dlarray(YMask,'CTB');

Similarly, convert the padded target sequences and mask to dlarray with format 'TB' (time, batch).

targets = dlarray(targets,'TB');
targetsMask = dlarray(targetsMask,'TB');

Compute the CTC loss between the predictions and the targets using the ctc function.

loss = ctc(dlY,targets,YMask,targetsMask)
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loss = 
  1×1 dlarray

   12.1568

Input Arguments
Y — Predictions
dlarray | numeric array

Predictions, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When Y
is not a formatted dlarray, you must specify the dimension format using the 'DataFormat' option.

The predictions Y must have a 'B' (batch), 'C' (channel), and 'T' (time) dimension and can have
different sequence lengths to the corresponding targets in targets.

If Y is a numeric array, then targets, YMask, or targetsMask must be a dlarray.

targets — Target sequences
dlarray | numeric array

Target sequences, specified as a formatted or unformatted dlarray or a numeric array.

Specify the targets as an array with dimensions corresponding to the observations and the time steps
of the target sequences. For example, specify the targets as a formatted dlarray object with format
'BT' (batch, time).

The targets must have the same number of observations as the predictions. The target values
corresponding to mask values equal to 1 must be positive integers between 1 and the number of
channels of Y and must not include the blank index.

If targets is a formatted dlarray, then its format must be the same as the format of Y, or the same
as DataFormat if Y is unformatted.

If targets is an unformatted dlarray or a numeric array, then the function applies the format of Y
or the value of DataFormat to targets.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
order "S" (spatial), "C" (channel), "B" (batch), "T" (time), then "U" (unspecified). To ensure that the
dimensions of Y and targets are consistent, when Y is a formatted dlarray, also specify targets
as a formatted dlarray.

YMask — Mask indicating which prediction elements to include for loss computation
dlarray | logical array | numeric array

Mask indicating which prediction elements to include for loss computation, specified as a dlarray
object, a logical array, or a numeric array with the same size as Y.

The function includes and excludes elements of the predictions for loss computation when the
corresponding value in the mask is 1 and 0, respectively.
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For each time-step and observation in the mask, the corresponding elements in channel dimension
must be all ones or all zeros.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
this order: "S" (spatial), "C" (channel), "B" (batch), "T" (time), and "U" (unspecified). For example,
dlarray objects automatically permute the dimensions of data with format "TSCSBS" to have format
"SSSCBT".

To ensure that the dimensions of Y and the mask are consistent, when Y is a formatted dlarray, also
specify the mask as a formatted dlarray.

targetsMask — Mask indicating which target elements to include for loss computation
dlarray | logical array | numeric array

Mask indicating which target elements to include for loss computation, specified as a dlarray
object, a logical array, or a numeric array with the same size as targets.

The function includes and excludes elements of the targets for loss computation when the
corresponding value in the mask is 1 and 0, respectively.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
this order: "S" (spatial), "C" (channel), "B" (batch), "T" (time), and "U" (unspecified). For example,
dlarray objects automatically permute the dimensions of data with format "TSCSBS" to have format
"SSSCBT".

To ensure that the dimensions of Y and the mask are consistent, when Y is a formatted dlarray, also
specify the mask as a formatted dlarray.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'BlankIndex','last' specifies a blank index corresponding to the last element of the
vocabulary

BlankIndex — Index of blank character
1 (default) | positive integer | 'last'

Index of blank character, specified as the comma-separated pair consisting of 'BlankIndex' and
one of the following:

• Positive integer – Use the element in the vocabulary with the specified index as the blank
character. If 'BlankIndex' is an integer, then it must between 1 and the number of channels of Y
inclusive.

• 'last' – Use the last element of the vocabulary as the blank character.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string
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DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

Output Arguments
loss — CTC loss
dlarray

CTC loss, returned as an unformatted dlarray scalar with the same underlying data type as the
input Y.

Version History
Introduced in R2021a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• Y
• targets
• YMask
• targetsMask

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
dlarray | dlgradient | dlfeval | softmax | sigmoid | crossentropy | mse | l2loss | l1loss

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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DAGNetwork
Directed acyclic graph (DAG) network for deep learning

Description
A DAG network is a neural network for deep learning with layers arranged as a directed acyclic
graph. A DAG network can have a more complex architecture in which layers have inputs from
multiple layers and outputs to multiple layers.

Creation
There are several ways to create a DAGNetwork object:

• Load a pretrained network such as squeezenet, googlenet, resnet50, resnet101, or
inceptionv3. For an example, see “Load SqueezeNet Network” on page 1-1566. For more
information about pretrained networks, see “Pretrained Deep Neural Networks”.

• Train or fine-tune a network using trainNetwork. For an example, see “Train Deep Learning
Network to Classify New Images”.

• Import a pretrained network from TensorFlow™-Keras, TensorFlow 2, Caffe, or the ONNX (Open
Neural Network Exchange) model format.

• For a Keras model, use importKerasNetwork. For an example, see “Import and Plot Keras
Network” on page 1-909.

• For a TensorFlow model in the saved model format, use importTensorFlowNetwork. For an
example, see “Import TensorFlow Network as DAGNetwork to Classify Image” on page 1-1021.

• For a Caffe model, use importCaffeNetwork. For an example, see “Import Caffe Network” on
page 1-886.

• For an ONNX model, use importONNXNetwork. For an example, see “Import ONNX Network
as DAGNetwork” on page 1-986.

• Assemble a deep learning network from pretrained layers using the assembleNetwork function.

Note To learn about other pretrained networks, see “Pretrained Deep Neural Networks”.

Properties
Layers — Network layers
Layer array

This property is read-only.

Network layers, specified as a Layer array.

Connections — Layer connections
table
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This property is read-only.

Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, Source, specifies the
source of each connection. The second column, Destination, specifies the destination of each
connection. The connection sources and destinations are either layer names or have the form
'layerName/IOName', where 'IOName' is the name of the layer input or output.
Data Types: table

InputNames — Network input layer names
cell array of character vectors

This property is read-only.

Network input layer names, specified as a cell array of character vectors.
Data Types: cell

OutputNames — Network output layer names
cell array

Network output layer names, specified as a cell array of character vectors.
Data Types: cell

Object Functions
activations Compute deep learning network layer activations
classify Classify data using trained deep learning neural network
predict Predict responses using trained deep learning neural network
plot Plot neural network architecture

Examples

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. To easily add connections
later, specify names for the first ReLU layer and the addition layer.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(5,16,'Padding','same')
    batchNormalizationLayer
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    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the third
ReLU layer. This arrangement enables the addition layer to add the outputs of the third ReLU layer
and the 1-by-1 convolutional layer. To check that the layer is in the graph, plot the layer graph.
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skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)

Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The third ReLU layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the third ReLU layer and the 'skipConv'
layer. To check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16x1 nnet.cnn.layer.Layer]
    Connections: [16x2 table]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9934
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Version History
Introduced in R2017b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations, predict, and classify object functions are supported.
• To create a DAGNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, predict, and classify methods are supported.
• To create a DAGNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (GPU Coder).

See Also
trainNetwork | trainingOptions | importKerasNetwork | layerGraph | classify | predict
| plot | googlenet | resnet18 | resnet50 | resnet101 | inceptionv3 | inceptionresnetv2 |
squeezenet | SeriesNetwork | analyzeNetwork | assembleNetwork

Topics
“Deep Learning in MATLAB”
“Classify Image Using GoogLeNet”
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”
“Pretrained Deep Neural Networks”
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darknet19
DarkNet-19 convolutional neural network

Syntax
net = darknet19
net = darknet19('Weights','imagenet')

layers = darknet19('Weights','none')

Description
DarkNet-19 is a convolutional neural network that is 19 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 256-by-256. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the DarkNet-19 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with DarkNet-19.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load DarkNet-19 instead of GoogLeNet.

DarkNet-19 is often used as the foundation for object detection problems and YOLO workflows [2].
For an example of how to train a you only look once (YOLO) v2 object detector, see “Object Detection
Using YOLO v2 Deep Learning”. This example uses ResNet-50 for feature extraction. You can also use
other pretrained networks such as DarkNet-19, DarkNet-53, MobileNet-v2, or ResNet-18 depending
on application requirements.

net = darknet19 returns a DarkNet-19 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for DarkNet-19 Network support package. If
this support package is not installed, then the function provides a download link.

net = darknet19('Weights','imagenet') returns a DarkNet-19 network trained on the
ImageNet data set. This syntax is equivalent to net = darknet19.

layers = darknet19('Weights','none') returns the untrained DarkNet-19 network
architecture. The untrained model does not require the support package.

Examples

Download DarkNet-19 Support Package

Download and install the Deep Learning Toolbox Model for DarkNet-19 Network support package.

Type darknet19 at the command line.
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darknet19

If the Deep Learning Toolbox Model for DarkNet-19 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing darknet19 at the command line. If the required support package is installed, then the
function returns a SeriesNetwork object.

darknet19

ans = 

  SeriesNetwork with properties:

         Layers: [64×1 nnet.cnn.layer.Layer]
     InputNames: {'input'}
    OutputNames: {'output'}

Visualize the network using Deep Network Designer.

deepNetworkDesigner(darknet19)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.
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Transfer Learning with DarkNet-19

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the DarkNet-19 network instead of GoogLeNet.

net = darknet19

Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained DarkNet-19 convolutional network
SeriesNetwork

Pretrained DarkNet-19 convolutional neural network, returned as a SeriesNetwork object.

layers — Untrained DarkNet-19 convolutional neural network architecture
Layer array

Untrained DarkNet-19 convolutional neural network architecture, returned as a Layer array.

Version History
Introduced in R2020a

References
[1] ImageNet. http://www.image-net.org

[2] Redmon, Joseph. “Darknet: Open Source Neural Networks in C.” https://pjreddie.com/darknet.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = darknet19 or by passing
the darknet19 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet19').

The syntax darknet19('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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• For code generation, you can load the network by using the syntax net = darknet19 or by
passing the darknet19 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet19').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax darknet19('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | darknet53 | googlenet | trainNetwork |
SeriesNetwork | layerGraph | resnet50 | resnet101 | inceptionresnetv2 | squeezenet |
densenet201 | nasnetmobile | nasnetlarge

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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darknet53
DarkNet-53 convolutional neural network

Syntax
net = darknet53
net = darknet53('Weights','imagenet')

lgraph = darknet53('Weights','none')

Description
DarkNet-53 is a convolutional neural network that is 53 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 256-by-256. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the DarkNet-53 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with DarkNet-53.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load DarkNet-53 instead of GoogLeNet.

DarkNet-53 is often used as the foundation for object detection problems and YOLO workflows [2].
For an example of how to train a you only look once (YOLO) v2 object detector, see “Object Detection
Using YOLO v2 Deep Learning”. This example uses ResNet-50 for feature extraction. You can also use
other pretrained networks such as DarkNet-19, DarkNet-53, MobileNet-v2, or ResNet-18 depending
on application requirements.

net = darknet53 returns a DarkNet-53 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for DarkNet-53 Network support package. If
this support package is not installed, then the function provides a download link.

net = darknet53('Weights','imagenet') returns a DarkNet-53 network trained on the
ImageNet data set. This syntax is equivalent to net = darknet53.

lgraph = darknet53('Weights','none') returns the untrained DarkNet-53 network
architecture. The untrained model does not require the support package.

Examples

Download DarkNet-53 Support Package

Download and install the Deep Learning Toolbox Model for DarkNet-53 Network support package.

Type darknet53 at the command line.
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darknet53

If the Deep Learning Toolbox Model for DarkNet-53 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing darknet53 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

darknet53

ans = 

  DAGNetwork with properties:

         Layers: [184×1 nnet.cnn.layer.Layer]
    Connections: [206×2 table]
     InputNames: {'input'}
    OutputNames: {'output'}

Visualize the network using Deep Network Designer.

deepNetworkDesigner(darknet53)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.
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Transfer Learning with DarkNet-53

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the DarkNet-53 network instead of GoogLeNet.

net = darknet53

Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained DarkNet-53 convolutional network
DAGNetwork

Pretrained DarkNet-53 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained DarkNet-53 convolutional neural network architecture
LayerGraph object

Untrained DarkNet-53 convolutional neural network architecture, returned as a LayerGraph object.

Version History
Introduced in R2020a

References
[1] ImageNet. http://www.image-net.org

[2] Redmon, Joseph. “Darknet: Open Source Neural Networks in C.” https://pjreddie.com/darknet.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = darknet53 or by passing
the darknet53 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet53')

The syntax darknet53('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = darknet53 or by
passing the darknet53 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('darknet53').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax darknet53('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | darknet19 | trainNetwork |
DAGNetwork | layerGraph | resnet50 | resnet101 | inceptionresnetv2 | squeezenet |
densenet201 | nasnetmobile | nasnetlarge

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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deepDreamImage
Visualize network features using deep dream

Syntax
I = deepDreamImage(net,layer,channels)
I = deepDreamImage(net,layer,channels,Name,Value)

Description
I = deepDreamImage(net,layer,channels) returns an array of images that strongly activate
the channels channels within the network net of the layer with numeric index or name given by
layer. These images highlight the features learned by a network.

I = deepDreamImage(net,layer,channels,Name,Value) returns an image with additional
options specified by one or more Name,Value pair arguments.

Examples

Visualize Convolutional Neural Network Features

Load a pretrained AlexNet network.

net = alexnet;

Visualize the first 25 features learned by the first convolutional layer ('conv1') using
deepDreamImage. Set 'PyramidLevels' to 1 so that the images are not scaled.

layer = 'conv1';
channels = 1:25;

I = deepDreamImage(net,layer,channels, ...
    'PyramidLevels',1, ...
    'Verbose',0);

figure
for i = 1:25
    subplot(5,5,i)
    imshow(I(:,:,:,i))
end
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Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork object or a DAGNetwork object. You can get a
trained network by importing a pretrained network or by training your own network using the
trainNetwork function. For more information about pretrained networks, see “Pretrained Deep
Neural Networks”.

deepDreamImage only supports networks with an image input layer.

layer — Layer index or name
positive integer | character vector | string scalar

Layer to visualize, specified as a positive integer, a character vector, or a string scalar. If net is a
DAGNetwork object, specify layer as a character vector or string scalar only. Specify layer as the
index or the name of the layer you want to visualize the activations of. To visualize classification layer
features, select the last fully connected layer before the classification layer.

Tip Selecting ReLU or dropout layers for visualization may not produce useful images because of the
effect that these layers have on the network gradients.
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channels — Channel index
numeric index | vector of numeric indices

Queried channels, specified as scalar or vector of channel indices. If channels is a vector, the layer
activations for each channel are optimized independently. The possible choices for channels depend
on the selected layer. For convolutional layers, the NumFilters property specifies the number of
output channels. For fully connected layers, the OutputSize property specifies the number of output
channels.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
deepDreamImage(net,layer,channels,'NumItetations',100,'ExecutionEnvironment',
'gpu') generates images using 100 iterations per pyramid level and uses the GPU.

InitialImage — Image to initialize Deep Dream
array

Image to initialize Deep Dream. Use this syntax to see how an image is modified to maximize network
layer activations. The minimum height and width of the initial image depend on all the layers up to
and including the selected layer:

• For layers towards the end of the network, the initial image must be at least the same height and
width as the image input layer.

• For layers towards the beginning of the network, the height and width of the initial image can be
smaller than the image input layer. However, it must be large enough to produce a scalar output at
the selected layer.

• The number of channels of the initial image must match the number of channels in the image
input layer of the network.

If you do not specify an initial image, the software uses a random image with pixels drawn from a
standard normal distribution. See also 'PyramidLevels' on page 1-0 .

PyramidLevels — Number of pyramid levels
3 (default) | positive integer

Number of multi-resolution image pyramid levels to use to generate the output image, specified as a
positive integer. Increase the number of pyramid levels to produce larger output images at the
expense of additional computation. To produce an image of the same size as the initial image, set the
number of levels to 1.
Example: 'PyramidLevels',3

PyramidScale — Scale between pyramid levels
1.4 (default) | scalar with value > 1

Scale between each pyramid level, specified as a scalar with value > 1. Reduce the pyramid scale to
incorporate fine grain details into the output image. Adjusting the pyramid scale can help generate
more informative images for layers at the beginning of the network.
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Example: 'PyramidScale',1.4

NumIterations — Number of iterations per pyramid level
10 (default) | positive integer

Number of iterations per pyramid level, specified as a positive integer. Increase the number of
iterations to produce more detailed images at the expense of additional computation.
Example: 'NumIterations',10

OutputScaling — Type of scaling to apply to output
'linear' (default) | 'none'

Type of scaling to apply to output image, specified as the comma-separated pair consisting of
'OutputScaling' and one of the following:

Value Description
'linear' Scale output pixel values in the interval [0,1]. The

output image corresponding to each layer
channel, I(:,:,:,channel), is scaled
independently.

'none' Disable output scaling.

Scaling the pixel values can cause the network to misclassify the output image. If you want to classify
the output image, set the 'OutputScaling' value to 'none'.
Example: 'OutputScaling','linear'

Verbose — Indicator to display progress information
1 (default) | 0

Indicator to display progress information in the command window, specified as the comma-separated
pair consisting of 'Verbose' and either 1 (true) or 0 (false). The displayed information includes
the pyramid level, iteration, and the activation strength.
Example: 'Verbose',0
Data Types: logical

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource, specified as one of the following:

• "auto" — Use a GPU if one is available; otherwise, use the CPU.
• "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU

device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

• "cpu" — Use the CPU.
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Output Arguments
I — Output image
array

Output image, specified by a sequence of grayscale or truecolor (RGB) images stored in a 4–D array.
Images are concatenated along the fourth dimension of I such that the image that maximizes the
output of channels(k) is I(:,:,:,k). You can display the output image using imshow.

Algorithms
This function implements a version of deep dream that uses a multi-resolution image pyramid and
Laplacian Pyramid Gradient Normalization to generate high-resolution images. For more information
on Laplacian Pyramid Gradient Normalization, see this blog post: DeepDreaming with TensorFlow.

When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Version History
Introduced in R2017a

References
[1] DeepDreaming with TensorFlow. https://github.com/tensorflow/docs/blob/master/site/en/tutorials/

generative/deepdream.ipynb

See Also
activations | alexnet | vgg16 | vgg19 | googlenet | squeezenet

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Deep Dream Images Using GoogLeNet”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”
“Visualize Activations of LSTM Network”
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densenet201
DenseNet-201 convolutional neural network

Syntax
net = densenet201
net = densenet201('Weights','imagenet')

lgraph = densenet201('Weights','none')

Description
DenseNet-201 is a convolutional neural network that is 201 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the DenseNet-201 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with DenseNet-201.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load DenseNet-201 instead of GoogLeNet.

net = densenet201 returns a DenseNet-201 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for DenseNet-201 Network support package.
If this support package is not installed, then the function provides a download link.

net = densenet201('Weights','imagenet') returns a DenseNet-201 network trained on the
ImageNet data set. This syntax is equivalent to net = densenet201.

lgraph = densenet201('Weights','none') returns the untrained DenseNet-201 network
architecture. The untrained model does not require the support package.

Examples

Download DenseNet-201 Support Package

Download and install the Deep Learning Toolbox Model for DenseNet-201 Network support package.

Type densenet201 at the command line.

densenet201

If the Deep Learning Toolbox Model for DenseNet-201 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing densenet201 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

densenet201

ans = 

  DAGNetwork with properties:

         Layers: [709×1 nnet.cnn.layer.Layer]
    Connections: [806×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(densenet201)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained DenseNet-201 convolutional neural network
DAGNetwork object

Pretrained DenseNet-201 convolutional neural network, returned as a DAGNetwork object.
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lgraph — Untrained DenseNet-201 convolutional neural network architecture
LayerGraph object

Untrained DenseNet-201 convolutional neural network architecture, returned as a LayerGraph
object.

Version History
Introduced in R2018a

References
[1] ImageNet. http://www.image-net.org

[2] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely Connected
Convolutional Networks." In CVPR, vol. 1, no. 2, p. 3. 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = densenet201 or by
passing the densenet201 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('densenet201')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax densenet201('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = densenet201 or by
passing the densenet201 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('densenet201').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax densenet201('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | resnet18 | resnet50 | resnet101 | googlenet |
inceptionv3 | inceptionresnetv2 | squeezenet | trainNetwork | layerGraph | DAGNetwork

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
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“Train Residual Network for Image Classification”
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depthConcatenationLayer
Depth concatenation layer

Description
A depth concatenation layer takes inputs that have the same height and width and concatenates them
along the third dimension (the channel dimension).

Specify the number of inputs to the layer when you create it. The inputs have the names
'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers.

Creation

Syntax
layer = depthConcatenationLayer(numInputs)
layer = depthConcatenationLayer(numInputs,'Name',name)

Description

layer = depthConcatenationLayer(numInputs) creates a depth concatenation layer that
concatenates numInputs inputs along the third (channel) dimension. This function also sets the
NumInputs property.

layer = depthConcatenationLayer(numInputs,'Name',name) also sets the Name property.

Properties
NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer greater than or equal to 2.

The inputs have the names 'in1','in2',...,'inN', where N is NumInputs. For example, if
NumInputs is 3, then the inputs have the names 'in1','in2', and 'in3'. Use the input names
when connecting or disconnecting the layer using the connectLayers or disconnectLayers
functions.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string
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InputNames — Input Names
{'in1','in2',…,'inN'} (default)

Input names, specified as {'in1','in2',...,'inN'}, where N is the number of inputs of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect Depth Concatenation Layer

Create a depth concatenation layer with two inputs and the name 'concat_1'.

concat = depthConcatenationLayer(2,'Name','concat_1')

concat = 
  DepthConcatenationLayer with properties:

          Name: 'concat_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the depth concatenation layer. The depth concatenation
layer concatenates the outputs from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,concat);

lgraph = connectLayers(lgraph,'relu_1','concat_1/in1');
lgraph = connectLayers(lgraph,'relu_2','concat_1/in2');

plot(lgraph)
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Version History
Introduced in R2017b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | layerGraph | additionLayer | connectLayers | disconnectLayers

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Set Up Parameters and Train Convolutional Neural Network”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
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“List of Deep Learning Layers”
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dims
Dimension labels of dlarray

Syntax
d = dims(X)

Description
d = dims(X) returns the data format of X as a character array. The data format provides the
dimension labels for each dimension in X.

Examples

Obtain Dimension Labels

Obtain the dimension labels of a formatted dlarray.

dlX = dlarray(randn(3,4),'TS');
d = dims(dlX)

d = 
'ST'

Obtain the labels of an unformatted dlarray.

y = stripdims(dlX);
d = dims(y)

d =

  0x0 empty char array

Input Arguments
X — Input data
dlarray object

Input data, specified as a formatted or unformatted dlarray object.

Output Arguments
d — Dimension labels
character vector

Dimension labels, returned as a character vector. If the input X is unformatted, d is empty.
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
finddim | stripdims | dlarray
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dlaccelerate
Accelerate deep learning function for custom training loops

Syntax
accfun = dlaccelerate(fun)

Description
Use dlaccelerate to speed up deep learning function evaluation for custom training loops.

The returned AcceleratedFunction object caches the traces of calls to the underlying function
and reuses the cached result when the same input pattern reoccurs.

Try using dlaccelerate for function calls that:

• are long-running
• have dlarray objects, structures of dlarray objects, or dlnetwork objects as inputs
• do not have side effects like writing to files or displaying output

Invoke the accelerated function as you would invoke the underlying function. Note that the
accelerated function is not a function handle.

Note When using the dlfeval function, the software automatically accelerates the forward and
predict functions for dlnetwork input. If you accelerate a deep learning function where the
majority of the computation takes place in calls to the forward or predict functions for dlnetwork
input, then you might not see an improvement in training time.

For more information, see “Deep Learning Function Acceleration for Custom Training Loops”.

accfun = dlaccelerate(fun) creates an AcceleratedFunction object that retains the
underlying traces of the specified function handle fun.

Caution An AcceleratedFunction object is not aware of updates to the underlying function. If you
modify the function associated with the accelerated function, then clear the cache using the
clearCache object function or alternatively use the command clear functions.

Examples

Accelerate Model Gradients Function

Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

s = load("dlnetDigits.mat");
net = s.net;
classNames = s.classNames;
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Accelerate the model loss function modelLoss listed at the end of the example.

fun = @modelLoss;
accfun = dlaccelerate(fun);

Clear any previously cached traces of the accelerated function using the clearCache function.

clearCache(accfun)

View the properties of the accelerated function. Because the cache is empty, the Occupancy property
is 0.

accfun

accfun = 
  AcceleratedFunction with properties:

          Function: @modelLoss
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

The returned AcceleratedFunction object stores the traces of underlying function calls and
reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a
custom training loop, replace calls to the model gradients function with calls to the accelerated
function. You can invoke the accelerated function as you would invoke the underlying function. Note
that the accelerated function is not a function handle.

Evaluate the accelerated model gradients function with random data using the dlfeval function.

X = rand(28,28,1,128,"single");
X = dlarray(X,"SSCB");

T = categorical(classNames(randi(10,[128 1])));
T = onehotencode(T,2)';
T = dlarray(T,"CB");

[loss,gradients,state] = dlfeval(accfun,net,X,T);

View the Occupancy property of the accelerated function. Because the function has been evaluated,
the cache is nonempty.

accfun.Occupancy

ans = 2

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the loss, the gradients of the loss with respect to the
learnable parameters in net, and the network state. To compute the gradients, use the dlgradient
function.

function [loss,gradients,state] = modelLoss(net,X,T)
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[Y,state] = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Clear Cache of Accelerated Function

Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

s = load("dlnetDigits.mat");
net = s.net;
classNames = s.classNames;

Accelerate the model loss function modelLoss listed at the end of the example.

fun = @modelLoss;
accfun = dlaccelerate(fun);

Clear any previously cached traces of the accelerated function using the clearCache function.

clearCache(accfun)

View the properties of the accelerated function. Because the cache is empty, the Occupancy property
is 0.

accfun

accfun = 
  AcceleratedFunction with properties:

          Function: @modelLoss
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

The returned AcceleratedFunction object stores the traces of underlying function calls and
reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a
custom training loop, replace calls to the model gradients function with calls to the accelerated
function. You can invoke the accelerated function as you would invoke the underlying function. Note
that the accelerated function is not a function handle.

Evaluate the accelerated model gradients function with random data using the dlfeval function.

X = rand(28,28,1,128,"single");
X = dlarray(X,"SSCB");

T = categorical(classNames(randi(10,[128 1])));
T = onehotencode(T,2)';
T = dlarray(T,"CB");

[loss,gradients,state] = dlfeval(accfun,net,X,T);
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View the Occupancy property of the accelerated function. Because the function has been evaluated,
the cache is nonempty.

accfun.Occupancy

ans = 2

Clear the cache using the clearCache function.

clearCache(accfun)

View the Occupancy property of the accelerated function. Because the cache has been cleared, the
cache is empty.

accfun.Occupancy

ans = 0

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the loss, the gradients of the loss with respect to the
learnable parameters in net, and the network state. To compute the gradients, use the dlgradient
function.

function [loss,gradients,state] = modelLoss(net,X,T)

[Y,state] = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Check Accelerated Deep Learning Function Outputs

This example shows how to check that the outputs of accelerated functions match the outputs of the
underlying function.

In some cases, the outputs of accelerated functions differ to the outputs of the underlying function.
For example, you must take care when accelerating functions that use random number generation,
such as a function that generates random noise to add to the network input. When caching the trace
of a function that generates random numbers that are not dlarray objects, the accelerated function
caches resulting random numbers in the trace. When reusing the trace, the accelerated function uses
the cached random values. The accelerated function does not generate new random values.

To check that the outputs of the accelerated function match the outputs of the underlying function,
use the CheckMode property of the accelerated function. When the CheckMode property of the
accelerated function is 'tolerance' and the outputs differ by more than a specified tolerance, the
accelerated function throws a warning.

Accelerate the function myUnsupportedFun, listed at the end of the example using the
dlaccelerate function. The function myUnsupportedFun generates random noise and adds it to
the input. This function does not support acceleration because the function generates random
numbers that are not dlarray objects.
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accfun = dlaccelerate(@myUnsupportedFun)

accfun = 
  AcceleratedFunction with properties:

          Function: @myUnsupportedFun
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'none'
    CheckTolerance: 1.0000e-04

Clear any previously cached traces using the clearCache function.

clearCache(accfun)

To check that the outputs of reused cached traces match the outputs of the underlying function, set
the CheckMode property to 'tolerance'.

accfun.CheckMode = 'tolerance'

accfun = 
  AcceleratedFunction with properties:

          Function: @myUnsupportedFun
           Enabled: 1
         CacheSize: 50
           HitRate: 0
         Occupancy: 0
         CheckMode: 'tolerance'
    CheckTolerance: 1.0000e-04

Evaluate the accelerated function with an array of ones as input, specified as a dlarray input.

dlX = dlarray(ones(3,3));
dlY = accfun(dlX)

dlY = 
  3×3 dlarray

    1.8147    1.9134    1.2785
    1.9058    1.6324    1.5469
    1.1270    1.0975    1.9575

Evaluate the accelerated function again with the same input. Because the accelerated function reuses
the cached random noise values instead of generating new random values, the outputs of the reused
trace differs from the outputs of the underlying function. When the CheckMode property of the
accelerated function is 'tolerance' and the outputs differ, the accelerated function throws a
warning.

dlY = accfun(dlX)

Warning: Accelerated outputs differ from underlying function outputs.

dlY = 
  3×3 dlarray
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    1.8147    1.9134    1.2785
    1.9058    1.6324    1.5469
    1.1270    1.0975    1.9575

Random number generation using the 'like' option of the rand function with a dlarray object
supports acceleration. To use random number generation in an accelerated function, ensure that the
function uses the rand function with the 'like' option set to a traced dlarray object (a dlarray
object that depends on an input dlarray object).

Accelerate the function mySupportedFun, listed at the end of the example. The function
mySupportedFun adds noise to the input by generating noise using the 'like' option with a traced
dlarray object.

accfun2 = dlaccelerate(@mySupportedFun);

Clear any previously cached traces using the clearCache function.

clearCache(accfun2)

To check that the outputs of reused cached traces match the outputs of the underlying function, set
the CheckMode property to 'tolerance'.

accfun2.CheckMode = 'tolerance';

Evaluate the accelerated function twice with the same input as before. Because the outputs of the
reused cache match the outputs of the underlying function, the accelerated function does not throw a
warning.

dlY = accfun2(dlX)

dlY = 
  3×3 dlarray

    1.7922    1.0357    1.6787
    1.9595    1.8491    1.7577
    1.6557    1.9340    1.7431

dlY = accfun2(dlX)

dlY = 
  3×3 dlarray

    1.3922    1.7060    1.0462
    1.6555    1.0318    1.0971
    1.1712    1.2769    1.8235

Checking the outputs match requires extra processing and increases the time required for function
evaluation. After checking the outputs, set the CheckMode property to 'none'.

accfun1.CheckMode = 'none';
accfun2.CheckMode = 'none';
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Example Functions

The function myUnsupportedFun generates random noise and adds it to the input. This function
does not support acceleration because the function generates random numbers that are not dlarray
objects.

function out = myUnsupportedFun(dlX)

sz = size(dlX);
noise = rand(sz);
out = dlX + noise;

end

The function mySupportedFun adds noise to the input by generating noise using the 'like' option
with a traced dlarray object.

function out = mySupportedFun(dlX)

sz = size(dlX);
noise = rand(sz,'like',dlX);
out = dlX + noise;

end

Input Arguments
fun — Deep learning function
function handle

Deep learning function to accelerate, specified as a function handle.

To learn more about developing deep learning functions for acceleration, see “Deep Learning
Function Acceleration for Custom Training Loops”.
Example: @modelLoss
Data Types: function_handle

Output Arguments
accfun — Accelerated deep learning function
AcceleratedFunction object

Accelerated deep learning function, returned as an AcceleratedFunction object.

More About
Acceleration Considerations

Because of the nature of caching traces, not all functions support acceleration.

The caching process can cache values that you might expect to change or that depend on external
factors. You must take care when accelerating functions that:
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• have inputs with random or frequently changing values
• have outputs with frequently changing values
• generate random numbers
• use if statements and while loops with conditions that depend on the values of dlarray objects
• have inputs that are handles or that depend on handles
• Read data from external sources (for example, by using a datastore or a minibatchqueue object)

Because the caching process requires extra computation, acceleration can lead to longer running
code in some cases. This scenario can happen when the software spends time creating new caches
that do not get reused often. For example, when you pass multiple mini-batches of different sequence
lengths to the function, the software triggers a new trace for each unique sequence length.

Accelerated functions can do the following when calculating a new trace only.

• modify the global state such as, the random number stream or global variables
• use file input or output
• display data using graphics or the command line display

When using accelerated functions in parallel, such as when using a parfor loop, then each worker
maintains its own cache. The cache is not transferred to the host.

Functions and custom layers used in accelerated functions must also support acceleration.

For more information, see “Deep Learning Function Acceleration for Custom Training Loops”.

dlode45 Does Not Support Acceleration When GradientMode is "direct"

The dlaccelerate function does not support accelerating the dlode45 function when the
GradientMode option is "direct". To accelerate the code that calls the dlode45 function, set the
GradientMode option to "adjoint" or accelerate parts of your code that do not call the dlode45
function with the GradientMode option set to "direct".

Version History
Introduced in R2021a

See Also
AcceleratedFunction | clearCache | dlarray | dlgradient | dlfeval

Topics
“Deep Learning Function Acceleration for Custom Training Loops”
“Accelerate Custom Training Loop Functions”
“Check Accelerated Deep Learning Function Outputs”
“Evaluate Performance of Accelerated Deep Learning Function”
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dlarray
Deep learning array for custom training loops

Description
A deep learning array stores data with optional data format labels for custom training loops, and
enables functions to compute and use derivatives through automatic differentiation.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops”.

Creation
Syntax
dlX = dlarray(X)
dlX = dlarray(X,fmt)
dlX = dlarray(v,dim)

Description

dlX = dlarray(X) returns a dlarray object representing X. If X is a dlarray, dlX is a copy of X.

dlX = dlarray(X,fmt) formats the data in dlX with dimension labels according to the data format
in fmt. Dimension labels help in passing deep learning data between functions. For more information
on dimension labels, see “Usage” on page 1-483. If X is a formatted dlarray, then fmt replaces the
existing format.

dlX = dlarray(v,dim) accepts a vector v and a single character format dim, and returns a
column vector dlarray. The first dimension of dlX has the dimension label dim, and the second
(singleton) dimension has the dimension label 'U'.

Input Arguments

X — Data array
numeric array of data type double or single | logical array | gpuArray object | dlarray object

Data array, specified as a numeric array of data type double or single, a logical array, a
gpuArray object, or a dlarray object. X must be full, not sparse.
Example: rand(31*23,23)
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Data Types: single | double | logical
Complex Number Support: Yes

fmt — Data format
character vector | string scalar

Data format, specified as a string scalar or a character vector. Each character in the string must be
one of the following dimension labels:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

You can specify any number of "S" and "U" labels. You can specify at most one of each of the "C",
"B", and "T" labels.

Each element of fmt labels the matching dimension of the input data. If fmt is not in the listed order
('S' followed by 'C' and so on), then dlarray implicitly permutes both fmt and the data to match
the order without changing the storage of the data.

fmt must contain at least the same number of dimension labels as the number of dimensions of the
input data. If you specify more than that number of dimension labels, dlarray creates empty
(singleton) dimensions for the additional labels.

The following table indicates recommended data formats for common types of data.

Data Example
Shape Data Format

2-D images h-by-w-by-c-by-n numeric array,
where h, w, c and n are the
height, width, number of
channels of the images, and
number of observations,
respectively.

"SSCB"

3-D images h-by-w-by-d-by-c-by-n numeric
array, where h, w, d, c and n are
the height, width, depth,
number of channels of the
images, and number of image
observations, respectively.

"SSSCB"

Vector sequences c-by-s-by-n matrix, where c is
the number of features of the
sequence, s is the sequence
length, and n is the number of
sequence observations.

"CTB"
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Data Example
Shape Data Format

2-D image sequences h-by-w-by-c-by-s-by-n array,
where h, w, and c correspond to
the height, width, and number
of channels of the image,
respectively, s is the sequence
length, and n is the number of
image sequence observations.

"SSCTB"

3-D image sequences h-by-w-by-d-by-c-by-s-by-n array,
where h, w, d, and c correspond
to the height, width, depth, and
number of channels of the
image, respectively, s is the
sequence length, and n is the
number of image sequence
observations.

"SSSCTB"

Features c-by-n array, where c is the
number of features, and n is the
number of observations.

"CB"

v — Data vector
numeric vector of data type double or single | logical vector | dlarray vector object

Data vector, specified as a numeric vector of data type double or single, logical vector, or dlarray
vector object. Here, "vector" means any array with exactly one nonsingleton dimension.
Example: rand(100,1)

dim — Dimension label
single character

Dimension label, specified as a single character of the type allowed for fmt.
Example: "S"
Example: 'S'

Output Arguments

dlX — Deep learning array
dlarray object

Deep learning array, returned as a dlarray object. dlX enables automatic differentiation using
dlgradient and dlfeval. If you supply the fmt argument, dlX has labels.

• If X is a numeric or logical array, dlX contains its data, possibly reordered because of the data
format in fmt.

• If X is a gpuArray, the data in dlX is also on the GPU. Subsequent calculations using dlX are
performed on the GPU.
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Usage
dlarray data formats enable you to execute the functions in the following table with assurance that
the data has the appropriate shape.

Function Operation Validates Input
Dimension

Affects Size of Input
Dimension

avgpool Compute the average of the
input data over moving
rectangular (or cuboidal)
spatial ('S') regions defined
by a pool size parameter.

'S' 'S'

batchnorm Normalize the values contained
in each channel ('C') of the
input data.

'C'  

crossentropy Compute the cross-entropy
between estimates and target
values, averaged by the size of
the batch ('B') dimension.

'S', 'C', 'B', 'T',
'U' (Estimates and
target arrays must have
the same sizes.)

'S', 'C', 'B', 'T',
'U' (Output is an
unformatted scalar.)

dlconv Compute the deep learning
convolution of the input data
using an array of filters,
matching the number of spatial
('S') and (a function of the)
channel ('C') dimensions of
the input, and adding a
constant bias.

'S', 'C' 'S', 'C'

dltranspconv Compute the deep learning
transposed convolution of the
input data using an array of
filters, matching the number of
spatial ('S') and (a function of
the) channel ('C') dimensions
of the input, and adding a
constant bias.

'S', 'C' 'S', 'C'

fullyconnect Compute a weighted sum of
the input data and apply a bias
for each batch ('B') and time
('T') dimension.

'S', 'C', 'U' 'S', 'C', 'B', 'T',
'U' (Output always
has data format 'CB',
'CT', or 'CTB'.)

gru Apply a gated recurrent unit
calculation to the input data.

'S', 'C', 'T' 'C'

lstm Apply a long short-term
memory calculation to the
input data.

'S', 'C', 'T' 'C'
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Function Operation Validates Input
Dimension

Affects Size of Input
Dimension

maxpool Compute the maximum of the
input data over moving
rectangular spatial ('S')
regions defined by a pool size
parameter.

'S' 'S'

maxunpool Compute the unpooling
operation over the spatial
('S') dimensions.

'S' 'S'

mse Compute the half mean
squared error between
estimates and target values,
averaged by the size of the
batch ('B') dimension.

'S', 'C', 'B', 'T',
'U' (Estimates and
target arrays must have
the same sizes.)

'S', 'C', 'B', 'T',
'U' (Output is an
unformatted scalar.)

softmax Apply the softmax activation to
each channel ('C') of the input
data.

'C'  

These functions require each dimension to have a label. You can specify the dimension label format
by providing the first input as a formatted dlarray, or by using the 'DataFormat' name-value
argument of the function.

dlarray enforces the dimension label ordering of 'SCBTU'. This enforcement eliminates ambiguous
semantics in operations which implicitly match labels between inputs. dlarray also enforces that the
dimension labels 'C', 'B', and 'T' can each appear at most once. The functions that use these
dimension labels accept at most one dimension for each label.

dlarray provides functions for obtaining the data format associated with a dlarray (dims),
removing the data format (stripdims), and obtaining the dimensions associated with specific
dimension labels (finddim).

For more information on how a dlarray behaves with formats, see “Notable dlarray Behaviors”.

Object Functions
avgpool Pool data to average values over spatial dimensions
batchnorm Normalize data across all observations for each channel independently
crossentropy Cross-entropy loss for classification tasks
dims Dimension labels of dlarray
dlconv Deep learning convolution
dlgradient Compute gradients for custom training loops using automatic differentiation
dltranspconv Deep learning transposed convolution
extractdata Extract data from dlarray
finddim Find dimensions with specified label
fullyconnect Sum all weighted input data and apply a bias
gru Gated recurrent unit
leakyrelu Apply leaky rectified linear unit activation
lstm Long short-term memory
maxpool Pool data to maximum value
maxunpool Unpool the output of a maximum pooling operation
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mse Half mean squared error
relu Apply rectified linear unit activation
sigmoid Apply sigmoid activation
softmax Apply softmax activation to channel dimension
stripdims Remove dlarray data format

A dlarray also allows functions for numeric, matrix, and other operations. See the full list in “List of
Functions with dlarray Support”.

Examples

Create Unformatted dlarray

Create an unformatted dlarray from a matrix.

X = randn(3,5);
dlX = dlarray(X)

dlX = 
  3x5 dlarray

    0.5377    0.8622   -0.4336    2.7694    0.7254
    1.8339    0.3188    0.3426   -1.3499   -0.0631
   -2.2588   -1.3077    3.5784    3.0349    0.7147

Create Formatted dlarray

Create a dlarray that has a data format containing the dimension labels 'S' and 'C'.

X = randn(3,5);
dlX = dlarray(X,'SC')

dlX = 
  3(S) x 5(C) dlarray

    0.5377    0.8622   -0.4336    2.7694    0.7254
    1.8339    0.3188    0.3426   -1.3499   -0.0631
   -2.2588   -1.3077    3.5784    3.0349    0.7147

If you specify the dimension labels in the opposite order, dlarray implicitly reorders the underlying
data.

dlX = dlarray(X,'CS')

dlX = 
  5(S) x 3(C) dlarray

    0.5377    1.8339   -2.2588
    0.8622    0.3188   -1.3077
   -0.4336    0.3426    3.5784
    2.7694   -1.3499    3.0349
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    0.7254   -0.0631    0.7147

Create Formatted dlarray Vector

Create a dlarray vector with the first dimension label 'T'. The second dimension label, which
dlarray creates automatically, is 'U'.

X = randn(6,1);
dlX = dlarray(X,'T')

dlX = 
  6(T) x 1(U) dlarray

    0.5377
    1.8339
   -2.2588
    0.8622
    0.3188
   -1.3077

If you specify a row vector for X, dlarray implicitly reorders the result to be a column vector.

X = X';
dlX = dlarray(X,'T')

dlX = 
  6(T) x 1(U) dlarray

    0.5377
    1.8339
   -2.2588
    0.8622
    0.3188
   -1.3077

Tips
• A dlgradient call must be inside a function. To obtain a numeric value of a gradient, you must

evaluate the function using dlfeval, and the argument to the function must be a dlarray. See
“Use Automatic Differentiation In Deep Learning Toolbox”.

• To enable the correct evaluation of gradients, dlfeval must call functions that use only
supported functions for dlarray. See “List of Functions with dlarray Support”.

Version History
Introduced in R2019b

Code generation behavior change for dlarray inputs and outputs
Behavior changed in R2022b
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In R2022b, the generated code creates structures for the dlarray inputs and outputs of entry-point
functions. Data is a public field that you can directly access it.

In previous releases, the generated code uses class to represent the dlarray inputs and outputs of
entry-point functions. In these releases, you use the initializing function init to access the Data
field.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For usage recommendations and list of functions with dlarray code generation support, see “Code
Generation for dlarray” (MATLAB Coder). For an example showing how to use dlnetwork and
dlarray objects to generate MEX for a trained variational autoencoder (VAE) network, see
“Generate Digit Images Using Variational Autoencoder on Intel CPUs” (MATLAB Coder).

For dlarray code generation limitations, see “dlarray Limitations for Code Generation” (MATLAB
Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For usage recommendations and list of functions with dlarray code generation support, see “Code
Generation for dlarray” (GPU Coder). For an example showing how to use dlnetwork and dlarray
objects to generate CUDA® MEX for a trained variational autoencoder (VAE) network, see “Generate
Digit Images on NVIDIA GPU Using Variational Autoencoder” (GPU Coder).

For dlarray code generation limitations, see “dlarray Limitations for Code Generation” (GPU
Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
dlgradient | dlfeval | dlnetwork | finddim | dims | stripdims

Topics
“Train Generative Adversarial Network (GAN)”
“Train Network Using Custom Training Loop”
“Define Custom Training Loops, Loss Functions, and Networks”
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
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dlconv
Deep learning convolution

Syntax
Y = dlconv(X,weights,bias)
Y = dlconv(X,weights,bias,DataFormat=FMT)
Y = dlconv( ___ ,Name=Value)

Description
The convolution operation applies sliding filters to the input data. Use the dlconv function for deep
learning convolution, grouped convolution, and channel-wise separable convolution.

The dlconv function applies the deep learning convolution operation to dlarray data. Using
dlarray objects makes working with high dimensional data easier by allowing you to label the
dimensions. For example, you can label which dimensions correspond to spatial, time, channel, and
batch dimensions using the "S", "T", "C", and "B" labels, respectively. For unspecified and other
dimensions, use the "U" label. For dlarray object functions that operate over particular dimensions,
you can specify the dimension labels by formatting the dlarray object directly, or by using the
DataFormat option.

Note To apply convolution within a layerGraph object or Layer array, use one of the following
layers:

• convolution2dLayer
• groupedConvolution2dLayer
• convolution3dLayer

Y = dlconv(X,weights,bias) applies the deep learning convolution operation to the formatted
dlarray object X. The function uses sliding convolutional filters defined by weights and adds the
constant bias. The output Y is a formatted dlarray object with the same format as X.

The function, by default, convolves over up to three dimensions of X labeled "S" (spatial). To convolve
over dimensions labeled "T" (time), specify weights with a "T" dimension using a formatted
dlarray object or by using the WeightsFormat option.

For unformatted input data, use the DataFormat option.

Y = dlconv(X,weights,bias,DataFormat=FMT) applies the deep learning convolution
operation to the unformatted dlarray object X with format specified by FMT. The output Y is an
unformatted dlarray object with dimensions in the same order as X. For example,
DataFormat="SSCB" specifies data for 2-D convolution with format "SSCB" (spatial, spatial,
channel, batch).
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Y = dlconv( ___ ,Name=Value) specifies options using one or more name-value pair arguments
using any of the previous syntaxes. For example, WeightsFormat="TCU" specifies weights for 1-D
convolution with format "TCU" (time, channel, unspecified).

Examples

Perform 2-D Convolution

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format "SSCB" (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
X = dlarray(X,"SSCB");

View the size and format of the input data.

size(X)

ans = 1×4

    28    28     3   128

dims(X)

ans = 
'SSCB'

Initialize the weights and bias for 2-D convolution. For the weights, specify 64 3-by-3 filters. For the
bias, specify a vector of zeros.

filterSize = [3 3];
numFilters = 64;
weights = rand(filterSize(1),filterSize(2),numChannels,numFilters);
bias = zeros(1,numFilters);

Apply 2-D convolution using the dlconv function.

Y = dlconv(X,weights,bias);

View the size and format of the output.

size(Y)

ans = 1×4

    26    26    64   128

dims(Y)

ans = 
'SSCB'

 dlconv

1-489



Perform Grouped Convolution

Convolve the input data in three groups of two channels each. Apply four filters per group.

Create the input data as 10 observations of size 100-by-100 with six channels.

height = 100;
width = 100;
channels = 6;
numObservations = 10;

X = rand(height,width,channels,numObservations);
X = dlarray(X,"SSCB");

Initialize the convolutional filters. Specify three groups of convolutions that each apply four
convolution filters to two channels of the input data.

filterHeight = 8;
filterWidth = 8;
numChannelsPerGroup = 2;
numFiltersPerGroup = 4;
numGroups = 3;

weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);

Initialize the bias term.

bias = rand(numFiltersPerGroup*numGroups,1);

Perform the convolution.

Y = dlconv(X,weights,bias);
size(Y)

ans = 1×4

    93    93    12    10

dims(Y)

ans = 
'SSCB'

The 12 channels of the convolution output represent the three groups of convolutions with four filters
per group.

Perform Channel-Wise Separable Convolution

Separate the input data into channels and perform convolution on each channel separately.

Create the input data as a single observation with a size of 64-by-64 and 10 channels. Create the data
as an unformatted dlarray.
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height = 64;
width = 64;
numChannels = 10;

X = rand(height,width,numChannels);
X = dlarray(X);

Initialize the convolutional filters. Specify an ungrouped convolution that applies a single convolution
to all three channels of the input data.

filterHeight = 8;
filterWidth = 8;
numChannelsPerGroup = 1;
numFiltersPerGroup = 1;
numGroups = numChannels;

weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);

Initialize the bias term.

bias = rand(numFiltersPerGroup*numGroups,1);

Perform the convolution. Specify the dimension labels of the input data using the DataFormat
option.

Y = dlconv(X,weights,bias,DataFormat="SSC");
size(Y)

ans = 1×3

    57    57    10

Each channel is convolved separately, so there are 10 channels in the output.

Perform 1-D Convolution

Create a formatted dlarray object containing 128 sequences of length 512 containing 5 features.
Specify the format "CBT" (channel, batch, time).

numChannels = 5;
miniBatchSize = 128;
sequenceLength = 512;
X = rand(numChannels,miniBatchSize,sequenceLength);
X = dlarray(X,"CBT");

Initialize the weights and bias for 1-D convolution. For the weights, specify 64 filters with a filter size
of 3. For the bias, specify a vector of zeros.

filterSize = 3;
numFilters = 64;
weights = rand(filterSize,numChannels,numFilters);
bias = zeros(1,numFilters);
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Apply 1-D convolution using the dlconv function. To convolve over the "T" (time) dimension of the
input data, specify the weights format "TCU" (time, channel, unspecified) using the WeightsFormat
option.

Y = dlconv(X,weights,bias,WeightsFormat="TCU");

View the size and format of the output.

size(Y)

ans = 1×3

    64   128   510

dims(Y)

ans = 
'CBT'

Input Arguments
X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

If X is an unformatted dlarray or a numeric array, then you must specify the format using the
DataFormat option. If X is a numeric array, then either weights or bias must be a dlarray object.

The function, by default, convolves over up to three dimensions of X labeled "S" (spatial). To convolve
over dimensions labeled "T" (time), specify weights with a "T" dimension using a formatted
dlarray object or by using the WeightsFormat option.

weights — Convolutional filters
dlarray | numeric array

Convolutional filters, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

The size and format of the weights depends on the type of task. If weights is an unformatted
dlarray or a numeric array, then the size and shape of weights depends on the WeightsFormat
option.

The following table describes the size and format of the weights for various tasks. You can specify an
array with the dimensions in any order using formatted dlarray objects or by using the
WeightsFormat option. When the weights has multiple dimensions with the same label (for example,
multiple dimensions labeled "S"), then those dimensions must be in ordered as described in this
table.
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Task Required
Dimensions

Size Example
Weights Format

1-D convolution "S" (spatial) or
"T" (time)

Filter size filterSize-by-
numChannels-by-
numFilters array,
where
filterSize is the
size of the 1-D
filters,
numChannels is
the number of
channels of the
input data, and
numFilters is the
number of filters.

"SCU" (spatial,
channel,
unspecified)"C" (channel) Number of

channels
"U" (unspecified) Number of filters

1-D grouped
convolution

"S" (spatial) or
"T" (time)

Filter size filterSize-by-
numChannelsPer
Group-by-
numFiltersPerG
roup-by-
numGroups array,
where
filterSize is the
size of the 1-D
filters,
numChannelsPer
Group is the
number of
channels per group
of the input data,
numFiltersPerG
roup is the
number of filters
per group, and
numGroups is the
number of groups.

numChannelsPer
Group must equal
the number of the
channels of the
input data divided
by numGroups.

"SCUU" (spatial,
channel,
unspecified,
unspecified)

"C" (channel) Number of
channels per group

First "U"
(unspecified)

Number of filters
per group

Second "U"
(unspecified)

Number of groups

2-D convolution First "S" (spatial) Filter height filterSize(1)-
by-
filterSize(2)-
by-numChannels-
by-numFilters
array, where
filterSize(1)

"SSCU" (spatial,
spatial, channel,
unspecified)

Second "S"
(spatial) or "T"
(time)

Filter width

"C" (channel) Number of
channels
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Task Required
Dimensions

Size Example
Weights Format

"U" (unspecified) and
filterSize(2)
are the height and
width of the 2-D
filters,
respectively,
numChannels is
the number of
channels of the
input data, and
numFilters is the
number of filters.

Number of filters

2-D grouped
convolution

First "S" (spatial) Filter height filterSize(1)-
by-
filterSize(2)-
by-
numChannelsPer
Group-by-
numFiltersPerG
roup-by-
numGroups array,
where
filterSize(1)
and
filterSize(2)
are the height and
width of the 2-D
filters,
respectively,
numChannelsPer
Group is the
number of
channels per group
of the input data,
numFiltersPerG
roup is the
number of filters
per group, and
numGroups is the
number of groups.

numChannelsPer
Group must equal
the number of the
channels of the
input data divided
by numGroups.

"SSCUU" (spatial,
spatial, channel,
unspecified,
unspecified)

Second "S"
(spatial) or "T"
(time)

Filter width

"C" (channel) Number of
channels per group

First "U"
(unspecified)

Number of filters
per group

Second "U"
(unspecified)

Number of groups

3-D convolution First "S" (spatial) Filter height filterSize(1)-
by-

"SSSCU" (spatial,
spatial, spatial,
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Task Required
Dimensions

Size Example
Weights Format

Second "S"
(spatial)

filterSize(2)-
by-
filterSize(3)-
by-numChannels-
by-numFilters
array, where
filterSize(1),
filterSize(2),
and
filterSize(3)
are the height,
width, and depth of
the 3-D filters,
respectively,
numChannels is
the number of
channels of the
input data, and
numFilters is the
number of filters.

channel,
unspecified)

Filter width

Third "S" (spatial)
or "T" (time)

Filter depth

"C" (channel) Number of
channels

"U" (unspecified) Number of filters

For channel-wise separable (also known as depth-wise separable) convolution, use grouped
convolution with number of groups equal to the number of channels.

Tip The function, by default, convolves over up to three dimensions of X labeled "S" (spatial). To
convolve over dimensions labeled "T" (time), specify weights with a "T" dimension using a
formatted dlarray object or by using the WeightsFormat option.

bias — Bias constant
dlarray | numeric vector | numeric scalar

Bias constant, specified as a formatted dlarray, an unformatted dlarray, a numeric vector, or a
numeric scalar.

• If bias is a scalar, then the same bias is applied to each output.
• If bias has a nonsingleton dimension, then each element of bias is the bias applied to the

corresponding convolutional filter specified by weights. The number of elements of bias must
match the number of filters specified by weights.

• If bias is 0, then the bias term is disabled and no bias is added during the convolution operation.

If bias is a formatted dlarray, then the nonsingleton dimension must be a channel dimension with
label 'C' (channel).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: DilationFactor=2 sets the dilation factor for each convolutional filter to 2.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

WeightsFormat — Dimension order of weights
character vector | string scalar

Dimension order of the weights, specified as a character vector or string scalar that provides a label
for each dimension of the weights.

The default value of WeightsFormat depends on the task:

Task Default
1-D convolution "SCU" (spatial, channel, unspecified)
1-D grouped convolution "SCUU" (spatial, channel, unspecified,

unspecified)
2-D convolution "SSCU" (spatial, spatial, channel, unspecified)
2-D grouped convolution "SSCUU" (spatial, spatial, channel, unspecified,

unspecified)
3-D convolution "SSSCU" (spatial, spatial, spatial, channel,

unspecified)

The supported combinations of dimension labels depends on the type of convolution, for more
information, see the weights argument.

Tip The function, by default, convolves over up to three dimensions of X labeled "S" (spatial). To
convolve over dimensions labeled "T" (time), specify weights with a "T" dimension using a
formatted dlarray object or by using the WeightsFormat option.
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Data Types: char | string

Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as a numeric scalar or numeric vector.

To use the same step size for all convolution dimensions, specify the stride as a scalar. To specify a
different value for each convolution dimension, specify the stride as a vector with elements ordered
corresponding to the dimensions labels in the data format.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DilationFactor — Filter dilation factor
1 (default) | numeric scalar | numeric vector

Filter dilation factor, specified as specified as a numeric scalar or numeric vector.

To use the dilation factor all convolution dimensions, specify the dilation factor as a scalar. To specify
a different value for each convolution dimension, specify the dilation factor as a vector with elements
ordered corresponding to the dimensions labels in the data format.

Use the dilation factor to increase the receptive field of the filter (the area of the input that the filter
can see) on the input data. Using a dilation factor corresponds to an effective filter size of
filterSize + (filterSize-1)*(dilationFactor-1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Padding — Size of padding
0 (default) | "same" | "causal" | numeric scalar | numeric vector | numeric matrix

Size of padding applied to the "S" and "T" dimensions given by the format of the weights, specified
as one of the following:

• "same" — Apply padding such that the output dimension sizes are ceil(inputSize/stride),
where inputSize is the size of the corresponding input dimension. When Stride is 1, the output
is the same size as the input.

• "causal" – Apply left padding with size (FilterSize - 1) .* DilationFactor. This option
supports convolving over a single time or spatial dimension only. When Stride is 1, the output is
the same size as the input.

• Nonnegative integer sz — Add padding of size sz to both ends of the "S" or "T" dimensions
given by the format of the weights.

• Vector of integers sz — Add padding of size sz(i) to both ends of the ith "S" or "T" dimensions
given by the format of the weights. The number of elements of sz must match the number of "S"
or "T" dimensions of the weights.

• Matrix of integers sz — Add padding of size sz(1,i) and sz(2,i) to the start and end of the ith
"S" or "T" dimensions given by the format of the weights. For example, for 2-D input, [t l; b
r] applies padding of size t, b, l, and r to the top, bottom, left, and right of the input,
respectively.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

PaddingValue — Value to pad data
0 (default) | scalar | 'symmetric-include-edge' | 'symmetric-exclude-edge' | 'replicate'
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Value to pad data, specified as one of the following:

PaddingValue Description Example
Scalar Pad with the specified scalar

value.
3 1 4
1 5 9
2 6 5

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 3 1 4 0 0
0 0 1 5 9 0 0
0 0 2 6 5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values.

3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5

'symmetric-exclude-edge' Pad using mirrored values of the
input, excluding the edge
values. 3 1 4

1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3

'replicate' Pad using repeated border
elements of the input

3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Output Arguments
Y — Convolved feature map
dlarray

Convolved feature map, returned as a dlarray with the same underlying data type as X.

If the input data X is a formatted dlarray, then Y has the same format as X. If the input data is not a
formatted dlarray, then Y is an unformatted dlarray with the same dimension order as the input
data.
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The size of the "C" (channel) dimension of Y depends on the task.

Task Size of "C" Dimension
Convolution Number of filters
Grouped convolution Number of filters per group multiplied by the

number of groups

More About
Deep Learning Convolution

The dlconv function applies sliding convolution filters to the input data. The dlconv function
supports convolution in one, two, or three spatial dimensions or one time dimension. To learn more
about deep learning convolution, see the definition of convolutional layer on page 1-387 on the
convolution2dLayer reference page.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• X
• weights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | batchnorm | fullyconnect | maxpool | relu | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“List of Functions with dlarray Support”
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dlfeval
Evaluate deep learning model for custom training loops

Syntax
[y1,...,yk] = dlfeval(fun,x1,...,xn)

Description
Use dlfeval to evaluate custom deep learning models for custom training loops.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops”.

[y1,...,yk] = dlfeval(fun,x1,...,xn) evaluates the deep learning array function fun at the
input arguments x1,...,xn. Functions passed to dlfeval can contain calls to dlgradient, which
compute gradients from the inputs x1,...,xn by using automatic differentiation.

Examples

Compute Gradient Using Automatic Differentiation

Rosenbrock's function is a standard test function for optimization. The rosenbrock.m helper
function computes the function value and uses automatic differentiation to compute its gradient.

type rosenbrock.m

function [y,dydx] = rosenbrock(x)

y = 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2;
dydx = dlgradient(y,x);

end

To evaluate Rosenbrock's function and its gradient at the point [–1,2], create a dlarray of the
point and then call dlfeval on the function handle @rosenbrock.

x0 = dlarray([-1,2]);
[fval,gradval] = dlfeval(@rosenbrock,x0)

fval = 
  1x1 dlarray

1 Deep Learning Functions

1-500



   104

gradval = 
  1x2 dlarray

   396   200

Alternatively, define Rosenbrock's function as a function of two inputs, x1 and x2.

type rosenbrock2.m

function [y,dydx1,dydx2] = rosenbrock2(x1,x2)

y = 100*(x2 - x1.^2).^2 + (1 - x1).^2;
[dydx1,dydx2] = dlgradient(y,x1,x2);

end

Call dlfeval to evaluate rosenbrock2 on two dlarray arguments representing the inputs –1 and
2.

x1 = dlarray(-1);
x2 = dlarray(2);
[fval,dydx1,dydx2] = dlfeval(@rosenbrock2,x1,x2)

fval = 
  1x1 dlarray

   104

dydx1 = 
  1x1 dlarray

   396

dydx2 = 
  1x1 dlarray

   200

Plot the gradient of Rosenbrock's function for several points in the unit square. First, initialize the
arrays representing the evaluation points and the output of the function.

[X1 X2] = meshgrid(linspace(0,1,10));
X1 = dlarray(X1(:));
X2 = dlarray(X2(:));
Y = dlarray(zeros(size(X1)));
DYDX1 = Y;
DYDX2 = Y;

Evaluate the function in a loop. Plot the result using quiver.

for i = 1:length(X1)
    [Y(i),DYDX1(i),DYDX2(i)] = dlfeval(@rosenbrock2,X1(i),X2(i));
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end
quiver(extractdata(X1),extractdata(X2),extractdata(DYDX1),extractdata(DYDX2))
xlabel('x1')
ylabel('x2')

Compute Gradients Involving Complex Numbers

Use dlgradient and dlfeval to compute the value and gradient of a function that involves
complex numbers. You can compute complex gradients, or restrict the gradients to real numbers only.

Define the function complexFun, listed at the end of this example. This function implements the
following complex formula:

f x = 2 + 3i x

Define the function gradFun, listed at the end of this example. This function calls complexFun and
uses dlgradient to calculate the gradient of the result with respect to the input. For automatic
differentiation, the value to differentiate — i.e., the value of the function calculated from the input —
must be a real scalar, so the function takes the sum of the real part of the result before calculating
the gradient. The function returns the real part of the function value and the gradient, which can be
complex.

Define the sample points over the complex plane between -2 and 2 and -2i and 2i and convert to
dlarray.
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functionRes = linspace(-2,2,100);
x = functionRes + 1i*functionRes.';
x = dlarray(x);

Calculate the function value and gradient at each sample point.

[y, grad] = dlfeval(@gradFun,x);
y = extractdata(y);

Define the sample points at which to display the gradient.

gradientRes = linspace(-2,2,11);
xGrad = gradientRes + 1i*gradientRes.';

Extract the gradient values at these sample points.

[~,gradPlot] = dlfeval(@gradFun,dlarray(xGrad));
gradPlot = extractdata(gradPlot);

Plot the results. Use imagesc to show the value of the function over the complex plane. Use quiver
to show the direction and magnitude of the gradient.

imagesc([-2,2],[-2,2],y);
axis xy
colorbar
hold on
quiver(real(xGrad),imag(xGrad),real(gradPlot),imag(gradPlot),"k");
xlabel("Real")
ylabel("Imaginary")
title("Real Value and Gradient","Re$(f(x)) = $ Re$((2+3i)x)$","interpreter","latex")
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The gradient of the function is the same across the entire complex plane. Extract the value of the
gradient calculated by automatic differentiation.

grad(1,1)

ans = 
  1×1 dlarray

   2.0000 - 3.0000i

By inspection, the complex derivative of the function has the value

df x
dx = 2 + 3i

However, the function Re(f x ) is not analytic, and therefore no complex derivative is defined. For
automatic differentiation in MATLAB, the value to differentiate must always be real, and therefore the
function can never be complex analytic. Instead, the derivative is computed such that the returned
gradient points in the direction of steepest ascent, as seen in the plot. This is done by interpreting the
function Re f x : C → R as a function Re f xR + ixI : R × R → R.

function y = complexFun(x)
    y = (2+3i)*x;    
end

function [y,grad] = gradFun(x)
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    y = complexFun(x);
    y = real(y);

    grad = dlgradient(sum(y,"all"),x);
end

Input Arguments
fun — Function to evaluate
function handle

Function to evaluate, specified as a function handle. If fun includes a dlgradient call, then
dlfeval evaluates the gradient by using automatic differentiation. In this gradient evaluation, each
argument of the dlgradient call must be a dlarray or a cell array, structure, or table containing a
dlarray. The number of input arguments to dlfeval must be the same as the number of input
arguments to fun.
Example: @rosenbrock
Data Types: function_handle

x1,...,xn — Function arguments
any MATLAB data type | dlnetwork

Function arguments, specified as any MATLAB data type or a dlnetwork object.

An input argument xj that is a variable of differentiation in a dlgradient call must be a traced
dlarray or a cell array, structure, or table containing a traced dlarray. An extra variable such as a
hyperparameter or constant data array does not have to be a dlarray.

To evaluate gradients for deep learning, you can provide a dlnetwork object as a function argument
and evaluate the forward pass of the network inside fun.
Example: dlarray([1 2;3 4])
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

Output Arguments
y1,...,yk — Function outputs
any data type | dlarray

Function outputs, returned as any data type. If the output results from a dlgradient call, the output
is a dlarray.

Tips
• A dlgradient call must be inside a function. To obtain a numeric value of a gradient, you must

evaluate the function using dlfeval, and the argument to the function must be a dlarray. See
“Use Automatic Differentiation In Deep Learning Toolbox”.
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• To enable the correct evaluation of gradients, the function fun must use only supported functions
for dlarray. See “List of Functions with dlarray Support”.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• dlfeval supports providing x1,...,xn as a gpuArray or as a dlarray that contains a
gpuArray.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlgradient | dlnetwork

Topics
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Generative Adversarial Network (GAN)”
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dlgradient
Compute gradients for custom training loops using automatic differentiation

Syntax
[dydx1,...,dydxk] = dlgradient(y,x1,...,xk)
[dydx1,...,dydxk] = dlgradient(y,x1,...,xk,Name,Value)

Description
Use dlgradient to compute derivatives using automatic differentiation for custom training loops.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops”.

[dydx1,...,dydxk] = dlgradient(y,x1,...,xk) returns the gradients of y with respect to
the variables x1 through xk.

Call dlgradient from inside a function passed to dlfeval. See “Compute Gradient Using
Automatic Differentiation” on page 1-507 and “Use Automatic Differentiation In Deep Learning
Toolbox”.

[dydx1,...,dydxk] = dlgradient(y,x1,...,xk,Name,Value) returns the gradients and
specifies additional options using one or more name-value pairs. For example, dydx =
dlgradient(y,x,'RetainData',true) causes the gradient to retain intermediate values for
reuse in subsequent dlgradient calls. This syntax can save time, but uses more memory. For more
information, see “Tips” on page 1-514.

Examples

Compute Gradient Using Automatic Differentiation

Rosenbrock's function is a standard test function for optimization. The rosenbrock.m helper
function computes the function value and uses automatic differentiation to compute its gradient.

type rosenbrock.m

function [y,dydx] = rosenbrock(x)

y = 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2;
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dydx = dlgradient(y,x);

end

To evaluate Rosenbrock's function and its gradient at the point [–1,2], create a dlarray of the
point and then call dlfeval on the function handle @rosenbrock.

x0 = dlarray([-1,2]);
[fval,gradval] = dlfeval(@rosenbrock,x0)

fval = 
  1x1 dlarray

   104

gradval = 
  1x2 dlarray

   396   200

Alternatively, define Rosenbrock's function as a function of two inputs, x1 and x2.

type rosenbrock2.m

function [y,dydx1,dydx2] = rosenbrock2(x1,x2)

y = 100*(x2 - x1.^2).^2 + (1 - x1).^2;
[dydx1,dydx2] = dlgradient(y,x1,x2);

end

Call dlfeval to evaluate rosenbrock2 on two dlarray arguments representing the inputs –1 and
2.

x1 = dlarray(-1);
x2 = dlarray(2);
[fval,dydx1,dydx2] = dlfeval(@rosenbrock2,x1,x2)

fval = 
  1x1 dlarray

   104

dydx1 = 
  1x1 dlarray

   396

dydx2 = 
  1x1 dlarray

   200

Plot the gradient of Rosenbrock's function for several points in the unit square. First, initialize the
arrays representing the evaluation points and the output of the function.
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[X1 X2] = meshgrid(linspace(0,1,10));
X1 = dlarray(X1(:));
X2 = dlarray(X2(:));
Y = dlarray(zeros(size(X1)));
DYDX1 = Y;
DYDX2 = Y;

Evaluate the function in a loop. Plot the result using quiver.

for i = 1:length(X1)
    [Y(i),DYDX1(i),DYDX2(i)] = dlfeval(@rosenbrock2,X1(i),X2(i));
end
quiver(extractdata(X1),extractdata(X2),extractdata(DYDX1),extractdata(DYDX2))
xlabel('x1')
ylabel('x2')

Compute Gradients Involving Complex Numbers

Use dlgradient and dlfeval to compute the value and gradient of a function that involves
complex numbers. You can compute complex gradients, or restrict the gradients to real numbers only.

Define the function complexFun, listed at the end of this example. This function implements the
following complex formula:

f x = 2 + 3i x
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Define the function gradFun, listed at the end of this example. This function calls complexFun and
uses dlgradient to calculate the gradient of the result with respect to the input. For automatic
differentiation, the value to differentiate — i.e., the value of the function calculated from the input —
must be a real scalar, so the function takes the sum of the real part of the result before calculating
the gradient. The function returns the real part of the function value and the gradient, which can be
complex.

Define the sample points over the complex plane between -2 and 2 and -2i and 2i and convert to
dlarray.

functionRes = linspace(-2,2,100);
x = functionRes + 1i*functionRes.';
x = dlarray(x);

Calculate the function value and gradient at each sample point.

[y, grad] = dlfeval(@gradFun,x);
y = extractdata(y);

Define the sample points at which to display the gradient.

gradientRes = linspace(-2,2,11);
xGrad = gradientRes + 1i*gradientRes.';

Extract the gradient values at these sample points.

[~,gradPlot] = dlfeval(@gradFun,dlarray(xGrad));
gradPlot = extractdata(gradPlot);

Plot the results. Use imagesc to show the value of the function over the complex plane. Use quiver
to show the direction and magnitude of the gradient.

imagesc([-2,2],[-2,2],y);
axis xy
colorbar
hold on
quiver(real(xGrad),imag(xGrad),real(gradPlot),imag(gradPlot),"k");
xlabel("Real")
ylabel("Imaginary")
title("Real Value and Gradient","Re$(f(x)) = $ Re$((2+3i)x)$","interpreter","latex")
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The gradient of the function is the same across the entire complex plane. Extract the value of the
gradient calculated by automatic differentiation.

grad(1,1)

ans = 
  1×1 dlarray

   2.0000 - 3.0000i

By inspection, the complex derivative of the function has the value

df x
dx = 2 + 3i

However, the function Re(f x ) is not analytic, and therefore no complex derivative is defined. For
automatic differentiation in MATLAB, the value to differentiate must always be real, and therefore the
function can never be complex analytic. Instead, the derivative is computed such that the returned
gradient points in the direction of steepest ascent, as seen in the plot. This is done by interpreting the
function Re f x : C → R as a function Re f xR + ixI : R × R → R.

function y = complexFun(x)
    y = (2+3i)*x;    
end

function [y,grad] = gradFun(x)
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    y = complexFun(x);
    y = real(y);

    grad = dlgradient(sum(y,"all"),x);
end

Input Arguments
y — Variable to differentiate
scalar dlarray object

Variable to differentiate, specified as a scalar dlarray object. For differentiation, y must be a traced
function of dlarray inputs (see “Traced dlarray” on page 1-514) and must consist of supported
functions for dlarray (see “List of Functions with dlarray Support”).

Variable to differentiate must be real even when the name-value option 'AllowComplex' is set to
true.
Example: 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2
Example: relu(X)
Data Types: single | double | logical

x1,...,xk — Variable in function
dlarray object | cell array containing dlarray objects | structure containing dlarray objects |
table containing dlarray objects

Variable in the function, specified as a dlarray object, a cell array, structure, or table containing
dlarray objects, or any combination of such arguments recursively. For example, an argument can
be a cell array containing a cell array that contains a structure containing dlarray objects.

If you specify x1,...,xk as a table, the table must contain the following variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

Example: dlarray([1 2;3 4])
Data Types: single | double | logical | struct | cell
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: dydx = dlgradient(y,x,'RetainData',true) causes the gradient to retain
intermediate values for reuse in subsequent dlgradient calls

RetainData — Flag to retain trace data during function call
false or 0 (default) | true or 1
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Flag to retain trace data during the function call, specified as false or true. When this argument is
false, a dlarray discards the derivative trace immediately after computing a derivative. When this
argument is true, a dlarray retains the derivative trace until the end of the dlfeval function call
that evaluates the dlgradient. The true setting is useful only when the dlfeval call contains
more than one dlgradient call. The true setting causes the software to use more memory, but can
save time when multiple dlgradient calls use at least part of the same trace.

When 'EnableHigherDerivatives' is true, then intermediate values are retained and the
'RetainData' option has no effect.
Example: dydx = dlgradient(y,x,'RetainData',true)
Data Types: logical

EnableHigherDerivatives — Flag to enable higher-order derivatives
true or 1 | false or 0

Flag to enable higher-order derivatives, specified as one of the following:

• true — Enable higher-order derivatives. Trace the backward pass so that the returned gradients
can be used in further computations for subsequent calls to the dlgradient function. If
'EnableHigherDerivatives' is true, then intermediate values are retained and the
'RetainData' option has no effect.

• false — Disable higher-order derivatives. Do not trace the backward pass. Use this option when
you need to compute first-order derivatives only as this is usually quicker and requires less
memory.

When using the dlgradient function inside an AcceleratedFunction object, the default value is
true. Otherwise, the default value is false.

For examples showing how to train models that require calculating higher-order derivatives, see:

• “Train Wasserstein GAN with Gradient Penalty (WGAN-GP)”
• “Solve Partial Differential Equations Using Deep Learning”

Data Types: logical

AllowComplex — Flag to allow complex variables and gradients
true or 1 (default) | false or 0

Flag to allow complex variables in function and complex gradients, specified as one of the following:

• true — Allow complex variables in function and complex gradients. Variables in the function can
be specified as complex numbers. Gradients can be complex even if all variables are real. Variable
to differentiate must be real.

• false — Do not allow complex variables and gradients. Variable to differentiate and any variables
in the function must be real numbers. Gradients are always real. Intermediate values can still be
complex.

Variable to differentiate must be real even when the name-value option 'AllowComplex' is set to
true.
Data Types: logical
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Output Arguments
dydx1,...,dydxk — Gradient
dlarray object | cell array containing dlarray objects | structure containing dlarray objects |
table containing dlarray objects

Gradient, returned as a dlarray object, or a cell array, structure, or table containing dlarray
objects, or any combination of such arguments recursively. The size and data type of
dydx1,...,dydxk are the same as those of the associated input variable x1,…,xk.

Limitations
• The dlgradient function does not support calculating higher-order derivatives when using

dlnetwork objects containing custom layers with a custom backward function.
• The dlgradient function does not support calculating higher-order derivatives when using

dlnetwork objects containing the following layers:

• gruLayer
• lstmLayer
• bilstmLayer

• The dlgradient function does not support calculating higher-order derivatives that depend on
the following functions:

• gru
• lstm
• embed
• prod
• interp1

More About
Traced dlarray

During the computation of a function, a dlarray internally records the steps taken in a trace,
enabling reverse mode automatic differentiation. The trace occurs within a dlfeval call. See
“Automatic Differentiation Background”.

Tips
• A dlgradient call must be inside a function. To obtain a numeric value of a gradient, you must

evaluate the function using dlfeval, and the argument to the function must be a dlarray. See
“Use Automatic Differentiation In Deep Learning Toolbox”.

• To enable the correct evaluation of gradients, the y argument must use only supported functions
for dlarray. See “List of Functions with dlarray Support”.

• If you set the 'RetainData' name-value pair argument to true, the software preserves tracing
for the duration of the dlfeval function call instead of erasing the trace immediately after the
derivative computation. This preservation can cause a subsequent dlgradient call within the
same dlfeval call to be executed faster, but uses more memory. For example, in training an
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adversarial network, the 'RetainData' setting is useful because the two networks share data
and functions during training. See “Train Generative Adversarial Network (GAN)”.

• When you need to calculate first-order derivatives only, ensure that the
'EnableHigherDerivatives' option is false as this is usually quicker and requires less
memory.

• Complex gradients are calculated using the Wirtinger derivative. The gradient is defined in the
direction of increase of the real part of the function to differentiate. This is because the variable to
differentiate — for example, the loss — must be real, even if the function is complex.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• If the variable to differentiate input argument y is a dlarray object that contains a gpuArray,
then this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlnetwork

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
“Train Generative Adversarial Network (GAN)”
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dlmtimes
(Not recommended) Batch matrix multiplication for deep learning

Note dlmtimes is not recommended. Use pagemtimes instead. For more information, see
“Compatibility Considerations”

Syntax
dlC = dlmtimes(dlA,dlB)

Description
dlC = dlmtimes(dlA,dlB) computes matrix multiplication for each page of dlA and dlB. For 3-D
inputs dlA and dlB, dlC is calculated as

dlC(:,:,i) = dlA(:,:,i) * dlB(:,:,i)

Similarly, for n-dimensional inputs dlA and dlB, dlC is calculated as

dlC(:,:,i1,...,in) = dlA(:,:,i1,...,in) * dlB(:,:,i1,...,in)

If one of dlA or dlB is a two-dimensional matrix, this matrix multiplies each page of the other input.

Examples

Multiply Two 4-D Arrays

Create two 4-D arrays.

A = rand(3,4,8,2);
B = rand(4,5,8,2);

dlA = dlarray(A);
dlB = dlarray(B);

Calculate the batch matrix multiplication of dlA and dlB.

dlC = dlmtimes(dlA,dlB);
size(dlC)

ans = 1×4    
     3     5     8     2

Multiply Two Inputs Using Scalar Expansion

If one of the inputs is a 2-D matrix, the function uses scalar expansion to expand this matrix to the
same size as the other input in the third and higher dimensions. The function then performs batch
matrix multiplication to the expanded matrix and the input array.
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Create a random array of size 15-by-20-by-3-by-128. Convert to dlarray.

A = rand(15,20,3,128);
dlA = dlarray(A);

Create a random matrix of size 20-by-15.

B = rand(20,15);

Multiply dlA and B using dlmtimes.

dlC = dlmtimes(dlA,B);
size(dlC)

ans = 1×4    
    15    15     3   128

Input Arguments
dlA,dlB — Operands
scalars | vectors | matrices | arrays

Operands, specified as scalars, vectors, matrices, or N-D arrays. At least one of dlA or dlB must be a
dlarray. The inputs dlA or dlB must not be formatted unless one of dlA or dlB is an unformatted
scalar.

The number of columns of dlA must match the number of rows of dlB. If one of dlA or dlB is a two-
dimensional matrix, this matrix multiplies each page of the other input. Otherwise, the size of dlA
and dlB for each dimension greater than two must match.

Output Arguments
dlC — Product
scalar | vector | matrix | array

Product, returned as a scalar, vector, matrix, or an N-D array.

Array dlC has the same number of rows as input dlA and the same number of columns as input dlB,
unless one of dlA or dlB is a scalar. The size of the other dimensions of dlC match the size of the
dimensions greater than two of both dlA and dlB. If dlA or dlB is a matrix, the size of the other
dimensions matches the size of the other (non-matrix) input. If one of dlA or dlB is a scalar, dlC has
the same size as the non-scalar input.

Version History
Introduced in R2020a

dlmtimes is not recommended
Not recommended starting in R2020b

dlmtimes is not recommended. Use pagemtimes instead. The two-input syntax of pagemtimes
performs the same functionality as dlmtimes. For information on how to use pagemtimes with
dlarray inputs, see the pagemtimes entry in “List of Functions with dlarray Support”

 dlmtimes

1-517



See Also
dlarray | mtimes | pagefun | pagemtimes

Topics
“Sequence-to-Sequence Translation Using Attention”
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
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dlnetwork
Deep learning network for custom training loops

Description
A dlnetwork object enables support for custom training loops using automatic differentiation.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data.
For an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task,
then you can create a custom training loop using automatic differentiation. To learn more, see “Define
Deep Learning Network for Custom Training Loops”.

Creation

Syntax
net = dlnetwork(layers)
net = dlnetwork(layers,X1,...,Xn)
net = dlnetwork(layers,'Initialize',tf)
net = dlnetwork( ___ ,'OutputNames',names)
net = dlnetwork(prunableNet)

Description

net = dlnetwork(layers) converts the network layers specified in layers to an initialized
dlnetwork object representing a deep neural network for use with custom training loops. layers
can be a LayerGraph object or a Layer array. layers must contain an input layer.

An initialized dlnetwork object is ready for training. The learnable parameters and state values of
net are initialized for training with initial values based on the input size defined by the network input
layer.

net = dlnetwork(layers,X1,...,Xn) creates an initialized dlnetwork object using network
data layout objects or example inputs X1,...,Xn. The learnable parameters and state values of net
are initialized with initial values based on the size and format defined by X1,...,Xn. Use this syntax
to create an initialized dlnetwork with inputs that are not connected to an input layer.

net = dlnetwork(layers,'Initialize',tf) specifies whether to return an initialized or
uninitialized dlnetwork. Use this syntax to create an uninitialized network.

An uninitialized network has unset, empty values for learnable and state parameters and is not ready
for training. You must initialize an uninitialized dlnetwork before you can use it. Create an
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uninitialized network when you want to defer initialization to a later point. You can use uninitialized
dlnetwork objects to create complex networks using intermediate building blocks that you then
connect together, for example, using “Deep Learning Network Composition” workflows. You can
initialize an uninitialized dlnetwork using the initialize function.

net = dlnetwork( ___ ,'OutputNames',names) also sets the OutputNames property using any
of the previous syntaxes. The OutputNames property specifies the layers that return the network
outputs. To set the output names, the network must be initialized.

net = dlnetwork(prunableNet) removes filters selected for pruning from the convolution layers
of prunableNet and returns a compressed dlnetwork object that has fewer learnable parameters
and is smaller in size.

To prune a deep neural network, you require the Deep Learning Toolbox Model Quantization Library
support package. This support package is a free add-on that you can download using the Add-On
Explorer. Alternatively, see Deep Learning Toolbox Model Quantization Library.

Input Arguments

layers — Network layers
LayerGraph object | Layer array

Network layers, specified as a LayerGraph object or as a Layer array.

If layers is a Layer array, then the dlnetwork function connects the layers in series.

The network layers must not contain output layers. When training the network, calculate the loss
separately.

For a list of layers supported by dlnetwork, see “Supported Layers” on page 1-534.

X1,...,Xn — Example network inputs or data layouts
formatted dlarray object | formatted networkDataLayout object

Example network inputs or data layouts, specified as formatted dlarray objects or formatted
networkDataLayout objects. The software propagates X1,...Xn through the network to determine
the appropriate sizes and formats of the learnable and state parameters of the dlnetwork.

When layers is a Layer array, provide example inputs in the same order that the layers that require
inputs appear in the Layer array. When layers is a LayerGraph object, provide example inputs in
the same order as the layers that require inputs appear in the Layers property of the LayerGraph.

Example inputs are not supported when tf is false.

Note Automatic initialization uses only the size and format information of the input data. For
initialization that depends on the values on the input data, you must initialize the learnable
parameters manually.

tf — Flag to return initialized dlnetwork
1 (true) (default) | 0 (false)

Flag to return initialized dlnetwork, specified as a numeric or logical 1 (true) or 0 (false).
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If tf is 1, then the software initializes the learnable and state parameters of net with initial values
for training, according to the network input layer or the example inputs provided.

If tf is 0, then the software does not initialize the learnable and state parameters. Before you use an
uninitialized network, you must first initialize it using the initialize function. Example inputs are
not supported when tf is false.

prunableNet — Network for pruning by using first-order Taylor approximation
TaylorPrunableNetwork object

Network for pruning by using first-order Taylor approximation, specified as a
TaylorPrunableNetwork object.

Properties
Layers — Network layers
Layer array

This property is read-only.

Network layers, specified as a Layer array.

Connections — Layer connections
table

This property is read-only.

Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, Source, specifies the
source of each connection. The second column, Destination, specifies the destination of each
connection. The connection sources and destinations are either layer names or have the form
'layerName/IOName', where 'IOName' is the name of the layer input or output.
Data Types: table

Learnables — Network learnable parameters
table

Network learnable parameters, specified as a table with three columns:

• Layer – Layer name, specified as a string scalar.
• Parameter – Parameter name, specified as a string scalar.
• Value – Value of parameter, specified as a dlarray object.

The network learnable parameters contain the features learned by the network. For example, the
weights of convolution and fully connected layers.
Data Types: table

State — Network state
table

Network state, specified as a table.
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The network state is a table with three columns:

• Layer – Layer name, specified as a string scalar.
• Parameter – State parameter name, specified as a string scalar.
• Value – Value of state parameter, specified as a dlarray object.

Layer states contain information calculated during the layer operation to be retained for use in
subsequent forward passes of the layer. For example, the cell state and hidden state of LSTM layers,
or running statistics in batch normalization layers.

For recurrent layers, such as LSTM layers, with the HasStateInputs property set to 1 (true), the
state table does not contain entries for the states of that layer.

During training or inference, you can update the network state using the output of the forward and
predict functions.
Data Types: table

InputNames — Network input layer names
cell array of character vectors

This property is read-only.

Network input layer names, specified as a cell array of character vectors.
Data Types: cell

OutputNames — Names of layers that return network outputs
cell array of character vectors | string array

Names of layers that return network outputs, specified as a cell array of character vectors or a string
array.

To set the output names, the network must be initialized.

If you do not specify the output names, then the software sets the OutputNames property to the
layers with disconnected outputs. If a layer has multiple outputs, then the disconnected outputs are
specified as 'layerName/outputName'.

The predict and forward functions, by default, return the data output by the layers given by the
OutputNames property.
Data Types: cell | string

Initialized — Flag for initialized network
0 (false) | 1 (true)

This property is read-only.

Flag for initialized network, specified as 0 (false) or 1 (true).

If Initialized is 0 (false), the network is not initialized. You must initialize the network before you
can use it. Initialize the network using the initialize function.
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If Initialized is 1 (true), the network is initialized and can be used for training and inference. If
you change the values of learnable parameters — for example, during training — the value of
Initialized remains 1 (true).
Data Types: logical

Object Functions
predict Compute deep learning network output for inference
forward Compute deep learning network output for training
initialize Initialize learnable and state parameters of a dlnetwork
layerGraph Graph of network layers for deep learning
setL2Factor Set L2 regularization factor of layer learnable parameter
setLearnRateFactor Set learn rate factor of layer learnable parameter
getLearnRateFactor Get learn rate factor of layer learnable parameter
getL2Factor Get L2 regularization factor of layer learnable parameter
resetState Reset state parameters of neural network
plot Plot neural network architecture
addInputLayer Add input layer to network
addLayers Add layers to layer graph or network
removeLayers Remove layers from layer graph or network
connectLayers Connect layers in layer graph or network
disconnectLayers Disconnect layers in layer graph or network
replaceLayer Replace layer in layer graph or network
summary Print network summary

Examples

Convert Pretrained Network to dlnetwork Object

To implement a custom training loop for your network, first convert it to a dlnetwork object. Do not
include output layers in a dlnetwork object. Instead, you must specify the loss function in the
custom training loop.

Load a pretrained GoogLeNet model using the googlenet function. This function requires the Deep
Learning Toolbox™ Model for GoogLeNet Network support package. If this support package is not
installed, then the function provides a download link.

net = googlenet;

Convert the network to a layer graph and remove the layers used for classification using
removeLayers.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,["prob" "output"]);

Convert the network to a dlnetwork object.

dlnet = dlnetwork(lgraph)

dlnet = 
  dlnetwork with properties:

         Layers: [142x1 nnet.cnn.layer.Layer]
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    Connections: [168x2 table]
     Learnables: [116x3 table]
          State: [0x3 table]
     InputNames: {'data'}
    OutputNames: {'loss3-classifier'}
    Initialized: 1

  View summary with summary.

Create Initialized dlnetwork with Unconnected Inputs

Use network data layout objects to create a multi-input dlnetwork that is ready for training. The
software uses the size and format information to determine the appropriate sizes and formats of the
learnable and state parameters of the dlnetwork.

Define the network architecture. Construct a network with two branches. The network takes two
inputs, with one input per branch. Connect the branches using an addition layer.

numFilters = 24;

layersBranch1 = [
    convolution2dLayer(3,6*numFilters,Padding="same",Stride=2)
    groupNormalizationLayer("all-channels")
    reluLayer
    convolution2dLayer(3,numFilters,Padding="same")
    groupNormalizationLayer("channel-wise")
    additionLayer(2,Name="add")
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer];

layersBranch2 = [
    convolution2dLayer(1,numFilters)
    groupNormalizationLayer("all-channels",Name="gnBranch2")];

lgraph = layerGraph(layersBranch1);
lgraph = addLayers(lgraph,layersBranch2);
lgraph = connectLayers(lgraph,"gnBranch2","add/in2");

Create network data layout objects that represent the size and format of typical network inputs. For
both inputs, use a batch size of 32. Use an input of size 64-by-64 with three channels for the
convolution layer in the first branch. Use an input of size 64-by-64 with 18 channels for the
convolution layer in the second branch.

X1 = dlarray(rand([64 64 3 32]),"SSCB");
X2 = dlarray(rand([32 32 18 32]),"SSCB");

Create the dlnetwork. Provide the inputs in the same order that the unconnected layers appear in
the Layers property of lgraph.

net = dlnetwork(lgraph,X1,X2);

Check that the network is initialized and ready for training by inspecting the Initialized property
of the network.
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net.Initialized

ans = logical
   1

Train Network Using Custom Training Loop

This example shows how to train a network that classifies handwritten digits with a custom learning
rate schedule.

You can train most types of neural networks using the trainNetwork and trainingOptions
functions. If the trainingOptions function does not provide the options you need (for example, a
custom learning rate schedule), then you can define your own custom training loop using dlarray
and dlnetwork objects for automatic differentiation. For an example showing how to retrain a
pretrained deep learning network using the trainNetwork function, see “Transfer Learning Using
Pretrained Network”.

Training a deep neural network is an optimization task. By considering a neural network as a function
f (X; θ), where X is the network input, and θ is the set of learnable parameters, you can optimize θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable
parameters θ such that for a given inputs X with a corresponding targets T, they minimize the error
between the predictions Y = f (X; θ) and T.

The loss function used depends on the type of task. For example:

• For classification tasks, you can minimize the cross entropy error between the predictions and
targets.

• For regression tasks, you can minimize the mean squared error between the predictions and
targets.

You can optimize the objective using gradient descent: minimize the loss L by iteratively updating the
learnable parameters θ by taking steps towards the minimum using the gradients of the loss with
respect to the learnable parameters. Gradient descent algorithms typically update the learnable
parameters by using a variant of an update step of the form θt + 1 = θt − ρ∇L, where t is the iteration
number, ρ is the learning rate, and ∇L denotes the gradients (the derivatives of the loss with respect
to the learnable parameters).

This example trains a network to classify handwritten digits with the time-based decay learning rate
schedule: for each iteration, the solver uses the learning rate given by ρt =

ρ0
1 + k t , where t is the

iteration number, ρ0 is the initial learning rate, and k is the decay.

Load Training Data

Load the digits data as an image datastore using the imageDatastore function and specify the
folder containing the image data.

dataFolder = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");

imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ....
    LabelSource="foldernames");
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Partition the data into training and validation sets. Set aside 10% of the data for validation using the
splitEachLabel function.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,"randomize");

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the training images, use an augmented image datastore. Specify additional augmentation operations
to perform on the training images: randomly translate the images up to 5 pixels in the horizontal and
vertical axes. Data augmentation helps prevent the network from overfitting and memorizing the
exact details of the training images.

inputSize = [28 28 1];
pixelRange = [-5 5];

imageAugmenter = imageDataAugmenter( ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,DataAugmentation=imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Determine the number of classes in the training data.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network

Define the network for image classification.

• For image input, specify an image input layer with input size matching the training data.
• Do not normalize the image input, set the Normalization option of the input layer to "none".
• Specify three convolution-batchnorm-ReLU blocks.
• Pad the input to the convolution layers such that the output has the same size by setting the

Padding option to "same".
• For the first convolution layer specify 20 filters of size 5. For the remaining convolution layers

specify 20 filters of size 3.
• For classification, specify a fully connected layer with size matching the number of classes
• To map the output to probabilities, include a softmax layer.

When training a network using a custom training loop, do not include an output layer.

layers = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(5,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
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    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers)

net = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [11×2 table]
     Learnables: [14×3 table]
          State: [6×3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Define Model Loss Function

Training a deep neural network is an optimization task. By considering a neural network as a function
f (X; θ), where X is the network input, and θ is the set of learnable parameters, you can optimize θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable
parameters θ such that for a given inputs X with a corresponding targets T, they minimize the error
between the predictions Y = f (X; θ) and T.

Create the function modelLoss, listed in the Model Loss Function on page 1-531 section of the
example, that takes as input the dlnetwork object, a mini-batch of input data with corresponding
targets, and returns the loss, the gradients of the loss with respect to the learnable parameters, and
the network state.

Specify Training Options

Train for ten epochs with a mini-batch size of 128.

numEpochs = 10;
miniBatchSize = 128;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.01 with a decay of 0.01,
and momentum 0.9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.
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• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not format the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" ""]);

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Calculate the total number of iterations for the training progress monitor.

numObservationsTrain = numel(imdsTrain.Files);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info=["Epoch","LearnRate"],XLabel="Iteration");

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model loss, gradients, and state using the dlfeval and modelLoss functions and
update the network state.

• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the sgdmupdate function.
• Update the loss, learn rate, and epoch values in the training progress monitor.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop

        iteration = iteration + 1;
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        % Read mini-batch of data.
        [X,T] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelLoss function and update the network state.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T);
        net.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);
        
        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch,LearnRate=learnRate);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

After training, making predictions on new data does not require the labels. Create minibatchqueue
object containing only the predictors of the test data:

• To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
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• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format "SSCB" (spatial, spatial,

channel, batch).

numOutputs = 1;

mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="SSCB");

Loop over the mini-batches and classify the images using modelPredictions function, listed at the
end of the example.

YTest = modelPredictions(net,mbqTest,classes);

Evaluate the classification accuracy.

TTest = imdsValidation.Labels;
accuracy = mean(TTest == YTest)

accuracy = 0.9750

Visualize the predictions in a confusion chart.

figure
confusionchart(TTest,YTest)
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Large values on the diagonal indicate accurate predictions for the corresponding class. Large values
on the off-diagonal indicate strong confusion between the corresponding classes.

Supporting Functions

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding targets T and returns the loss, the gradients of the loss with respect to the learnable
parameters in net, and the network state. To compute the gradients automatically, use the
dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T)

% Forward data through network.
[Y,state] = forward(net,X);

% Calculate cross-entropy loss.
loss = crossentropy(Y,T);

% Calculate gradients of loss with respect to learnable parameters.
gradients = dlgradient(loss,net.Learnables);

end
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Model Predictions Function

The modelPredictions function takes a dlnetwork object net, a minibatchqueue of input data
mbq, and the network classes, and computes the model predictions by iterating over all data in the
minibatchqueue object. The function uses the onehotdecode function to find the predicted class
with the highest score.

function Y = modelPredictions(net,mbq,classes)

Y = [];

% Loop over mini-batches.
while hasdata(mbq)
    X = next(mbq);

    % Make prediction.
    scores = predict(net,X);

    % Decode labels and append to output.
    labels = onehotdecode(scores,classes,1)';
    Y = [Y; labels];
end

end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenate into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.
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function X = preprocessMiniBatchPredictors(dataX)

% Concatenate.
X = cat(4,dataX{1:end});

end

Freeze Learnable Parameters of dlnetwork Object

Load a pretrained network.

net = squeezenet;

Convert the network to a layer graph, remove the output layer, and convert it to a dlnetwork object.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,'ClassificationLayer_predictions');
dlnet = dlnetwork(lgraph);

The Learnables property of the dlnetwork object is a table that contains the learnable parameters
of the network. The table includes parameters of nested layers in separate rows. View the first few
rows of the learnables table.

learnables = dlnet.Learnables;
head(learnables)

          Layer           Parameter           Value       
    __________________    _________    ___________________

    "conv1"               "Weights"    {3x3x3x64  dlarray}
    "conv1"               "Bias"       {1x1x64    dlarray}
    "fire2-squeeze1x1"    "Weights"    {1x1x64x16 dlarray}
    "fire2-squeeze1x1"    "Bias"       {1x1x16    dlarray}
    "fire2-expand1x1"     "Weights"    {1x1x16x64 dlarray}
    "fire2-expand1x1"     "Bias"       {1x1x64    dlarray}
    "fire2-expand3x3"     "Weights"    {3x3x16x64 dlarray}
    "fire2-expand3x3"     "Bias"       {1x1x64    dlarray}

To freeze the learnable parameters of the network, loop over the learnable parameters and set the
learn rate to 0 using the setLearnRateFactor function.

factor = 0;

numLearnables = size(learnables,1);
for i = 1:numLearnables
    layerName = learnables.Layer(i);
    parameterName = learnables.Parameter(i);
    
    dlnet = setLearnRateFactor(dlnet,layerName,parameterName,factor);
end

To use the updated learn rate factors when training, you must pass the dlnetwork object to the
update function in the custom training loop. For example, use the command

[dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity);
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Create Uninitialized dlnetwork

Create an uninitialized dlnetwork object without an input layer. Creating an uninitialized
dlnetwork is useful when you do not yet know the size and format of the network inputs, for
example, when the dlnetwork is nested inside a custom layer.

Define the network layers. This network has a single input, which is not connected to an input layer.

layers = [
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer];

Create an uninitialized dlnetwork. Set the Initialize option to false.

dlnet = dlnetwork(layers,'Initialize',false);

Check that the network is not initialized.

dlnet.Initialized

ans = logical
   0

The learnable and state parameters of this network are not initialized for training. To initialize the
network, use the initialize function.

If you want to use dlnet directly in a custom training loop, then you can initialize it by using the
initialize function and providing an example input.

If you want to use dlnet inside a custom layer, then you can take advantage of automatic
initialization. If you use the custom layer inside a dlnetwork, then dlnet is initialized when the
parent dlnetwork is constructed (or when the parent network is initialized if it is constructed as an
uninitialized dlnetwork). If you use the custom layer inside a network that is trained using the
trainNetwork function, then dlnet is automatically initialized at training time. For more
information, see “Deep Learning Network Composition”.

More About
Supported Layers

The dlnetwork function supports the layers listed below and custom layers without forward
functions returning a nonempty memory value.

Input Layers

Layer Description

 imageInputLayer
An image input layer inputs 2-D images to a
network and applies data normalization.
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Layer Description

 image3dInputLayer
A 3-D image input layer inputs 3-D images or
volumes to a network and applies data
normalization.

 sequenceInputLayer
A sequence input layer inputs sequence data to a
network.

 featureInputLayer
A feature input layer inputs feature data to a
network and applies data normalization. Use this
layer when you have a data set of numeric scalars
representing features (data without spatial or
time dimensions).

Convolution and Fully Connected Layers

Layer Description

 convolution1dLayer
A 1-D convolutional layer applies sliding
convolutional filters to 1-D input.

 convolution2dLayer
A 2-D convolutional layer applies sliding
convolutional filters to 2-D input.

 convolution3dLayer
A 3-D convolutional layer applies sliding cuboidal
convolution filters to 3-D input.

 groupedConvolution2dLayer
A 2-D grouped convolutional layer separates the
input channels into groups and applies sliding
convolutional filters. Use grouped convolutional
layers for channel-wise separable (also known as
depth-wise separable) convolution.

 transposedConv2dLayer
A transposed 2-D convolution layer upsamples
two-dimensional feature maps.

 transposedConv3dLayer
A transposed 3-D convolution layer upsamples
three-dimensional feature maps.

 fullyConnectedLayer
A fully connected layer multiplies the input by a
weight matrix and then adds a bias vector.

Sequence Layers

Layer Description

 sequenceInputLayer
A sequence input layer inputs sequence data to a
network.

 lstmLayer
An LSTM layer learns long-term dependencies
between time steps in time series and sequence
data.

 lstmLayer
An LSTM projected layer learns long-term
dependencies between time steps in time series
and sequence data using projected learnable
weights.
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Layer Description

 bilstmLayer
A bidirectional LSTM (BiLSTM) layer learns
bidirectional long-term dependencies between
time steps of time series or sequence data. These
dependencies can be useful when you want the
network to learn from the complete time series at
each time step.

 gruLayer
A GRU layer learns dependencies between time
steps in time series and sequence data.

 flattenLayer
A flatten layer collapses the spatial dimensions of
the input into the channel dimension.

For lstmLayer, bilstmLayer, and gruLayer objects, dlnetwork objects support layers with the
default values for the StateActivationFunction and GateActivationFunction properties.

Activation Layers

Layer Description

 reluLayer
A ReLU layer performs a threshold operation to
each element of the input, where any value less
than zero is set to zero.

 leakyReluLayer
A leaky ReLU layer performs a threshold
operation, where any input value less than zero is
multiplied by a fixed scalar.

 clippedReluLayer
A clipped ReLU layer performs a threshold
operation, where any input value less than zero is
set to zero and any value above the clipping
ceiling is set to that clipping ceiling.

 eluLayer
An ELU activation layer performs the identity
operation on positive inputs and an exponential
nonlinearity on negative inputs.

 geluLayer
A Gaussian error linear unit (GELU) layer weights
the input by its probability under a Gaussian
distribution.

 swishLayer
A swish activation layer applies the swish
function on the layer inputs.

 tanhLayer
A hyperbolic tangent (tanh) activation layer
applies the tanh function on the layer inputs.

 softmaxLayer
A softmax layer applies a softmax function to the
input.

sigmoidLayer
A sigmoid layer applies a sigmoid function to the
input such that the output is bounded in the
interval (0,1).

 functionLayer
A function layer applies a specified function to
the layer input.
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Normalization Layers

Layer Description

 batchNormalizationLayer
A batch normalization layer normalizes a mini-
batch of data across all observations for each
channel independently. To speed up training of
the convolutional neural network and reduce the
sensitivity to network initialization, use batch
normalization layers between convolutional
layers and nonlinearities, such as ReLU layers.

 groupNormalizationLayer
A group normalization layer normalizes a mini-
batch of data across grouped subsets of channels
for each observation independently. To speed up
training of the convolutional neural network and
reduce the sensitivity to network initialization,
use group normalization layers between
convolutional layers and nonlinearities, such as
ReLU layers.

 layerNormalizationLayer
A layer normalization layer normalizes a mini-
batch of data across all channels for each
observation independently. To speed up training
of recurrent and multilayer perceptron neural
networks and reduce the sensitivity to network
initialization, use layer normalization layers after
the learnable layers, such as LSTM and fully
connected layers.

 crossChannelNormalizationLayer
A channel-wise local response (cross-channel)
normalization layer carries out channel-wise
normalization.

Utility Layers

Layer Description

 dropoutLayer
A dropout layer randomly sets input elements to
zero with a given probability.

 crop2dLayer
A 2-D crop layer applies 2-D cropping to the
input.

 stftLayer
An STFT layer computes the short-time Fourier
transform of the input.

 cwtLayer
A CWT layer computes the CWT of the input.

 modwtLayer
A MODWT layer computes the MODWT and
MODWT multiresolution analysis (MRA) of the
input.
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Pooling and Unpooling Layers

Layer Description

 averagePooling1dLayer
A 1-D average pooling layer performs
downsampling by dividing the input into 1-D
pooling regions, then computing the average of
each region.

 averagePooling2dLayer
A 2-D average pooling layer performs
downsampling by dividing the input into
rectangular pooling regions, then computing the
average of each region.

 averagePooling3dLayer
A 3-D average pooling layer performs
downsampling by dividing three-dimensional
input into cuboidal pooling regions, then
computing the average values of each region.

 globalAveragePooling1dLayer
A 1-D global average pooling layer performs
downsampling by outputting the average of the
time or spatial dimensions of the input.

 globalAveragePooling2dLayer
A 2-D global average pooling layer performs
downsampling by computing the mean of the
height and width dimensions of the input.

 globalAveragePooling3dLayer
A 3-D global average pooling layer performs
downsampling by computing the mean of the
height, width, and depth dimensions of the input.

 maxPooling1dLayer
A 1-D max pooling layer performs downsampling
by dividing the input into 1-D pooling regions,
then computing the maximum of each region.

 maxPooling2dLayer
A 2-D max pooling layer performs downsampling
by dividing the input into rectangular pooling
regions, then computing the maximum of each
region.

 maxPooling3dLayer
A 3-D max pooling layer performs downsampling
by dividing three-dimensional input into cuboidal
pooling regions, then computing the maximum of
each region.

 globalMaxPooling1dLayer
A 1-D global max pooling layer performs
downsampling by outputting the maximum of the
time or spatial dimensions of the input.

 globalMaxPooling2dLayer
A 2-D global max pooling layer performs
downsampling by computing the maximum of the
height and width dimensions of the input.

 globalMaxPooling3dLayer
A 3-D global max pooling layer performs
downsampling by computing the maximum of the
height, width, and depth dimensions of the input.

 maxUnpooling2dLayer
A 2-D max unpooling layer unpools the output of
a 2-D max pooling layer.
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Combination Layers

Layer Description

 additionLayer
An addition layer adds inputs from multiple
neural network layers element-wise.

 multiplicationLayer
A multiplication layer multiplies inputs from
multiple neural network layers element-wise.

 depthConcatenationLayer
A depth concatenation layer takes inputs that
have the same height and width and concatenates
them along the third dimension (the channel
dimension).

 concatenationLayer
A concatenation layer takes inputs and
concatenates them along a specified dimension.
The inputs must have the same size in all
dimensions except the concatenation dimension.

Version History
Introduced in R2019b

dlnetwork state values are dlarray objects

The State of a dlnetwork object is a table containing the state parameter names and values for
each layer in the network.

Starting in R2021a, the state values are dlarray objects. This change enables better support when
using AcceleratedFunction objects. To accelerate deep learning functions that have frequently
changing input values, for example, an input containing the network state, the frequently changing
values must be specified as dlarray objects.

In previous versions, the state values are numeric arrays.

In most cases, you will not need to update your code. If you have code that requires the state values
to be numeric arrays, then to reproduce the previous behavior, extract the data from the state values
manually using the extractdata function with the dlupdate function.

state = dlupdate(@extractdata,net.State);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation supports only the InputNames and OutputNames properties.
• The Initialized property of the dlnetwork object must be set to true.
• You can generate code for dlnetwork that have vector or image sequence inputs. For ARM

Compute, the dlnetwork can have sequence and non-sequence input layers. For Intel MKL-DNN,
input layers must be all sequence input layers. Code generation support includes:
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• dlarray containing vector sequences that have 'CT' or 'CBT' data formats.
• dlarray containing image sequences that have 'SSCT' or 'SSCBT' data formats.
• Multi-input dlnetwork with heterogeneous input layers. For RNN networks, multiple input is

not supported.
• Code generation supports only the predict object function. The dlarray input to the predict

method must be a single datatype.
• Code generation supports MIMO dlnetworks.
• To create a dlnetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Code generation supports only the InputNames and OutputNames properties.
• The Initialized property of the dlnetwork object must be set to true.
• You can generate code for dlnetwork that have vector and image sequence inputs. Code

generation support includes:

• dlarray containing vector sequences that have 'CT' or 'CBT' data formats.
• dlarray containing image sequences that have 'SSCT' or 'SSCBT' data formats.
• Multi-input dlnetwork with heterogeneous input layers. For RNN networks, multiple input is

not supported.
• Code generation supports only the predict object function. The dlarray input to the predict

method must be a single datatype.
• Code generation supports dlnetwork for cuDNN and TensorRT targets. Code generation does not

support dlnetwork for ARM Mali targets.
• When targeting TensorRT with INT8 precision, the last layer(s) of the network must be a

softmaxLayer layer.
• Code generation supports MIMO dlnetworks.
• To create a dlnetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (GPU Coder).

See Also
dlarray | dlgradient | dlfeval | forward | predict | layerGraph | initialize |
TaylorPrunableNetwork

Topics
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”
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predict
Compute deep learning network output for inference

Syntax
Y = predict(net,X)
Y = predict(net,X1,...,XM)
[Y1,...,YN] = predict( ___ )
[Y1,...,YK] = predict( ___ ,'Outputs',layerNames)
[ ___ ] = predict( ___ ,'Acceleration',acceleration)
[ ___ ,state] = predict( ___ )

Description
Some deep learning layers behave differently during training and inference (prediction). For example,
during training, dropout layers randomly set input elements to zero to help prevent overfitting, but
during inference, dropout layers do not change the input.

To compute network outputs for inference, use the predict function. To compute network outputs
for training, use the forward function. For prediction with SeriesNetwork and DAGNetwork
objects, see predict.

Tip For prediction with SeriesNetwork and DAGNetwork objects, see predict.

Y = predict(net,X) returns the network output Y during inference given the input data X and the
network net with a single input and a single output.

Y = predict(net,X1,...,XM) returns the network output Y during inference given the M inputs
X1, ...,XM and the network net that has M inputs and a single output.

[Y1,...,YN] = predict( ___ ) returns the N outputs Y1, …, YN during inference for networks
that have N outputs using any of the previous syntaxes.

[Y1,...,YK] = predict( ___ ,'Outputs',layerNames) returns the outputs Y1, …, YK during
inference for the specified layers using any of the previous syntaxes.

[ ___ ] = predict( ___ ,'Acceleration',acceleration) also specifies performance
optimization to use during inference, in addition to the input arguments in previous syntaxes.

[ ___ ,state] = predict( ___ ) also returns the updated network state.

Examples

Make Predictions Using dlnetwork Object

This example shows how to make predictions using a dlnetwork object by splitting data into mini-
batches.
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For large data sets, or when predicting on hardware with limited memory, make predictions by
splitting the data into mini-batches. When making predictions with SeriesNetwork or DAGNetwork
objects, the predict function automatically splits the input data into mini-batches. For dlnetwork
objects, you must split the data into mini-batches manually.

Load dlnetwork Object

Load a trained dlnetwork object and the corresponding classes.

s = load("digitsCustom.mat");
dlnet = s.dlnet;
classes = s.classes;

Load Data for Prediction

Load the digits data for prediction.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true);

Make Predictions

Loop over the mini-batches of the test data and make predictions using a custom prediction loop.

Use minibatchqueue to process and manage the mini-batches of images. Specify a mini-batch size
of 128. Set the read size property of the image datastore to the mini-batch size.

For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to concatenate the data into a batch and normalize the images.

• Format the images with the dimensions 'SSCB' (spatial, spatial, channel, batch). By default, the
minibatchqueue object converts the data to dlarray objects with underlying type single.

• Make predictions on a GPU if one is available. By default, the minibatchqueue object converts
the output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU
Computing Requirements” (Parallel Computing Toolbox).

miniBatchSize = 128;
imds.ReadSize = miniBatchSize;

mbq = minibatchqueue(imds,...
    "MiniBatchSize",miniBatchSize,...
    "MiniBatchFcn", @preprocessMiniBatch,...
    "MiniBatchFormat","SSCB");

Loop over the minibatches of data and make predictions using the predict function. Use the
onehotdecode function to determine the class labels. Store the predicted class labels.

numObservations = numel(imds.Files);
YPred = strings(1,numObservations);

predictions = [];
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% Loop over mini-batches.
while hasdata(mbq)
    
    % Read mini-batch of data.
    dlX = next(mbq);
       
    % Make predictions using the predict function.
    dlYPred = predict(dlnet,dlX);
   
    % Determine corresponding classes.
    predBatch = onehotdecode(dlYPred,classes,1);
    predictions = [predictions predBatch];
  
end

Visualize some of the predictions.

idx = randperm(numObservations,9);

figure
for i = 1:9
    subplot(3,3,i)
    I = imread(imds.Files{idx(i)});    
    label = predictions(idx(i));
    imshow(I)
    title("Label: " + string(label))
  
end
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Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the data from the incoming cell array and concatenate into a numeric array.
Concatenating over the fourth dimension adds a third dimension to each image, to be used as a
singleton channel dimension.

2 Normalize the pixel values between 0 and 1.

function X = preprocessMiniBatch(data)    
    % Extract image data from cell and concatenate
    X = cat(4,data{:});
    
    % Normalize the images.
    X = X/255;
end

Input Arguments
net — Network for custom training loops or custom pruning loops
dlnetwork object | TaylorPrunableNetwork object

This argument can represent either of these:

• Network for custom training loops, specified as a dlnetwork object.
• Network for custom pruning loops, specified as a TaylorPrunableNetwork object.

To prune a deep neural network, you require the Deep Learning Toolbox Model Quantization Library
support package. This support package is a free add-on that you can download using the Add-On
Explorer. Alternatively, see Deep Learning Toolbox Model Quantization Library.

X — Input data
formatted dlarray

Input data, specified as a formatted dlarray. For more information about dlarray formats, see the
fmt input argument of dlarray.

layerNames — Layers to extract outputs from
string array | cell array of character vectors

Layers to extract outputs from, specified as a string array or a cell array of character vectors
containing the layer names.

• If layerNames(i) corresponds to a layer with a single output, then layerNames(i) is the name
of the layer.

• If layerNames(i) corresponds to a layer with multiple outputs, then layerNames(i) is the
layer name followed by the character "/" and the name of the layer output: 'layerName/
outputName'.

acceleration — Performance optimization
'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and
one of the following:
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• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only.
The input data or the network learnable parameters must be stored as gpuArray objects. Using a
GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If Parallel
Computing Toolbox or a suitable GPU is not available, then the software returns an error.

• 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB will apply a number of compatible
optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the
expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use
performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available when you are using a GPU. You must have a C/C++ compiler
installed and the GPU Coder Interface for Deep Learning Libraries support package. Install the
support package using the Add-On Explorer in MATLAB. For setup instructions, see “MEX Setup”
(GPU Coder). GPU Coder is not required.

The 'mex' option has the following limitations:

• The state output argument is not supported.
• Only single precision is supported. The input data or the network learnable parameters must

have underlying type single.
• Networks with inputs that are not connected to an input layer are not supported.
• Traced dlarray objects are not supported. This means that the 'mex' option is not supported

inside a call to dlfeval.
• Not all layers are supported. For a list of supported layers, see “Supported Layers” (GPU Coder).
• You cannot use MATLAB Compiler to deploy your network when using the 'mex' option.

Example: 'Acceleration','mex'

Output Arguments
Y — Output data
formatted dlarray

Output data, returned as a formatted dlarray. For more information about dlarray formats, see
the fmt input argument of dlarray.

state — Updated network state
table

Updated network state, returned as a table.

The network state is a table with three columns:

 predict

1-545



• Layer – Layer name, specified as a string scalar.
• Parameter – State parameter name, specified as a string scalar.
• Value – Value of state parameter, specified as a dlarray object.

Layer states contain information calculated during the layer operation to be retained for use in
subsequent forward passes of the layer. For example, the cell state and hidden state of LSTM layers,
or running statistics in batch normalization layers.

For recurrent layers, such as LSTM layers, with the HasStateInputs property set to 1 (true), the
state table does not contain entries for the states of that layer.

Update the state of a dlnetwork using the State property.

Version History
Introduced in R2019b

predict returns state values as dlarray objects
Behavior changed in R2021a

For dlnetwork objects, the state output argument returned by the predict function is a table
containing the state parameter names and values for each layer in the network.

Starting in R2021a, the state values are dlarray objects. This change enables better support when
using AcceleratedFunction objects. To accelerate deep learning functions that have frequently
changing input values, for example, an input containing the network state, the frequently changing
values must be specified as dlarray objects.

In previous versions, the state values are numeric arrays.

In most cases, you will not need to update your code. If you have code that requires the state values
to be numeric arrays, then to reproduce the previous behavior, extract the data from the state values
manually using the extractdata function with the dlupdate function.

state = dlupdate(@extractdata,net.State);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• C++ code generation supports the following syntaxes:

• Y = predict(net,X)
• Y = predict(net,X1,...,XM)
• [Y1,...,YN] = predict(__)
• [Y1,...,YK] = predict(__,'Outputs',layerNames)

• The input data X must not have variable size. The size must be fixed at code generation time.
• The dlarray input to the predict method must be a single datatype.
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GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• Y = predict(net,X)
• Y = predict(net,X1,...,XM)
• [Y1,...,YN] = predict(__)
• [Y1,...,YK] = predict(__,'Outputs',layerNames)

• The input data X must not have variable size. The size must be fixed at code generation time.
• Code generation for TensorRT library does not support marking an input layer as an output by

using the [Y1,...,YK] = predict(__,'Outputs',layerNames) syntax.
• The dlarray input to the predict method must be a single datatype.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function runs on the GPU if either or both of the following conditions are met:

• Any of the values of the network learnable parameters inside net.Learnables.Value are
dlarray objects with underlying data of type gpuArray

• The input argument X is a dlarray with underlying data of type gpuArray

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlgradient | dlfeval | forward | dlnetwork | TaylorPrunableNetwork

Topics
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”
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dlode45
Deep learning solution of nonstiff ordinary differential equation (ODE)

Syntax
Y = dlode45(odefun,tspan,Y0,theta)
Y = dlode45(odefun,tspan,Y0,theta,DataFormat=FMT)
Y = dlode45(odefun,tspan,Y0,theta,Name=Value)

Description
The neural ordinary differential equation (ODE) operation returns the solution of a specified ODE.

The dlode45 function applies the neural ODE operation to dlarray data. Using dlarray objects
makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note The dlode45 function best suits neural ODE and custom training loop workflows. To solve
ODEs for other workflows, use ode45.

Y = dlode45(odefun,tspan,Y0,theta) integrates the system of ODEs given by odefun on the
time interval defined by the first and last elements of tspan, with the initial conditions Y0 and
parameters theta.

Y = dlode45(odefun,tspan,Y0,theta,DataFormat=FMT) specifies the data format for the
unformatted initial conditions Y0. The format must contain "S" (spatial), "C" (channel), and "B"
(batch) dimension labels only.

Y = dlode45(odefun,tspan,Y0,theta,Name=Value) specifies additional options using one or
more name-value arguments. For example, Y =
dlode45(odefun,tspan,Y0,theta,GradientMode="adjoint") integrates the system of ODEs
given by odefun and computes gradients by solving the associated adjoint ODE system.

Examples

Apply Neural ODE Operation

For the initial conditions, create a formatted dlarray object containing a batch of 128 28-by-28
images with 64 channels. Specify the format "SSCB" (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 64;
Y0 = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
dlY0 = dlarray(Y0,"SSCB");
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View the size and format of the initial conditions.

size(dlY0)

ans = 1×4

    28    28    64   128

dims(dlY0)

ans = 
'SSCB'

Specify the ODE function. Define the function odeModel, listed in the ODE Function on page 1-549
section of the example, which applies a convolution operation followed by a hyperbolic tangent
operation to the input data.

odefun = @odeModel;

Initialize the parameters for the convolution operation in the ODE function. The output size of the
ODE function must match the size of the initial conditions, so specify the same number of filters as
the number of input channels.

filterSize = [3 3];
numFilters = numChannels;

parameters = struct;
parameters.Weights = dlarray(rand(filterSize(1),filterSize(2),numChannels,numFilters));
parameters.Bias = dlarray(zeros(1,numFilters));

Specify an interval of integration of [0 0.1].

tspan = [0 0.1];

Apply the neural ODE operation.

dlY = dlode45(odefun,tspan,dlY0,parameters);

View the size and format of the output.

size(dlY)

ans = 1×4

    28    28    64   128

dims(dlY)

ans = 
'SSCB'

ODE Function

The ODE function odeModel takes as input the function inputs t (unused) and y, and the ODE
function parameters p containing the convolution weights and biases, and returns the output of the
convolution-tanh block operation. The convolution operation applies padding such that the output size
matches the input size.

 dlode45

1-549



function z = odeModel(t,y,p)

weights = p.Weights;
bias = p.Bias;
z = dlconv(y,weights,bias,Padding="same");
z = tanh(z);

end

Input Arguments
odefun — Function to solve
function handle

Function to solve, specified as a function handle that defines the function to integrate.

Specify odefun as a function handle with syntax z = fcn(t,y,p), where t is a scalar, y is a
dlarray, and p is a set of parameters. The function returns a dlarray with the same size and
format as y. The function must accept all three input arguments t, y, and p, even if not all the
arguments are used in the function. The size of the ODE function output z must match the size of the
initial conditions.

For example, specify the ODE function that applies a convolution operation followed by a tanh
operation.

function z = dlconvtanh(t,y,p)

weights = p.Weights;
bias = p.Bias;
z = dlconv(y,weights,bias,Padding="same");
z = tanh(z);

end

Note here that the t argument is unused.
Data Types: function_handle

tspan — Interval of integration
numeric vector | unformatted dlarray vector

Interval of integration, specified as a numeric vector or an unformatted dlarray vector with two or
more elements. The elements in tspan must be all increasing or all decreasing.

The solver imposes the initial conditions given by Y0 at the initial time tspan(1), then integrates the
ODE function from tspan(1) to tspan(end).

• If tspan has two elements, [t0 tf], then the solver returns the solution evaluated at point tf.
• If tspan has more than two elements, [t0 t1 t2 ... tf], then the solver returns the solution

evaluated at the given points [t1 t2 ... tf]. The solver does not step precisely to each point
specified in tspan. Instead, the solver uses its own internal steps to compute the solution, then
evaluates the solution at the points specified in tspan. The solutions produced at the specified
points are of the same order of accuracy as the solutions computed at each internal step.

Specifying several intermediate points has little effect on the efficiency of computation, but for
large systems it can affect memory management.
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Note The behavior of the dlode45 function differs from the ode45 function.

If InitialStep or MaxStep is [], then the software uses the values of tspan to initialize the
values.

• If InitialStep is [], then the software uses the elements of tspan as an indication of the scale
of the task. When you specify tspan with different numbers of elements, the solution of the solver
can change.

• If MaxStep is [], then the software calculates the maximum step size using the first and last
elements of tspan. When you change the initial or final values of tspan, the solution of the solver
can change because the solver uses a different step sequence.

Y0 — Initial conditions
dlarray object

Initial conditions, specified as a formatted or unformatted dlarray object.

If Y0 is an unformatted dlarray, then you must specify the format using the DataFormat option.

For neural ODE operations, the data format must contain "S", "C", and "B" dimension labels only.
The initial conditions must not have a "T" or "U" dimension.

theta — Parameters of ODE function
dlarray object | cell array of dlarray objects | structure of dlarray objects | table

Parameters of ODE function, specified as one of the following:

• dlarray object
• Cell array of dlarray objects
• Structure of dlarray objects or nested structures of dlarray objects
• Table with the variables Layer, Parameter, and Value, where Layer and Parameter contain

the layer and parameter names, and Value contains the parameter value. Specify the variables as
dlarray objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Y = dlode45(odefun,tspan,Y0,theta,GradientMode="adjoint") integrates the
system of ODEs given by odefun and computes gradients by solving the associated adjoint ODE
system.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:
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• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

For neural ODE operations, the data format must contain "S", "C", and "B" dimension labels only.
The initial conditions must not have a "T" or "U" dimension.

You must specify DataFormat when the Y0 is not a formatted dlarray.
Example: DataFormat="SSCB"
Data Types: char | string

GradientMode — Method to compute gradients
"direct" (default) | "adjoint"

Method to compute gradients with respect to the initial conditions and parameters when using the
dlgradient function, specified as one of the following:

• "direct" – Compute gradients by backpropagating through the operations undertaken by the
numerical solver. This option best suits large mini-batch sizes or when tspan contains many
values.

• "adjoint" – Compute gradients by solving the associated adjoint ODE system. This option best
suits small mini-batch sizes or when tspan contains a small number of values.

The dlaccelerate function does not support accelerating the dlode45 function when the
GradientMode option is "direct". To accelerate the code that calls the dlode45 function, set the
GradientMode option to "adjoint" or accelerate parts of your code that do not call the dlode45
function with the GradientMode option set to "direct".

Warning When GradientMode is "adjoint", odefun must support function acceleration.
Otherwise, the function can return unexpected results.

When GradientMode is "adjoint", the software traces the ODE function input to determine the
computation graph used for automatic differentiation. This tracing process can take some time and
can end up recomputing the same trace. By optimizing, caching, and reusing the traces, the software
can speed up the gradient computation.

Because of the nature of caching traces, not all functions support acceleration.

The caching process can cache values that you might expect to change or that depend on external
factors. You must take care when accelerating functions that:

• have inputs with random or frequently changing values
• have outputs with frequently changing values
• generate random numbers
• use if statements and while loops with conditions that depend on the values of dlarray objects
• have inputs that are handles or that depend on handles
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• Read data from external sources (for example, by using a datastore or a minibatchqueue object)

For more information on deep learning function acceleration, see “Deep Learning Function
Acceleration for Custom Training Loops”.

InitialStepSize — Initial step size
[] (default) | positive scalar

Initial step size, specified as a positive scalar or [].

If InitialStepSize is [], then the function automatically determines the initial step size based on
the interval of integration and the output of the ODE function corresponding to the initial conditions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaxStepSize — Maximum step size
[] (default) | positive scalar

Maximum step size, specified as a positive scalar or [].

If MaxStepSize is [], then the function uses a tenth of the interval of integration size.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RelativeTolerance — Relative error tolerance
1e-3 (default) | positive scalar

Relative error tolerance, specified as a positive scalar. The relative tolerance applies to all
components of the solution.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

AbsoluteTolerance — Absolute error tolerance
1e-6 (default) | positive scalar

Absolute error tolerance, specified as a positive scalar. The relative tolerance applies to all
components of the solution.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
Y — Solution of neural ODE
dlarray object

Solution of the neural ODE at the times given by tspan(2:end), returned as a dlarray object with
the same underlying data type as Y0.

If Y0 is a formatted dlarray and tspan contains exactly two elements, then Y has the same format
as Y0. If Y0 is not a formatted dlarray and tspan contains exactly two elements, then Y is an
unformatted dlarray with the same dimension order as Y0.

If Y0 is a formatted dlarray and tspan contains more than two elements, then Y has the same
format as Y0 with an additional appended "T" (time) dimension. If Y0 is not a formatted dlarray
and tspan contains more than two elements, then Y is an unformatted dlarray with the same
dimension order as Y0 with an additional appended dimension corresponding to time.
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Algorithms
The neural ordinary differential equation (ODE) operation returns the solution of a specified ODE. In
particular, given an input, a neural ODE operation outputs the numerical solution of the ODE
y′ = f (t, y, θ) for the time horizon (t0,t1) and with the initial condition y(t0) = y0, where t and y denote
the ODE function inputs and θ is a set of learnable parameters. Typically, the initial condition y0 is
either the network input or the output of another deep learning operation.

The dlode45 function uses the ode45 function, which is based on an explicit Runge-Kutta (4,5)
formula, the Dormand-Prince pair. It is a single-step solver–in computing y(tn), it needs only the
solution at the immediately preceding time point, y(tn-1) [2] [3].

Version History
Introduced in R2021b
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See Also
dlarray | dlgradient | dlfeval

Topics
“Train Neural ODE Network”
“Dynamical System Modeling Using Neural ODE”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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dlquantizationOptions
Options for quantizing a trained deep neural network

Description
The dlquantizationOptions object provides options for quantizing a trained deep neural network
to scaled 8-bit integer data types.

This object requires Deep Learning Toolbox Model Quantization Library. To learn about the products
required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Creation

Syntax
quantOpts = dlquantizationOptions
quantOpts = dlquantizationOptions(Name,Value)

Description

quantOpts = dlquantizationOptions creates a dlquantizationOptions object with default
property values.

quantOpts = dlquantizationOptions(Name,Value) creates a dlquantizationOptions
object with additional properties specified by one or more name-value pair arguments.

Properties
MetricFcn — Metric function to use for validation of quantized network
cell array of function handles

Metric function to use for validation of quantized network, specified as a cell array of one or more
function handles.
Example: options = dlquantizationOptions('MetricFcn',
{@(x)hComputeModelAccuracy(x,net,groundTruth)});

Data Types: cell

FPGA Execution Environment Options

Bitstream — Name of FPGA bitstream
'zcu102_int8' | 'zc706_int8' | 'arria10soc_int8'

This property is valid only when the 'ExecutionEnvironment property of the dlquantizer object
is set to 'FPGA'.

Name of the FPGA bitstream specified, as one of these values:
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Bitstream Target Board
'zcu102_int8' Xilinx Zynq UltraScale™ ZCU102
'zc706_int8' Xilinx Zynq-7000 ZC706
'arria10soc_int8' Intel Arria 10 SoC development kit

Example: quantOpts = dlquantizationOptions('Bitstream','zcu102_int8')

Target — Target board vendor name and interface
dlhdl.Target object

This property is valid only when the 'ExecutionEnvironment property of the dlquantizer object
is set to 'FPGA'.

Target board vendor name and interface, specified as a dlhdl.Target object.
Example: hTarget = dlhdl.Target('Intel','Interface','JTAG'); quantOpts =
dlquantizationOptions('Target',hTarget)

Examples

Quantize a Neural Network for GPU Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network for GPU and explore the behavior of the quantized network. In this example, you quantize
the squeezenet neural network after retraining the network to classify new images according to the
Train Deep Learning Network to Classify New Images example. In this example, the memory required
for the network is reduced approximately 75% through quantization while the accuracy of the
network is not affected.

Load the pretrained network. net is the output network of the Train Deep Learning Network to
Classify New Images example.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.
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In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
This example uses the hComputeModelAccuracy metric function.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn',{@(x)hComputeModelAccuracy(x, net, aug_valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug_calData)

calResults=121×5 table
        Optimized Layer Name         Network Layer Name     Learnables / Activations    MinValue     MaxValue
    ____________________________    ____________________    ________________________    _________    ________

    {'conv1_Weights'           }    {'conv1'           }           "Weights"             -0.91985     0.88489
    {'conv1_Bias'              }    {'conv1'           }           "Bias"                -0.07925     0.26343
    {'fire2-squeeze1x1_Weights'}    {'fire2-squeeze1x1'}           "Weights"                -1.38      1.2477
    {'fire2-squeeze1x1_Bias'   }    {'fire2-squeeze1x1'}           "Bias"                -0.11641     0.24273
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    {'fire2-expand1x1_Weights' }    {'fire2-expand1x1' }           "Weights"              -0.7406     0.90982
    {'fire2-expand1x1_Bias'    }    {'fire2-expand1x1' }           "Bias"               -0.060056     0.14602
    {'fire2-expand3x3_Weights' }    {'fire2-expand3x3' }           "Weights"             -0.74397     0.66905
    {'fire2-expand3x3_Bias'    }    {'fire2-expand3x3' }           "Bias"               -0.051778    0.074239
    {'fire3-squeeze1x1_Weights'}    {'fire3-squeeze1x1'}           "Weights"              -0.7712     0.68917
    {'fire3-squeeze1x1_Bias'   }    {'fire3-squeeze1x1'}           "Bias"                -0.10138     0.32675
    {'fire3-expand1x1_Weights' }    {'fire3-expand1x1' }           "Weights"             -0.72035      0.9743
    {'fire3-expand1x1_Bias'    }    {'fire3-expand1x1' }           "Bias"               -0.067029     0.30425
    {'fire3-expand3x3_Weights' }    {'fire3-expand3x3' }           "Weights"             -0.61443      0.7741
    {'fire3-expand3x3_Bias'    }    {'fire3-expand3x3' }           "Bias"               -0.053613     0.10329
    {'fire4-squeeze1x1_Weights'}    {'fire4-squeeze1x1'}           "Weights"              -0.7422      1.0877
    {'fire4-squeeze1x1_Bias'   }    {'fire4-squeeze1x1'}           "Bias"                -0.10885     0.13881
      ⋮

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults = struct with fields:
       NumSamples: 20
    MetricResults: [1×1 struct]
       Statistics: [2×2 table]

Examine the validation output to see the performance of the quantized network.

valResults.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}           1      
     {'Quantized'     }           1      

valResults.Statistics

ans=2×2 table
    NetworkImplementation    LearnableParameterMemory(bytes)
    _____________________    _______________________________

     {'Floating-Point'}                2.9003e+06           
     {'Quantized'     }                7.3393e+05           

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.
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Quantize a Neural Network for FPGA Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network and explore the behavior of the quantized network. In this example, you quantize the logo
recognition network (LogoNet). Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

This example uses the products listed under FPGA in “Quantization Workflow Prerequisites”.

Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Load the pretrained network.

snet = getLogoNetwork();

snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an imageDatastore, then
split the data into calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData,validationData] = splitEachLabel(imageData,0.5,'randomized');

Create a dlquantizer object and specify the network to quantize. Set the execution environment for
the quantized network to FPGA.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');
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Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)

ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer.
hTarget = dlhdl.Target('Intel','Interface','JTAG');

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeModelAccuracy(predictionScores,net,dataStore)
%% hComputeModelAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare predicted label with ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function and FPGA execution environment options in a dlquantizationOptions
object.
options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x,snet,validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

Compile and deploy the quantized network. Use the validate function to quantize the learnable
parameters in the convolution layers of the network and exercise the network. This function uses the
output of the compile function to program the FPGA board by using the programming file. It also
downloads the network weights and biases. The deploy function checks for the Intel Quartus tool and
the supported tool version. It then programs the FPGA device using the sof file, displays progress
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messages, and the time it takes to deploy the network. The validate function uses the metric
function defined in the dlquantizationOptions object to compare the results of the network
before and after quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz
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### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
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        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.
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Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

Version History
Introduced in R2020a

See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | calibrate | validate | quantize | quantizationDetails |
estimateNetworkMetrics

Topics
“Quantization of Deep Neural Networks”
“Quantize Layers in Object Detectors and Generate CUDA Code”
“Classify Images on an FPGA Using a Quantized DAG Network” (Deep Learning HDL Toolbox)
“Generate INT8 Code for Deep Learning Network on Raspberry Pi” (MATLAB Coder)
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dlquantizer
Quantize a deep neural network to 8-bit scaled integer data types

Description
Use the dlquantizer object to reduce the memory requirement of a deep neural network by
quantizing weights, biases, and activations to 8-bit scaled integer data types. You can create and
verify the behavior of a quantized network for GPU, FPGA, CPU deployment, or explore the quantized
network in MATLAB.

For CPU and GPU deployment, the software generates code for a convolutional deep neural network
by quantizing the weights, biases, and activations of the convolution layers to 8-bit scaled integer
data types. The quantization is performed by providing the calibration result file produced by the
calibrate function to the codegen command.

Code generation does not support quantized deep neural networks produced by the quantize
function.

This object requires Deep Learning Toolbox Model Quantization Library. To learn about the products
required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Creation

Syntax
quantObj = dlquantizer(net)
quantObj = dlquantizer(net,Name,Value)

Description

quantObj = dlquantizer(net) creates a dlquantizer object for the specified deep neural
network, net.

quantObj = dlquantizer(net,Name,Value) creates a dlquantizer object for the specified
network, with additional options specified by one or more name-value pair arguments.

Input Arguments

net — Pretrained neural network
DAGNetwork object | dlnetwork object | SeriesNetwork object | yolov2ObjectDetector object
| ssdObjectDetector object

Pretrained neural network, specified as a DAGNetwork, dlnetwork, SeriesNetwork,
yolov2ObjectDetector, or a ssdObjectDetector object.

Quantization of yolov2ObjectDetector and ssdObjectDetector networks requires a GPU Coder
license.
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Properties
NetworkObject — Pretrained neural network
DAGNetwork object | dlnetwork object | SeriesNetwork object | yolov2ObjectDetector object
| ssdObjectDetector object

This property is read-only.

Pre-trained neural network, specified as a DAGNetwork, dlnetwork, SeriesNetwork,
yolov2ObjectDetector, or a ssdObjectDetector object.

ExecutionEnvironment — Execution environment
'GPU' (default) | 'FPGA' | 'CPU' | 'MATLAB'

Execution environment for the quantized network, specified as 'GPU', 'FPGA', 'CPU', or 'MATLAB'.
How the network is quantized depends on the choice of execution environment.

The 'MATLAB' execution environment indicates a target-agnostic quantization of the neural network
will be performed. This option does not require you to have target hardware in order to explore the
quantized network in MATLAB.
Example: 'ExecutionEnvironment','FPGA'

Simulation — Validate behavior of network quantized for FPGA environment using
simulation
'off' (default) | 'on'

Whether to validate behavior of network quantized for FPGA using simulation, specified as one of
these values:

• 'on' — Validate the behavior of the quantized network by simulating the quantized network in
MATLAB and comparing the prediction results of the original single-precision network to the
simulated prediction results of the quantized network.

• 'off' — Generate code and validate the behavior of the quantized network on the target
hardware.

Note This option is only valid when ExecutionEnvironment is set to 'FPGA'.

Note Alternatively, you can use the quantize method to create a simulatable quantized network.
The simulatable quantized network enables visibility of the quantized layers, weights, and biases of
the network, as well as simulatable quantized inference behavior.

Example: 'Simulation', 'on'

Object Functions
calibrate Simulate and collect ranges of a deep neural network
validate Quantize and validate a deep neural network
quantize Quantize deep neural network

Examples
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Quantize a Neural Network for GPU Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network for GPU and explore the behavior of the quantized network. In this example, you quantize
the squeezenet neural network after retraining the network to classify new images according to the
Train Deep Learning Network to Classify New Images example. In this example, the memory required
for the network is reduced approximately 75% through quantization while the accuracy of the
network is not affected.

Load the pretrained network. net is the output network of the Train Deep Learning Network to
Classify New Images example.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
This example uses the hComputeModelAccuracy metric function.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
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    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn',{@(x)hComputeModelAccuracy(x, net, aug_valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug_calData)

calResults=121×5 table
        Optimized Layer Name         Network Layer Name     Learnables / Activations    MinValue     MaxValue
    ____________________________    ____________________    ________________________    _________    ________

    {'conv1_Weights'           }    {'conv1'           }           "Weights"             -0.91985     0.88489
    {'conv1_Bias'              }    {'conv1'           }           "Bias"                -0.07925     0.26343
    {'fire2-squeeze1x1_Weights'}    {'fire2-squeeze1x1'}           "Weights"                -1.38      1.2477
    {'fire2-squeeze1x1_Bias'   }    {'fire2-squeeze1x1'}           "Bias"                -0.11641     0.24273
    {'fire2-expand1x1_Weights' }    {'fire2-expand1x1' }           "Weights"              -0.7406     0.90982
    {'fire2-expand1x1_Bias'    }    {'fire2-expand1x1' }           "Bias"               -0.060056     0.14602
    {'fire2-expand3x3_Weights' }    {'fire2-expand3x3' }           "Weights"             -0.74397     0.66905
    {'fire2-expand3x3_Bias'    }    {'fire2-expand3x3' }           "Bias"               -0.051778    0.074239
    {'fire3-squeeze1x1_Weights'}    {'fire3-squeeze1x1'}           "Weights"              -0.7712     0.68917
    {'fire3-squeeze1x1_Bias'   }    {'fire3-squeeze1x1'}           "Bias"                -0.10138     0.32675
    {'fire3-expand1x1_Weights' }    {'fire3-expand1x1' }           "Weights"             -0.72035      0.9743
    {'fire3-expand1x1_Bias'    }    {'fire3-expand1x1' }           "Bias"               -0.067029     0.30425
    {'fire3-expand3x3_Weights' }    {'fire3-expand3x3' }           "Weights"             -0.61443      0.7741
    {'fire3-expand3x3_Bias'    }    {'fire3-expand3x3' }           "Bias"               -0.053613     0.10329
    {'fire4-squeeze1x1_Weights'}    {'fire4-squeeze1x1'}           "Weights"              -0.7422      1.0877
    {'fire4-squeeze1x1_Bias'   }    {'fire4-squeeze1x1'}           "Bias"                -0.10885     0.13881
      ⋮

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults = struct with fields:
       NumSamples: 20
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    MetricResults: [1×1 struct]
       Statistics: [2×2 table]

Examine the validation output to see the performance of the quantized network.

valResults.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}           1      
     {'Quantized'     }           1      

valResults.Statistics

ans=2×2 table
    NetworkImplementation    LearnableParameterMemory(bytes)
    _____________________    _______________________________

     {'Floating-Point'}                2.9003e+06           
     {'Quantized'     }                7.3393e+05           

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network and explore the behavior of the quantized network. In this example, you quantize the logo
recognition network (LogoNet). Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

This example uses the products listed under FPGA in “Quantization Workflow Prerequisites”.

Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Load the pretrained network.
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snet = getLogoNetwork();

snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an imageDatastore, then
split the data into calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData,validationData] = splitEachLabel(imageData,0.5,'randomized');

Create a dlquantizer object and specify the network to quantize. Set the execution environment for
the quantized network to FPGA.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)

ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72
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Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer.
hTarget = dlhdl.Target('Intel','Interface','JTAG');

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeModelAccuracy(predictionScores,net,dataStore)
%% hComputeModelAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare predicted label with ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function and FPGA execution environment options in a dlquantizationOptions
object.
options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x,snet,validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

Compile and deploy the quantized network. Use the validate function to quantize the learnable
parameters in the convolution layers of the network and exercise the network. This function uses the
output of the compile function to program the FPGA board by using the programming file. It also
downloads the network weights and biases. The deploy function checks for the Intel Quartus tool and
the supported tool version. It then programs the FPGA device using the sof file, displays progress
messages, and the time it takes to deploy the network. The validate function uses the metric
function defined in the dlquantizationOptions object to compare the results of the network
before and after quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results
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                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.
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              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
        maxpool_1          1545378                  0.01030 
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        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126
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Import a dlquantizer Object into the Deep Network Quantizer App

This example shows you how to import a dlquantizer object from the base workspace into the
Deep Network Quantizer app. This allows you to begin quantization of a deep neural network using
the command line or the app, and resume your work later in the app.

Open the Deep Network Quantizer app.

deepNetworkQuantizer

In the app, click New and select Import dlquantizer object.

In the dialog, select the dlquantizer object to import from the base workspace. For this example,
use quantObj that you create in the above example Quantize a Neural Network for GPU Target.

The app imports any data contained in the dlquantizer object that was collected at the command
line. This data can include the network to quantize, calibration data, validation data, and calibration
statistics.

The app displays a table containing the calibration data contained in the imported dlquantizer
object, quantObj. To the right of the table, the app displays histograms of the dynamic ranges of the
parameters. The gray regions of the histograms indicate data that cannot be represented by the
quantized representation. For more information on how to interpret these histograms, see
“Quantization of Deep Neural Networks”.
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Emulate Target Agnostic Quantized Network

This example shows how to create a target agnostic, simulatable quantized deep neural network in
MATLAB.

Target agnostic quantization allows you to see the effect quantization has on your neural network
without target hardware or target-specific quantization schemes. Creating a target agnostic
quantized network is useful if you:

• Do not have access to your target hardware.
• Want to preview whether or not your network is suitable for quantization.
• Want to find layers that are sensitive to quantization.

Quantized networks emulate quantized behavior for quantization-compatible layers. Network
architecture like layers and connections are the same as the original network, but inference behavior
uses limited precision types. Once you have quantized your network, you can use the
quantizationDetails function to retrieve details on what was quantized.

Load the pretrained network. net is a SqueezeNet network that has been retrained using transfer
learning to classify images in the MerchData data set.

load squeezenetmerch
net
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net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

You can use the quantizationDetails function to see that the network is not quantized.

qDetailsOriginal = quantizationDetails(net)

qDetailsOriginal = struct with fields:
            IsQuantized: 0
          TargetLibrary: ""
    QuantizedLayerNames: [0×0 string]
    QuantizedLearnables: [0×3 table]

Unzip and load the MerchData images as an image datastore.

unzip('MerchData.zip')
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Define calibration and validation data to use for quantization. The output size of the images are
changed for both calibration and validation data according to network requirements.

[calData,valData] = splitEachLabel(imds,0.7,'randomized');
augCalData = augmentedImageDatastore([227 227],calData);
augValData = augmentedImageDatastore([227 227],valData);

Create dlquantizer object and specify the network to quantize. Set the execution environment to
MATLAB. How the network is quantized depends on the execution environment. The MATLAB
execution environment is agnostic to the target hardware and allows you to prototype quantized
behavior.

quantObj = dlquantizer(net,'ExecutionEnvironment','MATLAB');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj,augCalData);

Use the quantize method to quantize the network object and return a simulatable quantized
network.

qNet = quantize(quantObj)  

qNet = 
Quantized DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]

 dlquantizer

1-577



    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Use the quantizationDetails method to extract quantization details.

You can use the quantizationDetails function to see that the network is now quantized.

qDetailsQuantized = quantizationDetails(qNet)

qDetailsQuantized = struct with fields:
            IsQuantized: 1
          TargetLibrary: "none"
    QuantizedLayerNames: [26×1 string]
    QuantizedLearnables: [52×3 table]

Make predictions using the original, single-precision floating-point network, and the quantized INT8
network.

predOriginal = classify(net,augValData);       % Predictions for the non-quantized network
predQuantized = classify(qNet,augValData);     % Predictions for the quantized network 

Compute the relative accuracy of the quantized network as compared to the original network.

ccrQuantized = mean(predQuantized == valData.Labels)*100

ccrQuantized = 100

ccrOriginal = mean(predOriginal == valData.Labels)*100

ccrOriginal = 100

For this validation data set, the quantized network gives the same predictions as the floating-point
network.

Version History
Introduced in R2020a

dlnetwork support

dlquantizer now supports dlnetwork objects for quantization using the calibrate and
validate functions.

Validate the performance of quantized network for CPU target

You can now use the dlquantizer object and the validate function to quantize a network and
generate code for CPU targets.

Quantize neural networks without a specific target
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Specify MATLAB as the ExecutionEnvironment to quantize your neural networks without
generating code or committing to a specific target for code deployment. This can be useful if you:

• Do not have access to your target hardware.
• Want to inspect your quantized network without generating code.

Your quantized network implements int8 data instead of single data. It keeps the same layers and
connections as the original network, and it has the same inference behavior as it would when running
on hardware.

Once you have quantized your network, you can use the quantizationDetails function to inspect
your quantized network. Additionally, you also have the option to deploy the code to a GPU target.

See Also
Apps
Deep Network Quantizer

Functions
calibrate | quantize | validate | dlquantizationOptions | quantizationDetails |
estimateNetworkMetrics

Topics
“Quantization of Deep Neural Networks”
“Quantize Residual Network Trained for Image Classification and Generate CUDA Code”
“Quantize Layers in Object Detectors and Generate CUDA Code”
“Deploy INT8 Network to FPGA” (Deep Learning HDL Toolbox)
“Generate INT8 Code for Deep Learning Network on Raspberry Pi” (MATLAB Coder)
“Parameter Pruning and Quantization of Image Classification Network”
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dlupdate
Update parameters using custom function

Syntax
netUpdated = dlupdate(fun,net)
params = dlupdate(fun,params)
[ ___ ] = dlupdate(fun, ___ A1,...,An)
[ ___ ,X1,...,Xm] = dlupdate(fun, ___ )

Description
netUpdated = dlupdate(fun,net) updates the learnable parameters of the dlnetwork object
net by evaluating the function fun with each learnable parameter as an input. fun is a function
handle to a function that takes one parameter array as an input argument and returns an updated
parameter array.

params = dlupdate(fun,params) updates the learnable parameters in params by evaluating the
function fun with each learnable parameter as an input.

[ ___ ] = dlupdate(fun, ___ A1,...,An) also specifies additional input arguments, in addition
to the input arguments in previous syntaxes, when fun is a function handle to a function that
requires n+1 input values.

[ ___ ,X1,...,Xm] = dlupdate(fun, ___ ) returns multiple outputs X1,...,Xm when fun is a
function handle to a function that returns m+1 output values.

Examples

L1 Regularization with dlupdate

Perform L1 regularization on a structure of parameter gradients.

Create the sample input data.

dlX = dlarray(rand(100,100,3),'SSC');

Initialize the learnable parameters for the convolution operation.

params.Weights = dlarray(rand(10,10,3,50));
params.Bias = dlarray(rand(50,1));

Calculate the gradients for the convolution operation using the helper function convGradients,
defined at the end of this example.

gradients = dlfeval(@convGradients,dlX,params);

Define the regularization factor.

L1Factor = 0.001;
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Create an anonymous function that regularizes the gradients. By using an anonymous function to
pass a scalar constant to the function, you can avoid having to expand the constant value to the same
size and structure as the parameter variable.

L1Regularizer = @(grad,param) grad + L1Factor.*sign(param);

Use dlupdate to apply the regularization function to each of the gradients.

gradients = dlupdate(L1Regularizer,gradients,params);

The gradients in grads are now regularized according to the function L1Regularizer.

convGradients Function

The convGradients helper function takes the learnable parameters of the convolution operation
and a mini-batch of input data dlX, and returns the gradients with respect to the learnable
parameters.

function gradients = convGradients(dlX,params)
dlY = dlconv(dlX,params.Weights,params.Bias);
dlY = sum(dlY,'all');
gradients = dlgradient(dlY,params);
end

Use dlupdate to Train Network Using Custom Update Function

Use dlupdate to train a network using a custom update function that implements the stochastic
gradient descent algorithm (without momentum).

Load Training Data

Load the digits training data.

[XTrain,TTrain] = digitTrain4DArrayData;
classes = categories(TTrain);
numClasses = numel(classes);

Define the Network

Define the network architecture and specify the average image value using the Mean option in the
image input layer.

layers = [
    imageInputLayer([28 28 1],'Mean',mean(XTrain,4))
    convolution2dLayer(5,20)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers);
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Define Model Loss Function

Create the helper function modelLoss, listed at the end of this example. The function takes a
dlnetwork object and a mini-batch of input data with corresponding labels, and returns the loss and
the gradients of the loss with respect to the learnable parameters.

Define Stochastic Gradient Descent Function

Create the helper function sgdFunction, listed at the end of this example. The function takes the
parameters and the gradients of the loss with respect to the parameters, and returns the updated
parameters using the stochastic gradient descent algorithm, expressed as

θl + 1 = θ− α∇E θl

where l is the iteration number, α > 0 is the learning rate, θ is the parameter vector, and E θ  is the
loss function.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;
numEpochs = 30;
numObservations = numel(TTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);

Specify the learning rate.

learnRate = 0.01;

Train Network

Calculate the total number of iterations for the training progress monitor.

numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters by calling dlupdate with the function
sgdFunction defined at the end of this example. At the end of each epoch, display the training
progress.

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

iteration = 0;
epoch = 0;

while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;
    
    % Shuffle data.
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    idx = randperm(numel(TTrain));
    XTrain = XTrain(:,:,:,idx);
    TTrain = TTrain(idx);

    i = 0;
    while i < numIterationsPerEpoch && ~monitor.Stop
        i = i + 1;        
        iteration = iteration + 1;

        % Read mini-batch of data and convert the labels to dummy
        % variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);

        T = zeros(numClasses, miniBatchSize,"single");
        for c = 1:numClasses
            T(c,TTrain(idx)==classes(c)) = 1;
        end

        % Convert mini-batch of data to dlarray.
        X = dlarray(single(X),"SSCB");

        % If training on a GPU, then convert data to a gpuArray.
        if canUseGPU
            X = gpuArray(X);
        end

        % Evaluate the model loss and gradients using dlfeval and the
        % modelLoss function.
        [loss,gradients] = dlfeval(@modelLoss,net,X,T);

        % Update the network parameters using the SGD algorithm defined in
        % the sgdFunction helper function.
        updateFcn = @(net,gradients) sgdFunction(net,gradients,learnRate);
        net = dlupdate(updateFcn,net,gradients);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

 dlupdate

1-583



Test Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.

[XTest,TTest] = digitTest4DArrayData;

Convert the data to a dlarray with the dimension format "SSCB" (spatial, spatial, channel, batch).
For GPU prediction, also convert the data to a gpuArray.

XTest = dlarray(XTest,"SSCB");
if canUseGPU
    XTest = gpuArray(XTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.

YTest = predict(net,XTest);
[~,idx] = max(extractdata(YTest),[],1);
YTest = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YTest==TTest)

accuracy = 0.9040

Model Loss Function

The helper function modelLoss takes a dlnetwork object net and a mini-batch of input data X with
corresponding labels T, and returns the loss and the gradients of the loss with respect to the
learnable parameters in net. To compute the gradients automatically, use the dlgradient function.
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function [loss,gradients] = modelLoss(net,X,T)

Y = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Stochastic Gradient Descent Function

The helper function sgdFunction takes the learnable parameters parameters, the gradients of the
loss with with respect to the learnable parameters, and the learning rate learnRate, and returns the
updated parameters using the stochastic gradient descent algorithm, expressed as

θl + 1 = θ− α∇E θl

where l is the iteration number, α > 0 is the learning rate, θ is the parameter vector, and E θ  is the
loss function.

function parameters = sgdFunction(parameters,gradients,learnRate)

parameters = parameters - learnRate .* gradients;

end

Input Arguments
fun — Function to apply
function handle

Function to apply to the learnable parameters, specified as a function handle.

dlupdate evaluates fun with each network learnable parameter as an input. fun is evaluated as
many times as there are arrays of learnable parameters in net or params.

net — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the Learnables property of the dlnetwork object. net.Learnables is a
table with three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a
table.

If you specify params as a table, it must contain the following three variables.
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• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.

The input argument A1,...,An must be provided with exactly the same data type, ordering, and
fields (for structures) or variables (for tables) as params.
Data Types: single | double | struct | table | cell

A1,...,An — Additional input arguments
dlarray | numeric array | cell array | structure | table

Additional input arguments to fun, specified as dlarray objects, numeric arrays, cell arrays,
structures, or tables with a Value variable.

The exact form of A1,...,An depends on the input network or learnable parameters. The following
table shows the required format for A1,...,An for possible inputs to dlupdate.

Input Learnable Parameters A1,...,An
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables. A1,...,An
must have a Value variable
consisting of cell arrays that
contain the additional input
arguments for the function fun
to apply to each learnable
parameter.

params dlarray dlarray with the same data
type and ordering as params.

Numeric array Numeric array with the same
data type and ordering as
params.

Cell array Cell array with the same data
types, structure, and ordering
as params.

Structure Structure with the same data
types, fields, and ordering as
params.
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Input Learnable Parameters A1,...,An
Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables and ordering as
params. A1,...,An must have
a Value variable consisting of
cell arrays that contain the
additional input argument for
the function fun to apply to
each learnable parameter.

Output Arguments
netUpdated — Updated network
dlnetwork object

Network, returned as a dlnetwork object.

The function updates the Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

X1,...,Xm — Additional output arguments
dlarray | numeric array | cell array | structure | table

Additional output arguments from the function fun, where fun is a function handle to a function that
returns multiple outputs, returned as dlarray objects, numeric arrays, cell arrays, structures, or
tables with a Value variable.

The exact form of X1,...,Xm depends on the input network or learnable parameters. The following
table shows the returned format of X1,...,Xm for possible inputs to dlupdate.

Input Learnable parameters X1,...,Xm
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables. X1,...,Xm
has a Value variable consisting
of cell arrays that contain the
additional output arguments of
the function fun applied to each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params.

Numeric array Numeric array with the same
data type and ordering as
params.
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Input Learnable parameters X1,...,Xm
Cell array Cell array with the same data

types, structure, and ordering
as params.

Structure Structure with the same data
types, fields, and ordering as
params.

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables. and ordering as
params. X1,...,Xm has a
Value variable consisting of cell
arrays that contain the
additional output argument of
the function fun applied to each
learnable parameter.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• params
• A1,...,An

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlnetwork | dlarray | adamupdate | rmspropupdate | sgdmupdate | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Translation Using Attention”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
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dltranspconv
Deep learning transposed convolution

Syntax
Y = dltranspconv(X,weights,bias)
Y = dltranspconv(X,weights,bias,DataFormat=FMT)
Y = dltranspconv( ___ Name=Value)

Description
The transposed convolution operation upsamples feature maps.

The dltranspconv function applies the deep learning transposed convolution operation to dlarray
data. Using dlarray objects makes working with high dimensional data easier by allowing you to
label the dimensions. For example, you can label which dimensions correspond to spatial, time,
channel, and batch dimensions using the "S", "T", "C", and "B" labels, respectively. For unspecified
and other dimensions, use the "U" label. For dlarray object functions that operate over particular
dimensions, you can specify the dimension labels by formatting the dlarray object directly, or by
using the DataFormat option.

Note This function applies the deep learning transposed convolution operation to dlarray data. If
you want to apply transposed convolution within a layerGraph object or Layer array, use one of the
following layers:

• transposedConv1dLayer
• transposedConv2dLayer
• transposedConv3dLayer

Y = dltranspconv(X,weights,bias) computes the deep learning transposed convolution of the
input X using the filters defined by weights, and adds the constant bias. The input X must be a
formatted dlarray. The output Y is a formatted dlarray with the same dimension format as X.

The function, by default, convolves over up to three dimensions of X labeled "S" (spatial). To convolve
over dimensions labeled "T" (time), specify weights with a "T" dimension using a formatted
dlarray object or by using the WeightsFormat option.

For unformatted input data, use the DataFormat option.

Y = dltranspconv(X,weights,bias,DataFormat=FMT) applies the deep learning transposed
convolution operation to the unformatted dlarray object X with format specified by FMT. The output
Y is an unformatted dlarray object with dimensions in the same order as X.

Y = dltranspconv( ___ Name=Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example, Stride=3 sets the
stride of the convolution operation.
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Examples

Perform 2-D Transposed Convolution

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format "SSCB" (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
X = dlarray(X,"SSCB");

View the size and format of the input data.

size(X)

ans = 1×4

    28    28     3   128

dims(X)

ans = 
'SSCB'

Initialize the weights and bias for 2-D transposed convolution. For the weights, specify 64 3-by-3
filters. For the bias, specify a vector of zeros.

filterSize = [3 3];
numFilters = 64;

weights = rand(filterSize(1),filterSize(2),numFilters,numChannels);
bias = zeros(1,numFilters);

Apply 2-D transposed convolution using the dltranspconv function.

Y = dltranspconv(X,weights,bias);

View the size and format of the output.

size(Y)

ans = 1×4

    30    30    64   128

dims(Y)

ans = 
'SSCB'

1 Deep Learning Functions

1-590



Perform Grouped Transposed Convolution

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 16 channels.
Specify the format "SSCB" (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 16;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
X = dlarray(X,"SSCB");

View the size and format of the input data.

size(X)

ans = 1×4

    28    28    16   128

dims(X)

ans = 
'SSCB'

Initialize the weights and bias for 2-D grouped transposed convolution. For the weights, specify two
groups of 64 3-by-3 filters. For the bias, specify a vector of zeros.

The number of channels per group is given by the number of channels of the input data divided by the
number of groups. The size of the bias vector is the number of filters per group multiplied by the
number of groups.

filterSize = [3 3];
numFiltersPerGroup = 64;
numGroups = 2;
numChannelsPerGroup = numChannels / numGroups;

weights = rand(filterSize(1),filterSize(2),numFiltersPerGroup,numChannelsPerGroup,numGroups);
bias = zeros(1,numFiltersPerGroup*numGroups);

Apply 2-D grouped transposed convolution using the dltranspconv function.

Y = dltranspconv(X,weights,bias);

View the size and format of the output.

size(Y)

ans = 1×4

    30    30   128   128

dims(Y)

ans = 
'SSCB'
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Input Arguments
X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

If X is an unformatted dlarray or a numeric array, then you must specify the format using the
DataFormat option. If X is a numeric array, then either weights or bias must be a dlarray object.

The function, by default, convolves over up to three dimensions of X labeled "S" (spatial). To convolve
over dimensions labeled "T" (time), specify weights with a "T" dimension using a formatted
dlarray object or by using the WeightsFormat option.

weights — Filters
dlarray | numeric array

Filters, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

The size and format of the weights depends on the type of task. If weights is an unformatted
dlarray or a numeric array, then the size and shape of weights depends on the WeightsFormat
option.

The following table describes the size and format of the weights for various tasks. You can specify an
array with the dimensions in any order using formatted dlarray objects or by using the
WeightsFormat option. When the weights has multiple dimensions with the same label (for example,
multiple dimensions labeled "S"), then those dimensions must be in ordered as described in this
table.

Task Required
Dimensions

Size Example
Weights Format

1-D transposed
convolution

"S" (spatial) or
"T" (time)

Filter size filterSize-by-
numFilters-by-
numChannels
array, where
filterSize is the
size of the 1-D
filters,
numFilters is the
number of filters,
and numChannels
is the number of
channels of the
input data.

"SCU" (spatial,
channel,
unspecified)"C" (channel) Number of

channels
"U" (unspecified) Number of filters

1-D grouped
transposed
convolution

"S" (spatial) or
"T" (time)

Filter size filterSize-by-
numFiltersPerG
roup-by-
numChannelsPer
Group-by-
numGroups array,
where
filterSize is the

"SCUU" (spatial,
channel,
unspecified,
unspecified)

"C" (channel) Number of
channels per group

First "U"
(unspecified)

Number of filters
per group
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Task Required
Dimensions

Size Example
Weights Format

Second "U"
(unspecified)

size of the 1-D
filters,
numFiltersPerG
roup is the
number of filters
per group,
numChannelsPer
Group is the
number of
channels per group
of the input data,
and numGroups is
the number
groups.

numChannelsPer
Group must equal
the number of the
channels of the
input data divided
by numGroups.

Number of groups

2-D transposed
convolution

First "S" (spatial) Filter height filterSize(1)-
by-
filterSize(2)-
by-numFilters-
by-numChannels
array, where
filterSize(1)
and
filterSize(2)
are the height and
width of the 2-D
filters,
respectively,
numFilters is the
number of filters,
and numChannels
is the number of
channels of the
input data.

"SSCU" (spatial,
spatial, channel,
unspecified)

Second "S"
(spatial) or "T"
(time)

Filter width

"C" (channel) Number of
channels

"U" (unspecified) Number of filters

2-D grouped
transposed
convolution

First "S" (spatial) Filter height filterSize(1)-
by-
filterSize(2)-
by-
numFiltersPerG
roup-by-
numChannelsPer
Group-by-
numGroups array,

"SSCUU" (spatial,
spatial, channel,
unspecified,
unspecified)

Second "S"
(spatial) or "T"
(time)

Filter width

"C" (channel) Number of
channels per group
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Task Required
Dimensions

Size Example
Weights Format

First "U"
(unspecified)

where
filterSize(1)
and
filterSize(2)
are the height and
width of the 2-D
filters,
respectively,
numFiltersPerG
roup is the
number of filters
per group,
numChannelsPer
Group is the
number of
channels per group
of the input data,
and numGroups is
the number of
groups.

numChannelsPer
Group must equal
the number of the
channels of the
input data divided
by numGroups.

Number of filters
per group

Second "U"
(unspecified)

Number of groups

3-D transposed
convolution

First "S" (spatial) Filter height filterSize(1)-
by-
filterSize(2)-
by-
filterSize(3)-
by-numFilters-
by-numChannels
array, where
filterSize(1),
filterSize(2),
and
filterSize(3)
are the height,
width, and depth of
the 3-D filters,
respectively,
numFilters is the
number of filters,
and numChannels
is the number of
channels of the
input data.

"SSSCU" (spatial,
spatial, spatial,
channel,
unspecified)

Second "S"
(spatial)

Filter width

Third "S" (spatial)
or "T" (time)

Filter depth

"C" (channel) Number of
channels

"U" (unspecified) Number of filters
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Tip The function, by default, convolves over up to three dimensions of X labeled "S" (spatial). To
convolve over dimensions labeled "T" (time), specify weights with a "T" dimension using a
formatted dlarray object or by using the WeightsFormat option.

bias — Bias constant
dlarray vector | dlarray scalar | numeric vector | numeric scalar

Bias constant, specified as a formatted or unformatted dlarray vector or dlarray scalar, a numeric
vector, or a numeric scalar.

• If bias is a scalar or has only singleton dimensions, the same bias is applied to each entry of the
output.

• If bias has a nonsingleton dimension, each element of bias is the bias applied to the
corresponding convolutional filter specified by weights. The number of elements of bias must
match the number of filters specified by .

If bias is a formatted dlarray, the nonsingleton dimension must be a channel dimension labeled
"C".

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Stride=2 sets the stride of each filter to 2.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

WeightsFormat — Dimension order of weights
character vector | string scalar
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Dimension order of the weights, specified as a character vector or string scalar that provides a label
for each dimension of the weights.

The default value of WeightsFormat depends on the task:

Task Default
1-D transposed convolution "SCU" (spatial, channel, unspecified)
1-D grouped transposed convolution "SCUU" (spatial, channel, unspecified,

unspecified)
2-D transposed convolution "SSCU" (spatial, spatial, channel, unspecified)
2-D grouped transposed convolution "SSCUU" (spatial, spatial, channel, unspecified,

unspecified)
3-D transposed convolution "SSSCU" (spatial, spatial, spatial, channel,

unspecified)

The supported combinations of dimension labels depends on the type of convolution, for more
information, see the weights argument.

Tip The function, by default, convolves over up to three dimensions of X labeled "S" (spatial). To
convolve over dimensions labeled "T" (time), specify weights with a "T" dimension using a
formatted dlarray object or by using the WeightsFormat option.

Data Types: char | string

Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as a numeric scalar or numeric vector.

To use the same step size for all convolution dimensions, specify the stride as a scalar. To specify a
different value for each convolution dimension, specify the stride as a vector with elements ordered
corresponding to the dimensions labels in the data format.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DilationFactor — Filter dilation factor
1 (default) | numeric scalar | numeric vector

Filter dilation factor, specified as specified as a numeric scalar or numeric vector.

To use the dilation factor all convolution dimensions, specify the dilation factor as a scalar. To specify
a different value for each convolution dimension, specify the dilation factor as a vector with elements
ordered corresponding to the dimensions labels in the data format.

Use the dilation factor to increase the receptive field of the filter (the area of the input that the filter
can see) on the input data. Using a dilation factor corresponds to an effective filter size of
filterSize + (filterSize-1)*(dilationFactor-1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Cropping — Cropping applied to edges of data
0 (default) | "same" | numeric scalar | numeric vector | numeric matrix
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Cropping applied to edges of data, specified as one of the following.

• "same" — Cropping is set so that the output size is the same as the input size when the stride is
1. More generally, the output size of each spatial dimension is inputSize*stride, where
inputSize is the size of the input along the convolution dimension.

• Numeric scalar — The same cropping value is applied to both ends of the convolution dimensions.
• Numeric vector — A different cropping value is applied along each convolution dimension. Use a

vector of size d, where d is the number of convolution dimensions of the input data. The ith
element of the vector specifies the cropping applied to the start and the end along the ith
convolution dimension.

• Numeric matrix — A different cropping value is applied to the start and end of each convolution
dimension. Use a matrix of size 2-by-d, where d is the number of convolution dimensions of the
input data. The element (1,d) specifies the cropping applied to the start of convolution
dimension d. The element (2,d) specifies the cropping applied to the end of convolution
dimension d. For example, in 2-D the format is [top, left; bottom, right].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
Y — Feature map
dlarray

Feature map, returned as a dlarray. The output Y has the same underlying data type as the input X.

If the input data X is a formatted dlarray, then Y has the same format as X. If the input data is not a
formatted dlarray, then Y is an unformatted dlarray or numeric array with the same dimension
order as the input data.

The size of the "C" (channel) dimension of Y depends on the size of the weights input. The size of
the "C" (channel) dimension of output Y is the product of the size of the dimensions
numFiltersPerGroup and numGroups in the weights argument. If weights is a formatted
dlarray, this product is the same as the product of the size of the "C" (channel) dimension and the
second "U" (unspecified) dimension.

Algorithms
Transposed Convolution

The standard convolution operation downsamples the input by applying sliding convolutional filters to
the input. By flattening the input and output, you can express the convolution operation as
Y = CX + B for the convolution matrix C and bias vector B that can be derived from the layer weights
and biases.

Similarly, the transposed convolution operation upsamples the input by applying sliding convolutional
filters to the input. To upsample the input instead of downsampling using sliding filters, the layer
zero-pads each edge of the input with padding that has the size of the corresponding filter edge size
minus 1.

By flattening the input and output, the transposed convolution operation is equivalent to
Y = C⊤X + B, where C and B denote the convolution matrix and bias vector for standard convolution
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derived from the layer weights and biases, respectively. This operation is equivalent to the backward
function of a standard convolution layer.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• X
• weights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | avgpool | dlconv | maxunpool | maxpool | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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disconnectLayers
Package: nnet.cnn

Disconnect layers in layer graph or network

Syntax
lgraphUpdated = disconnectLayers(lgraph,s,d)
netUpdated = disconnectLayers(net,s,d)

Description
lgraphUpdated = disconnectLayers(lgraph,s,d) disconnects the source layer s from the
destination layer d in the layer graph lgraph. The updated layer graph, lgraphUpdated, contains
the same layers as lgraph, but excludes the connection between s and d.

netUpdated = disconnectLayers(net,s,d) disconnects the source layer s from the destination
layer d in the dlnetwork object net. The updated network, netUpdated, contains the same layers
as net, but excludes the connection between s and d.

Examples

Disconnect Layers in Layer Graph

Create a layer graph from an array of layers.

layers = [
    imageInputLayer([28 28 1],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

lgraph = layerGraph(layers);
figure
plot(lgraph)
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Disconnect the 'conv_1' layer from the 'BN_1' layer.

lgraph = disconnectLayers(lgraph,'conv_1','BN_1');
figure
plot(lgraph)
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

s — Connection source
character vector | string scalar

Connection source, specified as a character vector or a string scalar.

• If the source layer has a single output, then s is the name of the layer.
• If the source layer has multiple outputs, then s is the layer name followed by the character / and

the name of the layer output: 'layerName/outputName'.

Example: 'conv1'
Example: 'mpool/indices'

 disconnectLayers

1-601



d — Connection destination
character vector | string scalar

Connection destination, specified as a character vector or a string scalar.

• If the destination layer has a single input, then d is the name of the layer.
• If the destination layer has multiple inputs, then d is the layer name followed by the character /

and the name of the layer input: 'layerName/inputName'.

Example: 'fc'
Example: 'addlayer1/in2'

Output Arguments
lgraphUpdated — Updated layer graph
LayerGraph object

Updated layer graph, returned as a LayerGraph object.

netUpdated — Updated network
dlnetwork object

Updated network, returned as an uninitialized dlnetwork object.

To initialize the learnable parameters of a dlnetwork object, use the initialize function.

Version History
Introduced in R2017b

See Also
layerGraph | addLayers | removeLayers | replaceLayer | connectLayers | plot |
assembleNetwork | dlnetwork

Topics
“Train Deep Learning Network to Classify New Images”
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dropoutLayer
Dropout layer

Description
A dropout layer randomly sets input elements to zero with a given probability.

Creation

Syntax
layer = dropoutLayer
layer = dropoutLayer(probability)
layer = dropoutLayer( ___ ,'Name',Name)

Description

layer = dropoutLayer creates a dropout layer.

layer = dropoutLayer(probability) creates a dropout layer and sets the Probability
property.

layer = dropoutLayer( ___ ,'Name',Name) sets the optional Name property using a name-value
pair and any of the arguments in the previous syntaxes. For example,
dropoutLayer(0.4,'Name','drop1') creates a dropout layer with dropout probability 0.4 and
name 'drop1'. Enclose the property name in single quotes.

Properties
Dropout

Probability — Probability to drop out input elements
0.5 (default) | nonnegative number less than 1

Probability for dropping out input elements, specified as a nonnegative number less than 1.

At training time, the layer randomly sets input elements to zero given by the dropout mask
rand(size(X))<Probability, where X is the layer input and then scales the remaining elements
by 1/(1-Probability). This operation effectively changes the underlying network architecture
between iterations and helps prevent the network from overfitting [1], [2]. A higher number results in
more elements being dropped during training. At prediction time, the output of the layer is equal to
its input.

For image input, the layer applies a different mask for each channel of each image. For sequence
input, the layer applies a different dropout mask for each time step of each sequence.
Example: 0.4
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Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Dropout Layer

Create a dropout layer with name 'drop1'.

layer = dropoutLayer('Name','drop1')

layer = 
  DropoutLayer with properties:
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           Name: 'drop1'

   Hyperparameters
    Probability: 0.5000

Include a dropout layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    dropoutLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Dropout                 50% dropout
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

More About
Dropout Layer

A dropout layer randomly sets input elements to zero with a given probability.

At training time, the layer randomly sets input elements to zero given by the dropout mask
rand(size(X))<Probability, where X is the layer input and then scales the remaining elements
by 1/(1-Probability). This operation effectively changes the underlying network architecture
between iterations and helps prevent the network from overfitting [1], [2]. A higher number results in
more elements being dropped during training. At prediction time, the output of the layer is equal to
its input.

Similar to max or average pooling layers, no learning takes place in this layer.

For image input, the layer applies a different mask for each channel of each image. For sequence
input, the layer applies a different dropout mask for each time step of each sequence.

Version History
Introduced in R2016a
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References
[1] Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. "Dropout: A Simple Way to

Prevent Neural Networks from Overfitting." Journal of Machine Learning Research. Vol. 15,
pp. 1929-1958, 2014.

[2] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional
Neural Networks." Advances in Neural Information Processing Systems. Vol. 25, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
imageInputLayer | reluLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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efficientnetb0
EfficientNet-b0 convolutional neural network

Syntax
net = efficientnetb0
net = efficientnetb0('Weights','imagenet')

lgraph = efficientnetb0('Weights','none')

Description
EfficientNet-b0 is a convolutional neural network that is trained on more than a million images from
the ImageNet database [1]. The network can classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has an image input size of 224-by-224. For
more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the EfficientNet-b0 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with EfficientNet-b0.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load EfficientNet-b0 instead of GoogLeNet.

net = efficientnetb0 returns an EfficientNet-b0 model network trained on the ImageNet data
set.

This function requires the Deep Learning Toolbox Model for EfficientNet-b0 Network support
package. If this support package is not installed, then the function provides a download link.

net = efficientnetb0('Weights','imagenet') returns a EfficientNet-b0 model network
trained on the ImageNet data set. This syntax is equivalent to net = efficientnetb0.

lgraph = efficientnetb0('Weights','none') returns the untrained EfficientNet-b0 model
network architecture. The untrained model does not require the support package.

Examples

Download EfficientNet-b0 Support Package

Download and install the Deep Learning Toolbox Model for EfficientNet-b0 Network support package.

Type efficientnetb0 at the command line.

efficientnetb0

If the Deep Learning Toolbox Model for EfficientNet-b0 Network support package is not installed,
then the function provides a link to the required support package in the Add-On Explorer. To install
the support package, click the link, and then click Install. Check that the installation is successful by
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typing efficientnetb0 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

efficientnetb0

ans = 

  DAGNetwork with properties:

         Layers: [290×1 nnet.cnn.layer.Layer]
    Connections: [363×2 table]
     InputNames: {'ImageInput'}
    OutputNames: {'classification'}

Visualize the network using Deep Network Designer.

deepNetworkDesigner(efficientnetb0)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained EfficientNet-b0 convolutional neural network
DAGNetwork object

Pretrained EfficientNet-b0 convolutional neural network, returned as a DAGNetwork object.
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lgraph — Untrained EfficientNet-b0 convolutional neural network architecture
LayerGraph object

Untrained EfficientNet-b0 convolutional neural network architecture, returned as a LayerGraph
object.

Version History
Introduced in R2020b

References
[1] ImageNet. http://www.image-net.org

[2] Mingxing Tan and Quoc V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks,” ArXiv Preprint ArXiv:1905.1194, 2019.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = efficientnetb0 or by
passing the efficientnetb0 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('efficientnetb0')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax efficientnetb0('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = efficientnetb0 or
by passing the efficientnetb0 function to coder.loadDeepLearningNetwork. For example:
net = coder.loadDeepLearningNetwork('efficientnetb0')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax efficientnetb0('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | squeezenet | vgg16 | vgg19 | resnet18 | resnet50 | googlenet |
inceptionv3 | inceptionresnetv2 | densenet201 | trainNetwork | layerGraph |
DAGNetwork

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
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“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

1 Deep Learning Functions

1-610



eluLayer
Exponential linear unit (ELU) layer

Description
An ELU activation layer performs the identity operation on positive inputs and an exponential
nonlinearity on negative inputs.

The layer performs the following operation:

f x =
x, x ≥ 0

α(exp(x) ‐ 1), x < 0

The default value of α is 1. Specify a value of α for the layer by setting the Alpha property.

Creation

Syntax
layer = eluLayer
layer = eluLayer(alpha)
layer = eluLayer( ___ ,'Name',Name)

Description

layer = eluLayer creates an ELU layer.

layer = eluLayer(alpha) creates an ELU layer and specifies the Alpha property.

layer = eluLayer( ___ ,'Name',Name) additionally sets the optional Name property using any of
the previous syntaxes. For example, eluLayer('Name','elu1') creates an ELU layer with the
name 'elu1'.

Properties
ELU

Alpha — Nonlinearity parameter
1 (default) | numeric scalar

Nonlinearity parameter α, specified as a numeric scalar. The minimum value of the output of the ELU
layer equals -α and the slope at negative inputs approaching 0 is α.

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create ELU Layer

Create an exponential linear unit (ELU) layer with the name 'elu1' and a default value of 1 for the
nonlinearity parameter Alpha.

layer = eluLayer('Name','elu1')

layer = 
  ELULayer with properties:

     Name: 'elu1'
    Alpha: 1
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   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Include an ELU layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
    batchNormalizationLayer
    eluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32)
    batchNormalizationLayer
    eluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         16 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization     Batch normalization
     4   ''   ELU                     ELU with Alpha 1
     5   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   2-D Convolution         32 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     7   ''   Batch Normalization     Batch normalization
     8   ''   ELU                     ELU with Alpha 1
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

Version History
Introduced in R2019a

References
[1] Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network

learning by exponential linear units (ELUs)." arXiv preprint arXiv:1511.07289 (2015).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | batchNormalizationLayer | leakyReluLayer | clippedReluLayer |
reluLayer | swishLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Activation Layers”
“List of Deep Learning Layers”
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embed
Embed discrete data

Syntax
Y = embed(X,weights)
Y = embed(X,weights,'DataFormat',FMT)

Description
The embed operation converts numeric indices to numeric vectors, where the indices correspond to
discrete data. Use embeddings to map discrete data such as categorical values or words to numeric
vectors.

Note This function applies the embed operation to dlarray data. If you want to apply the embed
operation within a layerGraph object or Layer array, use a wordEmbeddingLayer object.

Y = embed(X,weights) returns the embedding vectors in weights corresponding to the numeric
indices in the formatted dlarray object X.

Y = embed(X,weights,'DataFormat',FMT)also specifies dimension format FMT when X is not a
formatted dlarray object. The output Y is an unformatted dlarray with the same dimension order
as X.

Examples

Embed Categorical Data

Embed a mini-batch of categorical features.

Create an array of categorical features containing 5 observations with values "Male" or "Female".

X = categorical(["Male" "Female" "Male" "Female" "Female"])';

Initialize the embedding weights. Specify an embedding dimension of 10, and a vocabulary
corresponding to the number of categories of the input data plus one.

embeddingDimension = 10;
vocabularySize = numel(categories(X));
weights = rand(embeddingDimension,vocabularySize+1);

To embed the categorical data, first convert it to mini-batch of numeric indices.

X = double(X)

X = 5×1

     2
     1
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     2
     1
     1

For formatted dlarray input, the embed function expands into a singleton 'C' (channel) dimension
with size 1. Create a formatted dlarray object containing the data. To specify that the rows
correspond to observations, specify the format 'BC' (batch, channel).

dlX = dlarray(X,'BC')

dlX = 
  1(C) x 5(B) dlarray

     2     1     2     1     1

Embed the numeric indices using the embed function. The embed function expands into the 'C'
dimension.

dlY = embed(dlX,weights)

dlY = 
  10(C) x 5(B) dlarray

    0.1576    0.8147    0.1576    0.8147    0.8147
    0.9706    0.9058    0.9706    0.9058    0.9058
    0.9572    0.1270    0.9572    0.1270    0.1270
    0.4854    0.9134    0.4854    0.9134    0.9134
    0.8003    0.6324    0.8003    0.6324    0.6324
    0.1419    0.0975    0.1419    0.0975    0.0975
    0.4218    0.2785    0.4218    0.2785    0.2785
    0.9157    0.5469    0.9157    0.5469    0.5469
    0.7922    0.9575    0.7922    0.9575    0.9575
    0.9595    0.9649    0.9595    0.9649    0.9649

In this case, the output is an embeddingDimension-by-N matrix with format 'CB' (channel, batch),
where N is the number of observations. Each column contains the embedding vectors.

Embed Text Data

Embed a mini-batch of text data.

textData = [
    "Items are occasionally getting stuck in the scanner spools."
    "Loud rattling and banging sounds are coming from assembler pistons."];

Create an array of tokenized documents.

documents = tokenizedDocument(textData);

To encode text data as sequences of numeric indices, create a wordEncoding object.

enc = wordEncoding(documents);
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Initialize the embedding weights. Specify an embedding dimension of 100, and a vocabulary size to
be consistent with the vocabulary size corresponding to the number of words in the word encoding
plus one.

embeddingDimension = 100;
vocabularySize = enc.NumWords;
weights = rand(embeddingDimension,vocabularySize+1);

Convert the tokenized documents to sequences of word vectors using the doc2sequence function.
The doc2sequence function, by default, discards out-of-vocabulary tokens in the input data. To map
out-of-vocabulary tokens to the last vector of embedding weights, set the 'UnknownWord' option to
'nan'. The doc2sequence function, by default, left-pads the input sequences with zeros to have the
same length

sequences = doc2sequence(enc,documents,'UnknownWord','nan')

sequences=2×1 cell array
    {[         0 1 2 3 4 5 6 7 8 9 10]}
    {[11 12 13 14 15 2 16 17 18 19 10]}

The output is a cell array, where each element corresponds to an observation. Each element is a row
vector with elements representing the individual tokens in the corresponding observation including
the padding values.

Convert the cell array to a numeric array by vertically concatenating the rows.

X = cat(1,sequences{:})

X = 2×11

     0     1     2     3     4     5     6     7     8     9    10
    11    12    13    14    15     2    16    17    18    19    10

Convert the numeric indices to dlarray. Because the rows and columns of X correspond to
observations and time steps, respectively, specify the format 'BT'.

dlX = dlarray(X,'BT')

dlX = 
  2(B) x 11(T) dlarray

     0     1     2     3     4     5     6     7     8     9    10
    11    12    13    14    15     2    16    17    18    19    10

Embed the numeric indices using the embed function. The embed function maps the padding tokens
(tokens with index 0) and any other out-of-vocabulary tokens to the same out-of-vocabulary
embedding vector.

dlY = embed(dlX,weights);

In this case, the output is an embeddingDimension-by-N-by-S matrix with format 'CBT', where N
and S are the number of observations and the number of time steps, respectively. The vector
dlY(:,n,t) corresponds to the embedding vector of time-step t of observation n.
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Input Arguments
X — Input data
dlarray object | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. The
elements of X must be nonnegative integers or NaN.

The function returns the embedding vectors in weights corresponding to the numeric indices in X. If
any values in X are zero, NaN, or greater than the vocabulary size, then the function returns the out-
of-vocabulary vector for that element.

When X is not a formatted dlarray object, you must specify the dimension label format using the
'DataFormat' option. Also, if X is a numeric array, then weights must be a dlarray object.

The embed operation expands into a singleton channel dimension of the input data specified by the
'C' dimension label. If the data has no specified channel dimension, then the function assumes an
unspecified singleton channel dimension.

weights — Embedding weights
dlarray object | numeric array

Embedding weights, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

The matrix weights specifies the dimension of the embedding, the vocabulary size, and the
embedding vectors.

The embedding dimension is the number of components K of the embedding. That is, the embedding
maps numeric indices to vectors of length K. The vocabulary size is the number of discrete elements V
in the embedding. That is, the number of discrete elements of the underlying data that the
embedding supports. The embedding maps out-of-vocabulary indices to the same out-of-vocabulary
embedding vector.

If weights is a formatted dlarray object, then it must have format 'CU' or 'UC'. The dimensions
corresponding to the labels 'C' and 'U' must have size K and V+1, respectively, where K and V
represent the embedding dimension and the vocabulary size, respectively. The extra vector
corresponds to the out-of-vocabulary embedding vector.

If weights is not a formatted dlarray object, then weights must be a K-by-(V+1) matrix, where K
and V represent the embedding dimension and vocabulary size, respectively.

The function returns the embedding vectors in weights corresponding to the numeric indices in X. If
any values in X are zero, NaN, or greater than the vocabulary size, then the function returns the out-
of-vocabulary vector for that element.

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
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• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
Y — Embedding vectors
dlarray

Embedding vectors, returned as a dlarray object. The output Y has the same underlying data type
as the input X.

The function returns the embedding vectors in weights corresponding to the numeric indices in X. If
any values in X are zero, NaN, or greater than the vocabulary size, then the function returns the out-
of-vocabulary vector for that element.

The embedding vectors have K elements, where K is the embedding dimension. The size of
dimensions Y depend on the input data:

• If X is a formatted dlarray with a 'C' dimension label, then the embed operation expands into
that dimension. That is, the output has the same dimension format as the input, the 'C' dimension
has size K, the other dimensions have the same size as the corresponding dimensions of the input.

• If X is a formatted dlarray without a 'C' dimension. Then the operation assumes a singleton
channel dimension. The output has a 'C' dimension and all other dimensions have the same size
and dimension labels. That is, the output has the same format as the input and also a 'C'
dimension, the 'C' dimension has size K, the other dimensions have the same size as the
corresponding dimensions of the input.

• If X is not a formatted dlarray object and 'DataFormat' contains a 'C' dimension, then the
embed operation expands into that dimension. That is, the output has the number of dimensions
as the input, the dimension corresponding to the 'C' dimension has size K, the other dimensions
have the same size as the corresponding dimensions of the input.

• If X is not a formatted dlarray object and 'DataFormat' does not contain a 'C' dimension, then
the embed operation inserts a new dimension at the beginning. That is, the output has one more
dimension as the input, the first dimension corresponding to the 'C' dimension has size K, the
other dimensions have the same size as the corresponding dimensions of the input.

Version History
Introduced in R2020b
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• X
• weights

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | lstm | attention

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”
“List of Functions with dlarray Support”
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equalizeLayers
Equalize layer parameters of deep neural network

Syntax
equalizedNet = equalizeLayers(net)

Description
equalizedNet = equalizeLayers(net) equalizes layer parameters in the deep neural network
net and returns an updated network of the same type.

This function requires Deep Learning Toolbox Model Quantization Library.

Examples

Use equalizeLayers to Improve Performance of Quantized Network

This example shows how to improve the performance of a quantized deep learning model by
equalizing layer parameters in the network. Use the equalizeLayers function to adjust the
compatible network parameters of compute layers in order to make the layers more suitable for
quantization.

The network in this example has a MobileNet-v2 backbone. Transfer learning was used to train the
network to classify images in the CIFAR-10 dataset.

Load Pretrained Network and Data

Download the CIFAR-10 data set [1]. The data set contains 60,000 images. Each image is 32-by-32 in
size and has three color channels (RGB). The size of the data set is 175 MB. Depending on your
internet connection, the download process can take some time.

datadir = tempdir;
downloadCIFARData(datadir);

Load the trained network for CIFAR-10 using a MobileNet-v2 backbone. The batch normalization
layers have been folded into the convolution and grouped convolution layers.

net = load("CIFARMobilenet.mat").trainedNet;

Load the CIFAR-10 training and test images as 4-D arrays. The training set contains 50,000 images
and the test set contains 10,000 images. Create an augmentedImageDatastore object to use for
network training and validation.

[XTrain,TTrain,XTest,TTest] = loadCIFARData(datadir);
inputSize = net.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize,XTrain,TTrain);
augimdsTest  = augmentedImageDatastore(inputSize,XTest,TTest);
classes = categories(TTest);

Calculate the accuracy of the trained network on the test data.
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YTest = classify(net,augimdsTest);
accuracyOfnet = mean(YTest == TTest)*100;
display("Accuracy of original network on validation data: " + accuracyOfnet + "%");

    "Accuracy of original network on validation data: 85.92%"

Use the deepNetworkDesigner function to display the network diagram and the total number of
learnable parameters in the network.

deepNetworkDesigner(net)

When you quantize then network to int8 format, it produces an accuracy of 16.8%. This is nearly a
70% degradation compared to the accuracy of the floating-point version of the network.

Analyze Network

One possible cause of major performance degradation during quantization is the significant range
variation in the weight tensor of the convolution and grouped convolution layers. To investigate this
variation, you can view the layer weights at the filter level for the first depth-wise separable
convolution layer.

For a more detailed view, plot the weight tensor as a boxplot across filters.

layerWeights = net.Layers(4).Weights;
layerWeights = reshape(layerWeights,[9 32]);
figure(Position = [0,0,700,600]);
boxplot(layerWeights)
xlabel("Filters (Groups)")
ylabel("Weight Values")
title("Weights Ranges of Original Network")
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Due to the significant range variation across the filters, many filter groups are not representable after
quantization to int8 format. Nonrepresentable filter groups cause severe network degradation when
the error produced by nonrepresentable values propagates through the network.

To view the histogram bins across different layers, import a calibrated dlquantizer object into the
Deep Network Quantizer app. The app displays histograms of the dynamic ranges of the
parameters as well as the minimum and maximum values across each network layer parameter
tensor. Quantization of Deep Neural Networks explains this process in detail.

Use equalizeLayers to Adjust Network Parameters

You can use the equalizeLayers function to improve the network quantization behavior. The
equalizeLayers function can be used on networks that have linear activation functions that exhibit
a positive scale equivariance property [1]. The equalizeLayers function tries to find compatible
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layers and modifies the weights to make the network more suitable for quantization. The function
modifies the layer weights in such a way that the overall numerical output of the network is
unchanged.

Equalize the layers in the network.

equalizedNet = equalizeLayers(net);

Quantize Equalized Network

After you equalize the layers, quantize the network. Compare the accuracy of the quantized network
with and without equalized layers.

Create a dlquantizer object for the equalized network.

dlQuantObj = dlquantizer(equalizedNet);

Define calibration data to use for quantization.

numberOfCalibrationImages = 500;
augimdsCalibration = subset(augimdsTrain,1:numberOfCalibrationImages);

Calibrate the dlquantizer object.

calibStats = calibrate(dlQuantObj,augimdsCalibration)

calibStats=158×5 table
           Optimized Layer Name                Network Layer Name         Learnables / Activations    MinValue    MaxValue
    ___________________________________    ___________________________    ________________________    ________    ________
    {'Conv1_Weights'                  }    {'Conv1'                  }           "Weights"             -1.9843     1.5405 
    {'Conv1_Bias'                     }    {'Conv1'                  }           "Bias"                -5.8864     4.7606 
    {'expanded_conv_depthwise_Weights'}    {'expanded_conv_depthwise'}           "Weights"             -2.1183     1.5631 
    {'expanded_conv_depthwise_Bias'   }    {'expanded_conv_depthwise'}           "Bias"                -2.3202     4.1318 
    {'expanded_conv_project_Weights'  }    {'expanded_conv_project'  }           "Weights"             -2.1404     1.9959 
    {'expanded_conv_project_Bias'     }    {'expanded_conv_project'  }           "Bias"                -9.1792     10.327 
    {'block_1_expand_Weights'         }    {'block_1_expand'         }           "Weights"            -0.85797     1.1262 
    {'block_1_expand_Bias'            }    {'block_1_expand'         }           "Bias"                -2.2402     4.8886 
    {'block_1_depthwise_Weights'      }    {'block_1_depthwise'      }           "Weights"             -1.5857     2.3307 
    {'block_1_depthwise_Bias'         }    {'block_1_depthwise'      }           "Bias"                -8.9999     9.0277 
    {'block_1_project_Weights'        }    {'block_1_project'        }           "Weights"             -3.9702     2.3751 
    {'block_1_project_Bias'           }    {'block_1_project'        }           "Bias"                -15.641     17.965 
    {'block_2_expand_Weights'         }    {'block_2_expand'         }           "Weights"            -0.41095    0.36931 
    {'block_2_expand_Bias'            }    {'block_2_expand'         }           "Bias"                -2.1926      4.034 
    {'block_2_depthwise_Weights'      }    {'block_2_depthwise'      }           "Weights"               -2.06     2.1283 
    {'block_2_depthwise_Bias'         }    {'block_2_depthwise'      }           "Bias"                -2.2893     4.5481 
      ⋮

Use the quantize function to create a simulatable quantized network from the dlquantizer object.

qNetEqualized = quantize(dlQuantObj);

Evaluate the accuracy of the quantized network. The table compares the accuracy of the original
floating-point network, the quantized network without equalized layers, and the quantized network
with equalized layers.

YTest = classify(qNetEqualized,augimdsTest);
accuracyOfQuantizedNet = mean(YTest == TTest)*100;
createComparisonTable(accuracyOfnet,accuracyOfQuantizedNet)
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ans=1×3 table
                              Original Network    Quantized Original Network    Quantized Equalized Network
                              ________________    __________________________    ___________________________
    Test Data Accuracy (%)         85.92                    16.81                          76.44           

Plot the new weight tensor as a boxplot across the filters. The weight ranges for the equalized
network are better distributed and the quantized equalized network performance is significantly
better than the quantized network without layer equalization.

newLayerWeights = equalizedNet.Layers(4).Weights;
newLayerWeights = reshape(newLayerWeights,[9 32]);
figure(Position=[0,0,700,600]);
boxplot(newLayerWeights)
xlabel("Filters (Groups)")
ylabel("Weight Values")
title("Weights Ranges of Original Network")
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Helper Functions

The createComparisonTable helper function prints a table comparing the accuracy of the original
floating-point network, the quantized network without equalized layers, and the quantized network
with equalized layers.

function comparisonTable = createComparisonTable(originalAccuracy,accuracyQuantizedEqualizedNet)
% Create the summary table
comparisonTable = table(originalAccuracy,16.81,accuracyQuantizedEqualizedNet, ...
    VariableNames=["Original Network", "Quantized Original Network", "Quantized Equalized Network"], ...
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    RowNames="Test Data Accuracy (%)");
end

Input Arguments
net — Pretrained neural network
DAGNetwork object | SeriesNetwork object | dlnetwork object | yolov2ObjectDetector object
| ssdObjectDetector object

Pretrained neural network, specified as a DAGNetwork, SeriesNetwork, dlnetwork,
yolov2ObjectDetector, or ssdObjectDetector object.

Output Arguments
equalizedNet — Equalized network
DAGNetwork object | SeriesNetwork object | dlnetwork object | yolov2ObjectDetector object
| ssdObjectDetector object

Equalized network, returned as a DAGNetwork, SeriesNetwork, dlnetwork,
yolov2ObjectDetector, or ssdObjectDetector object. The type of network that the function
returns is the same as the net input.

Version History
Introduced in R2022b

References
[1] Nagel, Markus, Mart Van Baalen, Tijmen Blankevoort, and Max Welling. "Data-Free Quantization

Through Weight Equalization and Bias Correction." In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 1325-34. Seoul, Korea (South): IEEE, 2019. https://
doi.ogg/10.1109/ICCV.2019.00141.

See Also
dlquantizer | calibrate | quantize | validate | dlquantizationOptions |
quantizationDetails
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estimateNetworkMetrics
Estimate network metrics for specific layers of a neural network

Syntax
dataTable = estimateNetworkMetrics(net)
[dataTable1,dataTable2,…,dataTablen] = estimateNetworkMetrics(net1,net2,
…,netn)

Description
dataTable = estimateNetworkMetrics(net) returns a table containing these estimated layer-
wise metrics for a deep neural network:

• LayerName — Name of layer
• LayerType — Type of layer
• NumberOfLearnables — Number of learnable parameters (weights and biases) in the network
• NumberOfOperations — Total number of multiplications and additions
• ParameterMemory (MB) — Memory required to store all of the learnable parameters
• NumberOfMACs — Number of multiply-accumulate operations
• ArithmeticIntensity — Amount of data reuse of data that is being fetched from memory. A

high arithmetic intensity indicates more data reuse.

This function estimates network metrics for learnable layers, which have weights and bias, in the
network. Estimated metrics are provided for 2-D convolutional layers, 2-D grouped convolutional
layers, and fully connected layers.

[dataTable1,dataTable2,…,dataTablen] = estimateNetworkMetrics(net1,net2,
…,netn) returns metrics for multiple networks.

This function requires Deep Learning Toolbox Model Quantization Library. To learn about the
products required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Examples

Estimate Metrics for Neural Network Layers

This example shows how to estimate layer-wise metrics for a neural network.

Load the pretrained network. net is a SqueezeNet convolutional neural network that has been
retrained using transfer learning to classify images in the MerchData data set.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:
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         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Use the estimateNetworkMetrics function to estimate metrics for the 2-D convolutional layers, 2-
D grouped convolutional layers, and fully connected layers in your network.

estNet = estimateNetworkMetrics(net)

estNet=26×7 table
        LayerName           LayerType      NumberOfLearnables    NumberOfOperations    ParameterMemory (MB)    NumberOfMACs    ArithmeticIntensity
    __________________    _____________    __________________    __________________    ____________________    ____________    ___________________

    "conv1"               "Convolution"           1792                4.413e+07             0.0068359           2.2065e+07           25.739       
    "fire2-squeeze1x1"    "Convolution"           1040               6.4225e+06             0.0039673           3.2113e+06           12.748       
    "fire2-expand1x1"     "Convolution"           1088               6.4225e+06             0.0041504           3.2113e+06           12.748       
    "fire2-expand3x3"     "Convolution"           9280               5.7803e+07                0.0354           2.8901e+07           111.12       
    "fire3-squeeze1x1"    "Convolution"           2064               1.2845e+07             0.0078735           6.4225e+06           14.158       
    "fire3-expand1x1"     "Convolution"           1088               6.4225e+06             0.0041504           3.2113e+06           12.748       
    "fire3-expand3x3"     "Convolution"           9280               5.7803e+07                0.0354           2.8901e+07           111.12       
    "fire4-squeeze1x1"    "Convolution"           4128               6.4225e+06              0.015747           3.2113e+06           24.791       
    "fire4-expand1x1"     "Convolution"           4224               6.4225e+06              0.016113           3.2113e+06           24.791       
    "fire4-expand3x3"     "Convolution"          36992               5.7803e+07               0.14111           2.8901e+07           178.07       
    "fire5-squeeze1x1"    "Convolution"           8224               1.2845e+07              0.031372           6.4225e+06           27.449       
    "fire5-expand1x1"     "Convolution"           4224               6.4225e+06              0.016113           3.2113e+06           24.791       
    "fire5-expand3x3"     "Convolution"          36992               5.7803e+07               0.14111           2.8901e+07           178.07       
    "fire6-squeeze1x1"    "Convolution"          12336               4.8169e+06              0.047058           2.4084e+06            33.51       
    "fire6-expand1x1"     "Convolution"           9408               3.6127e+06              0.035889           1.8063e+06           32.109       
    "fire6-expand3x3"     "Convolution"          83136               3.2514e+07               0.31714           1.6257e+07           125.07       
      ⋮

Compare Metrics for Floating-Point and Quantized Neural Network

This example shows how to estimate the metrics for a floating-point and quantized neural network.

Load the pretrained network. net is a SqueezeNet convolutional neural network that has been
retrained using transfer learning to classify images in the MerchData data set.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}
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Unzip and load the MerchData images as an image datastore. Define an
augmentedImageDatastore object to resize the data for the network, and split the data into
calibration and validation data sets to use for quantization.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7,'randomized');
aug_calData = augmentedImageDatastore([227 227],calData);
aug_valData = augmentedImageDatastore([227 227],valData);

Create a dlquantizer object and specify the network to quantize. Set the execution environment to
MATLAB.

quantObj = dlquantizer(net,'ExecutionEnvironment','MATLAB');

Use the calibrate function to exercise the network with sample inputs and collect range information.

calResults = calibrate(quantObj,aug_calData);

Attempt to calibrate with host GPU errored with the message: 
Unable to find a supported GPU device. For more information on GPU support, see GPU Support by Release. 
Reverting to use host CPU. 

Use the quantize method to quantize the network object and return a simulatable quantized network.

qNet = quantize(quantObj)

qNet = 
Quantized DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Use the quantizationDetails method to extract quantization details.

Use the estimateNetworkMetrics function to compare metrics for the floating-point and quantized
networks.

[dataTableFloat,dataTableQuantized] = estimateNetworkMetrics(net,qNet)

dataTableFloat=26×7 table
        LayerName           LayerType      NumberOfLearnables    NumberOfOperations    ParameterMemory (MB)    NumberOfMACs    ArithmeticIntensity
    __________________    _____________    __________________    __________________    ____________________    ____________    ___________________

    "conv1"               "Convolution"           1792                4.413e+07             0.0068359           2.2065e+07           25.739       
    "fire2-squeeze1x1"    "Convolution"           1040               6.4225e+06             0.0039673           3.2113e+06           12.748       
    "fire2-expand1x1"     "Convolution"           1088               6.4225e+06             0.0041504           3.2113e+06           12.748       
    "fire2-expand3x3"     "Convolution"           9280               5.7803e+07                0.0354           2.8901e+07           111.12       
    "fire3-squeeze1x1"    "Convolution"           2064               1.2845e+07             0.0078735           6.4225e+06           14.158       
    "fire3-expand1x1"     "Convolution"           1088               6.4225e+06             0.0041504           3.2113e+06           12.748       
    "fire3-expand3x3"     "Convolution"           9280               5.7803e+07                0.0354           2.8901e+07           111.12       
    "fire4-squeeze1x1"    "Convolution"           4128               6.4225e+06              0.015747           3.2113e+06           24.791       
    "fire4-expand1x1"     "Convolution"           4224               6.4225e+06              0.016113           3.2113e+06           24.791       
    "fire4-expand3x3"     "Convolution"          36992               5.7803e+07               0.14111           2.8901e+07           178.07       
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    "fire5-squeeze1x1"    "Convolution"           8224               1.2845e+07              0.031372           6.4225e+06           27.449       
    "fire5-expand1x1"     "Convolution"           4224               6.4225e+06              0.016113           3.2113e+06           24.791       
    "fire5-expand3x3"     "Convolution"          36992               5.7803e+07               0.14111           2.8901e+07           178.07       
    "fire6-squeeze1x1"    "Convolution"          12336               4.8169e+06              0.047058           2.4084e+06            33.51       
    "fire6-expand1x1"     "Convolution"           9408               3.6127e+06              0.035889           1.8063e+06           32.109       
    "fire6-expand3x3"     "Convolution"          83136               3.2514e+07               0.31714           1.6257e+07           125.07       
      ⋮

dataTableQuantized=26×7 table
        LayerName           LayerType      NumberOfLearnables    NumberOfOperations    ParameterMemory (MB)    NumberOfMACs    ArithmeticIntensity
    __________________    _____________    __________________    __________________    ____________________    ____________    ___________________

    "conv1"               "Convolution"           1792                4.413e+07               0.001709          2.2065e+07           25.739       
    "fire2-squeeze1x1"    "Convolution"           1040               6.4225e+06             0.00099182          3.2113e+06           12.748       
    "fire2-expand1x1"     "Convolution"           1088               6.4225e+06              0.0010376          3.2113e+06           12.748       
    "fire2-expand3x3"     "Convolution"           9280               5.7803e+07              0.0088501          2.8901e+07           111.12       
    "fire3-squeeze1x1"    "Convolution"           2064               1.2845e+07              0.0019684          6.4225e+06           14.158       
    "fire3-expand1x1"     "Convolution"           1088               6.4225e+06              0.0010376          3.2113e+06           12.748       
    "fire3-expand3x3"     "Convolution"           9280               5.7803e+07              0.0088501          2.8901e+07           111.12       
    "fire4-squeeze1x1"    "Convolution"           4128               6.4225e+06              0.0039368          3.2113e+06           24.791       
    "fire4-expand1x1"     "Convolution"           4224               6.4225e+06              0.0040283          3.2113e+06           24.791       
    "fire4-expand3x3"     "Convolution"          36992               5.7803e+07               0.035278          2.8901e+07           178.07       
    "fire5-squeeze1x1"    "Convolution"           8224               1.2845e+07               0.007843          6.4225e+06           27.449       
    "fire5-expand1x1"     "Convolution"           4224               6.4225e+06              0.0040283          3.2113e+06           24.791       
    "fire5-expand3x3"     "Convolution"          36992               5.7803e+07               0.035278          2.8901e+07           178.07       
    "fire6-squeeze1x1"    "Convolution"          12336               4.8169e+06               0.011765          2.4084e+06            33.51       
    "fire6-expand1x1"     "Convolution"           9408               3.6127e+06              0.0089722          1.8063e+06           32.109       
    "fire6-expand3x3"     "Convolution"          83136               3.2514e+07               0.079285          1.6257e+07           125.07       
      ⋮

The quantized network has significantly lower parameter memory requirements than the floating-
point version of the network.

Input Arguments
net — Neural network
DAGNetwork object | SeriesNetwork object | dlnetwork object

Neural network, specified as a DAGNetwork object, SeriesNetwork object, or dlnetwork object.

net1,net2,…,netn — Neural networks
DAGNetwork object | SeriesNetwork object | dlnetwork object

Neural networks, specified as a comma-separated list of DAGNetwork objects, SeriesNetwork
objects, or dlnetwork objects.

Version History
Introduced in R2022a
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See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | dlquantizationOptions | calibrate | quantize | validate |
quantizationDetails

Topics
“Quantization of Deep Neural Networks”
“Quantize Layers in Object Detectors and Generate CUDA Code”
“Classify Images on an FPGA Using a Quantized DAG Network” (Deep Learning HDL Toolbox)
“Generate INT8 Code for Deep Learning Network on Raspberry Pi” (MATLAB Coder)
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experiments.Monitor
Update results table and training plots for custom training experiments

Description
When running a custom training experiment in Experiment Manager, use an
experiments.Monitor object to track the progress of the training, update information fields in the
results table, record values of the metrics used by the training, and produce training plots. For more
information on custom training experiments, see “Configure Custom Training Experiment” on page 1-
49.

Creation
When you run a custom training experiment, Experiment Manager creates an
experiments.Monitor object for each trial of your experiment. Access the object as the second
input argument of the training function.

Alternatively, to debug a custom training experiment, call the experiments.Monitor function to
create an object that you can use to run your training function in the MATLAB Command Window. For
more information, see “Debug Experiments for Deep Learning”.

Syntax
monitor = experiments.Monitor

Description

monitor = experiments.Monitor creates an experiments.Monitor object that you can use to
diagnose problems in your training function.

Properties
Metrics — Metric column names
"" (default) | string | character vector | string array | cell array of character vectors

Metric column names, specified as a string, character vector, string array, or cell array of character
vectors. Valid names begin with a letter, and can contain letters, digits, and underscores. These
names appear as column headers in the experiment results table. Additionally, each metric appears in
its own training subplot. To plot more than one metric in a single subplot, use the function
groupSubPlot.
Example: monitor.Metrics = ["TrainingLoss","ValidationLoss"];
Data Types: char | string

Info — Information column names
"" (default) | string | character vector | string array | cell array of character vectors
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Information column names, specified as a string, character vector, string array, or cell array of
character vectors. Valid names begin with a letter, and can contain letters, digits, and underscores.
These names appear as column headers in the experiment results table. The values in the information
columns do not appear in the training plot.
Example: monitor.Info = ["GradientDecayFactor","SquaredGradientDecayFactor"];
Data Types: char | string

Stop — Request to stop trial
false or 0 (default) | true or 1

This property is read-only.

Request to stop trial, specified as a numeric or logical 1 (true) or 0 (false). The value of this
property changes to true when you click Stop in the Experiment Manager toolstrip or the results
table.
Data Types: logical

Progress — Training progress
0 (default) | numeric scalar | dlarray

Training progress percentage, specified as a numeric scalar or dlarray object between 0 and 100.
Example: monitor.Progress = 17;

XLabel — Horizontal axis label
"" (default) | string | character vector

Horizontal axis label in the training plot, specified as a string or character vector.

Set this value before calling the function recordMetrics.
Example: monitor.XLabel = "Iteration";
Data Types: char | string

Status — Training status
"" (default) | string | character vector

Training status for a trial, specified as a string or character vector.
Example: monitor.Status = "Loading Data";
Data Types: char | string

MetricData — Metric column values
structure

This property is read-only.

Metric column values, specified as a structure. Use the Metrics property to specify the field names
for the structure. Each field is a matrix that contains the custom training loop step values and metric
values recorded by the recordMetrics function.
Data Types: struct

InfoData — Information column values
structure
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This property is read-only.

Information column values, specified as a structure. Use the Info property to specify the field names
for the structure. Each field is a column vector that contains the values updated by the updateInfo
function.
Data Types: struct

Object Functions
groupSubPlot Group metrics in experiment training plot
recordMetrics Record metric values in experiment results table and training plot
updateInfo Update information columns in experiment results table

Examples

Track Progress, Display Information and Record Metric Values, and Produce Training Plots

Use an experiments.Monitor object to track the progress of the training, display information and
metric values in the experiment results table, and produce training plots for custom training
experiments.

Before starting the training, specify the names of the information and metric columns of the
Experiment Manager results table.

monitor.Info = ["GradientDecayFactor","SquaredGradientDecayFactor"];
monitor.Metrics = ["TrainingLoss","ValidationLoss"];

Specify the horizontal axis label for the training plot. Group the training and validation loss in the
same subplot.

monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);

Update the values of the gradient decay factor and the squared gradient decay factor for the trial in
the results table.

updateInfo(monitor, ...
    GradientDecayFactor=gradientDecayFactor, ...
    SquaredGradientDecayFactor=squaredGradientDecayFactor);

After each iteration of the custom training loop, record the value of training and validation loss for
the trial in the results table and the training plot.

recordMetrics(monitor,iteration, ...
    TrainingLoss=trainingLoss, ...
    ValidationLoss=validationLoss);

Update the training progress for the trial based on the fraction of iterations completed.

monitor.Progress = 100 * (iteration/numIterations);
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Debug Custom Training Experiment

To debug a custom training experiment, open the training function and set breakpoints as described
in “Set Breakpoints”. Then, in the MATLAB Command Window, call the training function.

Create a structure with a field for each hyperparameter defined in the experiment. Assign a value to
each field from the range indicated for the corresponding hyperparameter. For example, if your
experiment has two hyperparameters called WeightsInitializer and BiasInitializer, enter
the following.

params = struct(WeightsInitializer="he", ...
    BiasInitializer="narrow-normal");

Create an experiments.Monitor object.

monitor = experiments.Monitor;

Call the training function using the hyperparameter structure and the experiments.Monitor
object as the inputs to the function. For example, if your training function is called
ImageComparisonExperiment_training1, enter the following.

net = ImageComparisonExperiment_training1(params,monitor);

MATLAB pauses at each line of code indicated by a breakpoint. When the function execution stops at
the breakpoint, you can view the values of your variables, step through the code line by line, or
continue to the next breakpoint. For more information, see “Debug Experiments for Deep Learning”.

Tips
• Both information and metric columns display values in the results table for your experiment.

Additionally, the training plot shows a record of the metric values. Use information columns for
text and for numerical values that you want to display in the results table but not in the training
plot.

• An experiments.Monitor object has the same properties and object functions as a
TrainingProgressMonitor object. Therefore, you can easily adapt your custom training loop
plotting code for use in an Experiment Manager setup script. For more information, see
“Prepare Plotting Code for Custom Training Experiment” on page 1-1682.

Version History
Introduced in R2021a

InfoData and MetricData properties

The properties InfoData and MetricData store the values of the information and metric columns
for your trial.

See Also
Experiment Manager | trainingProgressMonitor

Topics
“Use Bayesian Optimization in Custom Training Experiments”
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“Run a Custom Training Experiment for Image Comparison”
“Use Experiment Manager to Train Generative Adversarial Networks (GANs)”
“Custom Training with Multiple GPUs in Experiment Manager”
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exportNetworkToTensorFlow
Export Deep Learning Toolbox network or layer graph to TensorFlow

Syntax
exportNetworkToTensorFlow(net,modelPackage)
exportNetworkToTensorFlow(lgraph,modelPackage)

Description
exportNetworkToTensorFlow(net,modelPackage) exports the MATLAB deep learning network
net and saves it as a TensorFlow model in the Python® package modelPackage. For information on
how to load the TensorFlow model in Python, see “Load Exported TensorFlow Model” on page 1-648.

The exportNetworkToTensorFlow function requires the Deep Learning Toolbox Converter for
TensorFlow Models. If this support package is not installed, then exportNetworkToTensorFlow
provides a download link.

exportNetworkToTensorFlow(lgraph,modelPackage) exports the MATLAB deep learning layer
graph lgraph and saves it as a TensorFlow model in the Python package modelPackage.

If the MATLAB network or layer graph contains a custom or built-in MATLAB layer that
exportNetworkToTensorFlow cannot convert to a TensorFlow layer, the
exportNetworkToTensorFlow function exports this layer as a custom TensorFlow layer. For more
information on which MATLAB layers exportNetworkToTensorFlow can convert to TensorFlow
layers, see “Layers Supported for Exporting to TensorFlow” on page 1-646. For an example, see
“Export Layer Graph with Custom Layer to TensorFlow” on page 1-642.

Examples

Export Network to TensorFlow

Save a MATLAB deep learning network as a TensorFlow model by using the
exportNetworkToTensorFlow function.

Download and install the Deep Learning Toolbox Converter for TensorFlow Models support package.
You can enter exportNetworkToTensorFlow at the command prompt to check whether the support
package is installed. If the support package is not installed, then the function provides a link to the
required support package in the Add-On Explorer. To install the support package, click the link, and
then click Install.

Load the pretrained squeezenet convolutional neural network as a DAGNetwork object.

net = squeezenet

net = 
  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
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    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

Export the network net to TensorFlow. The exportNetworkToTensorFlow function saves the
TensorFlow model in the Python package myModel.

exportNetworkToTensorFlow(net,"myModel")

Run this code in Python to load the exported TensorFlow model from the myModel package.

import myModel
model = myModel.load_model()

Save the exported model in the TensorFlow SavedModel format. Saving model in SavedModel
format is optional. You can perform deep learning workflows directly with model. For an example
that shows how to classify an image with the exported TensorFlow model, see “Export Network to
TensorFlow and Classify Image” on page 1-639.

model.save("myModelTF")

Export Network to TensorFlow and Classify Image

Use a MATLAB network to classify an image. Save the network as a TensorFlow model and use the
TensorFlow model to classify the same image.

Classify Image in MATLAB

Load the pretrained squeezenet convolutional network as a DAGNetwork object.

net = squeezenet

net = 
  DAGNetwork with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

Specify the class names.

ClassNames = net.Layers(end).Classes;

Read the image you want to classify. Resize the image to the input size of the network.

Im = imread("peppers.png");

InputSize = net.Layers(1).InputSize;
Im = imresize(Im,InputSize(1:2));

Predict class labels and classification scores.

[label,score] = classify(net,Im);
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Show the image with the classification label.

imshow(Im)
title(ClassNames(label),FontSize=12)

Export Network and Image Data

Export the network net to TensorFlow. The exportNetworkToTensorFlow function saves the
TensorFlow model in the Python package myModel.

exportNetworkToTensorFlow(net,"myModel")

Permute the 2-D image data from the Deep Learning Toolbox™ ordering (HWCN) to the TensorFlow
ordering (NHWC), where H, W, and C are the height, width, and number of channels of the image,
respectively, and N is the number of images. Save the image in a MAT file.

ImTF = permute(Im,[4,1,2,3]);

filename = "peppers.mat";
save(filename,"ImTF")

Classify Image with Exported TensorFlow Model

Run this code in Python to load the exported TensorFlow model and use the model for image
classification.

Load the exported model from the Python package myModel.

import myModel
model = myModel.load_model()

Classify the image with the exported model. For more information on how to compare prediction
results between MATLAB and TensorFlow, see “Inference Comparison Between TensorFlow and
Imported Networks for Image Classification”.
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score_tf = model.predict(ImTF)

Export Untrained Layer Graph to TensorFlow

Export an untrained layer graph to TensorFlow and train the exported TensorFlow model.

Create Layer Graph

Create a long short-term memory (LSTM) network to classify sequence data. An LSTM network takes
sequence data as input and makes predictions based on the individual time steps of the sequence
data.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [
       sequenceInputLayer(inputSize)
       bilstmLayer(numHiddenUnits,OutputMode="last")
       fullyConnectedLayer(numClasses)
       softmaxLayer];

lgraph = layerGraph(layers);

Create Training Data Set

Load the Japanese Vowels training data set. XTrain is a cell array containing 270 sequences of
dimension 12 and varying length. YTrain is a categorical vector of labels "1","2",..."9", which
correspond to the nine speakers.

[XTrain,YTrain] = japaneseVowelsTrainData;

Prepare the sequence data in XTrain for padding. For more information, see “Sequence
Classification Using Deep Learning”.

numObservations = numel(XTrain);
for i=1:numObservations
    sequence = XTrain{i};
    sequenceLengths(i) = size(sequence,2);
end

[sequenceLengths,idx] = sort(sequenceLengths);
XTrain = XTrain(idx);
YTrain = YTrain(idx);

Pad XTrain along the second dimension.

XTrain = padsequences(XTrain,2);

Permute the sequence data from the Deep Learning Toolbox™ ordering (CSN) to the TensorFlow
ordering (NSC), where C is the number of features of the sequence, S is the sequence length, and N is
the number of sequence observations. Save the training data to a MAT file.

XTrain = permute(XTrain,[3,2,1]);
YTrain = double(YTrain)-1;
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filename = "training_data.mat";
save(filename,"XTrain","YTrain")

Export Layer Graph to TensorFlow

Export the layer graph lgraph to TensorFlow. The exportNetworkToTensorFlow function saves
the TensorFlow model in the Python package myModel.

exportNetworkToTensorFlow(lgraph,"myModel")

Train Exported TensorFlow Model

Run this code in Python to load the exported model from the Python package myModel. You can
compile and train the exported model in Python. To train model, use the training data in
training_data.mat. For more information on how to load data from a MAT file into Python, see
“Inference Comparison Between TensorFlow and Imported Networks for Image Classification”.

import myModel
model = myModel.load_model()

Export Layer Graph with Custom Layer to TensorFlow

Export a layer graph, which contains a MATLAB custom layer, to TensorFlow.

Create Layer Graph

Create a PReLU layer by defining the custom layer preluLayer. Display the definition of the custom
layer.

type preluLayer.m

classdef preluLayer < nnet.layer.Layer
    % Example custom PReLU layer.

    properties (Learnable)
        % Layer learnable parameters.

        % Scaling coefficient.
        Alpha
    end

    methods
        function layer = preluLayer(args)
            % layer = preluLayer creates a PReLU layer.
            %
            % layer = preluLayer(numChannels,Name=name) also specifies the
            % layer name.

            arguments
                args.Name = "";
            end

            % Set layer name.
            layer.Name = args.Name;

            % Set layer description.
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            layer.Description = "PReLU";
        end

        function layer = initialize(layer,layout)
            % layer = initialize(layer,layout) initializes the learnable
            % parameters of the layer for the specified input layout.

            % Skip initialization of nonempty parameters.
            if ~isempty(layer.Alpha)
                return
            end

            % Input data size.
            sz = layout.Size;
            ndims = numel(sz);

            % Find number of channels.
            idx = finddim(layout,"C");
            numChannels = sz(idx);

            % Initialize Alpha.
            szAlpha = ones(1,ndims);
            szAlpha(idx) = numChannels;
            layer.Alpha = rand(szAlpha);
        end

        function Z = predict(layer, X)
            % Z = predict(layer, X) forwards the input data X through the
            % layer and outputs the result Z.

            Z = max(0, X) + layer.Alpha .* min(0, X);
        end
    end
end

Create a layer graph.

layers = [
    imageInputLayer([31 53 3],Name="image",Normalization="none")
    preluLayer(Name="prelu")
    regressionLayer];

lgraph = layerGraph(layers);

Export Layer Graph to TensorFlow

Export the layer graph lgraph to TensorFlow. The exportNetworkToTensorFlow function saves
the TensorFlow model in the Python package myModel and the definition of the custom layer in the
customLayers folder of the myModel package.

exportNetworkToTensorFlow(lgraph,"myModel")

Warning: Layer 'prelu': Layer class 'preluLayer' was exported into an incomplete TensorFlow custom layer file. The custom layer definition must be completed or the file must be replaced before the model can be loaded into TensorFlow.

Display the definition of the TensorFlow custom layer preluLayer.py.

type ./myModel/customLayers/preluLayer.py

#    This file was created by
#    MATLAB Deep Learning Toolbox Converter for TensorFlow Models.
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#    31-Aug-2022 04:07:34

import tensorflow as tf
import sys     # Remove this line after completing the layer definition.

class preluLayer(tf.keras.layers.Layer):
    # Add any additional layer hyperparameters to the constructor's
    # argument list below.
    def __init__(self, Alpha_Shape_=None, name=None):
        super(preluLayer, self).__init__(name=name)
        # Learnable parameters: These have been exported from MATLAB and will be loaded automatically from the weight file:
        self.Alpha = tf.Variable(name="Alpha", initial_value=tf.zeros(Alpha_Shape_), trainable=True)

    def call(self, input1):
        # Add code to implement the layer's forward pass here.
        # The input tensor format(s) are: BSSC
        # The output tensor format(s) are: BSSC
        # where B=batch, C=channels, T=time, S=spatial(in order of height, width, depth,...)

        # Remove the following 3 lines after completing the custom layer definition:
        print("Warning: load_model(): Before you can load the model, you must complete the definition of custom layer preluLayer in the customLayers folder.")
        print("Exiting...")
        sys.exit("See the warning message above.")

        return output1

Load Exported Layer Graph

This section describes the steps that you must perform in Python to load the exported TensorFlow
model.

Edit the definition of preluLayer.py by implementing the forward computation in call.

def call(self, input1):
    output1 = tf.math.maximum(input1,0.0) + self.Alpha + tf.math.minimum(0.0,input1)
    return output1

Delete the lines in preluLayer.py, as instructed by the comments in the file. View the updated
custom layer preluLayer.py.

import tensorflow as tf

class preluLayer(tf.keras.layers.Layer):
    # Add any additional layer hyperparameters to the constructor's
    # argument list below.
    def __init__(self, Alpha_Shape_=None, name=None):
        super(preluLayer, self).__init__(name=name)
        # Learnable parameters: These have been exported from MATLAB and will be loaded automatically from the weight file:
        self.Alpha = tf.Variable(name="Alpha", initial_value=tf.zeros(Alpha_Shape_), trainable=True)

    def call(self, input1):
        output1 = tf.math.maximum(input1,0.0) + self.Alpha + tf.math.minimum(0.0,input1)
        return output1

In this example, you only have to edit preluLayer.py. In other cases, you might have to edit
model.py to pass arguments to custom layer calls.
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Before loading the model, you might have to restart your Python kernel for the changes to take effect.
Load the model from the Python package myModel.

import myModel
model = myModel.load_model()

Input Arguments
net — Deep Learning Toolbox network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Deep Learning Toolbox network, specified as a SeriesNetwork object, DAGNetwork object, or
dlnetwork object.

You can get a trained network by:

• Using a Deep Learning Toolbox function to load a pretrained network. For example, use the
efficientnetb0 function.

• Downloading a pretrained network from the MATLAB Deep Learning Model Hub.
• Training your own network. Use trainNetwork to train a DAGNetwork or SeriesNetwork

object. Use a custom training loop to train a dlnetwork object.

You can also export an initialized dlnetwork object to TensorFlow.

modelPackage — Name of Python package containing exported model
string scalar | character vector

Name of the Python package containing the exported TensorFlow model, specified as a string scalar
or character vector. The modelPackage package contains:

• The _init_.py file, which defines the modelPackage folder as a regular Python package.
• The model.py file, which contains the code that defines the untrained TensorFlow-Keras model.
• The README.txt file, which provides instructions on how to load the TensorFlow model and save

it in HDF5 or SavedModel format. For more details, see “Load Exported TensorFlow Model” on
page 1-648 and “Save Exported TensorFlow Model in Standard Format” on page 1-648.

• The weights.h5 file, which contains the model weights in HDF5 format.
• The customLayers folder, which contains one file for each exported custom layer. Each file is an

incomplete definition of a TensorFlow custom layer. You must edit or replace each of these files
before you can load the model in Python. The software creates the customLayers folder only
when the MATLAB network or layer graph contains a custom or built-in MATLAB layer that
exportNetworkToTensorFlow cannot convert to a TensorFlow layer.

Example: "myModel"

lgraph — Deep Learning Toolbox layer graph
LayerGraph object | Layer array

Deep Learning Toolbox layer graph, specified as a LayerGraph object or Layer array.
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Limitations
• To load an exported TensorFlow model, you must have:

• TensorFlow version r2.0 or later
• Python version 3.0 or later
• The TensorFlow module tfa for a MATLAB network or layer graph that contains

groupNormalizationLayer, instanceNormalizationLayer, or
layerNormalizationLayer layers

More About
Layers Supported for Exporting to TensorFlow

The exportNetworkToTensorFlow function supports these Deep Learning Toolbox layers for
export as TensorFlow layers.

Input Layers
imageInputLayer
image3dInputLayer
featureInputLayer
sequenceInputLayer

Convolution and Fully Connected Layers
convolution1dLayer
convolution2dLayer
convolution3dLayer
groupedConvolution2dLayer
fullyConnectedLayer
transposedConv2dLayer
transposedConv3dLayer

Sequence Layers
averagePooling1dLayer
bilstmLayer
convolution1dLayer
flattenLayer
globalMaxPooling1dLayer
gruLayer
lstmLayer
lstmProjectedLayer
maxPooling1dLayer
sequenceFoldingLayer
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Sequence Layers
sequenceInputLayer
sequenceUnfoldingLayer
transposedConv1dLayer

Activation Layers
clippedReluLayer
eluLayer
geluLayer
functionLayer
leakyReluLayer
reluLayer
swishLayer
tanhLayer

Normalization, Dropout, and Cropping Layers
batchNormalizationLayer
crop2dLayer
crop3dLayer
crossChannelNormalizationLayer
dropoutLayer
groupNormalizationLayer
instanceNormalizationLayer
layerNormalizationLayer

Pooling and Unpooling Layers
averagePooling1dLayer
averagePooling2dLayer
averagePooling3dLayer
globalAveragePooling1dLayer
globalAveragePooling2dLayer
globalAveragePooling3dLayer
maxPooling1dLayer
maxPooling2dLayer
maxPooling3dLayer
globalMaxPooling1dLayer
globalMaxPooling2dLayer
globalMaxPooling3dLayer
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Combination Layers
additionLayer
multiplicationLayer
depthConcatenationLayer
concatenationLayer

Output Layers
softmaxLayer
sigmoidLayer
classificationLayer
regressionLayer

Load Exported TensorFlow Model

This section describes how to load a TensorFlow model in Python from the package modelPackage,
which the exportNetworkToTensorFlow creates. For an example, see “Export Network to
TensorFlow” on page 1-638.

Load the exported TensorFlow model with weights.

import modelPackage
model = modelPackage.load_model()

Load the exported TensorFlow model without weights.

import modelPackage
model = modelPackage.load_model(load_weights=False)

Save Exported TensorFlow Model in Standard Format

Optionally, you can save the exported TensorFlow model in SavedModel or HDF5 format. You must
first load the exported TensorFlow model by following the instructions in “Load Exported TensorFlow
Model” on page 1-648. For an example that shows how to save an exported model to SavedModel
format, see “Export Network to TensorFlow” on page 1-638.

Save the loaded TensorFlow model in SavedModel format.

model.save("modelName")

Save the loaded TensorFlow model in HDF5 format.

model.save("modelName",save_format="h5")

Tips
• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.
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Version History
Introduced in R2022b

See Also
importTensorFlowNetwork | importTensorFlowLayers | importNetworkFromPyTorch |
exportONNXNetwork

Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
“Pretrained Deep Neural Networks”
“Inference Comparison Between TensorFlow and Imported Networks for Image Classification”
“Define Custom Deep Learning Layer with Learnable Parameters”
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exportONNXNetwork
Export network to ONNX model format

Syntax
exportONNXNetwork(net,filename)
exportONNXNetwork(net,filename,Name=Value)

Description
exportONNXNetwork(net,filename) exports the deep learning network net with weights to the
ONNX format file filename. If filename exists, then exportONNXNetwork overwrites the file.

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support
package. If this support package is not installed, then the function provides a download link.

exportONNXNetwork(net,filename,Name=Value) exports a network using additional options
specified by one or more name-value arguments.

Examples

Export Network to ONNX Format

Load the pretrained SqueezeNet convolutional neural network.

net = squeezenet

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

Export the network net as an ONNX format file called squeezenet.onnx. Save the file to the
current folder. If the Deep Learning Toolbox Converter for ONNX Model Format support package is
not installed, then exportONNXNetwork provides a link to the required support package in the Add-
On Explorer. To install the support package, click the link, and then click Install.

filename = "squeezenet.onnx";
exportONNXNetwork(net,filename)

Now you can import the squeezenet.onnx file into any deep learning framework that supports
ONNX import.
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Export Layer Graph to ONNX Format

Export a layer graph with or without an output layer to the ONNX format by using
exportONNXNetwork.

Load a pretrained SqueezeNet convolutional neural network, and convert the pretrained network to a
layer graph.

net = squeezenet;
lgraph1 = layerGraph(net)

lgraph1 = 
  LayerGraph with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}

Analyze the layer graph. analyzeNetwork displays an interactive plot of the network architecture
and a table containing information about the network layers. You can also detect errors and issues in
the layer graph lgraph1 before exporting to the ONNX format. lgraph1 is error free.

analyzeNetwork(lgraph1)
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Export the layer graph lgraph1 as an ONNX format file in the current folder called
squeezeLayers1.onnx.

exportONNXNetwork(lgraph1,"squeezeLayers1.onnx")

Now, you can import the squeezeLayers1.onnx file into any deep learning framework that
supports ONNX import.

Remove the output layer of lgraph1.

lgraph2 = removeLayers(lgraph1,lgraph1.Layers(end).Name)

lgraph2 = 
  LayerGraph with properties:

         Layers: [67×1 nnet.cnn.layer.Layer]
    Connections: [74×2 table]
     InputNames: {'data'}
    OutputNames: {1×0 cell}

Analyze the layer graph lgraph2 by using analyzeNetwork. The layer graph analysis detects a
missing output layer and an unconnected output. You can still export lgraph2 to the ONNX format.

analyzeNetwork(lgraph2)
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Export the layer graph lgraph2 as an ONNX format file in the current folder called
squeezeLayers2.onnx.

exportONNXNetwork(lgraph2,"squeezeLayers2.onnx")

Now, you can import the squeezeLayers2.onnx file into any deep learning framework that
supports ONNX import.

Input Arguments
net — Trained network or graph of network layers
SeriesNetwork object | DAGNetwork object | dlnetwork object | LayerGraph object

Trained network or graph of network layers, specified as a SeriesNetwork, DAGNetwork,
dlnetwork, or LayerGraph object.

You can get a trained network (SeriesNetwork, DAGNetwork, or dlnetwork) in these ways:

• Import a pretrained network. For example, use the googlenet function.
• Train your own network. Use trainNetwork to train a SeriesNetwork or DAGNetwork. Use a

custom training loop to train a dlnetwork.

A LayerGraph object is a graph of network layers. Some of the layer parameters of this graph might
be empty (for example, the weights and bias of convolution layers, and the mean and variance of
batch normalization layers). Before using the layer graph as an input argument to
exportONNXNetwork, initialize the empty parameters by assigning random values. Alternatively, you
can do one of the following before exporting:

• Convert a LayerGraph object to a dlnetwork object by using the layer graph as an input
argument to dlnetwork. The empty parameters are automatically initialized.

• Convert a LayerGraph object to a trained DAGNetwork object by using trainNetwork. Use the
layer graph as the layers input argument to trainNetwork.

You can detect errors and issues in a trained network or graph of network layers before exporting to
an ONNX network by using analyzeNetwork. exportONNXNetwork requires SeriesNetwork,
DAGNetwork, and dlnetwork objects to be error free. exportONNXNetwork permits exporting a
LayerGraph object with a missing or unconnected output layer.

filename — Name of file
character vector | string scalar

Name of file, specified as a character vector or string scalar.
Example: "network.onnx"

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: exportONNXNetwork(net,filename,NetworkName="my_net") exports a network and
specifies "my_net" as the network name in the saved ONNX network.
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NetworkName — Name of ONNX network
"Network" (default) | character vector | string scalar

Name of ONNX network to store in the saved file, specified as a character vector or a string scalar.
Example: NetworkName="my_squeezenet"

OpsetVersion — Version of ONNX operator set
8 (default) | 6 | 7 | 9 | 10 | 11 | 12 | 13

Version of ONNX operator set to use in the exported model, specified as a positive integer in the
range [6 13]. If the default operator set does not support the network you are trying to export, then
try using a later version. If you import the exported network to another framework and you used an
operator set during export that the importer does not support, then the import can fail.

To ensure that you use the appropriate operator set version, consult the ONNX operator
documentation [3]. For example, OpsetVersion=9 exports the maxUnpooling2dLayer to the
MaxUnpool-9 ONNX operator.
Example: OpsetVersion=6

BatchSize — Batch size of ONNX network
[] (default) | positive integer

Batch size of the ONNX network, specified as [] or as a positive integer. If you specify BatchSize as
[], the ONNX network has a dynamic batch size. If you specify BatchSize as a positive integer k,
the ONNX network has a fixed batch size of k.
Example: BatchSize=10

Limitations
• exportONNXNetwork supports ONNX versions as follows:

• The function supports ONNX intermediate representation version 7.
• The function supports ONNX operator sets 6 to 14.

• exportONNXNetwork does not export settings or properties related to network training such as
training options, learning rate factors, or regularization factors.

• If you export a network containing a layer that the ONNX format does not support (see “Layers
Supported for ONNX Export” on page 1-655), then exportONNXNetwork saves a placeholder
ONNX operator in place of the unsupported layer and returns a warning. You cannot import an
ONNX network with a placeholder operator into other deep learning frameworks.

• Because of architectural differences between MATLAB and ONNX, an exported network can have
a different structure compared to the original network.

Note If you import an exported network, layers of the reimported network might differ from the
original network and might not be supported.
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More About
Layers Supported for ONNX Export

exportONNXNetwork can export the following:

• Networks that have both convolutional and LSTM layers, such as those for video classification
applications.

• All custom layers (except nnet.onnx.layer.Flatten3dLayer) that are created when you
import networks from ONNX or TensorFlow-Keras using either Deep Learning Toolbox Converter
for ONNX Model Format or Deep Learning Toolbox Converter for TensorFlow Models.

• The layers listed in the following table:

ONNX Exporter Supported Layers
Deep Learning Toolbox Layers
additionLayer
averagePooling1dLayer
averagePooling2dLayer
averagePooling3dLayer
batchNormalizationLayer
bilstmLayer
ClassificationOutputLayer
clippedReluLayer
concatenationLayer
convolution1dLayer
convolution2dLayer
convolution3dLayer
crop2dLayer
CrossChannelNormalizationLayer
depthConcatenationLayer
dropoutLayer
eluLayer
featureInputLayer
flattenLayer
fullyConnectedLayer
globalAveragePooling1dLayer
globalAveragePooling2dLayer
globalMaxPooling1dLayer
globalMaxPooling2dLayer
groupedConvolution2dLayer
groupNormalizationLayer
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ONNX Exporter Supported Layers
gruLayer
imageInputLayer
image3dInputLayer
leakyReluLayer
lstmLayer
lstmProjectedLayer
maxPooling1dLayer
maxPooling2dLayer
maxPooling3dLayer
maxUnpooling2dLayer
multiplicationLayer
RegressionOutputLayer
reluLayer
sequenceInputLayer
sigmoidLayer
softmaxLayer
swishLayer
tanhLayer
transposedConv2dLayer
transposedConv3dLayer
 
ONNX Importer Custom Layers
nnet.onnx.layer.ClipLayer
nnet.onnx.layer.ElementwiseAffineLayer
nnet.onnx.layer.FlattenLayer
nnet.onnx.layer.GlobalAveragePooling2dLayer
nnet.onnx.layer.IdentityLayer
nnet.onnx.layer.PReluLayer
nnet.onnx.layer.TanhLayer
 
Keras Importer Custom Layers
nnet.keras.layer.FlattenCStyleLayer
nnet.keras.layer.GlobalAveragePooling2dLayer
nnet.keras.layer.TanhLayer
nnet.keras.layer.ZeroPadding2dLayer
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ONNX Exporter Supported Layers
Caffe Importer Custom Layers
nnet.caffe.layer.TanhLayer
 
Computer Vision Toolbox™ Layers
pixelClassificationLayer
rcnnBoxRegressionLayer
roiInputLayer
roiMaxPooling2dLayer
 
Image Processing Toolbox™ Layers
depthToSpace2dLayer
resize2dLayer
resize3dLayer
spaceToDepthLayer
 
Text Analytics Toolbox™ Layers
wordEmbeddingLayer

For the groupNormalizationLayer, specify numGroups as "channel-wise" to map the
exported layer to the ONNX InstanceNormalization operator. GroupNormalization is not a
standard ONNX operator [3].

Tips
• You can export a trained MATLAB deep learning network that includes multiple inputs and

multiple outputs to the ONNX model format. To learn about a multiple-input and multiple-output
deep learning network, see “Multiple-Input and Multiple-Output Networks”.

Version History
Introduced in R2018a

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

[3] ONNX Operators. https://github.com/onnx/onnx/blob/master/docs/Operators.md.

See Also
importONNXNetwork | importONNXLayers | importTensorFlowNetwork |
importTensorFlowLayers | importNetworkFromPyTorch | exportNetworkToTensorFlow |
layerGraph
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Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
“Pretrained Deep Neural Networks”
“Deep Learning in MATLAB”
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extractdata
Extract data from dlarray

Syntax
Y = extractdata(X)

Description
Y = extractdata(X) returns the data in the dlarray X. The output Y has the same data type as
the underlying data in X.

Examples

Extract Data from dlarray

Create a logical dlarray with data format 'SS'.

rng default % For reproducibility
dlX = dlarray(rand(4,3) > 0.5,'SS')

dlX = 
  4(S) x 3(S) logical dlarray

   1   1   1
   1   0   1
   0   0   0
   1   1   1

Extract the data from dlX.

y = extractdata(dlX)

y = 4x3 logical array

   1   1   1
   1   0   1
   0   0   0
   1   1   1

Input Arguments
X — Input dlarray
dlarray object

Input dlarray, specified as a dlarray object.
Example: X = dlarray(randn(50,3),'SC')

 extractdata

1-659



Output Arguments
Y — Data array
single array | double array | logical array | gpuArray

Data array, returned as a single, double, or logical array, or as a gpuArray of one of these array
types. The output Y has the same data type as the underlying data type in X.

Tips
• If X contains an implicit permutation because of formatting, Y has that permutation explicitly.
• The output Y has no tracing for the computation of derivatives. See “Derivative Trace”.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation does not support gpuArray data type.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For recommendations and limitations on gpuArray, see “Support for GPU Arrays” (GPU Coder).

See Also
dlarray | gather
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featureInputLayer
Feature input layer

Description
A feature input layer inputs feature data to a network and applies data normalization. Use this layer
when you have a data set of numeric scalars representing features (data without spatial or time
dimensions).

For image input, use imageInputLayer.

Creation

Syntax
layer = featureInputLayer(numFeatures)
layer = featureInputLayer(numFeatures,Name,Value)

Description

layer = featureInputLayer(numFeatures) returns a feature input layer and sets the
InputSize property to the specified number of features.

layer = featureInputLayer(numFeatures,Name,Value) sets the optional properties using
name-value pair arguments. You can specify multiple name-value pair arguments. Enclose each
property name in single quotes.

Properties
Feature Input

InputSize — Number of features
positive integer

Number of features for each observation in the data, specified as a positive integer.

For image input, use imageInputLayer.
Example: 10

Normalization — Data normalization
'none' (default) | 'zerocenter' | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' |
function handle

Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:

• 'zerocenter' — Subtract the mean specified by Mean.
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• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics when using the
trainNetwork function. To save time when training, specify the required statistics for normalization
and set the ResetInputNormalization option in trainingOptions to 0 (fasle).

NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Mean — Mean for zero-center and z-score normalization
[] (default) | column vector | numeric scalar

Mean for zero-center and z-score normalization, specified as a numFeatures-by-1 vector of means
per feature, a numeric scalar, or [].

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If
Mean is [], then the trainNetwork function calculates the mean. To train a dlnetwork object using
a custom training loop or assemble a network without training it using the assembleNetwork
function, you must set the Mean property to a numeric scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StandardDeviation — Standard deviation for z-score normalization
[] (default) | column vector | numeric scalar

Standard deviation for z-score normalization, specified as a numFeatures-by-1 vector of means per
feature, a numeric scalar, or [].

If you specify the StandardDeviation property, then Normalization must be 'zscore'. If
StandardDeviation is [], then the trainNetwork function calculates the standard deviation. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the StandardDeviation property to a numeric
scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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Min — Minimum value for rescaling
[] (default) | column vector | numeric scalar

Minimum value for rescaling, specified as a numFeatures-by-1 vector of minima per feature, a
numeric scalar, or [].

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Min is [], then the trainNetwork function calculates the minima. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the Min property to a numeric scalar or a
numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | column vector | numeric scalar

Maximum value for rescaling, specified as a numFeatures-by-1 vector of maxima per feature, a
numeric scalar, or [].

If you specify the Max property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Max is [], then the trainNetwork function calculates the maxima. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the Max property to a numeric scalar or a
numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SplitComplexInputs — Flag to split input data into real and imaginary components
0 (false) (default) | 1 (true)

This property is read-only.

Flag to split input data into real and imaginary components specified as one of these values:

• 0 (false) – Do not split input data.
• 1 (true) – Split data into real and imaginary components.

When SplitComplexInputs is 1, then the layer outputs twice as many channels as the input data.
For example, if the input data is complex-values with numChannels channels, then the layer outputs
data with 2*numChannels channels, where channels 1 through numChannels contain the real
components of the input data and numChannels+1 through 2*numChannels contain the imaginary
components of the input data. If the input data is real, then channels numChannels+1 through
2*numChannels are all zero.

To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.

For an example showing how to train a network with complex-valued data, see “Train Network with
Complex-Valued Data”.

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

This property is read-only.

Number of inputs of the layer. The layer has no inputs.
Data Types: double

InputNames — Input names
{} (default)

This property is read-only.

Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Feature Input Layer

Create a feature input layer with the name 'input' for observations consisting of 21 features.

layer = featureInputLayer(21,'Name','input')

layer = 
  FeatureInputLayer with properties:

                      Name: 'input'
                 InputSize: 21
        SplitComplexInputs: 0
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   Hyperparameters
             Normalization: 'none'
    NormalizationDimension: 'auto'

Include a feature input layer in a Layer array.

numFeatures = 21;
numClasses = 3;
 
layers = [
    featureInputLayer(numFeatures,'Name','input')
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','sm')
    classificationLayer('Name','classification')]

layers = 
  4x1 Layer array with layers:

     1   'input'            Feature Input           21 features
     2   'fc'               Fully Connected         3 fully connected layer
     3   'sm'               Softmax                 softmax
     4   'classification'   Classification Output   crossentropyex

Combine Image and Feature Input Layers

To train a network containing both an image input layer and a feature input layer, you must use a
dlnetwork object in a custom training loop.

Define the size of the input image, the number of features of each observation, the number of classes,
and the size and number of filters of the convolution layer.

imageInputSize = [28 28 1];
numFeatures = 1;
numClasses = 10;
filterSize = 5;
numFilters = 16;

To create a network with two input layers, you must define the network in two parts and join them,
for example, by using a concatenation layer.

Define the first part of the network. Define the image classification layers and include a flatten layer
and a concatenation layer before the last fully connected layer.

layers = [
    imageInputLayer(imageInputSize,'Normalization','none','Name','images')
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    reluLayer('Name','relu')
    fullyConnectedLayer(50,'Name','fc1')
    flattenLayer('name','flatten')
    concatenationLayer(1,2,'Name','concat')
    fullyConnectedLayer(numClasses,'Name','fc2')
    softmaxLayer('Name','softmax')];

Convert the layers to a layer graph.
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lgraph = layerGraph(layers);

For the second part of the network, add a feature input layer and connect it to the second input of the
concatenation layer.

featInput = featureInputLayer(numFeatures,'Name','features');
lgraph = addLayers(lgraph, featInput);
lgraph = connectLayers(lgraph, 'features', 'concat/in2');

Visualize the network.

plot(lgraph)

Create a dlnetwork object.

dlnet = dlnetwork(lgraph)

dlnet = 
  dlnetwork with properties:

         Layers: [9x1 nnet.cnn.layer.Layer]
    Connections: [8x2 table]
     Learnables: [6x3 table]
          State: [0x3 table]
     InputNames: {'images'  'features'}
    OutputNames: {'softmax'}
    Initialized: 1
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  View summary with summary.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• Code generation does not support complex input and does not support 'SplitComplexInputs'
option.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA® or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

• Code generation does not support complex input and does not support 'SplitComplexInputs'
option.

See Also
trainNetwork | fullyConnectedLayer | image3dInputLayer | Deep Network Designer |
imageInputLayer | sequenceInputLayer | dlnetwork

Topics
“Train Network with Numeric Features”
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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finddim
Find dimensions with specified label

Syntax
dim = finddim(X,label)
dim = finddim(layout,label)

Description
dim = finddim(X,label) returns the dimensions in the dlarray object X that have the specified
dimension label.

dim = finddim(layout,label) returns the dimensions in the networkDataLayout object
layout that have the specified dimension label.

Examples

Find Dimensions of dlarray Object

Create a formatted dlarray with format "SSCBT" (spatial, spatial, channel, batch, time).

X = dlarray(randn(6,5,4,3,2),"SSCBT");

View the dimension labels of X.

dims(X)

ans = 
'SSCBT'

Find the dimensions with the label "S".

dim = finddim(X,"S")

dim = 1×2

     1     2

Find Dimensions of Network Data Layout Object

Create a formatted network data layout object representing 2-D image sequences. Specify the format
"SSCBT" (spatial, spatial, channel, batch, time).

layout = networkDataLayout([227 227 3 NaN 100],"SSCBT");

Find the dimensions with the label "S".
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dim = finddim(layout,"S")

dim = 1×2

     1     2

Input Arguments
X — Input data
dlarray object

Input data, specified as a formatted or unformatted dlarray object.

layout — Network data layout
networkDataLayout object

Network data layout, specified as a networkDataLayout object.

label — Dimension label
"S" | "C" | "B" | "T" | "U"

Dimension label, specified as one of the following dlarray dimension labels:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

Output Arguments
dim — Dimension
vector of positive integers

Dimension, returned as a vector of positive integers.

If the input is unformatted or has no dimension labels that match label, then dim is empty.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The input data must be a dlarray object.
• The label argument must be a compile-time constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input data must be a dlarray object.
• The label argument must be a compile-time constant.

See Also
dims | stripdims | dlarray | networkDataLayout
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findPlaceholderLayers
Find placeholder layers in network architecture imported from Keras or ONNX

Syntax
placeholderLayers = findPlaceholderLayers(importedLayers)
[placeholderLayers,indices] = findPlaceholderLayers(importedLayers)

Description
placeholderLayers = findPlaceholderLayers(importedLayers) returns all placeholder
layers that exist in the network architecture importedLayers imported by the
importKerasLayers or importONNXLayers functions, or created by the functionToLayerGraph
function. Placeholder layers are the layers that these functions insert in place of layers that are not
supported by Deep Learning Toolbox.

To use with an imported network, this function requires either the Deep Learning Toolbox Converter
for TensorFlow Models support package or the Deep Learning Toolbox Converter for ONNX Model
Format support package.

[placeholderLayers,indices] = findPlaceholderLayers(importedLayers) also returns
the indices of the placeholder layers.

Examples

Find and Explore Placeholder Layers

Specify the Keras network file to import layers from.

modelfile = 'digitsDAGnetwithnoise.h5';

Import the network architecture. The network includes some layer types that are not supported by
Deep Learning Toolbox. The importKerasLayers function replaces each unsupported layer with a
placeholder layer and returns a warning message.

lgraph = importKerasLayers(modelfile)

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

lgraph = 
  LayerGraph with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Display the imported layers of the network. Two placeholder layers replace the Gaussian noise layers
in the Keras network.
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lgraph.Layers

ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'gaussian_noise_1'                   PLACEHOLDER LAYER       Placeholder for 'GaussianNoise' Keras layer
     7   'gaussian_noise_2'                   PLACEHOLDER LAYER       Placeholder for 'GaussianNoise' Keras layer
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

Find the placeholder layers using findPlaceholderLayers. The output argument contains the two
placeholder layers that importKerasLayers inserted in place of the Gaussian noise layers of the
Keras network.

placeholders = findPlaceholderLayers(lgraph)

placeholders = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Specify a name for each placeholder layer.

gaussian1 = placeholders(1);
gaussian2 = placeholders(2);

Display the configuration of each placeholder layer.

gaussian1.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

gaussian2.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000
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Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")
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Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m in
the current folder. Then, create two Gaussian noise layers with the same configurations as the
imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")

1 Deep Learning Functions

1-674



Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex
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The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
    ClassWeights: 'none'
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Input Arguments
importedLayers — Network architecture imported from Keras or ONNX or created by
functionToLayerGraph
Layer array | LayerGraph object
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Network architecture imported from Keras or ONNX or created by functionToLayerGraph,
specified as a Layer array or LayerGraph object.

Output Arguments
placeholderLayers — All placeholder layers in network architecture
array of PlaceholderLayer objects

All placeholder layers in the network architecture, returned as an array of PlaceholderLayer
objects.

indices — Indices of placeholder layers
vector

Indices of placeholder layers, returned as a vector.

• If importedLayers is a layer array, then indices are the indices of the placeholder layers in
importedLayers.

• If importedLayers is a LayerGraph object, then indices are the indices of the placeholder
layers in importedLayers.Layers.

If you remove a layer from or add a layer to a Layer array or LayerGraph object, then the indices of
the other layers in the object can change. You must use findPlaceholderLayers again to find the
updated indices of the rest of the placeholder layers.

Tips
• If you have installed Deep Learning Toolbox Converter for TensorFlow Models and

findPlaceholderLayers is unable to find placeholder layers created when the ONNX network
is imported, then try updating the Deep Learning Toolbox Converter for TensorFlow Models
support package in the Add-On Explorer.

Version History
Introduced in R2017b

See Also
importKerasLayers | PlaceholderLayer | replaceLayer | assembleNetwork |
importONNXLayers | functionToLayerGraph | functionLayer

Topics
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”
“Assemble Network from Pretrained Keras Layers”
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flattenLayer
Flatten layer

Description
A flatten layer collapses the spatial dimensions of the input into the channel dimension.

For example, if the input to the layer is an H-by-W-by-C-by-N-by-S array (sequences of images), then
the flattened output is an (H*W*C)-by-N-by-S array.

Creation

Syntax
layer = flattenLayer
layer = flattenLayer('Name',Name)

Description

layer = flattenLayer creates a flatten layer.

layer = flattenLayer('Name',Name) sets the optional Name property using a name-value pair.
For example, flattenLayer('Name','flatten1') creates a flatten layer with name
'flatten1'.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.
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Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Object Functions

Examples

Create Flatten Layer

Create a flatten layer with the name 'flatten1'.

layer = flattenLayer('Name','flatten1')

layer = 
  FlattenLayer with properties:

    Name: 'flatten1'

Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical
image data.

• To input sequences of images into a network, use a sequence input layer.
• To apply convolutional operations independently to each time step, first convert the sequences of

images to an array of images using a sequence folding layer.
• To restore the sequence structure after performing these operations, convert this array of images

back to image sequences using a sequence unfolding layer.
• To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.
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Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10
classes.

Define the following network architecture:

• A sequence input layer with an input size of [28 28 1].
• A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
• An LSTM layer with 200 hidden units that outputs the last time step only.
• A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a
classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding
layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the
sequence structure and reshape the output of the convolutional layers to sequences of feature
vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and
the LSTM layer.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)

1 Deep Learning Functions

1-680



Algorithms
Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of FlattenLayer objects and the corresponding
output format. If the output of the layer is passed to a custom layer that does not inherit from the
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nnet.layer.Formattable class, or a FunctionLayer object with the Formattable option set to
false, then the layer receives an unformatted dlarray object with dimensions ordered
corresponding to the formats outlined in this table.

Input Format Output Format
"CB" (channel, batch) "CB" (channel, batch)
"SCB" (spatial, channel, batch)
"SSCB" (spatial, spatial, channel, batch)
"SSSCB" (spatial, spatial, channel, batch)
"CBT" (channel, batch, time) "CBT" (channel, batch, time)
"SCBT" (spatial, channel, batch, time)
"SSCBT" (spatial, spatial, channel, batch, time)
"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
lstmLayer | bilstmLayer | gruLayer | classifyAndUpdateState | predictAndUpdateState
| resetState | sequenceFoldingLayer | sequenceUnfoldingLayer | sequenceInputLayer

Topics
“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”
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forward
Compute deep learning network output for training

Syntax
Y = forward(net,X)
Y = forward(net,X1,...,XM)
[Y1,...,YN] = forward( ___ )
[Y1,...,YK] = forward( ___ ,'Outputs',layerNames)
[ ___ ] = forward( ___ ,'Acceleration',acceleration)
[ ___ ,state] = forward( ___ )
[ ___ ,state,pruningActivations] = forward( ___ )

Description
Some deep learning layers behave differently during training and inference (prediction). For example,
during training, dropout layers randomly set input elements to zero to help prevent overfitting, but
during inference, dropout layers do not change the input.

To compute network outputs for training, use the forward function. To compute network outputs for
inference, use the predict function.

Y = forward(net,X) returns the network output Y during training given the input data X.

Y = forward(net,X1,...,XM) returns the network output Y during training given the M inputs
X1, ...,XM and the network net that has M inputs and a single output.

[Y1,...,YN] = forward( ___ ) returns the N outputs Y1, …, YN during training for networks that
have N outputs using any of the previous syntaxes.

[Y1,...,YK] = forward( ___ ,'Outputs',layerNames) returns the outputs Y1, …, YK during
training for the specified layers using any of the previous syntaxes.

[ ___ ] = forward( ___ ,'Acceleration',acceleration) also specifies performance
optimization to use during training, in addition to the input arguments in previous syntaxes.

[ ___ ,state] = forward( ___ ) also returns the updated network state.

[ ___ ,state,pruningActivations] = forward( ___ ) also returns a cell array of activations of
the pruning layers. This syntax is applicable only if net is a TaylorPrunableNetwork object.

To prune a deep neural network, you require the Deep Learning Toolbox Model Quantization Library
support package. This support package is a free add-on that you can download using the Add-On
Explorer. Alternatively, see Deep Learning Toolbox Model Quantization Library.

Examples
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Train Network Using Custom Training Loop

This example shows how to train a network that classifies handwritten digits with a custom learning
rate schedule.

You can train most types of neural networks using the trainNetwork and trainingOptions
functions. If the trainingOptions function does not provide the options you need (for example, a
custom learning rate schedule), then you can define your own custom training loop using dlarray
and dlnetwork objects for automatic differentiation. For an example showing how to retrain a
pretrained deep learning network using the trainNetwork function, see “Transfer Learning Using
Pretrained Network”.

Training a deep neural network is an optimization task. By considering a neural network as a function
f (X; θ), where X is the network input, and θ is the set of learnable parameters, you can optimize θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable
parameters θ such that for a given inputs X with a corresponding targets T, they minimize the error
between the predictions Y = f (X; θ) and T.

The loss function used depends on the type of task. For example:

• For classification tasks, you can minimize the cross entropy error between the predictions and
targets.

• For regression tasks, you can minimize the mean squared error between the predictions and
targets.

You can optimize the objective using gradient descent: minimize the loss L by iteratively updating the
learnable parameters θ by taking steps towards the minimum using the gradients of the loss with
respect to the learnable parameters. Gradient descent algorithms typically update the learnable
parameters by using a variant of an update step of the form θt + 1 = θt − ρ∇L, where t is the iteration
number, ρ is the learning rate, and ∇L denotes the gradients (the derivatives of the loss with respect
to the learnable parameters).

This example trains a network to classify handwritten digits with the time-based decay learning rate
schedule: for each iteration, the solver uses the learning rate given by ρt =

ρ0
1 + k t , where t is the

iteration number, ρ0 is the initial learning rate, and k is the decay.

Load Training Data

Load the digits data as an image datastore using the imageDatastore function and specify the
folder containing the image data.

dataFolder = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");

imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ....
    LabelSource="foldernames");

Partition the data into training and validation sets. Set aside 10% of the data for validation using the
splitEachLabel function.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,"randomize");

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the training images, use an augmented image datastore. Specify additional augmentation operations
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to perform on the training images: randomly translate the images up to 5 pixels in the horizontal and
vertical axes. Data augmentation helps prevent the network from overfitting and memorizing the
exact details of the training images.

inputSize = [28 28 1];
pixelRange = [-5 5];

imageAugmenter = imageDataAugmenter( ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange);

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,DataAugmentation=imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Determine the number of classes in the training data.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Define Network

Define the network for image classification.

• For image input, specify an image input layer with input size matching the training data.
• Do not normalize the image input, set the Normalization option of the input layer to "none".
• Specify three convolution-batchnorm-ReLU blocks.
• Pad the input to the convolution layers such that the output has the same size by setting the

Padding option to "same".
• For the first convolution layer specify 20 filters of size 5. For the remaining convolution layers

specify 20 filters of size 3.
• For classification, specify a fully connected layer with size matching the number of classes
• To map the output to probabilities, include a softmax layer.

When training a network using a custom training loop, do not include an output layer.

layers = [
    imageInputLayer(inputSize,Normalization="none")
    convolution2dLayer(5,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,20,Padding="same")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers)
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net = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [11×2 table]
     Learnables: [14×3 table]
          State: [6×3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Define Model Loss Function

Training a deep neural network is an optimization task. By considering a neural network as a function
f (X; θ), where X is the network input, and θ is the set of learnable parameters, you can optimize θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable
parameters θ such that for a given inputs X with a corresponding targets T, they minimize the error
between the predictions Y = f (X; θ) and T.

Create the function modelLoss, listed in the Model Loss Function on page 1-690 section of the
example, that takes as input the dlnetwork object, a mini-batch of input data with corresponding
targets, and returns the loss, the gradients of the loss with respect to the learnable parameters, and
the network state.

Specify Training Options

Train for ten epochs with a mini-batch size of 128.

numEpochs = 10;
miniBatchSize = 128;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.01 with a decay of 0.01,
and momentum 0.9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not format the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).
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mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" ""]);

Initialize the velocity parameter for the SGDM solver.

velocity = [];

Calculate the total number of iterations for the training progress monitor.

numObservationsTrain = numel(imdsTrain.Files);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info=["Epoch","LearnRate"],XLabel="Iteration");

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model loss, gradients, and state using the dlfeval and modelLoss functions and
update the network state.

• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the sgdmupdate function.
• Update the loss, learn rate, and epoch values in the training progress monitor.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
    
    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop

        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [X,T] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelLoss function and update the network state.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T);
        net.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
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        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);
        
        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch,LearnRate=learnRate);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

After training, making predictions on new data does not require the labels. Create minibatchqueue
object containing only the predictors of the test data:

• To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format "SSCB" (spatial, spatial,

channel, batch).

numOutputs = 1;
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mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="SSCB");

Loop over the mini-batches and classify the images using modelPredictions function, listed at the
end of the example.

YTest = modelPredictions(net,mbqTest,classes);

Evaluate the classification accuracy.

TTest = imdsValidation.Labels;
accuracy = mean(TTest == YTest)

accuracy = 0.9750

Visualize the predictions in a confusion chart.

figure
confusionchart(TTest,YTest)

Large values on the diagonal indicate accurate predictions for the corresponding class. Large values
on the off-diagonal indicate strong confusion between the corresponding classes.
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Supporting Functions

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding targets T and returns the loss, the gradients of the loss with respect to the learnable
parameters in net, and the network state. To compute the gradients automatically, use the
dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T)

% Forward data through network.
[Y,state] = forward(net,X);

% Calculate cross-entropy loss.
loss = crossentropy(Y,T);

% Calculate gradients of loss with respect to learnable parameters.
gradients = dlgradient(loss,net.Learnables);

end

Model Predictions Function

The modelPredictions function takes a dlnetwork object net, a minibatchqueue of input data
mbq, and the network classes, and computes the model predictions by iterating over all data in the
minibatchqueue object. The function uses the onehotdecode function to find the predicted class
with the highest score.

function Y = modelPredictions(net,mbq,classes)

Y = [];

% Loop over mini-batches.
while hasdata(mbq)
    X = next(mbq);

    % Make prediction.
    scores = predict(net,X);

    % Decode labels and append to output.
    labels = onehotdecode(scores,classes,1)';
    Y = [Y; labels];
end

end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.
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function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenate into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(dataX)

% Concatenate.
X = cat(4,dataX{1:end});

end

Input Arguments
net — Network for custom training loops or custom pruning loops
dlnetwork object | TaylorPrunableNetwork object

This argument can represent either of these:

• Network for custom training loops, specified as a dlnetwork object.
• Network for custom pruning loops, specified as a TaylorPrunableNetwork object.

To prune a deep neural network, you require the Deep Learning Toolbox Model Quantization Library
support package. This support package is a free add-on that you can download using the Add-On
Explorer. Alternatively, see Deep Learning Toolbox Model Quantization Library.

X — Input data
formatted dlarray

Input data, specified as a formatted dlarray. For more information about dlarray formats, see the
fmt input argument of dlarray.

layerNames — Layers to extract outputs from
string array | cell array of character vectors

Layers to extract outputs from, specified as a string array or a cell array of character vectors
containing the layer names.

• If layerNames(i) corresponds to a layer with a single output, then layerNames(i) is the name
of the layer.
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• If layerNames(i) corresponds to a layer with multiple outputs, then layerNames(i) is the
layer name followed by the character "/" and the name of the layer output: 'layerName/
outputName'.

acceleration — Performance optimization
'auto' (default) | 'none'

Performance optimization, specified as one of the following:

• 'auto' — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

• 'none' — Disable all acceleration.

The default option is 'auto'.

Using the 'auto' acceleration option can offer performance benefits, but at the expense of an
increased initial run time. Subsequent calls with compatible parameters are faster. Use performance
optimization when you plan to call the function multiple times using different input data with the
same size and shape.

Output Arguments
Y — Output data
formatted dlarray

Output data, returned as a formatted dlarray. For more information about dlarray formats, see
the fmt input argument of dlarray.

state — Updated network state
table

Updated network state, returned as a table.

The network state is a table with three columns:

• Layer – Layer name, specified as a string scalar.
• Parameter – State parameter name, specified as a string scalar.
• Value – Value of state parameter, specified as a dlarray object.

Layer states contain information calculated during the layer operation to be retained for use in
subsequent forward passes of the layer. For example, the cell state and hidden state of LSTM layers,
or running statistics in batch normalization layers.

For recurrent layers, such as LSTM layers, with the HasStateInputs property set to 1 (true), the
state table does not contain entries for the states of that layer.

Update the state of a dlnetwork using the State property.

pruningActivations — Activations of the pruning layers
cell array containing dlarray objects

Cell array of activations of the pruning layers, if the input network is a TaylorPrunableNetwork
object.
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Version History
Introduced in R2019b

forward returns state values as dlarray objects
Behavior changed in R2021a

For dlnetwork objects, the state output argument returned by the forward function is a table
containing the state parameter names and values for each layer in the network.

Starting in R2021a, the state values are dlarray objects. This change enables better support when
using AcceleratedFunction objects. To accelerate deep learning functions that have frequently
changing input values, for example, an input containing the network state, the frequently changing
values must be specified as dlarray objects.

In previous versions, the state values are numeric arrays.

In most cases, you will not need to update your code. If you have code that requires the state values
to be numeric arrays, then to reproduce the previous behavior, extract the data from the state values
manually using the extractdata function with the dlupdate function.

state = dlupdate(@extractdata,net.State);

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function runs on the GPU if either or both of the following conditions are met:

• Any of the values of the network learnable parameters inside net.Learnables.Value are
dlarray objects with underlying data of type gpuArray

• The input argument X is a dlarray with underlying data of type gpuArray

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlgradient | dlfeval | predict | dlnetwork | TaylorPrunableNetwork

Topics
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”
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freezeParameters
Convert learnable network parameters in ONNXParameters to nonlearnable

Syntax
params = freezeParameters(params,names)

Description
params = freezeParameters(params,names) freezes the network parameters specified by
names in the ONNXParameters object params. The function moves the specified parameters from
params.Learnables in the input argument params to params.Nonlearnables in the output
argument params.

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the squeezenet convolution neural network as a function and fine-tune the pretrained
network with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper
Functions on page 1-698.

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network. Specify the mini-
batch size.

unzip("MerchData.zip");
miniBatchSize = 8;
imds = imageDatastore("MerchData", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames", ...
    ReadSize=miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end
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Extract the training set and one-hot encode the categorical classification labels.

XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';

Determine the number of classes in the data.

classes = categories(YTrain_categ);
numClasses = numel(classes)

numClasses = 5

squeezenet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

Import the pretrained squeezenet network as a function.

squeezenetONNX()
params = importONNXFunction("squeezenet.onnx","squeezenetFcn")
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Function containing the imported ONNX network architecture was saved to the file squeezenetFcn.m.
To learn how to use this function, type: help squeezenetFcn.

params = 
  ONNXParameters with properties:

             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'squeezenetFcn'

params is an ONNXParameters object that contains the network parameters. squeezenetFcn is a
model function that contains the network architecture. importONNXFunction saves
squeezenetFcn in the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf("%.2f accuracy before transfer learning\n",accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network by typing params.Learnables. These parameters,
such as the weights (W) and bias (B) of convolution and fully connected layers, are updated by the
network during training. Nonlearnable parameters remain constant during training.

The last two learnable parameters of the pretrained network are configured for 1000 classes.

conv10_W: [1×1×512×1000 dlarray]

conv10_B: [1000×1 dlarray]

The parameters conv10_W and conv10_B must be fine-tuned for the new classification problem.
Transfer the parameters to classify five classes by initializing the parameters.

params.Learnables.conv10_W = rand(1,1,512,5);
params.Learnables.conv10_B = rand(5,1);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you
do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers
can significantly speed up network training.

params = freezeParameters(params,"all");

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,"conv10_W");
params = unfreezeParameters(params,"conv10_B");

The network is ready for training. Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
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initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Calculate the total number of iterations for the training progress monitor.

numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
numIterations = numEpochs*numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object immediately after the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the network.

epoch = 0;
iteration = 0;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop

    epoch = epoch + 1;
    
    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(:,idx);
    
    % Loop over mini-batches.
    i = 0;
    while i < numIterationsPerEpoch && ~monitor.Stop
        i = i + 1;
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);        
        Y = YTrain(:,idx);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            X = gpuArray(X);         
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
        params.State = state;
        
        % Determine the learning rate for the time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);
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        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf("%.2f accuracy after transfer learning\n",accuracyAfterTraining);

1.00 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.

The getNetworkAccuracy function evaluates the network performance by calculating the
classification accuracy.

function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = squeezenetFcn(X,onnxParams,Training=false);

[~,YIdx] = max(Y,[],1);
[~,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;
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end

The modelGradients function calculates the loss and gradients.

function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = squeezenetFcn(X,onnxParams,Training=true);
loss = crossentropy(y,Y,DataFormat="CB");
grad = dlgradient(loss,onnxParams.Learnables);

end

The squeezenetONNX function generates an ONNX model of the squeezenet network.

function squeezenetONNX()
    
exportONNXNetwork(squeezenet,"squeezenet.onnx");

end

Input Arguments
params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX model.

names — Names of parameters to freeze
'all' | string array

Names of the parameters to freeze, specified as 'all' or a string array. Freeze all learnable
parameters by setting names to 'all'. Freeze k learnable parameters by defining the parameter
names in the 1-by-k string array names.
Example: 'all'
Example: ["gpu_0_sl_pred_b_0", "gpu_0_sl_pred_w_0"]
Data Types: char | string

Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by freezeParameters.

Version History
Introduced in R2020b
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See Also
importONNXFunction | ONNXParameters | unfreezeParameters
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fullyconnect
Sum all weighted input data and apply a bias

Syntax
Y = fullyconnect(X,weights,bias)
Y = fullyconnect(X,weights,bias,'DataFormat',FMT)

Description
The fully connect operation multiplies the input by a weight matrix and then adds a bias vector.

Note This function applies the fully connect operation to dlarray data. If you want to apply the fully
connect operation within a layerGraph object or Layer array, use the following layer:

• fullyConnectedLayer

Y = fullyconnect(X,weights,bias) computes the weighted sum of the spatial, channel, and
unspecified data in X using the weights specified by weights, and adds a bias. The input X must be a
formatted dlarray. The output Y is a formatted dlarray.

Y = fullyconnect(X,weights,bias,'DataFormat',FMT) also specifies the dimension format
FMT when X is not a formatted dlarray. The output Y is an unformatted dlarray.

Examples

Fully Connect All Input Data to Output Features

The fullyconnect function uses the weighted sum to connect all inputs of an observation to each
output feature.

Create the input data as a single observation of random values with a height and width of 12 and 32
channels.

height = 12;
width = 12;
channels = 32;
observations = 1;

X = rand(height,width,channels,observations);
X = dlarray(X,'SSCB');

Create the learnable parameters. For this operation there are ten output features.

outputFeatures = 10;

weights = ones(outputFeatures,height,width,channels);
bias = ones(outputFeatures,1);

 fullyconnect

1-701



Apply the fullyconnect operation.

Y = fullyconnect(X,weights,bias);

Y = 
  10(C) × 1(B) dlarray

   1.0e+03 *

    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266
    2.3266

The output Y is a 2-D dlarray with one channel dimension of size ten and one singleton batch
dimension.

Input Arguments
X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When X
is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT.
If X is a numeric array, at least one of weights or bias must be a dlarray.

The fullyconnect operation sums over the 'S', 'C', and 'U' dimensions of X for each output
feature specified by weights. The size of each 'B' or 'T' dimension of X is preserved.
Data Types: single | double

weights — Weights
dlarray | numeric array

Weights, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

If weights is an unformatted dlarray or a numeric array, the first dimension of weights must
match the number of output features. If weights is a formatted dlarray, the size of the 'C'
dimension must match the number of output features. weights must contain the same number of
elements as the combined size of the 'S', 'C', and 'U' dimensions of input X multiplied by the
number of output features.
Data Types: single | double

bias — Bias constant
dlarray vector | numeric vector

Bias constant, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.
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Each element of bias is the bias applied to the corresponding feature output. The number of
elements of bias must match the number of output features specified by the first dimension of
weights.

If bias is a formatted dlarray, the nonsingleton dimension must be a channel dimension labeled
'C'.
Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
Y — Weighted output features
dlarray

Weighted output features, returned as a dlarray. The output Y has the same underlying data type as
the input X.

If the input X is a formatted dlarray, the output Y has one dimension labeled 'C' representing the
output features, and the same number of 'B' or 'T' dimensions as the input X, if either or both are
present. If X has no 'B' or 'T' dimensions, Y has the format 'CB', where the 'B' dimension is
singleton.

If the input X is not a formatted dlarray, output Y is unformatted. The first dimension of Y contains
the output features. Other dimensions of Y correspond to the 'B' and 'T' dimensions of X, if either
or both are present, and are provided in the same order as in FMT. If X has no 'B' or 'T' dimensions,
the first dimension of Y contains the output features and the second dimension is singleton.
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More About
Fully Connect Operation

The fullyconnect function connects all outputs of the previous operation to the outputs of the
fullyconnect function. For more information, see the definition of “Fully Connected Layer” on page
1-711 on the fullyConnectedLayer reference page.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• X
• weights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | batchnorm | relu | dlconv | sigmoid | softmax | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Make Predictions Using Model Function”
“Train a Siamese Network to Compare Images”
“Train Network with Multiple Outputs”
“List of Functions with dlarray Support”
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fullyConnectedLayer
Fully connected layer

Description
A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.

Creation
Syntax
layer = fullyConnectedLayer(outputSize)
layer = fullyConnectedLayer(outputSize,Name,Value)

Description

layer = fullyConnectedLayer(outputSize) returns a fully connected layer and specifies the
OutputSize property.

layer = fullyConnectedLayer(outputSize,Name,Value) sets the optional “Parameters and
Initialization” on page 1-705, “Learning Rate and Regularization” on page 1-707, and Name
properties using name-value pairs. For example, fullyConnectedLayer(10,'Name','fc1')
creates a fully connected layer with an output size of 10 and the name 'fc1'. You can specify
multiple name-value pairs. Enclose each property name in single quotes.

Properties
Fully Connected

OutputSize — Output size
positive integer

Output size for the fully connected layer, specified as a positive integer.
Example: 10

InputSize — Input size
'auto' (default) | positive integer

Input size for the fully connected layer, specified as a positive integer or 'auto'. If InputSize is
'auto', then the software automatically determines the input size during training.

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the weights, specified as one of the following:
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• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(InputSize + OutputSize).

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/InputSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | matrix

Layer weights, specified as a matrix.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is an OutputSize-by-InputSize matrix.
Data Types: single | double

Bias — Layer biases
[] (default) | matrix
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Layer biases, specified as a matrix.

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is an OutputSize-by-1 matrix.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Fully Connected Layer

Create a fully connected layer with an output size of 10 and the name 'fc1'.

layer = fullyConnectedLayer(10,'Name','fc1')
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layer = 
  FullyConnectedLayer with properties:

          Name: 'fc1'

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10

   Learnable Parameters
       Weights: []
          Bias: []

  Show all properties

Include a fully connected layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Specify Initial Weights and Biases in Fully Connected Layer

To specify the weights and bias initializer functions, use the WeightsInitializer and
BiasInitializer properties respectively. To specify the weights and biases directly, use the
Weights and Bias properties respectively.

Specify Initialization Function

Create a fully connected layer with an output size of 10 and specify the weights initializer to be the
He initializer.

outputSize = 10;
layer = fullyConnectedLayer(outputSize,'WeightsInitializer','he')

layer = 
  FullyConnectedLayer with properties:
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          Name: ''

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10

   Learnable Parameters
       Weights: []
          Bias: []

  Show all properties

Note that the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Custom Initialization Function

To specify your own initialization function for the weights and biases, set the WeightsInitializer
and BiasInitializer properties to a function handle. For these properties, specify function
handles that take the size of the weights and biases as input and output the initialized value.

Create a fully connected layer with output size 10 and specify initializers that sample the weights and
biases from a Gaussian distribution with a standard deviation of 0.0001.

outputSize = 10;
weightsInitializationFcn = @(sz) rand(sz) * 0.0001;
biasInitializationFcn = @(sz) rand(sz) * 0.0001;

layer = fullyConnectedLayer(outputSize, ...
    'WeightsInitializer',@(sz) rand(sz) * 0.0001, ...
    'BiasInitializer',@(sz) rand(sz) * 0.0001)

layer = 
  FullyConnectedLayer with properties:

          Name: ''

   Hyperparameters
     InputSize: 'auto'
    OutputSize: 10

   Learnable Parameters
       Weights: []
          Bias: []

  Show all properties

Again, the Weights and Bias properties are empty. At training time, the software initializes these
properties using the specified initialization functions.

Specify Weights and Bias Directly

Create a fully connected layer with an output size of 10 and set the weights and bias to W and b in the
MAT file FCWeights.mat respectively.

outputSize = 10;
load FCWeights
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layer = fullyConnectedLayer(outputSize, ...
    'Weights',W, ...
    'Bias',b)

layer = 
  FullyConnectedLayer with properties:

          Name: ''

   Hyperparameters
     InputSize: 720
    OutputSize: 10

   Learnable Parameters
       Weights: [10x720 double]
          Bias: [10x1 double]

  Show all properties

Here, the Weights and Bias properties contain the specified values. At training time, if these
properties are non-empty, then the software uses the specified values as the initial weights and
biases. In this case, the software does not use the initializer functions.

Algorithms
Fully Connected Layer

A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.

The convolutional (and down-sampling) layers are followed by one or more fully connected layers.

As the name suggests, all neurons in a fully connected layer connect to all the neurons in the previous
layer. This layer combines all of the features (local information) learned by the previous layers across
the image to identify the larger patterns. For classification problems, the last fully connected layer
combines the features to classify the images. This is the reason that the outputSize argument of the
last fully connected layer of the network is equal to the number of classes of the data set. For
regression problems, the output size must be equal to the number of response variables.

You can also adjust the learning rate and the regularization parameters for this layer using the
related name-value pair arguments when creating the fully connected layer. If you choose not to
adjust them, then trainNetwork uses the global training parameters defined by the
trainingOptions function. For details on global and layer training options, see “Set Up Parameters
and Train Convolutional Neural Network”.

A fully connected layer multiplies the input by a weight matrix W and then adds a bias vector b.

If the input to the layer is a sequence (for example, in an LSTM network), then the fully connected
layer acts independently on each time step. For example, if the layer before the fully connected layer
outputs an array X of size D-by-N-by-S, then the fully connected layer outputs an array Z of size
outputSize-by-N-by-S. At time step t, the corresponding entry of Z is WXt + b, where Xt denotes
time step t of X.

The fully connected layer flattens the output. It reshapes the array such that the spatial data is
encoded in the channel dimension.
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For sequence input, the layer applies the fully connect operation independently to each time step of
the input.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of FullyConnectedLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"CB" (channel, batch) "CB" (channel, batch)
"SCB" (spatial, channel, batch) "CB" (channel, batch)
"SSCB" (spatial, spatial, channel, batch) "CB" (channel, batch)
"SSSCB" (spatial, spatial, spatial, channel, batch) "CB" (channel, batch)
"CBT" (channel, batch, time) "CBT" (channel, batch, time)

In dlnetwork objects, FullyConnectedLayer objects also support the following input and output
format combinations.

Input Format Output Format
"SCBT" (spatial, channel, batch) "CBT" (channel, batch, time)
"SSCBT" (spatial, spatial, channel, batch, time) "CBT" (channel, batch, time)
"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

"CBT" (channel, batch, time)

To use these input formats in trainNetwork workflows, first convert the data to "CBT" (channel,
batch, time) format using flattenLayer.
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Version History
Introduced in R2016a

Default weights initialization is Glorot
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot
initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of the layer to 'narrow-normal'.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

[3] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks." arXiv preprint arXiv:1312.6120 (2013).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | convolution2dLayer | reluLayer | batchNormalizationLayer | Deep
Network Designer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”
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functionLayer
Function layer

Description
A function layer applies a specified function to the layer input.

If Deep Learning Toolbox does not provide the layer that you need for your task, then you can define
new layers by creating function layers using functionLayer. Function layers only support
operations that do not require additional properties, learnable parameters, or states. For layers that
require this functionality, define the layer as a custom layer. For more information, see “Define
Custom Deep Learning Layers”.

Creation

Syntax
layer = functionLayer(fun)
layer = functionLayer(fun,Name=Value)

Description

layer = functionLayer(fun) creates a function layer and sets the PredictFcn property.

layer = functionLayer(fun,Name=Value) sets optional properties on page 1-714 using one or
more name-value arguments. For example, functionLayer(fun,NumInputs=2,NumOutputs=3)
specifies that the layer has two inputs and three outputs. You can specify multiple name-value
arguments.

Properties
Function

PredictFcn — Function to apply to layer input
function handle

This property is read-only.

Function to apply to layer input, specified as a function handle.

The specified function must have the syntax [Y1,...,YM] = fun(X1,...,XN), where the inputs
and outputs are dlarray objects, and M and N correspond to the NumOutputs and NumInputs
properties, respectively.

The inputs X1, …, XN correspond to the layer inputs with names given by InputNames. The outputs
Y1, …, YM correspond to the layer outputs with names given by OutputNames.

For a list of functions that support dlarray input, see “List of Functions with dlarray Support”.
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Tip When using the layer, you must ensure that the specified function is accessible. For example, to
ensure that the layer can be reused in multiple live scripts, save the function in its own separate file.

Data Types: function_handle

Formattable — Flag indicating that function operates on formatted dlarray objects
0 (false) (default) | 1 (true)

This property is read-only.

Flag indicating whether the layer function operates on formatted dlarray objects, specified as 0
(false) or 1 (true).
Data Types: logical

Acceleratable — Flag indicating that function supports acceleration
0 (false) (default) | 1 (true)

This property is read-only.

Flag indicating whether the layer function supports acceleration using dlaccelerate, specified as 0
(false) or 1 (true).

Tip Setting Acceleratable to 1 (true) can significantly improve the performance of training and
inference (prediction) using a dlnetwork.

Most simple functions support acceleration using dlaccelerate. For more information, see “Deep
Learning Function Acceleration for Custom Training Loops”.

Data Types: logical

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

Description — One-line description of layer
string scalar | character vector

This property is read-only.

One-line description of the layer, specified as a string scalar or a character vector. This description
appears when the layer is displayed in a Layer array.

If you do not specify a layer description, then the software displays the layer operation.
Data Types: char | string
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NumInputs — Number of inputs
positive integer

This property is read-only.

Number of inputs, specified as a positive integer.

The layer must have a fixed number of inputs. If PredictFcn supports a variable number of input
arguments using varargin, then you must specify the number of layer inputs using NumInputs.

If you do not specify NumInputs, then the software sets NumInputs to nargin(PredictFcn).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InputNames — Input names
string array | cell array of character vectors

This property is read-only.

Input names of the layer, specified as a positive integer.

If you do not specify InputNames and NumInputs is 1, then the software sets InputNames to
{'in'}. If you do not specify InputNames and NumInputs is greater than 1, then the software sets
InputNames to {'in1',...,'inN'}, where N is the number of inputs.
Data Types: string | cell

NumOutputs — Number of outputs
1 (default) | positive integer

This property is read-only.

Number of outputs of the layer, specified as a positive integer.

The layer must have a fixed number of outputs. If PredictFcn supports a variable number of output
arguments, then you must specify the number of layer outputs using NumOutputs.

If you do not specify NumOutputs, then the software sets NumOutputs to nargout(PredictFcn).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputNames — Output names
string array | cell array of character vectors

This property is read-only.

Output names of the layer, specified as a string array or a cell array of character vectors.

If you do not specify OutputNames and NumOutputs is 1, then the software sets OutputNames to
{'out'}. If you do not specify OutputNames and NumOutputs is greater than 1, then the software
sets OutputNames to {'out1',...,'outM'}, where M is the number of outputs.
Data Types: string | cell

Examples
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Define Softsign Layer as Function Layer

Create a function layer object that applies the softsign operation to the input. The softsign operation
is given by the function f x = x

1 + x .

layer = functionLayer(@(X) X./(1 + abs(X)))

layer = 
  FunctionLayer with properties:

             Name: ''
       PredictFcn: @(X)X./(1+abs(X))
      Formattable: 0
    Acceleratable: 0

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Include a softsign layer, specified as a function layer, in a layer array. Specify that the layer has the
description "softsign".

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    functionLayer(@(X) X./(1 + abs(X)),Description="softsign")
    maxPooling2dLayer(2,Stride=2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Function                softsign
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Reformat Data Using Function Layer

Create a function layer that reformats input data with the format "CB" (channel, batch) to have the
format "SBC" (spatial, batch, channel). To specify that the layer operates on formatted data, set the
Formattable option to true. To specify that the layer function supports acceleration using
dlaccelerate, set the Acceleratable option to true.

layer = functionLayer(@(X) dlarray(X,"SBC"),Formattable=true,Acceleratable=true)
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layer = 
  FunctionLayer with properties:

             Name: ''
       PredictFcn: @(X)dlarray(X,"SBC")
      Formattable: 1
    Acceleratable: 1

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Include a function layer that reformats the input to have the format "SB" in a layer array. Set the
layer description to "channel to spatial".

layers = [
    featureInputLayer(10)
    functionLayer(@(X) dlarray(X,"SBC"),Formattable=true,Acceleratable=true,Description="channel to spatial")
    convolution1dLayer(3,16)]

layers = 
  3x1 Layer array with layers:

     1   ''   Feature Input     10 features
     2   ''   Function          channel to spatial
     3   ''   1-D Convolution   16 3 convolutions with stride 1 and padding [0  0]

In this network, the 1-D convolution layer convolves over the "S" (spatial) dimension of its input data.
This operation is equivalent to convolving over the "C" (channel) dimension of the network input
data.

Convert the layer array to a dlnetwork object and pass a random array of data with the format
"CB".

dlnet = dlnetwork(layers);

X = rand(10,64);
dlX = dlarray(X,"CB");

dlY = forward(dlnet,dlX);

View the size and format of the output data.

size(dlY)

ans = 1×3

     8    16    64

dims(dlY)

ans = 
'SCB'
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Replace Unsupported Keras Layer with Function Layer

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with function layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in "digitsNet.h5" classifies images of
digits.

filename = "digitsNet.h5";
layers = importKerasLayers(filename,ImportWeights=true)

Warning: Unable to import layer. Keras layer 'Activation' with the specified settings is not supported. The problem was: Activation type 'softsign' is not supported.

Warning: Unable to import layer. Keras layer 'Activation' with the specified settings is not supported. The problem was: Activation type 'softsign' is not supported.

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

layers = 
  13x1 Layer array with layers:

     1   'ImageInputLayer'               Image Input             28x28x1 images
     2   'conv2d'                        2-D Convolution         8 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'conv2d_softsign'               PLACEHOLDER LAYER       Placeholder for 'Activation' Keras layer
     4   'max_pooling2d'                 2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   'conv2d_1'                      2-D Convolution         16 3x3x8 convolutions with stride [1  1] and padding [0  0  0  0]
     6   'conv2d_1_softsign'             PLACEHOLDER LAYER       Placeholder for 'Activation' Keras layer
     7   'max_pooling2d_1'               2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     8   'flatten'                       Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
     9   'dense'                         Fully Connected         100 fully connected layer
    10   'dense_relu'                    ReLU                    ReLU
    11   'dense_1'                       Fully Connected         10 fully connected layer
    12   'dense_1_softmax'               Softmax                 softmax
    13   'ClassificationLayer_dense_1'   Classification Output   crossentropyex

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using the findPlaceholderLayers function.

placeholderLayers = findPlaceholderLayers(layers)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'conv2d_softsign'     PLACEHOLDER LAYER   Placeholder for 'Activation' Keras layer
     2   'conv2d_1_softsign'   PLACEHOLDER LAYER   Placeholder for 'Activation' Keras layer

Replace the placeholder layers with function layers with function specified by the softsign function,
listed at the end of the example.
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Create a function layer with function specified by the softsign function, attached to this example as
a supporting file. To access this function, open this example as a live script. Set the layer description
to "softsign".

layer = functionLayer(@softsign,Description="softsign");

Replace the layers using the replaceLayer function. To use the replaceLayer function, first
convert the layer array to a layer graph.

lgraph = layerGraph(layers);
lgraph = replaceLayer(lgraph,"conv2d_softsign",layer);
lgraph = replaceLayer(lgraph,"conv2d_1_softsign",layer);

Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans = 
  13x1 Layer array with layers:

     1   'ImageInputLayer'               Image Input             28x28x1 images
     2   'conv2d'                        2-D Convolution         8 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'layer'                         Function                softsign
     4   'max_pooling2d'                 2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   'conv2d_1'                      2-D Convolution         16 3x3x8 convolutions with stride [1  1] and padding [0  0  0  0]
     6   'layer_1'                       Function                softsign
     7   'max_pooling2d_1'               2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     8   'flatten'                       Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
     9   'dense'                         Fully Connected         100 fully connected layer
    10   'dense_relu'                    ReLU                    ReLU
    11   'dense_1'                       Fully Connected         10 fully connected layer
    12   'dense_1_softmax'               Softmax                 softmax
    13   'ClassificationLayer_dense_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_dense_1'. View the classification
layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_dense_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is "auto", you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.
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cLayer.Classes = string(0:9);
lgraph = replaceLayer(lgraph,"ClassificationLayer_dense_1",cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [12x2 table]
     InputNames: {'ImageInputLayer'}
    OutputNames: {'ClassificationLayer_dense_1'}

Test Network

Make predictions with the network using a test data set.

[XTest,YTest] = digitTest4DArrayData;
YPred = classify(net,XTest);

View the accuracy.

mean(YPred == YTest)

ans = 0.9900

Visualize the predictions in a confusion matrix.

confusionchart(YTest,YPred)
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Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The layer function fun must be a named function on the path.
• The Formattable property must be 0 (false)

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The layer function fun must be a named function on the path.
• The Formattable property must be 0 (false)
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See Also
layerGraph | findPlaceholderLayers | PlaceholderLayer | connectLayers |
disconnectLayers | addLayers | removeLayers | assembleNetwork | replaceLayer

Topics
“Deep Learning in MATLAB”
“Replace Unsupported Keras Layer with Function Layer”
“Assemble Network from Pretrained Keras Layers”
“Define Custom Deep Learning Layers”
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functionToLayerGraph
Convert deep learning model function to a layer graph

Syntax
lgraph = functionToLayerGraph(fun,x)
lgraph = functionToLayerGraph(fun,x,Name,Value)

Description
lgraph = functionToLayerGraph(fun,x) returns a layer graph based on the deep learning
array function fun. functionToLayerGraph converts only those operations in fun that operate on
dlarray objects among the inputs in x. To include extra parameters or data in fun, see the topic
“Parameterizing Functions” or the example “Create Layer Graph from Function” on page 1-724.

functionToLayerGraph evaluates fun(x) and traces the execution to derive an equivalent layer
graph, to the extent possible. The steps in fun(x) that functionToLayerGraph can trace are both
based on dlarray arguments and are supported calls for dlarray. See “List of Functions with
dlarray Support”. For unsupported functions, functionToLayerGraph creates a
PlaceholderLayer.

lgraph = functionToLayerGraph(fun,x,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Create Layer Graph from Function

The simplemodel function at the end of this example creates fully connected outputs followed by a
softmax operation. To create a layer graph from this function based on dlarray data, create input
arrays as dlarray objects, and create a function handle to the simplemodel function including the
data.

rng default % For reproducibility
dlX1 = dlarray(rand(10),'CB');
dlX2 = dlarray(zeros(10,1),'CB');
fun = @(x)simplemodel(x,dlX1,dlX2);

Call functionToLayerGraph using a dlarray for the input data dlX.

dlX = dlarray(ones(10,1),'CB');
lgraph = functionToLayerGraph(fun,dlX)

lgraph = 
  LayerGraph with properties:

         Layers: [2x1 nnet.cnn.layer.Layer]
    Connections: [1x2 table]
     InputNames: {1x0 cell}
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    OutputNames: {1x0 cell}

Examine the resulting layers in lgraph.

disp(lgraph.Layers)

  2x1 Layer array with layers:

     1   'fc_1'   Fully Connected   10 fully connected layer
     2   'sm_1'   Softmax           softmax

function y = simplemodel(x,w,b)
y = fullyconnect(x,w,b);
y = softmax(y);
end

Input Arguments
fun — Function to convert
function handle

Function to convert, specified as a function handle.
Example: @relu
Data Types: function_handle

x — Data for function
any data type

Data for the function, specified as any data type. Only dlarray data is traced and converted to a
layer graph.
Example: dlarray(zeros(12*50,23))
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'GenerateLayer','placeholder-layer'

GenerateLayer — Type of layer to generate for unsupported operations
'custom-layer' (default) | 'placeholder-layer'

Type of layer to generate for unsupported operations in fun, specified as 'custom-layer' or
'placeholder-layer'.
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When an operation in fun does not correspond to a layer in Deep Learning Toolbox, the software
generates a layer to represent that functionality. The 'GenerateLayer' option specifies the type of
layer as follows.

• 'custom-layer' — The software generates a custom layer that performs the operation.
• 'placeholder-layer' — The software generates a PlaceholderLayer object. To create a

working network in this case, see “Define Custom Deep Learning Layers” or “Define Network as
Model Function”.

Example: 'GenerateLayer','placeholder-layer'

CustomLayerPrefix — Prefix for generated custom layers
'customLayer' (default) | char vector

Prefix for generate custom layers, specified as a char vector.

This option applies only when the 'GenerateLayer' option is 'custom-layer'. The name of each
generated custom layer starts with the specified prefix.
Example: 'CustomLayerPrefix','myGeneratedLayer'

Output Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, returned as a LayerGraph object.

Version History
Introduced in R2019b

See Also
layerGraph | findPlaceholderLayers | PlaceholderLayer | dlarray

Topics
“List of Functions with dlarray Support”
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gelu
Apply Gaussian error linear unit (GELU) activation

Syntax
Y = gelu(X)
Y = gelu(X,Approximation=method)

Description
The Gaussian error linear unit (GELU) activation operation weights the input by its probability under
a Gaussian distribution.

This operation is given by

GELU(x) = x
2 1 + erf x

2 ,

where erf denotes the error function.

Note This function applies the GELU operation to dlarray data. If you want to apply the GELU
activation within a layerGraph object or Layer array, use the following layer:

• geluLayer

Y = gelu(X) applies the GELU activation to the input data X.

Y = gelu(X,Approximation=method) also specifies the approximation method for the GELU
operation. For example, Approximation="tanh" specifies the tanh approximation of the underlying
error function.

Examples

Apply GELU Operation

Create a formatted dlarray object containing a batch of 128 28-by-28 images with three channels.
Specify the format "SSCB" (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
X = dlarray(X,"SSCB");

View the size and format of the input data.

size(X)
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ans = 1×4

    28    28     3   128

dims(X)

ans = 
'SSCB'

Apply the GELU activation.

Y = gelu(X);

View the size and format of the output.

size(Y)

ans = 1×4

    28    28     3   128

dims(Y)

ans = 
'SSCB'

Input Arguments
X — Input data
dlarray object

Input data, specified as a formatted or unformatted dlarray object.

method — Approximation method
"none" (default) | "tanh"

Approximation method, specified as one of these values:

• "none" — Do not use approximation.
• "tanh" — Approximate the underlying error function using

erf x
2 ≈ tanh 2

π x + 0.044715x3 .

Tip In MATLAB, computing the tanh approximation is typically less accurate, and, for large input
sizes, slower than computing the GELU activation without using an approximation. Use the tanh
approximation when you want to reproduce models that use this approximation, such as BERT and
GPT-2.
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Output Arguments
Y — GELU activations
dlarray object

GELU activations, returned as a dlarray object. The output Y has the same underlying data type as
the input X.

If the input data X is a formatted dlarray object, then Y has the same dimension format as X. If the
input data is not a formatted dlarray object, then Y is an unformatted dlarray object with the
same dimension order as the input data.

Algorithms
Gaussian Error Linear Unit Activation

The Gaussian error linear unit (GELU) activation operation weights the input by its probability under
a Gaussian distribution.

This operation is given by

GELU(x) = x
2 1 + erf x

2 ,

where erf denotes the error function given by

erf(x) = 2
π∫0

x
e−t2dt .

When the Approximation option is "tanh", the software approximates the error function using

erf x
2 ≈ tanh 2

π x + 0.044715x3 .

Version History
Introduced in R2022b

References
[1] Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (GELUs)." Preprint, submitted

June 27, 2016. https://arxiv.org/abs/1606.08415

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.
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For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | relu | dlconv | batchnorm | leakyrelu | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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geluLayer
Gaussian error linear unit (GELU) layer

Description
A Gaussian error linear unit (GELU) layer weights the input by its probability under a Gaussian
distribution.

This operation is given by

GELU(x) = x
2 1 + erf x

2 ,

where erf denotes the error function.

Creation

Syntax
layer = geluLayer
layer = geluLayer(Name=Value)

Description

layer = geluLayer returns a GELU layer.

layer = geluLayer(Name=Value) sets the optional Approximation and Name properties using
name-value arguments. For example, geluLayer(Name="gelu") creates a GELU layer with the
name "gelu".

Properties
GELU

Approximation — Approximation method for GELU operation
'none' (default) | 'tanh'

Approximation method for the GELU operation, specified as one of these values:

• 'none' — Do not use approximation.
• 'tanh' — Approximate the underlying error function using

erf x
2 ≈ tanh 2

π x + 0.044715x3 .

Tip In MATLAB, computing the tanh approximation is typically less accurate, and, for large input
sizes, slower than computing the GELU activation without using an approximation. Use the tanh

 geluLayer

1-731



approximation when you want to reproduce models that use this approximation, such as BERT and
GPT-2.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create GELU Layer

Create a GELU layer.
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layer = geluLayer

layer = 
  GELULayer with properties:

             Name: ''

   Hyperparameters
    Approximation: 'none'

Include a GELU layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    geluLayer
    maxPooling2dLayer(2,Stride=2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7×1 Layer array with layers:

     1   ''   Image Input             28×28×1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5×5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   GELU                    GELU
     4   ''   Max Pooling             2×2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Algorithms
Gaussian Error Linear Unit Activation

The Gaussian error linear unit (GELU) activation operation weights the input by its probability under
a Gaussian distribution.

This operation is given by

GELU(x) = x
2 1 + erf x

2 ,

where erf denotes the error function given by

erf(x) = 2
π∫0

x
e−t2dt .

When the Approximation option is "tanh", the software approximates the error function using

erf x
2 ≈ tanh 2

π x + 0.044715x3 .
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Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

GELULayer is an element-wise layer. That is, the layer applies the operation to each element
independently. The layer supports input data in any format and outputs data in the same format.

Version History
Introduced in R2022b

References
[1] Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units (GELUs)." Preprint, submitted

June 27, 2016. https://arxiv.org/abs/1606.08415

See Also
trainNetwork | fullyConnectedLayer | imageInputLayer | sequenceInputLayer

Topics
“Train Network with Numeric Features”
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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getL2Factor
Package: nnet.cnn.layer

Get L2 regularization factor of layer learnable parameter

Syntax
factor = getL2Factor(layer,parameterName)
factor = getL2Factor(layer,parameterPath)

factor = getL2Factor(net,layerName,parameterName)
factor = getL2Factor(net,parameterPath)

Description
factor = getL2Factor(layer,parameterName) returns the L2 regularization factor of the
parameter with the name parameterName in layer.

For built-in layers, you can get the L2 regularization factor directly by using the corresponding
property. For example, for a convolution2dLayer layer, the syntax factor =
getL2Factor(layer,'Weights') is equivalent to factor = layer.WeightL2Factor.

factor = getL2Factor(layer,parameterPath) returns the L2 regularization factor of the
parameter specified by the path parameterPath. Use this syntax when the parameter is in a
dlnetwork object in a custom layer.

factor = getL2Factor(net,layerName,parameterName) returns the L2 regularization factor
of the parameter with the name parameterName in the layer with name layerName for the specified
dlnetwork object.

factor = getL2Factor(net,parameterPath) returns the L2 regularization factor of the
parameter specified by the path parameterPath. Use this syntax when the parameter is in a nested
layer.

Examples

Set and Get L2 Regularization Factor of Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a layer.

Create a layer array containing the custom layer preluLayer, attached to this is example as a
supporting file. To access this layer, open this example as a live script.

Create a layer array including a custom layer preluLayer.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
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    preluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the L2 regularization factor of the Alpha learnable parameter of the preluLayer to 2.

layers(4) = setL2Factor(layers(4),"Alpha",2);

View the updated L2 regularization factor.

factor = getL2Factor(layers(4),"Alpha")

factor = 2

Set and Get L2 Regularization Factor of Nested Layer Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example
as a supporting file. To access this file, open this example as a Live Script.

numFilters = 64;
layer = residualBlockLayer(numFilters)

layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

   State Parameters
    No properties.

  Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 
  7x1 Layer array with layers:

     1   'conv_1'        2-D Convolution       64 3x3 convolutions with stride [1  1] and padding 'same'
     2   'groupnorm_1'   Group Normalization   Group normalization
     3   'relu_1'        ReLU                  ReLU
     4   'conv_2'        2-D Convolution       64 3x3 convolutions with stride [1  1] and padding 'same'
     5   'groupnorm_2'   Group Normalization   Group normalization
     6   'add'           Addition              Element-wise addition of 2 inputs
     7   'relu_2'        ReLU                  ReLU

Set the L2 regularization factor of the learnable parameter 'Weights' of the layer 'conv_1' to 2
using the setL2Factor function.
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factor = 2;
layer = setL2Factor(layer,'Network/conv_1/Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(layer,'Network/conv_1/Weights')

factor = 2

Set and Get L2 Regularization Factor of dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);

Set the L2 regularization factor of the 'Weights' learnable parameter of the convolution layer to 2
using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'conv','Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'conv','Weights')

factor = 2

Set and Get L2 Regularization Factor of Nested dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer in a dlnetwork
object.

Create a dlnetwork object containing the custom layer residualBlockLayer attached to this
example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
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    convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
    groupNormalizationLayer('all-channels','Name','gn')
    reluLayer('Name','relu')
    maxPooling2dLayer(3,'Stride',2,'Name','max')
    residualBlockLayer(numFilters,'Name','res1')
    residualBlockLayer(numFilters,'Name','res2')
    residualBlockLayer(2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
    residualBlockLayer(2*numFilters,'Name','res4')
    residualBlockLayer(4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
    residualBlockLayer(4*numFilters,'Name','res6')
    globalAveragePooling2dLayer('Name','gap')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','sm')];

dlnet = dlnetwork(layers);

The Learnables property of the dlnetwork object is a table that contains the learnable parameters
of the network. The table includes parameters of nested layers in separate rows. View the learnable
parameters of the layer "res1".

learnables = dlnet.Learnables;
idx = learnables.Layer == "res1";
learnables(idx,:)

ans=8×3 table
    Layer              Parameter                     Value       
    ______    ____________________________    ___________________

    "res1"    "Network/conv_1/Weights"        {3x3x32x32 dlarray}
    "res1"    "Network/conv_1/Bias"           {1x1x32    dlarray}
    "res1"    "Network/groupnorm_1/Offset"    {1x1x32    dlarray}
    "res1"    "Network/groupnorm_1/Scale"     {1x1x32    dlarray}
    "res1"    "Network/conv_2/Weights"        {3x3x32x32 dlarray}
    "res1"    "Network/conv_2/Bias"           {1x1x32    dlarray}
    "res1"    "Network/groupnorm_2/Offset"    {1x1x32    dlarray}
    "res1"    "Network/groupnorm_2/Scale"     {1x1x32    dlarray}

For the layer "res1", set the L2 regularization factor of the learnable parameter 'Weights' of the
layer 'conv_1' to 2 using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'res1/Network/conv_1/Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'res1/Network/conv_1/Weights')

factor = 2

Input Arguments
layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.
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parameterName — Parameter name
character vector | string scalar

Parameter name, specified as a character vector or a string scalar.

parameterPath — Path to parameter in nested layer
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is
a custom layer that itself defines a layer graph as a learnable parameter.

If the input to getL2Factor is a nested layer, then the parameter path has the form
"propertyName/layerName/parameterName", where:

• propertyName is the name of the property containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where
propertyName1 and layerName1 correspond to the layer in the input to the getL2Factor
function, and the subsequent parts correspond to the deeper levels.
Example: For layer input to getL2Factor, the path "Network/conv1/Weights" specifies the
"Weights" parameter of the layer with name "conv1" in the dlnetwork object given by
layer.Network.

If the input to getL2Factor is a dlnetwork object and the desired parameter is in a nested layer,
then the parameter path has the form "layerName1/propertyName/layerName/
parameterName", where:

• layerName1 is the name of the layer in the input dlnetwork object
• propertyName is the property of the layer containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/
propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where
layerName1 and propertyName1 correspond to the layer in the input to the getL2Factor
function, and the subsequent parts correspond to the deeper levels.
Example: For dlnetwork input to getL2Factor, the path "res1/Network/conv1/Weights"
specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given
by layer.Network, where layer is the layer with name "res1" in the input network net.
Data Types: char | string

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layerName — Layer name
string scalar | character vector
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Layer name, specified as a string scalar or a character vector.
Data Types: char | string

Output Arguments
factor — L2 regularization factor
nonnegative scalar

L2 regularization factor for the parameter, returned as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the specified parameter. For example, if factor is 2, then the L2 regularization for
the specified parameter is twice the current global L2 regularization. The software determines the
global L2 regularization based on the settings specified with the trainingOptions function.

Version History
Introduced in R2017b

See Also
setLearnRateFactor | setL2Factor | getLearnRateFactor | trainNetwork |
trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”
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getLearnRateFactor
Package: nnet.cnn.layer

Get learn rate factor of layer learnable parameter

Syntax
factor = getLearnRateFactor(layer,parameterName)
factor = getLearnRateFactor(layer,parameterPath)

factor = getLearnRateFactor(net,layerName,parameterName)
factor = getLearnRateFactor(net,parameterPath)

Description
factor = getLearnRateFactor(layer,parameterName) returns the learn rate factor of the
learnable parameter with the name parameterName in layer.

For built-in layers, you can get the learn rate factor directly by using the corresponding property. For
example, for a convolution2dLayer layer, the syntax factor =
getLearnRateFactor(layer,'Weights') is equivalent to factor =
layer.WeightLearnRateFactor.

factor = getLearnRateFactor(layer,parameterPath) returns the learn rate factor of the
parameter specified by the path parameterPath. Use this syntax when the parameter is in a
dlnetwork object in a custom layer.

factor = getLearnRateFactor(net,layerName,parameterName) returns the learn rate
factor of the parameter with the name parameterName in the layer with name layerName for the
specified dlnetwork object.

factor = getLearnRateFactor(net,parameterPath) returns the learn rate factor of the
parameter specified by the path parameterPath. Use this syntax when the parameter is in a nested
layer.

Examples

Set and Get Learning Rate Factor of Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a custom PReLU layer.

Create a layer array containing the custom layer preluLayer, attached to this is example as a
supporting file. To access this layer, open this example as a live script.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    preluLayer
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    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the learn rate factor of the Alpha learnable parameter of the preluLayer to 2.

layers(4) = setLearnRateFactor(layers(4),"Alpha",2);

View the updated learn rate factor.

factor = getLearnRateFactor(layers(4),"Alpha")

factor = 2

Set and Get Learning Rate Factor of Nested Layer Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example
as a supporting file. To access this file, open this example as a Live Script.

numFilters = 64;
layer = residualBlockLayer(numFilters)

layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

   State Parameters
    No properties.

  Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 
  7x1 Layer array with layers:

     1   'conv_1'        2-D Convolution       64 3x3 convolutions with stride [1  1] and padding 'same'
     2   'groupnorm_1'   Group Normalization   Group normalization
     3   'relu_1'        ReLU                  ReLU
     4   'conv_2'        2-D Convolution       64 3x3 convolutions with stride [1  1] and padding 'same'
     5   'groupnorm_2'   Group Normalization   Group normalization
     6   'add'           Addition              Element-wise addition of 2 inputs
     7   'relu_2'        ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv_1' to 2 using
the setLearnRateFactor function.
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factor = 2;
layer = setLearnRateFactor(layer,'Network/conv_1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(layer,'Network/conv_1/Weights')

factor = 2

Set and Get Learn Rate Factor of dlnetwork Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);

Set the learn rate factor of the 'Weights' learnable parameter of the convolution layer to 2 using
the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'conv','Weights',factor);

Get the updated learn rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'conv','Weights')

factor = 2

Set and Get Learning Rate Factor of Nested dlnetwork Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer in a dlnetwork
object.

Create a dlnetwork object containing the custom layer residualBlockLayer attached to this
example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
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    convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
    groupNormalizationLayer('all-channels','Name','gn')
    reluLayer('Name','relu')
    maxPooling2dLayer(3,'Stride',2,'Name','max')
    residualBlockLayer(numFilters,'Name','res1')
    residualBlockLayer(numFilters,'Name','res2')
    residualBlockLayer(2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
    residualBlockLayer(2*numFilters,'Name','res4')
    residualBlockLayer(4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
    residualBlockLayer(4*numFilters,'Name','res6')
    globalAveragePooling2dLayer('Name','gap')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','sm')];

dlnet = dlnetwork(layers);

View the layers of the nested network in the layer 'res1'.

dlnet.Layers(6).Network.Layers

ans = 
  7x1 Layer array with layers:

     1   'conv_1'        2-D Convolution       32 3x3x32 convolutions with stride [1  1] and padding 'same'
     2   'groupnorm_1'   Group Normalization   Group normalization with 32 channels split into 1 groups
     3   'relu_1'        ReLU                  ReLU
     4   'conv_2'        2-D Convolution       32 3x3x32 convolutions with stride [1  1] and padding 'same'
     5   'groupnorm_2'   Group Normalization   Group normalization with 32 channels split into 32 groups
     6   'add'           Addition              Element-wise addition of 2 inputs
     7   'relu_2'        ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv_1' to 2 using
the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'res1/Network/conv_1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'res1/Network/conv_1/Weights')

factor = 2

Input Arguments
layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.

parameterName — Parameter name
character vector | string scalar

Parameter name, specified as a character vector or a string scalar.

parameterPath — Path to parameter in nested layer
string scalar | character vector
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Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is
a custom layer that itself defines a layer graph as a learnable parameter.

If the input to getLearnRateFactor is a nested layer, then the parameter path has the form
"propertyName/layerName/parameterName", where:

• propertyName is the name of the property containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where
propertyName1 and layerName1 correspond to the layer in the input to the getLearnRateFactor
function, and the subsequent parts correspond to the deeper levels.
Example: For layer input to getLearnRateFactor, the path "Network/conv1/Weights" specifies
the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given by
layer.Network.

If the input to getLearnRateFactor is a dlnetwork object and the desired parameter is in a
nested layer, then the parameter path has the form "layerName1/propertyName/layerName/
parameterName", where:

• layerName1 is the name of the layer in the input dlnetwork object
• propertyName is the property of the layer containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/
propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where
layerName1 and propertyName1 correspond to the layer in the input to the getLearnRateFactor
function, and the subsequent parts correspond to the deeper levels.
Example: For dlnetwork input to getLearnRateFactor, the path "res1/Network/conv1/
Weights" specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork
object given by layer.Network, where layer is the layer with name "res1" in the input network
net.
Data Types: char | string

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layerName — Layer name
string scalar | character vector

Layer name, specified as a string scalar or a character vector.
Data Types: char | string
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Output Arguments
factor — Learning rate factor
nonnegative scalar

Learning rate factor for the parameter, returned as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
specified parameter. For example, if factor is 2, then the learning rate for the specified parameter is
twice the current global learning rate. The software determines the global learning rate based on the
settings specified with the trainingOptions function.

Version History
Introduced in R2017b

See Also
setLearnRateFactor | setL2Factor | getL2Factor | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”
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globalAveragePooling1dLayer
1-D global average pooling layer

Description
A 1-D global average pooling layer performs downsampling by outputting the average of the time or
spatial dimensions of the input.

The dimension that the layer pools over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Creation

Syntax
layer = globalAveragePooling1dLayer
layer = globalAveragePooling1dLayer(Name=name)

Description

layer = globalAveragePooling1dLayer creates a 1-D global average pooling layer.

layer = globalAveragePooling1dLayer(Name=name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
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Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 1-D Global Average Pooling Layer

Create a 1-D global average pooling layer.

layer = globalMaxPooling1dLayer

layer = 
  GlobalMaxPooling1DLayer with properties:

    Name: ''

Include a 1-D global average pooling layer in a layer array.

layers = [
    sequenceInputLayer(12)
    convolution1dLayer(11,96)
    reluLayer
    globalAveragePooling1dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:
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     1   ''   Sequence Input               Sequence input with 12 dimensions
     2   ''   1-D Convolution              96 11 convolutions with stride 1 and padding [0  0]
     3   ''   ReLU                         ReLU
     4   ''   1-D Global Average Pooling   1-D global average pooling
     5   ''   Fully Connected              10 fully connected layer
     6   ''   Softmax                      softmax
     7   ''   Classification Output        crossentropyex

Algorithms
1-D Global Average Pooling Layer

A 1-D global average pooling layer performs downsampling by outputting the average of the time or
spatial dimensions of the input.

The dimension that the layer pools over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of GlobalAveragePooling1DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.
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Input Format Output Format
"SCB" (spatial, channel, batch) "SCB" (spatial, channel, batch)
"CBT" (channel, batch, time) "CB" (channel, batch)
"SCBT" (spatial, channel, batch, time) "SCBT" (spatial, channel, batch, time)

Version History
Introduced in R2021b

See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | bilstmLayer |
gruLayer | convolution1dLayer | maxPooling1dLayer | averagePooling1dLayer |
globalMaxPooling1dLayer

Topics
“Sequence Classification Using 1-D Convolutions”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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globalAveragePooling2dLayer
2-D global average pooling layer

Description
A 2-D global average pooling layer performs downsampling by computing the mean of the height and
width dimensions of the input.

The dimensions that the layer pools over depends on the layer input:

• For 2-D image input (data with four dimensions corresponding to pixels in two spatial dimensions,
the channels, and the observations), the layer pools over the spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
dimensions.

• For 1-D image sequence input (data with four dimensions corresponding to the pixels in one
spatial dimension, the channels, the observations, and the time steps), the layer pools over the
spatial and time dimensions.

Creation

Syntax
layer = globalAveragePooling2dLayer
layer = globalAveragePooling2dLayer('Name',name)

Description

layer = globalAveragePooling2dLayer creates a global average pooling layer.

layer = globalAveragePooling2dLayer('Name',name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.
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Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Global Average Pooling Layer

Create a global average pooling layer with the name 'gap1'.

layer = globalAveragePooling2dLayer('Name','gap1')

layer = 
  GlobalAveragePooling2DLayer with properties:

    Name: 'gap1'

Include a global average pooling layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    globalAveragePooling2dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:
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     1   ''   Image Input                  28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution              20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                         ReLU
     4   ''   2-D Global Average Pooling   2-D global average pooling
     5   ''   Fully Connected              10 fully connected layer
     6   ''   Softmax                      softmax
     7   ''   Classification Output        crossentropyex

Tips
• In an image classification network, you can use a globalAveragePooling2dLayer before the
final fully connected layer to reduce the size of the activations without sacrificing performance.
The reduced size of the activations means that the downstream fully connected layers will have
fewer weights, reducing the size of your network.

• You can use a globalAveragePooling2dLayer towards the end of a classification network
instead of a fullyConnectedLayer. Since global pooling layers have no learnable parameters,
they can be less prone to overfitting and can reduce the size of the network. These networks can
also be more robust to spatial translations of input data. You can also replace a fully connected
layer with a globalMaxPooling2dLayer instead. Whether a globalMaxPooling2dLayer or a
globalAveragePooling2dLayer is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the number of channels in
the input of the global average pooling layer must match the number of classes in the
classification task.

Algorithms
2-D Global Average Pooling Layer

A 2-D global average pooling layer performs downsampling by computing the mean of the height and
width dimensions of the input.

The dimensions that the layer pools over depends on the layer input:

• For 2-D image input (data with four dimensions corresponding to pixels in two spatial dimensions,
the channels, and the observations), the layer pools over the spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
dimensions.

• For 1-D image sequence input (data with four dimensions corresponding to the pixels in one
spatial dimension, the channels, the observations, and the time steps), the layer pools over the
spatial and time dimensions.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
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• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of GlobalAveragePooling2DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SSCB" (spatial, spatial, channel, batch) "SSCB" (channel, batch)
"SCBT" (spatial, channel, batch, time) "SCB" (channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCBT" (channel, batch, time)

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
convolution2dLayer | averagePooling2dLayer | maxPooling2dLayer |
globalAveragePooling3dLayer | globalMaxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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globalAveragePooling3dLayer
3-D global average pooling layer

Description
A 3-D global average pooling layer performs downsampling by computing the mean of the height,
width, and depth dimensions of the input.

The dimensions that the layer pools over depends on the layer input:

• For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer pools over the spatial dimensions.

• For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer pools over the
spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
and time dimensions.

Creation

Syntax
layer = globalAveragePooling3dLayer
layer = globalAveragePooling3dLayer('Name',name)

Description

layer = globalAveragePooling3dLayer creates a 3-D global average pooling layer.

layer = globalAveragePooling3dLayer('Name',name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.
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Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 3-D Global Average Pooling Layer

Create a 3-D global average pooling layer with the name 'gap1'.

layer = globalAveragePooling3dLayer('Name','gap1')

layer = 
  GlobalAveragePooling3DLayer with properties:

    Name: 'gap1'

Include a 3-D global average pooling layer in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    globalAveragePooling3dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:
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     1   ''   3-D Image Input              28x28x28x3 images with 'zerocenter' normalization
     2   ''   3-D Convolution              20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                         ReLU
     4   ''   3-D Global Average Pooling   3-D global average pooling
     5   ''   Fully Connected              10 fully connected layer
     6   ''   Softmax                      softmax
     7   ''   Classification Output        crossentropyex

Tips
• In an image classification network, you can use a globalAveragePooling3dLayer before the
final fully connected layer to reduce the size of the activations without sacrificing performance.
The reduced size of the activations means that the downstream fully connected layers will have
fewer weights, reducing the size of your network.

• You can use a globalAveragePooling3dLayer towards the end of a classification network
instead of a fullyConnectedLayer. Since global pooling layers have no learnable parameters,
they can be less prone to overfitting and can reduce the size of the network. These networks can
also be more robust to spatial translations of input data. You can also replace a fully connected
layer with a globalMaxPooling3dLayer instead. Whether a globalMaxPooling3dLayer or a
globalAveragePooling3dLayer is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the number of channels in
the input of the global average pooling layer must match the number of classes in the
classification task.

Algorithms
3-D Global Average Pooling Layer

A 3-D global average pooling layer performs downsampling by computing the mean of the height,
width, and depth dimensions of the input.

The dimensions that the layer pools over depends on the layer input:

• For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer pools over the spatial dimensions.

• For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer pools over the
spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
and time dimensions.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
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• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of GlobalAveragePooling3DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SSSCB" (spatial, spatial, spatial, channel, batch) "SSSCB" (channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCB" (channel, batch)
"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

"SSSCBT" (channel, batch, time)

Version History
Introduced in R2019b

See Also
averagePooling3dLayer | globalAveragePooling2dLayer | convolution3dLayer |
maxPooling3dLayer | globalMaxPooling3dLayer

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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globalMaxPooling1dLayer
1-D global max pooling layer

Description
A 1-D global max pooling layer performs downsampling by outputting the maximum of the time or
spatial dimensions of the input.

The dimension that the layer pools over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Creation

Syntax
layer = globalMaxPooling1dLayer
layer = globalMaxPooling1dLayer(Name=name)

Description

layer = globalMaxPooling1dLayer creates a 1-D global max pooling layer.

layer = globalMaxPooling1dLayer(Name=name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
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Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 1-D Global Max Pooling Layer

Create a 1-D global max pooling layer.

layer = globalMaxPooling1dLayer

layer = 
  GlobalMaxPooling1DLayer with properties:

    Name: ''

Include a 1-D global max pooling layer in a layer array.

layers = [
    sequenceInputLayer(12)
    convolution1dLayer(11,96)
    reluLayer
    globalMaxPooling1dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:
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     1   ''   Sequence Input           Sequence input with 12 dimensions
     2   ''   1-D Convolution          96 11 convolutions with stride 1 and padding [0  0]
     3   ''   ReLU                     ReLU
     4   ''   1-D Global Max Pooling   1-D global max pooling
     5   ''   Fully Connected          10 fully connected layer
     6   ''   Softmax                  softmax
     7   ''   Classification Output    crossentropyex

Algorithms
1-D Global Max Pooling Layer

A 1-D global max pooling layer performs downsampling by outputting the maximum of the time or
spatial dimensions of the input.

The dimension that the layer pools over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of GlobalMaxPooling1DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.
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Input Format Output Format
"SCB" (spatial, channel, batch) "SCB" (spatial, channel, batch)
"CBT" (channel, batch, time) "CB" (channel, batch)
"SCBT" (spatial, channel, batch, time) "SCBT" (spatial, channel, batch, time)

Version History
Introduced in R2021b

See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | bilstmLayer |
gruLayer | convolution1dLayer | maxPooling1dLayer | averagePooling1dLayer |
globalAveragePooling1dLayer

Topics
“Sequence Classification Using 1-D Convolutions”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”

1 Deep Learning Functions

1-762



globalMaxPooling2dLayer
Global max pooling layer

Description
A 2-D global max pooling layer performs downsampling by computing the maximum of the height and
width dimensions of the input.

Creation

Syntax
layer = globalMaxPooling2dLayer
layer = globalMaxPooling2dLayer('Name',name)

Description

layer = globalMaxPooling2dLayer creates a global max pooling layer.

layer = globalMaxPooling2dLayer('Name',name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell
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NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Object Functions

Examples

Create Global Max Pooling Layer

Create a global max pooling layer with the name 'gmp1'.

layer = globalMaxPooling2dLayer('Name','gmp1')

layer = 
  GlobalMaxPooling2DLayer with properties:

    Name: 'gmp1'

Include a global max pooling layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    globalMaxPooling2dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input              28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution          20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                     ReLU
     4   ''   2-D Global Max Pooling   2-D global max pooling
     5   ''   Fully Connected          10 fully connected layer
     6   ''   Softmax                  softmax
     7   ''   Classification Output    crossentropyex
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Tips
• In an image classification network, you can use a globalMaxPooling2dLayer before the final

fully connected layer to reduce the size of the activations without sacrificing performance. The
reduced size of the activations means that the downstream fully connected layers will have fewer
weights, reducing the size of your network.

• You can use a globalMaxPooling2dLayer towards the end of a classification network instead of
a fullyConnectedLayer. Since global pooling layers have no learnable parameters, they can be
less prone to overfitting and can reduce the size of the network. These networks can also be more
robust to spatial translations of input data. You can also replace a fully connected layer with a
globalAveragePooling2dLayer instead. Whether a globalAveragePooling2dLayer or a
globalMaxPooling2dLayer is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to
globalMaxPooling2dLayer must match the number of classes in the classification problem

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
convolution2dLayer | averagePooling2dLayer | maxPooling2dLayer |
globalMaxPooling3dLayer | globalAveragePooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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globalMaxPooling3dLayer
3-D global max pooling layer

Description
A 3-D global max pooling layer performs downsampling by computing the maximum of the height,
width, and depth dimensions of the input.

Creation

Syntax
layer = globalMaxPooling3dLayer
layer = globalMaxPooling3dLayer('Name',name)

Description

layer = globalMaxPooling3dLayer creates a 3-D global max pooling layer.

layer = globalMaxPooling3dLayer('Name',name) sets the optional Name property.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell
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NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Object Functions

Examples

Create 3-D Global Max Pooling Layer

Create a 3-D global max pooling layer with name 'gmp1'.

layer = globalMaxPooling3dLayer('Name','gmp1')

layer = 
  GlobalMaxPooling3DLayer with properties:

    Name: 'gmp1'

Include a 3-D max pooling layer in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    globalMaxPooling3dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input          28x28x28x3 images with 'zerocenter' normalization
     2   ''   3-D Convolution          20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                     ReLU
     4   ''   3-D Global Max Pooling   3-D global max pooling
     5   ''   Fully Connected          10 fully connected layer
     6   ''   Softmax                  softmax
     7   ''   Classification Output    crossentropyex
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Tips
• In an image classification network, you can use a globalMaxPooling3dLayer before the final

fully connected layer to reduce the size of the activations without sacrificing performance. The
reduced size of the activations means that the downstream fully connected layers will have fewer
weights, reducing the size of your network.

• You can use a globalMaxPooling3dLayer towards the end of a classification network instead of
a fullyConnectedLayer. Since global pooling layers have no learnable parameters, they can be
less prone to overfitting and can reduce the size of the network. These networks can also be more
robust to spatial translations of input data. You can also replace a fully connected layer with a
globalAveragePooling3dLayer instead. Whether a globalAveragPooling3dLayer or a
globalMaxPooling3dLayer is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to
globalMaxPooling3dLayer must match the number of classes in the classification problem

Version History
Introduced in R2020a

See Also
averagePooling3dLayer | globalMaxPooling2dLayer | convolution3dLayer |
maxPooling3dLayer | globalAveragePooling3dLayer

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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googlenet
GoogLeNet convolutional neural network

Syntax
net = googlenet
net = googlenet('Weights',weights)

lgraph = googlenet('Weights','none')

Description
GoogLeNet is a convolutional neural network that is 22 layers deep. You can load a pretrained version
of the network trained on either the ImageNet [1] or Places365 [2] [3] data sets. The network trained
on ImageNet classifies images into 1000 object categories, such as keyboard, mouse, pencil, and
many animals. The network trained on Places365 is similar to the network trained on ImageNet, but
classifies images into 365 different place categories, such as field, park, runway, and lobby. These
networks have learned different feature representations for a wide range of images. The pretrained
networks both have an image input size of 224-by-224. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

To classify new images using GoogLeNet, use classify. For an example, see “Classify Image Using
GoogLeNet”.

You can retrain a GoogLeNet network to perform a new task using transfer learning. When
performing transfer learning, the most common approach is to use networks pretrained on the
ImageNet data set. If the new task is similar to classifying scenes, then using the network trained on
Places-365 can give higher accuracies. For an example showing how to retrain GoogLeNet on a new
classification task, see “Train Deep Learning Network to Classify New Images”

net = googlenet returns a GoogLeNet network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for GoogLeNet Network support package. If
this support package is not installed, then the function provides a download link.

net = googlenet('Weights',weights) returns a GoogLeNet network trained on either the
ImageNet or Places365 data set. The syntax googlenet('Weights','imagenet') (default) is
equivalent to googlenet.

The network trained on ImageNet requires the Deep Learning Toolbox Model for GoogLeNet Network
support package. The network trained on Places365 requires the Deep Learning Toolbox Model for
Places365-GoogLeNet Network support package. If the required support package is not installed,
then the function provides a download link.

lgraph = googlenet('Weights','none') returns the untrained GoogLeNet network
architecture. The untrained model does not require the support package.

Examples
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Download GoogLeNet Support Package

Download and install the Deep Learning Toolbox Model for GoogLeNet Network support package.

Type googlenet at the command line.

googlenet

If the Deep Learning Toolbox Model for GoogLeNet Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing googlenet at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

googlenet

ans = 

  DAGNetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(googlenet)

Explore other pretrained networks in Deep Network Designer by clicking New.
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If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Input Arguments
weights — Source of network parameters
'imagenet' (default) | 'places365' | 'none'

Source of network parameters, specified as 'imagenet' ,'places365', or 'none'.

• If weights equals 'imagenet', then the network has weights trained on the ImageNet data set.
• If weights equals 'places365', then the network has weights trained on the Places365 data

set.
• If weights equals 'none', then the untrained network architecture is returned.

Example: 'places365'

Output Arguments
net — Pretrained GoogLeNet convolutional neural network
DAGNetwork object

Pretrained GoogLeNet convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained GoogLeNet convolutional neural network architecture
LayerGraph object

Untrained GoogLeNet convolutional neural network architecture, returned as a LayerGraph object.

Version History
Introduced in R2017b

References
[1] ImageNet. http://www.image-net.org

[2] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Antonio Torralba, and Aude Oliva. "Places: An image
database for deep scene understanding." arXiv preprint arXiv:1610.02055 (2016).

[3] Places. http://places2.csail.mit.edu/

[4] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with
convolutions." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-9. 2015.

[5] BVLC GoogLeNet Model. https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = googlenet or by passing
the googlenet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('googlenet')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax googlenet('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = googlenet or by
passing the googlenet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('googlenet').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax googlenet('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | resnet18 | resnet50 | resnet101 | densenet201 |
inceptionresnetv2 | squeezenet | trainNetwork | layerGraph | inceptionv3 | DAGNetwork

Topics
“Transfer Learning with Deep Network Designer”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Train Residual Network for Image Classification”
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gradCAM
Explain network predictions using Grad-CAM

Syntax
scoreMap = gradCAM(net,X,label)
scoreMap = gradCAM(net,X,reductionFcn)
[scoreMap,featureLayer,reductionLayer] = gradCAM( ___ )
___  = gradCAM( ___ ,Name,Value)

Description
scoreMap = gradCAM(net,X,label) returns the gradient-weighted class activation mapping
(Grad-CAM) map of the change in the classification score of input X, when the network net evaluates
the class score for the class given by label. Use this function to explain network predictions and
check that your network is focusing on the right parts of the data.

The Grad-CAM interpretability technique uses the gradients of the classification score with respect to
the final convolutional feature map. The parts of an observation with a large value for the Grad-CAM
map are those that most impact the network score for that class.

Use this syntax to compute the Grad-CAM map for classification tasks.

scoreMap = gradCAM(net,X,reductionFcn) returns the Grad-CAM importance map using a
reduction function. reductionFcn is a function handle that reduces the output activations of the
reduction layer to a scalar value. This scalar fulfills the role of the class score for classification tasks,
and generalizes the Grad-CAM technique to nonclassification tasks, such as regression.

The gradCAM function computes the Grad-CAM map by differentiating the reduced output of the
reduction layer with respect to the features in the feature layer. gradCAM automatically selects
reduction and feature layers to use when computing the map. To specify these layers, use the
'ReductionLayer' and 'FeatureLayer' name-value arguments.

Use this syntax to compute the Grad-CAM map for nonclassification tasks.

[scoreMap,featureLayer,reductionLayer] = gradCAM( ___ ) also returns the names of the
feature layer and reduction layer used to compute the Grad-CAM map. Use this syntax with any of the
input-argument combinations in previous syntaxes.

___  = gradCAM( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to the input arguments in previous syntaxes. For example, 'ReductionLayer','prob'
sets the reduction layer to the net layer named 'prob'.

Examples

Grad-CAM for Image Classification

Use gradCAM to visualize which parts of an image are important to the classification decision of a
network.
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Import the pretrained network SqueezeNet.

net = squeezenet;

Import the image and resize it to match the input size for the network.

X = imread("laika_grass.jpg");
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Display the image.

imshow(X)

Classify the image to get the class label.

label = classify(net,X)

label = categorical
     toy poodle 

Use gradCAM to determine which parts of the image are important to the classification result.

scoreMap = gradCAM(net,X,label);

Plot the result over the original image with transparency to see which areas of the image contribute
most to the classification score.

figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5)
colormap jet
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The network focuses predominantly on the back of the dog to make the classification decision.

Grad-CAM for Image Regression

Use Grad-CAM to visualize which parts of an image are most important to the predictions of an image
regression network.

Load the pretrained network digitsRegressionNet. This network is a regression convolutional
neural network that predicts the angle of rotation of handwritten digits.

load digitsRegressionNet

View the network layers. The output layer of the network is a regression layer.

layers = net.Layers

layers = 
  18x1 Layer array with layers:

     1   'imageinput'         Image Input           28x28x1 images with 'zerocenter' normalization
     2   'conv_1'             2-D Convolution       8 3x3x1 convolutions with stride [1  1] and padding 'same'
     3   'batchnorm_1'        Batch Normalization   Batch normalization with 8 channels
     4   'relu_1'             ReLU                  ReLU
     5   'avgpool2d_1'        2-D Average Pooling   2x2 average pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv_2'             2-D Convolution       16 3x3x8 convolutions with stride [1  1] and padding 'same'
     7   'batchnorm_2'        Batch Normalization   Batch normalization with 16 channels
     8   'relu_2'             ReLU                  ReLU
     9   'avgpool2d_2'        2-D Average Pooling   2x2 average pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv_3'             2-D Convolution       32 3x3x16 convolutions with stride [1  1] and padding 'same'
    11   'batchnorm_3'        Batch Normalization   Batch normalization with 32 channels
    12   'relu_3'             ReLU                  ReLU
    13   'conv_4'             2-D Convolution       32 3x3x32 convolutions with stride [1  1] and padding 'same'
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    14   'batchnorm_4'        Batch Normalization   Batch normalization with 32 channels
    15   'relu_4'             ReLU                  ReLU
    16   'dropout'            Dropout               20% dropout
    17   'fc'                 Fully Connected       1 fully connected layer
    18   'regressionoutput'   Regression Output     mean-squared-error with response 'Response'

Load the test images.

[XTest,~,YTest] = digitTest4DArrayData;

Evaluate the performance of the network on a test image.

testIdx = 501;
testDigit = XTest(:,:,:,testIdx);

Use predict to predict the angle of rotation and compare the predicted rotation to the true rotation.

predRotation = predict(net,testDigit)

predRotation = single
    26.5635

trueRotation = YTest(testIdx)

trueRotation = 29

Visualize the regions of the image most important to the network prediction using gradCAM. Select
the ReLU layer as the feature layer and the fully connected layer as the reduction layer.

featureLayer = 'relu_4';
reductionLayer = 'fc';

Define the reduction function. The reduction function must reduce the output of the reduction layer
to a scalar value. The Grad-CAM map displays the importance of different parts of the image to that
scalar. In this regression problem, the network predicts the angle of rotation of the image. Therefore,
the output of the fully connected layer is already a scalar value and so the reduction function is just
the identity function.

reductionFcn = @(x)x;

Compute the Grad-CAM map.

scoreMap = gradCAM(net,testDigit,reductionFcn, ...
    'ReductionLayer',reductionLayer, ...
    'FeatureLayer',featureLayer);

Display the Grad-CAM map over the test image.

ax(1) = subplot(1,2,1);
imshow(testDigit)
title("True Rotation = " + trueRotation + '\newline Pred Rotation = ' + round(predRotation,0))
colormap(ax(1),'gray')

ax(2) = subplot(1,2,2);
imshow(testDigit)
hold on
imagesc(rescale(scoreMap))
colormap(ax(2),'jet')
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title("Grad-CAM")
hold off

Grad-CAM for Sequence Classification

Use gradCAM to visualize which parts of a sequence are important to the classification decision of a
network.

Load the pretrained network JapaneseVowelsConvNet. This network is a pretrained 1-D
convolutional neural network trained on the Japanese Vowels data set as described in [1] and [2].

load JapaneseVowelsConvNet

View the network architecture.

net.Layers

ans = 
  11x1 Layer array with layers:

     1   'sequenceinput'     Sequence Input               Sequence input with 12 dimensions
     2   'conv1d_1'          1-D Convolution              32 3x12 convolutions with stride 1 and padding 'causal'
     3   'relu_1'            ReLU                         ReLU
     4   'layernorm_1'       Layer Normalization          Layer normalization with 32 channels
     5   'conv1d_2'          1-D Convolution              64 3x32 convolutions with stride 1 and padding 'causal'
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     6   'relu_2'            ReLU                         ReLU
     7   'layernorm_2'       Layer Normalization          Layer normalization with 64 channels
     8   'globalavgpool1d'   1-D Global Average Pooling   1-D global average pooling
     9   'fc'                Fully Connected              9 fully connected layer
    10   'softmax'           Softmax                      softmax
    11   'classoutput'       Classification Output        crossentropyex with '1' and 8 other classes

Load the test data. XTest is a cell array containing sequences of dimension 12 of varying length.
TTest is a categorical vector of labels "1","2",...,"9", which correspond to the nine speakers.

[XTest,TTest] = japaneseVowelsTestData;

Select the first time series observation. This sequence has 19 time steps.

testSequence = XTest{1};
testSize = size(testSequence)

testSize = 1×2

    12    19

numFeatures = testSize(1);

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(testSequence')
title("Training Observation 1")
xlabel("Time Step")
legend("Feature " + string(1:numFeatures),'Location','northeastoutside')
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Classify the test observation.

label = classify(net,testSequence)

label = categorical
     1 

Use gradCAM to determine which parts of the sequence are important to the classification result.

map = gradCAM(net,testSequence,label);

map is a 1-by-19 vector containing the importance value for each of the 19 time steps.

Plot the results to see which time steps contribute most to the classification score.

figure

subplot(2,1,1)
plot(testSequence')
xlabel("Time Step")

subplot(2,1,2)
plot(map)
xlabel("Time Step")
ylabel("Grad-CAM Importance")
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The Grad-CAM map suggests that the network is focusing on the later time steps to make the
classification decision.

Input Arguments
net — Trained network
SeriesNetwork | DAGNetwork | dlnetwork

Trained network, specified as a SeriesNetwork, DAGNetwork, or dlnetwork object. You can get a
trained network by importing a pretrained network or by training your own network using the
trainNetwork function or custom training. For more information about pretrained networks, see
“Pretrained Deep Neural Networks”.

net must contain a single input layer and a single output layer. The input layer of net must be an
imageInputLayer, image3dInputLayer, or sequenceInputLayer. For networks with a
sequenceInputLayer, the InputSize property must be scalar.

X — Input data
numeric array | dlarray

Input data, specified as a numeric array or formatted dlarray object.

• For 2-D image data, X must be a h-by-w-by-c array, where h, w, and c are the height, width, and
number of channels of the network input layer, respectively.
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• For 3-D image data, X must be a h-by-w-by-d-by-c array, where h, w, d, and c are the height, width,
depth, and number of the network input layer, respectively.

• For vector sequence data, X must be a c-by-t array, where c is the input size of the network net
and t is the number of time steps in the sequence and can be any positive integer.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

label — Class label
categorical | character vector | string scalar | numeric index

Class label to use for calculating the Grad-CAM map for classification and semantic segmentation
tasks, specified as a categorical, a character vector, a string scalar, a numeric index, or a vector of
these values.

For dlnetwork objects, you must specify label as a categorical or a numeric index.

If you specify label as a vector, the software calculates the feature importance for each class label
independently. In that case, scoreMap contains the map for each class in label. For more
information, see scoreMap.

The gradCAM function sums over the spatial and time dimensions of the reduction layer for class
label. Therefore, you can specify label as the classes of interest for semantic segmentation tasks
and gradCAM returns the Grad-CAM importance for each pixel.
Example: ["cat" "dog"]
Example: [1 5]
Data Types: char | string | categorical

reductionFcn — Reduction function
function handle

Reduction function, specified as a function handle. The reduction function reduces the output
activations of the reduction layer to a single value and must reduce a dlarray object to a dlarray
scalar. This scalar fulfills the role of label in classification tasks, and generalizes the Grad-CAM
technique to nonclassification tasks, such as regression.

Grad-CAM uses the reduced output activations of the reduction layer to compute the gradients for the
importance map.
Example: @x(x)
Data Types: function_handle

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
'FeatureLayer','conv10','ReductionLayer','prob','OutputUpsampling','bicubic',
'ExecutionEnvironment','gpu' computes the Grad-CAM map with respect to layers 'conv10'
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and 'prob', executes the calculation on the GPU, and upsamples the resulting map to the same size
as the input data using bicubic interpolation.

FeatureLayer — Name of feature layer
string | character vector

Name of the feature layer to extract the feature map from when computing the Grad-CAM map,
specified as a string or character vector. For most tasks, use the last ReLU layer with nonsingleton
spatial or time dimensions, or the last layer that gathers the outputs of ReLU layers (such as depth
concatenation or addition layers). If your network does not contain any ReLU layers, specify the name
of the final convolutional layer that has nonsingleton spatial or time dimensions in the output.

The default value is the final layer with nonsingleton spatial or time dimensions. Use the
analyzeNetwork function to examine your network and select the correct layer.
Example: 'FeatureLayer','conv10'
Data Types: char | string

ReductionLayer — Name of reduction layer
string | character vector

Name of the reduction layer to extract output activations from when computing the Grad-CAM map,
specified as a string or character vector. For classification tasks, this layer is usually the final softmax
layer. For other tasks, this layer is usually the penultimate layer for DAG and series networks and the
final layer for dlnetwork objects.

The default value is the penultimate layer in DAG and series networks, and the final layer in
dlnetwork objects. Use the analyzeNetwork function to examine your network and select the
correct layer.
Example: 'ReductionLayer','prob'
Data Types: char | string

Format — Data format
character vector | string

Data format assigning a label to each dimension of the input data, specified as a character vector or a
string. Each character in the format must be one of the following dimension labels:

• S — Spatial
• C — Channel
• B — Batch
• T — Time

For more information, see dlarray.

The gradCAM function supports at most one singleton batch dimension.
Example: 'Format','SSC'
Data Types: char | string

OutputUpsampling — Output upsampling method
'bicubic' (default) | 'nearest' | 'none'
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Output upsampling method, specified as the comma-separated pair consisting of
'OutputUpsampling' and one of the following values:

• 'bicubic' — Use bicubic interpolation to produce a smooth map.
• 'nearest' — Use nearest-neighbor interpolation to expand the map.
• 'none' — Use no upsampling. The map can be smaller or larger than the input data.

If 'OutputUpsampling' is 'nearest' or 'bicubic', the Grad-CAM map is the same size as the
spatial and temporal dimensions of the input.

• For 2-D image data, the map is size h-by-w, where h and w are the height and width of the image,
respectively

• For 3-D image data, the map is size h-by-w-by-d, where h, w, and d are the height, width, and
depth of the image, respectively.

• For vector sequence input, the map is size 1-by-t, where t is the number of time steps in the
sequence.

If 'OutputUpsampling' is 'nearest' or 'bicubic', the computed map is upsampled using the
imresize function for 2-D image and vector sequence data, and the imresize3 function for 3-D
image data. For 3-D image data, the option 'bicubic' uses imresize3 with the 'cubic' method.
Example: 'OutputUpsampling','bicubic'

ExecutionEnvironment — Hardware resource
'auto' (default) | 'cpu' | 'gpu'

Hardware resource for computing the map, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and one of the following.

• 'auto' — Use the GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.

The GPU option requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also
have a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). If you choose the 'gpu' option and Parallel Computing
Toolbox and a suitable GPU are not available, then the software returns an error.
Example: 'ExecutionEnvironment','gpu'

Output Arguments
scoreMap — Grad-CAM importance map
row vector | numeric matrix | numeric array

Grad-CAM importance map, returned as a row vector, numeric matrix or a numeric array. Areas in the
map with higher positive values correspond to regions of input data that contribute positively to the
prediction.

• For classification tasks, scoreMap is the gradient of the final classification score for the specified
class, with respect to each feature in the feature layer.

• For other types of tasks, scoreMap is the gradient of the reduced output of the reduction layer,
with respect to each feature in the feature layer.
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The size of scoreMap depends on the type of data.

• For 2-D image data, scoreMap is a matrix. scoreMap(i,j) corresponds to the Grad-CAM
importance at the spatial location (i,j). If you provide label as a vector of categoricals,
character vectors, or strings, then scoreMap(:,:,n) corresponds to the map for label(n).

• For 3-D image data, scoreMap is a 3-D array. scoreMap(i,j,k) corresponds to the Grad-CAM
importance at the spatial location (i,j,k). If you provide label as a vector of categoricals,
character vectors, or strings, then scoreMap(:,:,:,n) corresponds to the map for label(n).

• For vector sequence data, scoreMap is a row vector. scoreMap(:,i) corresponds to the Grad-
CAM importance at time step i. If you provide label as a vector of categoricals, character
vectors, or strings, then scoreMap(:,:,n) corresponds to the map for label(n).

featureLayer — Name of feature layer
string

Name of the feature layer to extract the feature map from when computing the Grad-CAM map,
returned as a string.

By default, gradCAM chooses a feature layer to use to compute the Grad-CAM map. This layer is the
final layer with nonsingleton spatial or time dimensions. You can specify which feature layer to use
using the 'FeatureLayer' name-value argument. When you specify the 'FeatureLayer' name-
value argument, featureLayer returns the same value.

reductionLayer — Name of reduction layer
string

Name of the reduction layer to extract output activations from when computing the Grad-CAM map,
returned as a string.

By default, gradCAM chooses a reduction layer to use to compute the Grad-CAM map. This layer is
the penultimate layer in DAG and series networks, and the final layer in dlnetwork objects. You can
also specify which reduction layer to use using the 'ReductionLayer' name-value argument. When
you specify the 'ReductionLayer' name-value argument, reductionLayer returns the same
value.

More About
Grad-CAM

Gradient-weighted class activation mapping (Grad-CAM) is an explainability technique that can be
used to help understand the predictions made by a deep neural network [3]. Grad-CAM, a
generalization of the CAM technique, determines the importance of each neuron in a network
prediction by considering the gradients of the target flowing through the deep network.

Grad-CAM computes the gradient of a differentiable output, for example class score, with respect to
the convolutional features in the chosen layer. The gradients are pooled over space and time
dimensions to find the neuron importance weights. These weights are then used to linearly combine
the activation maps and determine which features are most important to the prediction.

Suppose you have a 2-D image classification network with output yc, representing the score for class
c, and want to compute the Grad-CAM map for a convolutional layer with k feature maps (channels),
Ak

i,j, where i,j indexes the pixels. The neuron importance weight is
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,

where N is the total number of pixels in the feature map. The Grad-CAM map is then a weighted
combination of the feature maps with an applied ReLU:

M = ReLU ∑kαk
cAk .

The ReLU activation ensures you get only the features that have a positive contribution to the class of
interest. The output is therefore a heatmap for the specified class, which is the same size as the
feature map. The Grad-CAM map is then upsampled to the size of the input data.

Although Grad-CAM is commonly used for classification tasks, you can compute a Grad-CAM map for
any differentiable activation. For example, for semantic segmentation tasks, you can calculate the
Grad-CAM map by replacing yc with ∑(i, j) ∈ S yi j

c , where S is the set of pixels of interest and yi,j
c is 1 if

pixel (i,j) is predicted to be class c, and 0 otherwise [4]. You can use the gradCAM function for
nonclassification tasks by specifying a suitable reduction function that reduces the output activations
of the reduction layer to a single value and takes the place of yc in the neuron importance weight
equation.

Tips
• The reductionFcn function receives the output from the reduction layer as a traced dlarray

object. The function must reduce this output to a scalar dlarray, which gradCAM then
differentiates with respect to the activations of the feature layer. For example, to compute the
Grad-CAM map for channel 208 of the softmax activations of a network, the reduction function is
@(x)(x(208)). This function receives the activations and extracts the 208th channel.

• The gradCAM function automatically chooses reduction and feature layers to use when computing
the Grad-CAM map. For some networks, the chosen layers might not be suitable. For example, if
your network has multiple layers that can be used as the feature layer, then the function chooses
one of those layers, but its choice might not be the most suitable. For such networks, specify
which feature layer to use using the 'FeatureLayer' name-value argument.

• To display the Grad-CAM map as an overlay on a grayscale image, you must first rescale the map
to be in the range [0, 1]. For example, scoreMapRescaled = rescale(scoreMap);.

Version History
Introduced in R2021a
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See Also
occlusionSensitivity | imageLIME | activations

Topics
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”
“Explore Semantic Segmentation Network Using Grad-CAM”
“Sequence Classification Using 1-D Convolutions”
“Understand Network Predictions Using LIME”
“Understand Network Predictions Using Occlusion”
“Multilabel Image Classification Using Deep Learning”
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groupedConvolution2dLayer
2-D grouped convolutional layer

Description
A 2-D grouped convolutional layer separates the input channels into groups and applies sliding
convolutional filters. Use grouped convolutional layers for channel-wise separable (also known as
depth-wise separable) convolution.

For each group, the layer convolves the input by moving the filters along the input vertically and
horizontally and computing the dot product of the weights and the input, and then adding a bias
term. The layer combines the convolutions for each group independently. If the number of groups is
equal to the number of channels, then this layer performs channel-wise convolution.

Creation
Syntax
layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,numGroups)
layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,'channel-
wise')
layer = groupedConvolution2dLayer( ___ ,Name,Value)

Description

layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,numGroups)
creates a 2-D grouped convolutional layer and sets the FilterSize, NumFiltersPerGroup, and
NumGroups properties.

layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,'channel-
wise') creates a layer for channel-wise convolution (also known as depth-wise convolution). In this
case, the software determines the NumGroups property at training time. This syntax is equivalent to
setting NumGroups to the number of input channels.

layer = groupedConvolution2dLayer( ___ ,Name,Value) sets the optional Stride,
DilationFactor, “Parameters and Initialization” on page 1-791, “Learning Rate and
Regularization” on page 1-792, and Name properties using name-value pairs. To specify input
padding, use the 'Padding' name-value pair argument. For example,
groupedConvolution2dLayer(5,128,2,'Padding','same') creates a 2-D grouped
convolutional layer with 2 groups of 128 filters of size [5 5] and pads the input to so that the output
has the same size. You can specify multiple name-value pairs. Enclose each property name in single
quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the padding to add along the
edges of the layer input or to set the Stride, DilationFactor, “Parameters and Initialization” on
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page 1-791, “Learning Rate and Regularization” on page 1-792, and Name properties. Enclose
names in single quotes.
Example: groupedConvolution2dLayer(5,128,2,'Padding','same') creates a 2-D grouped
convolutional layer with 2 groups of 128 filters of size [5 5] and pads the input to so that the output
has the same size.

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If
the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input

and padding of size b to the left and right.
• Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l

to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Grouped Convolution

FilterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector [h w] of two positive integers, where h is the
height and w is the width. FilterSize defines the size of the local regions to which the neurons
connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the height
and width.
Example: [5 5] specifies filters with a height of 5 and a width of 5.

NumFiltersPerGroup — Number of filters per group
positive integer
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Number of filters per group, specified as a positive integer. This property determines the number of
channels in the output of the layer. The number of output channels is FiltersPerGroup *
NumGroups.
Example: 10

NumGroups — Number of groups
positive integer | 'channel-wise'

Number of groups, specified as a positive integer or 'channel-wise'.

If NumGroups is 'channel-wise', then the software creates a layer for channel-wise convolution
(also known as depth-wise convolution). In this case, the layer determines the NumGroups property at
training time. This value is equivalent to setting NumGroups to the number of input channels.

The number of groups must evenly divide the number of channels of the layer input.
Example: 2

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector [a b] of two
positive integers, where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both step sizes.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

DilationFactor — Factor for dilated convolution
[1 1] (default) | vector of two positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector [h w] of two
positive integers, where h is the vertical dilation and w is the horizontal dilation. When creating the
layer, you can specify DilationFactor as a scalar to use the same value for both horizontal and
vertical dilations.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see)
of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the upsampling factor of the filter. It
corresponds to an effective filter size of (Filter Size – 1) .* Dilation Factor + 1. For example, a 3-by-3
filter with the dilation factor [2 2] is equivalent to a 5-by-5 filter with zeros between the elements.
Example: [2 3]

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b l r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, l is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.
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PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

PaddingValue — Value to pad data
0 (default) | scalar | 'symmetric-include-edge' | 'symmetric-exclude-edge' | 'replicate'

Value to pad data, specified as one of the following:

PaddingValue Description Example
Scalar Pad with the specified scalar

value.
3 1 4
1 5 9
2 6 5

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 3 1 4 0 0
0 0 1 5 9 0 0
0 0 2 6 5 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

'symmetric-include-edge' Pad using mirrored values of the
input, including the edge values.

3 1 4
1 5 9
2 6 5

5 1 1 5 9 9 5
1 3 3 1 4 4 1
1 3 3 1 4 4 1
5 1 1 5 9 9 5
6 2 2 6 5 5 6
6 2 2 6 5 5 6
5 1 1 5 9 9 5

'symmetric-exclude-edge' Pad using mirrored values of the
input, excluding the edge
values. 3 1 4

1 5 9
2 6 5

5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3
9 5 1 5 9 5 1
5 6 2 6 5 6 2
9 5 1 5 9 5 1
4 1 3 1 4 1 3

1 Deep Learning Functions

1-790



PaddingValue Description Example
'replicate' Pad using repeated border

elements of the input
3 1 4
1 5 9
2 6 5

3 3 3 1 4 4 4
3 3 3 1 4 4 4
3 3 3 1 4 4 4
1 1 1 5 9 9 9
2 2 2 6 5 5 5
2 2 2 6 5 5 5
2 2 2 6 5 5 5

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NumChannelsPerGroup — Number of channels per group
'auto' (default) | positive integer

Number of channels per group, specified as 'auto' or a positive integer. The number of channels per
group is equal to the number of input channels divided by the number of groups.

The software automatically sets this property at training time.
Example: 256

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*NumChannelsPerGroup and numOut =
FilterSize(1)*FilterSize(2)*NumFiltersPerGroup.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*NumChannelsPerGroup.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle
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Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-NumChannelsPerGroup-by-
NumFiltersPerGroup-by-NumGroups array, where NumInputChannels is the number of channels
of the layer input.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the layer, specified as a numeric array.

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-NumFiltersPerGroup-by-NumGroups array.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)
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This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Grouped Convolution Layer

Create a grouped convolutional layer with 3 groups of 10 filters, each with a height and width of 11,
and the name 'gconv1'.

layer = groupedConvolution2dLayer(11,10,3,'Name','gconv1')

layer = 
  GroupedConvolution2DLayer with properties:

                   Name: 'gconv1'

   Hyperparameters
             FilterSize: [11 11]
              NumGroups: 3
    NumChannelsPerGroup: 'auto'
     NumFiltersPerGroup: 10
                 Stride: [1 1]
         DilationFactor: [1 1]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0]
           PaddingValue: 0

   Learnable Parameters
                Weights: []
                   Bias: []

  Show all properties
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Create Channel-Wise Convolution Layer

Create a channel-wise convolutional (also known as depth-wise convolutional) layer with groups of 10
filters, each with a height and width of 11, and the name 'cwconv1'.

layer = groupedConvolution2dLayer(11,10,'channel-wise','Name','cwconv1')

layer = 
  GroupedConvolution2DLayer with properties:

                   Name: 'cwconv1'

   Hyperparameters
             FilterSize: [11 11]
              NumGroups: 'channel-wise'
    NumChannelsPerGroup: 'auto'
     NumFiltersPerGroup: 10
                 Stride: [1 1]
         DilationFactor: [1 1]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0]
           PaddingValue: 0

   Learnable Parameters
                Weights: []
                   Bias: []

  Show all properties

Create Layers for Channel-Wise Separable Convolution

A typical convolutional neural network contains blocks of convolution, batch normalization, and ReLU
layers. For example,

filterSize = 3;
numFilters = 16;

convLayers = [
    convolution2dLayer(filterSize,numFilters,'Stride',2,'Padding','same')
    batchNormalizationLayer
    reluLayer];

For channel-wise separable convolution (also known as depth-wise separable convolution), replace
the convolution block with channel-wise convolution and point-wise convolution blocks.

Specify the filter size and the stride in the channel-wise convolution and the number of filters in the
point-wise convolution. For the channel-wise convolution, specify one filter per group. For point-wise
convolution, specify filters of size 1 in convolution2dLayer.

cwsConvLayers = [
    groupedConvolution2dLayer(filterSize,1,'channel-wise','Stride',2,'Padding','same')
    batchNormalizationLayer
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    reluLayer
    
    convolution2dLayer(1,numFilters,'Padding','same')
    batchNormalizationLayer
    reluLayer];

Create a network containing layers for channel-wise separable convolution.

layers = [
    imageInputLayer([227 227 3])
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    groupedConvolution2dLayer(3,1,'channel-wise','Stride',2,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(1,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
    fullyConnectedLayer(5)
    softmaxLayer
    classificationLayer];

Version History
Introduced in R2019a

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation for the ARM Compute Library is not supported for a 2-D grouped convolution
layer that has the NumGroups property set to an integer value greater than two.

• For code generation, the PaddingValue parameter must be equal to 0, which is the default value.
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GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Code generation for the ARM Mali GPU is not supported for a 2-D grouped convolution layer that
has the NumGroups property set as 'channel-wise' or a value greater than two.

• For code generation, the PaddingValue parameter must be equal to 0, which is the default value.

See Also
trainNetwork | reluLayer | batchNormalizationLayer | maxPooling2dLayer |
fullyConnectedLayer | convolution2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”
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groupnorm
Normalize data across grouped subsets of channels for each observation independently

Syntax
Y = groupnorm(X,numGroups,offset,scaleFactor)
Y = groupnorm(X,numGroups,offset,scaleFactor,'DataFormat',FMT)
Y = groupnorm( ___ Name,Value)

Description
The group normalization operation normalizes the input data across grouped subsets of channels for
each observation independently. To speed up training of the convolutional neural network and reduce
the sensitivity to network initialization, use group normalization between convolution and nonlinear
operations such as relu.

After normalization, the operation shifts the input by a learnable offset β and scales it by a learnable
scale factor γ.

The groupnorm function applies the group normalization operation to dlarray data. Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note To apply group normalization within a layerGraph object or Layer array, use
groupNormalizationLayer.

Y = groupnorm(X,numGroups,offset,scaleFactor) applies the group normalization operation
to the input data X using the specified number of groups and transforms it using the specified offset
and scale factor.

The function normalizes over grouped subsets of the 'C' (channel) dimension and the 'S' (spatial),
'T' (time), and 'U' (unspecified) dimensions of X for each observation in the 'B' (batch) dimension,
independently.

For unformatted input data, use the 'DataFormat' option.

Y = groupnorm(X,numGroups,offset,scaleFactor,'DataFormat',FMT) applies the group
normalization operation to the unformatted dlarray object X with format specified by FMT. The
output Y is an unformatted dlarray object with dimensions in the same order as X. For example,
'DataFormat','SSCB' specifies data for 2-D image input with format 'SSCB' (spatial, spatial,
channel, batch).

Y = groupnorm( ___ Name,Value) specifies options using one or more name-value arguments in
addition to the input arguments in previous syntaxes. For example, 'Epsilon',3e-5 sets the
variance offset to 3e-5.
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Examples

Normalize Data

Use groupnorm to normalize input data across channel groups.

Create the input data as a single observation of random values with a height and width of four and six
channels.

height = 4;
width = 4;
channels = 6;
observations = 1;

X = rand(height,width,channels,observations);
X = dlarray(X,'SSCB');

Create the learnable parameters.

offset = zeros(channels,1);
scaleFactor = ones(channels,1);

Compute the group normalization. Divide the input into three groups of two channels each.

numGroups = 3;
Y = groupnorm(X,numGroups,offset,scaleFactor);

Input Arguments
X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

If X is an unformatted dlarray or a numeric array, then you must specify the format using the
DataFormat option. If X is a numeric array, then either scaleFactor or offset must be a dlarray
object.

X must have a 'C' (channel) dimension.

numGroups — Number of channel groups
positive integer | 'all-channels' | 'channel-wise'

Number of channel groups to normalize across, specified as a positive integer, 'all-channels', or
'channel-wise'.

numGroups Description
positive integer Divide the incoming channels into the specified

number of groups. The specified number of
groups must divide the number of channels of the
input data exactly.
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numGroups Description
'all-channels' Group all incoming channels into a single group.

The input data is normalized across all channels.
This operation is also known as layer
normalization. Alternatively, use layernorm.

'channel-wise' Treat all incoming channels as separate groups.
This operation is also known as instance
normalization. Alternatively, use instancenorm.

Data Types: single | double | char | string

offset — Offset
dlarray | numeric array

Offset β, specified as a formatted dlarray, an unformatted dlarray, or a numeric array with one
nonsingleton dimension with size matching the size of the 'C' (channel) dimension of the input X.

If offset is a formatted dlarray object, then the nonsingleton dimension must have label 'C'
(channel).

scaleFactor — Scale factor
dlarray | numeric array

Scale factor γ, specified as a formatted dlarray, an unformatted dlarray, or a numeric array with
one nonsingleton dimension with size matching the size of the 'C' (channel) dimension of the input
X.

If scaleFactor is a formatted dlarray object, then the nonsingleton dimension must have label
'C' (channel).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Epsilon',3e-5 sets the variance offset to 3e-5.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
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• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

Epsilon — Variance offset
1e-5 (default) | numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting
of 'Epsilon' and a numeric scalar greater than or equal to 1e-5.
Data Types: single | double

Output Arguments
Y — Normalized data
dlarray

Normalized data, returned as a dlarray. The output Y has the same underlying data type as the
input X.

If the input data X is a formatted dlarray, Y has the same dimension labels as X. If the input data is
not a formatted dlarray, Y is an unformatted dlarray with the same dimension order as the input
data.

Algorithms
The group normalization operation normalizes the elements xi of the input by first calculating the
mean μG and variance σG

2 over spatial, time, and grouped subsets of the channel dimensions for each
observation independently. Then, it calculates the normalized activations as

x i =
xi− μG

σG
2 + ε

,

where ϵ is a constant that improves numerical stability when the variance is very small. To allow for
the possibility that inputs with zero mean and unit variance are not optimal for the operations that
follow group normalization, the group normalization operation further shifts and scales the
activations using the transformation

yi = γx i + β,

where the offset β and scale factor γ are learnable parameters that are updated during network
training.

Version History
Introduced in R2020b
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References
[1] Wu, Yuxin, and Kaiming He. “Group Normalization.” Preprint submitted June 11, 2018. https://

arxiv.org/abs/1803.08494.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• X
• offset
• scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
relu | fullyconnect | dlconv | dlarray | dlgradient | dlfeval | batchnorm | layernorm |
instancenorm

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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groupNormalizationLayer
Group normalization layer

Description
A group normalization layer normalizes a mini-batch of data across grouped subsets of channels for
each observation independently. To speed up training of the convolutional neural network and reduce
the sensitivity to network initialization, use group normalization layers between convolutional layers
and nonlinearities, such as ReLU layers.

After normalization, the layer scales the input with a learnable scale factor γ and shifts it by a
learnable offset β.

Creation

Syntax
layer = groupNormalizationLayer(numGroups)
layer = groupNormalizationLayer(numGroups,Name,Value)

Description

layer = groupNormalizationLayer(numGroups) creates a group normalization layer.

layer = groupNormalizationLayer(numGroups,Name,Value) creates a group normalization
layer and sets the optional 'Epsilon', “Parameters and Initialization” on page 1-804, “Learning
Rate and Regularization” on page 1-805, and Name properties using one or more name-value
arguments. You can specify multiple name-value arguments. Enclose each property name in quotes.

Input Arguments

numGroups — Number of groups
positive integer | 'all-channels' | 'channel-wise'

Number of groups into which to divide the channels of the input data, specified as one of the
following:

• Positive integer – Divide the incoming channels into the specified number of groups. The specified
number of groups must divide the number of channels of the input data exactly.

• 'all-channels' – Group all incoming channels into a single group. This operation is also known
as layer normalization. Alternatively, use layerNormalizationLayer.

• 'channel-wise' – Treat all incoming channels as separate groups. This operation is also known
as instance normalization. Alternatively, use instanceNormalizationLayer.
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Properties
Group Normalization

Epsilon — Constant to add to mini-batch variances
1e-5 (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than
1e-5.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical
stability and avoid division by zero.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumChannels — Number of input channels
'auto' (default) | positive integer

This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

ScaleInitializer — Function to initialize channel scale factors
'ones' (default) | 'narrow-normal' | function handle

Function to initialize the channel scale factors, specified as one of the following:

• 'ones' – Initialize the channel scale factors with ones.
• 'zeros' – Initialize the channel scale factors with zeros.
• 'narrow-normal' – Initialize the channel scale factors by independently sampling from a normal

distribution with a mean of zero and standard deviation of 0.01.
• Function handle – Initialize the channel scale factors with a custom function. If you specify a

function handle, then the function must be of the form scale = func(sz), where sz is the size
of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the Scale property is empty.
Data Types: char | string | function_handle

OffsetInitializer — Function to initialize channel offsets
'zeros' (default) | 'ones' | 'narrow-normal' | function handle

Function to initialize the channel offsets, specified as one of the following:
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• 'zeros' – Initialize the channel offsets with zeros.
• 'ones' – Initialize the channel offsets with ones.
• 'narrow-normal' – Initialize the channel offsets by independently sampling from a normal

distribution with a mean of zero and standard deviation of 0.01.
• Function handle – Initialize the channel offsets with a custom function. If you specify a function

handle, then the function must be of the form offset = func(sz), where sz is the size of the
scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.
Data Types: char | string | function_handle

Scale — Channel scale factors
[] (default) | numeric array

Channel scale factors γ, specified as a numeric array.

The channel scale factors are learnable parameters. When you train a network, if Scale is nonempty,
then trainNetwork uses the Scale property as the initial value. If Scale is empty, then
trainNetwork uses the initializer specified by ScaleInitializer.

At training time, Scale is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Data Types: single | double

Offset — Channel offsets
[] (default) | numeric array

Channel offsets β, specified as a numeric array.

The channel offsets are learnable parameters. When you train a network, if Offset is nonempty, then
trainNetwork uses the Offset property as the initial value. If Offset is empty, then
trainNetwork uses the initializer specified by OffsetInitializer.

At training time, Offset is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Data Types: single | double

Learning Rate and Regularization

ScaleLearnRateFactor — Learning rate factor for scale factors
1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.
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The software multiplies this factor by the global learning rate to determine the learning rate for the
scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the
scale factors in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OffsetLearnRateFactor — Learning rate factor for offsets
1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
offsets in a layer. For example, if OffsetLearnRateFactor is 2, then the learning rate for the
offsets in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ScaleL2Factor — L2 regularization factor for scale factors
1 (default) | nonnegative scalar

L2 regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the scale factors in a layer. For example, if ScaleL2Factor is 2, then the L2 regularization
for the offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OffsetL2Factor — L2 regularization factor for offsets
1 (default) | nonnegative scalar

L2 regularization factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the offsets in a layer. For example, if OffsetL2Factor is 2, then the L2 regularization for the
offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)
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This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Group Normalization Layer

Create a group normalization layer that normalizes incoming data across three groups of channels.
Name the layer 'groupnorm'.

layer = groupNormalizationLayer(3,'Name','groupnorm')

layer = 
  GroupNormalizationLayer with properties:

           Name: 'groupnorm'
    NumChannels: 'auto'

   Hyperparameters
      NumGroups: 3
        Epsilon: 1.0000e-05

   Learnable Parameters
         Offset: []
          Scale: []
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  Show all properties

Include a group normalization layer in a Layer array. Normalize the incoming 20 channels in four
groups.

layers = [
    imageInputLayer([28 28 3])
    convolution2dLayer(5,20)
    groupNormalizationLayer(4)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  8x1 Layer array with layers:

     1   ''   Image Input             28x28x3 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Group Normalization     Group normalization
     4   ''   ReLU                    ReLU
     5   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Fully Connected         10 fully connected layer
     7   ''   Softmax                 softmax
     8   ''   Classification Output   crossentropyex

More About
Group Normalization Layer

A group normalization layer divides the channels of the input data into groups and normalizes the
activations across each group. To speed up training of convolutional neural networks and reduce the
sensitivity to network initialization, use group normalization layers between convolutional layers and
nonlinearities, such as ReLU layers.

You can also use a group normalization layer to perform layer normalization or instance
normalization. Layer normalization combines and normalizes activations across all channels in a
single observation. Instance normalization normalizes the activations of each channel of the
observation separately.

The layer first normalizes the activations of each group by subtracting the group mean and dividing
by the group standard deviation. Then, the layer shifts the input by a learnable offset β and scales it
by a learnable scale factor γ.

Group normalization layers normalize the activations and gradients propagating through a neural
network, making network training an easier optimization problem. To take full advantage of this fact,
you can try increasing the learning rate. Since the optimization problem is easier, the parameter
updates can be larger and the network can learn faster. You can also try reducing the L2 and dropout
regularization.

You can use a group normalization layer in place of a batch normalization layer. Doing so is
particularly useful when training with small batch sizes, as it can increase the stability of training.
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Algorithms
The group normalization operation normalizes the elements xi of the input by first calculating the
mean μG and variance σG

2 over spatial, time, and grouped subsets of the channel dimensions for each
observation independently. Then, it calculates the normalized activations as

x i =
xi− μG

σG
2 + ε

,

where ϵ is a constant that improves numerical stability when the variance is very small. To allow for
the possibility that inputs with zero mean and unit variance are not optimal for the operations that
follow group normalization, the group normalization operation further shifts and scales the
activations using the transformation

yi = γx i + β,

where the offset β and scale factor γ are learnable parameters that are updated during network
training.

Version History
Introduced in R2020b

References
[1] Wu, Yuxin, and Kaiming He. “Group Normalization.” Preprint submitted June 11, 2018. https://

arxiv.org/abs/1803.08494.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | trainingOptions | reluLayer | convolution2dLayer |
fullyConnectedLayer | batchNormalizationLayer | layerNormalizationLayer |
instanceNormalizationLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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groupSubPlot
Package: experiments

Group metrics in experiment training plot

Syntax
groupSubPlot(monitor,groupName,metricNames)

Description
groupSubPlot(monitor,groupName,metricNames) groups the specified metrics in a single
training subplot with the y-axis label groupName. By default, Experiment Manager plots each
ungrouped metric in its own training subplot.

Examples

Track Progress, Display Information and Record Metric Values, and Produce Training Plots

Use an experiments.Monitor object to track the progress of the training, display information and
metric values in the experiment results table, and produce training plots for custom training
experiments.

Before starting the training, specify the names of the information and metric columns of the
Experiment Manager results table.

monitor.Info = ["GradientDecayFactor","SquaredGradientDecayFactor"];
monitor.Metrics = ["TrainingLoss","ValidationLoss"];

Specify the horizontal axis label for the training plot. Group the training and validation loss in the
same subplot.

monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);

Update the values of the gradient decay factor and the squared gradient decay factor for the trial in
the results table.

updateInfo(monitor, ...
    GradientDecayFactor=gradientDecayFactor, ...
    SquaredGradientDecayFactor=squaredGradientDecayFactor);

After each iteration of the custom training loop, record the value of training and validation loss for
the trial in the results table and the training plot.

recordMetrics(monitor,iteration, ...
    TrainingLoss=trainingLoss, ...
    ValidationLoss=validationLoss);

Update the training progress for the trial based on the fraction of iterations completed.
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monitor.Progress = 100 * (iteration/numIterations);

Input Arguments
monitor — Experiment monitor
experiments.Monitor object

Experiment monitor for the trial, specified as an experiments.Monitor object. When you run a
custom training experiment, Experiment Manager passes this object as the second input argument of
the training function.

groupName — Name of subplot group
string | character vector

Name of subplot group, specified as a string or character vector. Experiment Manager groups the
specified metrics in a single training subplot with the y-axis label groupName.
Data Types: char | string

metricNames — Metric names
string | character vector | string array | cell array of character vectors

Metric names, specified as a string, character vector, string array, or cell array of character vectors.
Each metric name must be an element of the Metrics property of the experiments.Monitor
object monitor.
Data Types: char | string

Tips
• Use the groupSubplot function to define your training subplots before calling the function

recordMetrics.

Version History
Introduced in R2021a

See Also
Apps
Experiment Manager

Objects
experiments.Monitor

Functions
recordMetrics | updateInfo

Topics
“Use Experiment Manager to Train Generative Adversarial Networks (GANs)”
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groupSubPlot
Package: deep

Group metrics in training plot

Syntax
groupSubPlot(monitor,groupName,metricNames)

Description
groupSubPlot(monitor,groupName,metricNames) groups the specified metrics in a single
training subplot with the y-axis label groupName. By default, the software plots each ungrouped
metric in its own training subplot.

Examples

Track Progress and Produce Training Plots

Use a TrainingProgressMonitor object to track training progress and produce training plots for
custom training loops.

Create a TrainingProgressMonitor object. The monitor automatically tracks the start time and
the elapsed time. The timer starts when you create the object.

Tip To ensure that the elapsed time accurately reflects the training time, make sure you create the
TrainingProgressMonitor object close to the start of your custom training loop.

monitor = trainingProgressMonitor;

Before you start the training, specify names for the information and metric values.

monitor.Info = ["LearningRate","Epoch","Iteration"];
monitor.Metrics = ["TrainingLoss","ValidationLoss","TrainingAccuracy","ValidationAccuracy"];

Specify the horizontal axis label for the training plot. Group the training and validation loss in the
same subplot, and group the training and validation accuracy in the same plot.

monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);
groupSubPlot(monitor,"Accuracy",["TrainingAccuracy","ValidationAccuracy"]);

During training:

• Evaluate the Stop property at the start of each step in your custom training loop. When you click
the Stop button in the Training Progress window, the Stop property changes to 1. Training stops
if your training loop exits when the Stop property is 1.
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• Update the information values. The updated values appear in the Training Progress window.
• Record the metric values. The recorded values appear in the training plot.
• Update the training progress percentage based on the fraction of iterations completed.

Note The following example code is a template. You must edit this training loop to compute your
metric and information values. For a complete example that you can run in MATLAB, see “Monitor
Custom Training Loop Progress During Training”.

epoch = 0;
iteration = 0;

monitor.Status = "Running";

while epoch < maxEpochs && ~monitor.Stop
    epoch = epoch + 1;

    while hasData(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Add code to calculate metric and information values.
        % lossTrain = ...

       updateInfo(monitor, ...
            LearningRate=learnRate, ...
            Epoch=string(epoch) + " of " + string(maxEpochs), ...
            Iteration=string(iteration) + " of " + string(numIterations));

       recordMetrics(monitor,iteration, ...
            TrainingLoss=lossTrain, ...
            TrainingAccuracy=accuracyTrain, ...
            ValidationLoss=lossValidation, ...
            ValidationAccuracy=accuracyValidation);

        monitor.Progress = 100*iteration/numIterations;
    end
end

The Training Progress window shows animated plots of the metrics, and the information values,
training progress bar, and elapsed time.

• The training plots update each time you call recordMetrics.
• The values under Information update each time you call updateInfo.
• The elapsed time updates each time you call recordMetrics or updateInfo, and when you

update the property.
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Input Arguments
monitor — Training progress monitor
TrainingProgressMonitor object

Training progress monitor, specified as a TrainingProgressMonitor object.

groupName — Name of subplot group
string scalar | character vector

Name of the subplot group, specified as a string scalar or character vector. The software groups the
specified metrics in a single training subplot with the y-axis label groupName.
Data Types: char | string

metricNames — Metric names
string scalar | character vector | string array | cell array of character vectors

Metric names, specified as a string scalar, character vector, string array, or cell array of character
vectors. Each metric name must be an element of the Metrics property of monitor and can only
appear in one subplot.
Data Types: char | string | cell

Version History
Introduced in R2022b
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See Also
trainingProgressMonitor | updateInfo | recordMetrics

Topics
“Monitor Custom Training Loop Progress”
“Train Network Using Custom Training Loop”
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gru
Gated recurrent unit

Syntax
Y = gru(X,H0,weights,recurrentWeights,bias)
[Y,hiddenState] = gru(X,H0,weights,recurrentWeights,bias)
[ ___ ] = gru( ___ ,'DataFormat',FMT)

Description
The gated recurrent unit (GRU) operation allows a network to learn dependencies between time steps
in time series and sequence data.

Note This function applies the deep learning GRU operation to dlarray data. If you want to apply
an GRU operation within a layerGraph object or Layer array, use the following layer:

• gruLayer

Y = gru(X,H0,weights,recurrentWeights,bias) applies a gated recurrent unit (GRU)
calculation to input X using the initial hidden state H0, and parameters weights,
recurrentWeights, and bias. The input X must be a formatted dlarray. The output Y is a
formatted dlarray with the same dimension format as X, except for any 'S' dimensions.

The gru function updates the hidden state using the hyperbolic tangent function (tanh) as the state
activation function. The gru function uses the sigmoid function given by σ(x) = (1 + e−x)−1 as the
gate activation function.

[Y,hiddenState] = gru(X,H0,weights,recurrentWeights,bias) also returns the hidden
state after the GRU operation.

[ ___ ] = gru( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when X is not a
formatted dlarray. The output Y is an unformatted dlarray with the same dimension order as X,
except for any 'S' dimensions.

Examples

Apply GRU Operation to Sequence Data

Perform a GRU operation using 100 hidden units.

Create the input sequence data as 32 observations with ten channels and a sequence length of 64.

numFeatures = 10;
numObservations = 32;
sequenceLength = 64;
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X = randn(numFeatures,numObservations,sequenceLength);
dlX = dlarray(X,'CBT');

Create the initial hidden state with 100 hidden units. Use the same initial hidden state for all
observations.

numHiddenUnits = 100;
H0 = zeros(numHiddenUnits,1);

Create the learnable parameters for the GRU operation.

weights = dlarray(randn(3*numHiddenUnits,numFeatures));
recurrentWeights = dlarray(randn(3*numHiddenUnits,numHiddenUnits));
bias = dlarray(randn(3*numHiddenUnits,1));

Perform the GRU calculation.

[dlY,hiddenState] = gru(dlX,H0,weights,recurrentWeights,bias);

View the size and dimension format of dlY.

size(dlY)

ans = 1×3

   100    32    64

dlY.dims

ans = 
'CBT'

View the size of hiddenState.

size(hiddenState)

ans = 1×2

   100    32

You can use the hidden state to keep track of the state of the GRU operation and input further
sequential data.

Input Arguments
X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When X
is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT.
If X is a numeric array, at least one of H0, weights, recurrentWeights, or bias must be a
dlarray.
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X must contain a sequence dimension labeled 'T'. If X has any spatial dimensions labeled 'S', they
are flattened into the 'C' channel dimension. If X does not have a channel dimension, then one is
added. If X has any unspecified dimensions labeled 'U', they must be singleton.
Data Types: single | double

H0 — Initial hidden state vector
dlarray | numeric array

Initial hidden state vector, specified as a formatted dlarray, an unformatted dlarray, or a numeric
array.

If H0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch
dimension labeled 'B' with the same size as the 'B' dimension of X. If H0 does not have a 'B'
dimension, the function uses the same hidden state vector for each observation in X.

If H0 is a formatted dlarray, then the size of the 'C' dimension determines the number of hidden
units. Otherwise, the size of the first dimension determines the number of hidden units.
Data Types: single | double

weights — Weights
dlarray | numeric array

Weights, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

Specify weights as a matrix of size 3*NumHiddenUnits-by-InputSize, where NumHiddenUnits is
the size of the 'C' dimension of H0, and InputSize is the size of the 'C' dimension of X multiplied
by the size of each 'S' dimension of X, where present.

If weights is a formatted dlarray, it must contain a 'C' dimension of size 3*NumHiddenUnits and
a 'U' dimension of size InputSize.
Data Types: single | double

recurrentWeights — Recurrent weights
dlarray | numeric array

Recurrent weights, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

Specify recurrentWeights as a matrix of size 3*NumHiddenUnits-by-NumHiddenUnits, where
NumHiddenUnits is the size of the 'C' dimension of H0.

If recurrentWeights is a formatted dlarray, it must contain a 'C' dimension of size
3*NumHiddenUnits and a 'U' dimension of size NumHiddenUnits.
Data Types: single | double

bias — Bias
dlarray vector | numeric vector

Bias, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

Specify bias as a vector of length 3*NumHiddenUnits, where NumHiddenUnits is the size of the
'C' dimension of H0.

If bias is a formatted dlarray, the nonsingleton dimension must be labeled with 'C'.
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Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
Y — GRU output
dlarray

GRU output, returned as a dlarray. The output Y has the same underlying data type as the input X.

If the input data X is a formatted dlarray, Y has the same dimension format as X, except for any 'S'
dimensions. If the input data is not a formatted dlarray, Y is an unformatted dlarray with the
same dimension order as the input data.

The size of the 'C' dimension of Y is the same as the number of hidden units, specified by the size of
the 'C' dimension of H0.

hiddenState — Hidden state vector
dlarray | numeric array

Hidden state vector for each observation, returned as a dlarray or a numeric array with the same
data type as H0.

If the input H0 is a formatted dlarray, then the output hiddenState is a formatted dlarray with
the format 'CB'.

Limitations
• functionToLayerGraph does not support the gru function. If you use functionToLayerGraph

with a function that contains the gru operation, the resulting LayerGraph contains placeholder
layers.
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More About
Gated Recurrent Unit

The GRU operation allows a network to learn dependencies between time steps in time series and
sequence data. For more information, see the “Gated Recurrent Unit Layer” on page 1-831
definition on the gruLayer reference page.

Version History
Introduced in R2020a

References
[1] Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-
decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• X
• H0
• weights
• recurrentWeights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | fullyconnect | softmax | dlgradient | dlfeval | lstm | attention

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”
“Multilabel Text Classification Using Deep Learning”
“List of Functions with dlarray Support”
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gruLayer
Gated recurrent unit (GRU) layer

Description
A GRU layer learns dependencies between time steps in time series and sequence data.

Creation

Syntax
layer = gruLayer(numHiddenUnits)
layer = gruLayer(numHiddenUnits,Name,Value)

Description

layer = gruLayer(numHiddenUnits) creates a GRU layer and sets the NumHiddenUnits
property.

layer = gruLayer(numHiddenUnits,Name,Value) sets additional OutputMode, “Activations”
on page 1-823, “State” on page 1-823, “Parameters and Initialization” on page 1-824, “Learning
Rate and Regularization” on page 1-826, and Name properties using one or more name-value pair
arguments. You can specify multiple name-value pair arguments. Enclose each property name in
quotes.

Properties
GRU

NumHiddenUnits — Number of hidden units
positive integer

This property is read-only.

Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time
steps (the hidden state). The hidden state can contain information from all previous time steps,
regardless of the sequence length. If the number of hidden units is too large, then the layer might
overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split
your sequences into smaller sequences for when using the trainNetwork function, use the
SequenceLength training option.

The layer outputs data with NumHiddenUnits channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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OutputMode — Output mode
'sequence' (default) | 'last'

This property is read-only.

Output mode, specified as one of the following:

• 'sequence' – Output the complete sequence.
• 'last' – Output the last time step of the sequence.

HasStateInputs — Flag for state inputs to layer
0 (false) (default) | 1 (true)

Flag for state inputs to the layer, specified as 1 (true) or 0 (false).

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState property for the layer
operation.

If the HasStateInputs property is 1 (true), then the layer has two inputs with names 'in' and
'hidden', which correspond to the input data and hidden state, respectively. In this case, the layer
uses the values passed to these inputs for the layer operation. If HasStateInputs is 1 (true), then
the HiddenState property must be empty.

HasStateOutputs — Flag for state outputs from layer
0 (false) (default) | 1 (true)

Flag for state outputs from the layer, specified as true or false.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has two outputs with names 'out' and
'hidden', which correspond to the output data and hidden state, respectively. In this case, the layer
also outputs the state values computed during the layer operation.

ResetGateMode — Reset gate mode
'after-multiplication' (default) | 'before-multiplication' | 'recurrent-bias-after-
multiplication'

Reset gate mode, specified as one of the following:

• 'after-multiplication' – Apply reset gate after matrix multiplication. This option is cuDNN
compatible.

• 'before-multiplication' – Apply reset gate before matrix multiplication.
• 'recurrent-bias-after-multiplication' – Apply reset gate after matrix multiplication and

use an additional set of bias terms for the recurrent weights.

For more information about the reset gate calculations, see “Gated Recurrent Unit Layer” on page 1-
831.

Note dlnetwork objects support GRU layers with the ResetGateMode set to 'after-
multiplication' only.
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InputSize — Input size
'auto' (default) | positive integer

This property is read-only.

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software
automatically assigns the input size at training time.
Data Types: double | char

Activations

StateActivationFunction — Activation function to update the hidden state
'tanh' (default) | 'softsign'

Activation function to update the hidden state, specified as one of the following:

• 'tanh' – Use the hyperbolic tangent function (tanh).
• 'softsign' – Use the softsign function softsign(x) = x

1 + x .

The layer uses this option as the function σs in the calculations to update the hidden state.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | 'hard-sigmoid'

This property is read-only.

Activation function to apply to the gates, specified as one of the following:

• 'sigmoid' – Use the sigmoid function σ(x) = (1 + e−x)−1.
• 'hard-sigmoid' – Use the hard sigmoid function

σ(x) =
0
0.2x + 0.5
1

if x < − 2.5
if−2.5 ≤ x ≤ 2.5
if x > 2.5

.

The layer uses this option as the function σg in the calculations for the layer gates.

State

HiddenState — Hidden state
[] (default) | numeric vector

Hidden state to use in the layer operation, specified as a NumHiddenUnits-by-1 numeric vector. This
value corresponds to the initial hidden state when data is passed to the layer.

After setting this property manually, calls to the resetState function set the hidden state to this
value.

If HasStateInputs is true, then the HiddenState property must be empty.
Data Types: single | double
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Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input weights, specified as one of the following:

• 'glorot' – Initialize the input weights with the Glorot initializer [2] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(InputSize + numOut), where numOut = 3*NumHiddenUnits.

• 'he' – Initialize the input weights with the He initializer [3]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [4]

• 'narrow-normal' – Initialize the input weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the input weights with zeros.
• 'ones' – Initialize the input weights with ones.
• Function handle – Initialize the input weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
input weights.

The layer only initializes the input weights when the InputWeights property is empty.
Data Types: char | string | function_handle

RecurrentWeightsInitializer — Function to initialize recurrent weights
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the recurrent weights, specified as one of the following:

• 'orthogonal' – Initialize the recurrent weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [4]

• 'glorot' – Initialize the recurrent weights with the Glorot initializer [2] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(numIn + numOut), where numIn = NumHiddenUnits and numOut =
3*NumHiddenUnits.

• 'he' – Initialize the recurrent weights with the He initializer [3]. The He initializer samples from
a normal distribution with zero mean and variance 2/NumHiddenUnits.

• 'narrow-normal' – Initialize the recurrent weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the recurrent weights with zeros.
• 'ones' – Initialize the recurrent weights with ones.
• Function handle – Initialize the recurrent weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.
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Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• zeros' – Initialize the bias with zeros.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with

zero mean and standard deviation 0.01.
• 'ones' – Initialize the bias with ones.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

InputWeights — Input weights
[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the three input weight matrices for the components in
the GRU layer. The three matrices are concatenated vertically in the following order:

1 Reset gate
2 Update gate
3 Candidate state

The input weights are learnable parameters. When training a network, if InputWeights is
nonempty, then trainNetwork uses the InputWeights property as the initial value. If
InputWeights is empty, then trainNetwork uses the initializer specified by
InputWeightsInitializer.

At training time, InputWeights is a 3*NumHiddenUnits-by-InputSize matrix.

RecurrentWeights — Recurrent weights
[] (default) | matrix

Recurrent weights, specified as a matrix.

The recurrent weight matrix is a concatenation of the three recurrent weight matrices for the
components in the GRU layer. The three matrices are vertically concatenated in the following order:

1 Reset gate
2 Update gate
3 Candidate state

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is
nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If
RecurrentWeights is empty, then trainNetwork uses the initializer specified by
RecurrentWeightsInitializer.
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At training time RecurrentWeights is a 3*NumHiddenUnits-by-NumHiddenUnits matrix.

Bias — Layer biases
[] (default) | numeric vector

Layer biases for the GRU layer, specified as a numeric vector.

If ResetGateMode is 'after-multiplication' or 'before-multiplication', then the bias
vector is a concatenation of three bias vectors for the components in the GRU layer. The three vectors
are concatenated vertically in the following order:

1 Reset gate
2 Update gate
3 Candidate state

In this case, at training time, Bias is a 3*NumHiddenUnits-by-1 numeric vector.

If ResetGateMode is recurrent-bias-after-multiplication', then the bias vector is a
concatenation of six bias vectors for the components in the GRU layer. The six vectors are
concatenated vertically in the following order:

1 Reset gate
2 Update gate
3 Candidate state
4 Reset gate (recurrent bias)
5 Update gate (recurrent bias)
6 Candidate state (recurrent bias)

In this case, at training time, Bias is a 6*NumHiddenUnits-by-1 numeric vector.

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

For more information about the reset gate calculations, see “Gated Recurrent Unit Layer” on page 1-
831.

Learning Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights
1 (default) | numeric scalar | 1-by-3 numeric vector

Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the
learning rate factor for the input weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the three individual matrices in InputWeights,
specify a 1-by-3 vector. The entries of InputWeightsLearnRateFactor correspond to the learning
rate factor of the following:
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1 Reset gate
2 Update gate
3 Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | numeric scalar | 1-by-3 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-3 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the
learning rate for the recurrent weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the three individual matrices in
RecurrentWeights, specify a 1-by-3 vector. The entries of RecurrentWeightsLearnRateFactor
correspond to the learning rate factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-3 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.

To control the value of the learning rate factor for the three individual vectors in Bias, specify a 1-
by-3 vector. The entries of BiasLearnRateFactor correspond to the learning rate factor of the
following:

1 Reset gate
2 Update gate
3 Candidate state
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If ResetGateMode is 'recurrent-bias-after-multiplication', then the software uses the
same vector for the recurrent bias vectors.

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

InputWeightsL2Factor — L2 regularization factor for input weights
1 (default) | numeric scalar | 1-by-3 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-3 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2,
then the L2 regularization factor for the input weights of the layer is twice the current global L2
regularization factor. The software determines the L2 regularization factor based on the settings
specified with the trainingOptions function.

To control the value of the L2 regularization factor for the three individual matrices in
InputWeights, specify a 1-by-3 vector. The entries of InputWeightsL2Factor correspond to the
L2 regularization factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights
1 (default) | numeric scalar | 1-by-3 numeric vector

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-3 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the recurrent weights of the layer. For example, if
RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the
layer is twice the current global L2 regularization factor. The software determines the L2
regularization factor based on the settings specified with the trainingOptions function.

To control the value of the L2 regularization factor for the three individual matrices in
RecurrentWeights, specify a 1-by-3 vector. The entries of RecurrentWeightsL2Factor
correspond to the L2 regularization factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.
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Example: 2
Example: [1 2 1]

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar | 1-by-3 numeric vector

L2 regularization factor for the biases, specified as a nonnegative scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the individual vectors in Bias, specify a 1-by-3
vector. The entries of BiasL2Factor correspond to the L2 regularization factor of the following:

1 Reset gate
2 Update gate
3 Candidate state

If ResetGateMode is 'recurrent-bias-after-multiplication', then the software uses the
same vector for the recurrent bias vectors.

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1]

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 | 2

Number of inputs of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState property for the layer
operation.

If the HasStateInputs property is 1 (true), then the layer has two inputs with names 'in' and
'hidden', which correspond to the input data and hidden state, respectively. In this case, the layer
uses the values passed to these inputs for the layer operation. If HasStateInputs is 1 (true), then
the HiddenState property must be empty.
Data Types: double
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InputNames — Input names
{'in'} | {'in','hidden'}

Input names of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState property for the layer
operation.

If the HasStateInputs property is 1 (true), then the layer has two inputs with names 'in' and
'hidden', which correspond to the input data and hidden state, respectively. In this case, the layer
uses the values passed to these inputs for the layer operation. If HasStateInputs is 1 (true), then
the HiddenState property must be empty.

NumOutputs — Number of outputs
1 | 2

Number of outputs of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has two outputs with names 'out' and
'hidden', which correspond to the output data and hidden state, respectively. In this case, the layer
also outputs the state values computed during the layer operation.
Data Types: double

OutputNames — Output names
{'out'} | {'out','hidden'}

Output names of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has two outputs with names 'out' and
'hidden', which correspond to the output data and hidden state, respectively. In this case, the layer
also outputs the state values computed during the layer operation.

Examples

Create GRU Layer

Create a GRU layer with the name 'gru1' and 100 hidden units.

layer = gruLayer(100,'Name','gru1')

layer = 
  GRULayer with properties:

                       Name: 'gru1'
                 InputNames: {'in'}
                OutputNames: {'out'}
                  NumInputs: 1
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                 NumOutputs: 1
             HasStateInputs: 0
            HasStateOutputs: 0

   Hyperparameters
                  InputSize: 'auto'
             NumHiddenUnits: 100
                 OutputMode: 'sequence'
    StateActivationFunction: 'tanh'
     GateActivationFunction: 'sigmoid'
              ResetGateMode: 'after-multiplication'

   Learnable Parameters
               InputWeights: []
           RecurrentWeights: []
                       Bias: []

   State Parameters
                HiddenState: []

  Show all properties

Include a GRU layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    gruLayer(numHiddenUnits)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   GRU                     GRU with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Algorithms
Gated Recurrent Unit Layer

A GRU layer learns dependencies between time steps in time series and sequence data.

The hidden state of the layer at time step t contains the output of the GRU layer for this time step. At
each time step, the layer adds information to or removes information from the state. The layer
controls these updates using gates.

The following components control the hidden state of the layer.
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Component Purpose
Reset gate (r) Control level of state reset
Update gate (z) Control level of state update

Candidate state (h) Control level of update added to hidden state

The learnable weights of a GRU layer are the input weights W (InputWeights), the recurrent
weights R (RecurrentWeights), and the bias b (Bias). If the ResetGateMode property is
'recurrent-bias-after-multiplication', then the gate and state calculations require two
sets of bias values. The matrices W and R are concatenations of the input weights and the recurrent
weights of each component, respectively. These matrices are concatenated as follows:

W =
Wr
Wz
Wh

, R =
Rr
Rz
Rh

,

where r, z, and h denote the reset gate, update gate, and candidate state, respectively.

The bias vector depends on the ResetGateMode property. If ResetGateMode is 'after-
multiplication' or 'before-multiplication', then the bias vector is a concatenation of three
vectors:

b =

bWr
bWz
bWh

,

where the subscript W indicates that this is the bias corresponding to the input weights
multiplication.

If ResetGateMode is 'recurrent-bias-after-multiplication', then the bias vector is a
concatenation of six vectors:

b =

bWr
bWz
bWh
bRr
bRz
bRh

,

where the subscript R indicates that this is the bias corresponding to the recurrent weights
multiplication.

The hidden state at time step t is given by

ht = (1 − zt) ⊙ ht + zt ⊙ ht − 1 .

The following formulas describe the components at time step t.
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Component ResetGateMode Formula
Reset gate 'after-

multiplication'
rt = σg Wrxt + bWr
+ Rrht − 1

'before-
multiplication'
'recurrent-bias-
after-
multiplication'

rt = σg Wrxt + bWr
+ Rrht − 1 + bRr

Update gate 'after-
multiplication'

zt = σg Wzxt + bWz
+ Rzht − 1

'before-
multiplication'
'recurrent-bias-
after-
multiplication'

zt = σg Wzxt + bWz
+ Rzht − 1 + bRz

Candidate state 'after-
multiplication'

ht = σs Whxt + bWh + rt
⊙ (Rhht − 1)

'before-
multiplication'

ht = σs Whxt + bWh + Rh
(rt ⊙ ht − 1)

'recurrent-bias-
after-
multiplication'

ht = σs Whxt + bWh + rt
⊙ Rhht − 1 + bRh

In these calculations, σg and σs denotes the gate and state activation functions, respectively. The
gruLayer function, by default, uses the sigmoid function given by σ(x) = (1 + e−x)−1 to compute the
gate activation function and the hyperbolic tangent function (tanh) to compute the state activation
function. To specify the state and gate activation functions, use the StateActivationFunction and
GateActivationFunction properties, respectively.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).
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You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of GRULayer objects and the corresponding output
format. If the output of the layer is passed to a custom layer that does not inherit from the
nnet.layer.Formattable class, or a FunctionLayer object with the Formattable option set to
false, then the layer receives an unformatted dlarray object with dimensions ordered
corresponding to the formats outlined in this table.

Input Format OutputMode Output Format
'CB' (channel, batch) 'sequence' 'CB' (channel, batch)

'last'
'CBT' (channel, batch, time) 'sequence' 'CBT' (channel, batch, time)

'last' 'CB' (channel, batch)

In dlnetwork objects, GRULayer objects also support the following input and output format
combinations.

Input Format OutputMode Output Format
'SCB' (spatial, channel, batch) 'sequence' 'CB' (channel, batch)

'last'
'SSCB' (spatial, spatial,
channel)

'sequence' 'CB' (channel, batch)
'last'

'SSSCB' (spatial, spatial,
spatial, channel)

'sequence' 'CB' (channel, batch)
'last'

'SCBT' (spatial, channel, batch) 'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

'SSCBT' (spatial, spatial,
channel, batch, time)

'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

'SSSCBT' (spatial, spatial,
spatial, channel, batch, time)

'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

To use these input formats in trainNetwork workflows, first convert the data to 'CBT' (channel,
batch, time) format using flattenLayer.

If the HasStateInputs property is 1 (true), then the layer has two additional inputs with names
'hidden' and 'cell', which correspond to the hidden state and cell state, respectively. These
additional inputs expect input format 'CB' (channel, batch).

If the HasStateOutputs property is 1 (true), then the layer has two additional outputs with names
'hidden' and 'cell', which correspond to the hidden state and cell state, respectively. These
additional outputs have output format 'CB' (channel, batch).

Version History
Introduced in R2020a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The StateActivationFunction property must be set to 'tanh'.
• The GateActivationFunction property must be set to 'sigmoid'.
• The ResetGateMode property must be set to 'after-multiplication' or 'recurrent-

bias-after-multiplication'.
• The HasStateInputs and HasStateOutputs properties must be set to 0 (false).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The StateActivationFunction property must be set to 'tanh'.
• The GateActivationFunction property must be set to 'sigmoid'.
• The ResetGateMode property must be set to 'after-multiplication' or 'recurrent-

bias-after-multiplication'.
• The HasStateInputs and HasStateOutputs properties must be set to 0 (false).

See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | bilstmLayer |
convolution1dLayer | maxPooling1dLayer | averagePooling1dLayer |
globalMaxPooling1dLayer | globalAveragePooling1dLayer

Topics
“Sequence Classification Using Deep Learning”
“Sequence Classification Using 1-D Convolutions”
“Time Series Forecasting Using Deep Learning”
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“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Classify Videos Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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hasdata
Determine if minibatchqueue can return mini-batch

Syntax
tf = hasdata(mbq)

Description
tf = hasdata(mbq) returns 1 (true) if mbq can return a mini-batch using the next function, and 0
(false) otherwise.

Use hasdata in combination with next to iterate over all data in the minibatchqueue object. You
can call next on a minibatchqueue object until all data is returned. If mini-batches of data are still
available in the minibatchqueue object, hasdata returns 1. When you reach the end of the data,
hasdata returns 0. Then, use reset or shuffle to reset the minibatchqueue object and continue
obtaining mini-batches with next.

Examples

Iterate Over All Mini-Batches

Use hasdata with a while loop to iterate over all data in the minibatchqueue object.

Create a minibatchqueue object from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds,'MinibatchSize',256)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 256
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

While data is still available in the minibatchqueue object, obtain the next mini-batch.

while hasdata(mbq)
    X = next(mbq)
end
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The loop ends when hasdata returns false, and all mini-batches are returned.

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

Output Arguments
tf — True or false result
1 | 0

True or false result, returned as a 1 or 0 of data type logical.

Version History
Introduced in R2020b

See Also
shuffle | reset | minibatchqueue | next

Topics
“Train Deep Learning Model in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
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huber
Huber loss for regression tasks

Syntax
loss = huber(Y,targets)
loss = huber(Y,targets,weights)
loss = huber( ___ ,'DataFormat',FMT)
loss = huber( ___ ,Name,Value)

Description
The Huber operation computes the Huber loss between network predictions and target values for
regression tasks. When the 'TransitionPoint' option is 1, this is also known as smooth L1 loss.

The huber function calculates the Huber loss using dlarray data. Using dlarray objects makes
working with high dimensional data easier by allowing you to label the dimensions. For example, you
can label which dimensions correspond to spatial, time, channel, and batch dimensions using the "S",
"T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the "U" label. For
dlarray object functions that operate over particular dimensions, you can specify the dimension
labels by formatting the dlarray object directly, or by using the DataFormat option.

loss = huber(Y,targets) returns the Huber loss between the formatted dlarray object Y
containing the predictions and the target values targets for regression tasks. The input Y is a
formatted dlarray. The output loss is an unformatted dlarray scalar.

For unformatted input data, use the 'DataFormat' option.

loss = huber(Y,targets,weights) applies weights to the calculated loss vales. Use this syntax
to weight the contributions of classes, observations, or regions of the input to the calculated loss
values.

loss = huber( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when Y is not a
formatted dlarray.

loss = huber( ___ ,Name,Value) specifies options using one or more name-value pair arguments
in addition to the input arguments in previous syntaxes. For example,
'NormalizationFactor','all-elements' specifies to normalize the loss by dividing the
reduced loss by the number of input elements.

Examples

Huber Loss

Create an array of predictions for 12 observations over 10 responses.

numResponses = 10;
numObservations = 12;
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Y = rand(numResponses,numObservations);
dlY = dlarray(Y,'CB');

View the size and format of the predictions.

size(dlY)

ans = 1×2

    10    12

dims(dlY)

ans = 
'CB'

Create an array of random targets.

targets = rand(numResponses,numObservations);

View the size of the targets.

size(targets)

ans = 1×2

    10    12

Compute the Huber loss between the predictions and the targets.

loss = huber(dlY,targets)

loss = 
  1x1 dlarray

    0.7374

Masked Huber Loss for Padded Sequences

Create arrays of predictions and targets for 12 sequences of varying lengths over 10 responses.

numResponses = 10;
numObservations = 12;
maxSequenceLength = 15;

sequenceLengths = randi(maxSequenceLength,[1 numObservations]);

Y = cell(numObservations,1);
targets = cell(numObservations,1);

for i = 1:numObservations
    Y{i} = rand(numResponses,sequenceLengths(i));
    targets{i} = rand(numResponses,sequenceLengths(i));
end
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View the cell arrays of predictions and targets.

Y

Y=12×1 cell array
    {10x13 double}
    {10x14 double}
    {10x2  double}
    {10x14 double}
    {10x10 double}
    {10x2  double}
    {10x5  double}
    {10x9  double}
    {10x15 double}
    {10x15 double}
    {10x3  double}
    {10x15 double}

targets

targets=12×1 cell array
    {10x13 double}
    {10x14 double}
    {10x2  double}
    {10x14 double}
    {10x10 double}
    {10x2  double}
    {10x5  double}
    {10x9  double}
    {10x15 double}
    {10x15 double}
    {10x3  double}
    {10x15 double}

Pad the prediction and target sequences in the second dimension using the padsequences function
and also return the corresponding mask.

[Y,mask] = padsequences(Y,2);
targets = padsequences(targets,2);

Convert the padded sequences to dlarray with format 'CTB' (channel, time, batch). Because
formatted dlarray objects automatically sort the dimensions, keep the dimensions of the targets and
mask consistent by also converting them to a formatted dlarray objects with the same formats.

dlY = dlarray(Y,'CTB');
targets = dlarray(targets,'CTB');
mask = dlarray(mask,'CTB');

View the sizes of the prediction scores, targets, and the mask.

size(dlY)

ans = 1×3

    10    12    15
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size(targets)

ans = 1×3

    10    12    15

size(mask)

ans = 1×3

    10    12    15

Compute the Huber loss between the predictions and the targets. To prevent the loss values
calculated from padding from contributing to the loss, set the 'Mask' option to the mask returned by
the padsequences function.

loss = huber(dlY,targets,'Mask',mask)

loss = 
  1x1 dlarray

    8.1834

Input Arguments
Y — Predictions
dlarray | numeric array

Predictions, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When Y
is not a formatted dlarray, you must specify the dimension format using the DataFormat option.

If Y is a numeric array, targets must be a dlarray.

targets — Target responses
dlarray | numeric array

Target responses, specified as a formatted or unformatted dlarray or a numeric array.

The size of each dimension of targets must match the size of the corresponding dimension of Y.

If targets is a formatted dlarray, then its format must be the same as the format of Y, or the same
as DataFormat if Y is unformatted.

If targets is an unformatted dlarray or a numeric array, then the function applies the format of Y
or the value of DataFormat to targets.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
order "S" (spatial), "C" (channel), "B" (batch), "T" (time), then "U" (unspecified). To ensure that the
dimensions of Y and targets are consistent, when Y is a formatted dlarray, also specify targets
as a formatted dlarray.
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weights — Weights
dlarray | numeric array

Weights, specified as a dlarray or a numeric array.

To specify response weights, specify a vector with a 'C' (channel) dimension with size matching the
'C' (channel) dimension of the X. Specify the 'C' (channel) dimension of the response weights by
using a formatted dlarray object or by using the 'WeightsFormat' option.

To specify observation weights, specify a vector with a 'B' (batch) dimension with size matching the
'B' (batch) dimension of the Y. Specify the 'B' (batch) dimension of the class weights by using a
formatted dlarray object or by using the 'WeightsFormat' option.

To specify weights for each element of the input independently, specify the weights as an array of the
same size as Y. In this case, if weights is not a formatted dlarray object, then the function uses the
same format as Y. Alternatively, specify the weights format using the 'WeightsFormat' option.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NormalizationFactor','all-elements' specifies to normalize the loss by dividing
the reduced loss by the number of input elements

TransitionPoint — Point where Huber loss transitions to a linear function
1 (default) | positive scalar

Point where Huber loss transitions from a quadratic function to a linear function, specified as the
comma-separated pair consisting of 'TransitionPoint' and a positive scalar.

When 'TransitionPoint' is 1, this is also known as smooth L1 loss.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Mask — Mask indicating which elements to include for loss computation
dlarray | logical array | numeric array

Mask indicating which elements to include for loss computation, specified as a dlarray object, a
logical array, or a numeric array with the same size as Y.

The function includes and excludes elements of the input data for loss computation when the
corresponding value in the mask is 1 and 0, respectively.

If Mask is a formatted dlarray object, then its format must match that of Y. If Mask is not a
formatted dlarray object, then the function uses the same format as Y.

If you specify the DataFormat option, then the function also uses the specified format for the mask.

The size of each dimension of Mask must match the size of the corresponding dimension in Y. The
default value is a logical array of ones.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
this order: "S" (spatial), "C" (channel), "B" (batch), "T" (time), and "U" (unspecified). For example,
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dlarray objects automatically permute the dimensions of data with format "TSCSBS" to have format
"SSSCBT".

To ensure that the dimensions of Y and the mask are consistent, when Y is a formatted dlarray, also
specify the mask as a formatted dlarray.

Reduction — Mode for reducing array of loss values
"sum" (default) | "none"

Mode for reducing the array of loss values, specified as one of the following:

• "sum" — Sum all of the elements in the array of loss values. In this case, the output loss is
scalar.

• "none" — Do not reduce the array of loss values. In this case, the output loss is an unformatted
dlarray object with the same size as Y.

NormalizationFactor — Divisor for normalizing reduced loss
"batch-size" (default) | "all-elements" | "mask-included" | "none"

Divisor for normalizing the reduced loss when Reduction is "sum", specified as one of the following:

• "batch-size" — Normalize the loss by dividing it by the number of observations in X.
• "all-elements" — Normalize the loss by dividing it by the number of elements of X.
• "mask-included" — Normalize the loss by dividing the loss values by the number of included

elements specified by the mask for each observation independently. To use this option, you must
specify a mask using the Mask option.

• "none" — Do not normalize the loss.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

WeightsFormat — Dimension order of weights
character vector | string scalar
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Dimension order of the weights, specified as a character vector or string scalar that provides a label
for each dimension of the weights.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify WeightsFormat when weights is a numeric vector and Y has two or more
nonsingleton dimensions.

If weights is not a vector, or both weights and Y are vectors, then default value of WeightsFormat
is the same as the format of Y.
Data Types: char | string

Output Arguments
loss — Huber loss
dlarray

Huber loss, returned as an unformatted dlarray. The output loss is an unformatted dlarray with
the same underlying data type as the input Y.

The size of loss depends on the Reduction option.

Algorithms
Huber Loss

For each element Yj of the input, the huber function computes the corresponding element-wise loss
values using the formula

loss j =

1
2 Y j− T j

2 if  Y j− T j ≤ δ

δ Y j− T j −
1
2δ2 otherwise

,

where Tj is the corresponding target value to the prediction Yj and δ is the transition point where the
loss transitions from a quadratic function to a linear function.

When the transition point is 1, this is also known as smooth L1 loss.

To reduce the loss values to a scalar, the function then reduces the element-wise loss using the
formula
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loss = 1
N∑j m jw jloss j,

where N is the normalization factor, mj is the mask value for element j, and wj is the weight value for
element j.

If you do not opt to reduce the loss, then the function applies the mask and the weights to the loss
values directly:

loss j* = m jw jloss j

Version History
Introduced in R2021a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• Y
• targets
• weights
• 'Mask'

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlgradient | dlfeval | softmax | sigmoid | crossentropy | mse | l1loss | l2loss

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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imageDataAugmenter
Configure image data augmentation

Description
An image data augmenter configures a set of preprocessing options for image augmentation, such as
resizing, rotation, and reflection.

The imageDataAugmenter is used by an augmentedImageDatastore to generate batches of
augmented images. For more information, see “Augment Images for Training with Random Geometric
Transformations”.

Creation

Syntax
aug = imageDataAugmenter
aug = imageDataAugmenter(Name,Value)

Description

aug = imageDataAugmenter creates an imageDataAugmenter object with default property
values consistent with the identity transformation.

aug = imageDataAugmenter(Name,Value) configures a set of image augmentation options using
name-value pairs to set properties on page 1-847. You can specify multiple name-value pairs.
Enclose each property name in quotes.

Properties
FillValue — Fill value
numeric scalar | numeric vector

Fill value used to define out-of-bounds points when resampling, specified as a numeric scalar or
numeric vector.

• If the augmented images are single channel, then FillValue must be a scalar.
• If the augmented images are multichannel, then FillValue can be a scalar or a vector with

length equal to the number of channels of the input image. For example, if the input image is an
RGB image, FillValue can be a vector of length 3.

For grayscale and color images, the default fill value is 0. For categorical images, the default fill value
is an '<undefined>' label and trainNetwork ignores filled pixels when training.
Example: 128

RandXReflection — Random reflection
false (default) | true
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Random reflection in the left-right direction, specified as a logical scalar. When RandXReflection is
true (1), each image is reflected horizontally with 50% probability. When RandXReflection is
false (0), no images are reflected.

RandYReflection — Random reflection
false (default) | true

Random reflection in the top-bottom direction, specified as a logical scalar. When RandYReflection
is true (1), each image is reflected vertically with 50% probability. When RandYReflection is
false (0), no images are reflected.

RandRotation — Range of rotation
[0 0] (default) | 2-element numeric vector | function handle

Range of rotation, in degrees, applied to the input image, specified as one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The rotation angle is picked randomly from a continuous uniform distribution within the specified
interval.

• function handle. The function must accept no input arguments and return the rotation angle as a
numeric scalar. Use a function handle to pick rotation angles from a disjoint interval or using a
nonuniform probability distribution. For more information about function handles, see “Create
Function Handle”.

By default, augmented images are not rotated.
Example: [-45 45]

RandScale — Range of uniform scaling
[1 1] (default) | 2-element numeric vector | function handle

Range of uniform (isotropic) scaling applied to the input image, specified as one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The scale factor is picked randomly from a continuous uniform distribution within the specified
interval.

• function handle. The function must accept no input arguments and return the scale factor as a
numeric scalar. Use a function handle to pick scale factors from a disjoint interval or using a
nonuniform probability distribution. For more information about function handles, see “Create
Function Handle”.

By default, augmented images are not scaled.
Example: [0.5 4]

RandXScale — Range of horizontal scaling
[1 1] (default) | 2-element vector of positive numbers | function handle

Range of horizontal scaling applied to the input image, specified as one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal scale factor is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the horizontal scale
factor as a numeric scalar. Use a function handle to pick horizontal scale factors from a disjoint
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interval or using a nonuniform probability distribution. For more information about function
handles, see “Create Function Handle”.

By default, augmented images are not scaled in the horizontal direction.

Note If you specify RandScale, then imageDataAugmenter ignores the value of RandXScale
when scaling images.

Example: [0.5 4]

RandYScale — Range of vertical scaling
[1 1] (default) | 2-element vector of positive numbers | function handle

Range of vertical scaling applied to the input image, specified as one of the following.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical scale factor is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the vertical scale factor
as a numeric scalar. Use a function handle to pick vertical scale factors from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, augmented images are not scaled in the vertical direction.

Note If you specify RandScale, then imageDataAugmenter ignores the value of RandYScale
when scaling images.

Example: [0.5 4]

RandXShear — Range of horizontal shear
[0 0] (default) | 2-element numeric vector | function handle

Range of horizontal shear applied to the input image, specified as one of the following. Shear is
measured as an angle in degrees, and is in the range (–90, 90).

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal shear angle is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the horizontal shear
angle as a numeric scalar. Use a function handle to pick horizontal shear angles from a disjoint
interval or using a nonuniform probability distribution. For more information about function
handles, see “Create Function Handle”.

By default, augmented images are not sheared in the horizontal direction.
Example: [0 45]

RandYShear — Range of vertical shear
[0 0] (default) | 2-element numeric vector | function handle
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Range of vertical shear applied to the input image, specified as one of the following. Shear is
measured as an angle in degrees, and is in the range (–90, 90).

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical shear angle is picked randomly from a continuous uniform distribution within the
specified interval.

• function handle. The function must accept no input arguments and return the vertical shear angle
as a numeric scalar. Use a function handle to pick vertical shear angles from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, augmented images are not sheared in the vertical direction.
Example: [0 45]

RandXTranslation — Range of horizontal translation
[0 0] (default) | 2-element numeric vector | function handle

Range of horizontal translation applied to the input image, specified as one of the following.
Translation distance is measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal translation distance is picked randomly from a continuous uniform distribution
within the specified interval.

• function handle. The function must accept no input arguments and return the horizontal
translation distance as a numeric scalar. Use a function handle to pick horizontal translation
distances from a disjoint interval or using a nonuniform probability distribution. For more
information about function handles, see “Create Function Handle”.

By default, augmented images are not translated in the horizontal direction.
Example: [-5 5]

RandYTranslation — Range of vertical translation
[0 0] (default) | 2-element numeric vector | function handle

Range of vertical translation applied to the input image, specified as one of the following. Translation
distance is measured in pixels.

• 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical translation distance is picked randomly from a continuous uniform distribution within
the specified interval.

• function handle. The function must accept no input arguments and return the vertical translation
distance as a numeric scalar. Use a function handle to pick vertical translation distances from a
disjoint interval or using a nonuniform probability distribution. For more information about
function handles, see “Create Function Handle”.

By default, augmented images are not translated in the vertical direction.
Example: [-5 5]

Object Functions
augment Apply identical random transformations to multiple images
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Examples

Create Image Data Augmenter to Resize and Rotate Images

Create an image data augmenter that preprocesses images before training. This augmenter rotates
images by random angles in the range [0, 360] degrees and resizes images by random scale factors in
the range [0.5, 1].

augmenter = imageDataAugmenter( ...
    'RandRotation',[0 360], ...
    'RandScale',[0.5 1])

augmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [0 360]
           RandScale: [0.5000 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [0 0]
    RandYTranslation: [0 0]

Create an augmented image datastore using the image data augmenter. The augmented image
datastore also requires sample data, labels, and an output image size.

[XTrain,YTrain] = digitTrain4DArrayData;
imageSize = [56 56 1];
auimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',augmenter)

auimds = 
  augmentedImageDatastore with properties:

         NumObservations: 5000
           MiniBatchSize: 128
        DataAugmentation: [1x1 imageDataAugmenter]
      ColorPreprocessing: 'none'
              OutputSize: [56 56]
          OutputSizeMode: 'resize'
    DispatchInBackground: 0

Preview the random transformations applied to the first eight images in the image datastore.

minibatch = preview(auimds);
imshow(imtile(minibatch.input));
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Preview different random transformations applied to the same set of images.

minibatch = preview(auimds);
imshow(imtile(minibatch.input));

Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent
the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
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• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Create an imageDataAugmenter object that specifies preprocessing options for image
augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images
up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

imageAugmenter = imageDataAugmenter( ...
    'RandRotation',[-20,20], ...
    'RandXTranslation',[-3 3], ...
    'RandYTranslation',[-3 3])

imageAugmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [-20 20]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [-3 3]
    RandYTranslation: [-3 3]

Create an augmentedImageDatastore object to use for network training and specify the image
output size. During training, the datastore performs image augmentation and resizes the images. The
datastore augments the images without saving any images to memory. trainNetwork updates the
network parameters and then discards the augmented images.

imageSize = [28 28 1];
augimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter);

Specify the convolutional neural network architecture.

layers = [
    imageInputLayer(imageSize)
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
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    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
    'MaxEpochs',15, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{XValidation,YValidation});

Train the network. Because the validation images are not augmented, the validation accuracy is
higher than the training accuracy.

net = trainNetwork(augimds,layers,opts);

Tips
• To preview the transformations applied to sample images, use the augment function.
• To perform image augmentation during training, create an augmentedImageDatastore and

specify preprocessing options by using the 'DataAugmentation' name-value pair with an
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imageDataAugmenter. The augmented image datastore automatically applies random
transformations to the training data.

Version History
Introduced in R2017b

See Also
augmentedImageDatastore | imageInputLayer | trainNetwork

Topics
“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”
“Create Function Handle”
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image3dInputLayer
3-D image input layer

Description
A 3-D image input layer inputs 3-D images or volumes to a network and applies data normalization.

For 2-D image input, use imageInputLayer.

Creation

Syntax
layer = image3dInputLayer(inputSize)
layer = image3dInputLayer(inputSize,Name,Value)

Description

layer = image3dInputLayer(inputSize) returns a 3-D image input layer and specifies the
InputSize property.

layer = image3dInputLayer(inputSize,Name,Value) sets the optional properties using
name-value pairs. You can specify multiple name-value pairs. Enclose each property name in single
quotes.

Properties
3-D Image Input

InputSize — Size of the input
row vector of integers

Size of the input data, specified as a row vector of integers [h w d c], where h, w, d, and c
correspond to the height, width, depth, and number of channels respectively.

• For grayscale input, specify a vector with c equal to 1.
• For RGB input, specify a vector with c equal to 3.
• For multispectral or hyperspectral input, specify a vector with c equal to the number of channels.

For 2-D image input, use imageInputLayer.
Example: [132 132 116 3]

Normalization — Data normalization
'zerocenter' (default) | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' | 'none' |
function handle

This property is read-only.
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Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:

• 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics when using the
trainNetwork function. To save time when training, specify the required statistics for normalization
and set the ResetInputNormalization option in trainingOptions to 0 (fasle).

NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'element' – Element-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Data Types: char | string

Mean — Mean for zero-center and z-score normalization
[] (default) | 4-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a h-by-w-by-d-by-c array, a 1-by-1-by-1-
by-c array of means per channel, a numeric scalar, or [], where h, w, d, and c correspond to the
height, width, depth, and the number of channels of the mean, respectively.

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If
Mean is [], then the trainNetwork function calculates the mean. To train a dlnetwork object using
a custom training loop or assemble a network without training it using the assembleNetwork
function, you must set the Mean property to a numeric scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StandardDeviation — Standard deviation for z-score normalization
[] (default) | 4-D array | numeric scalar

Standard deviation for z-score normalization, specified as a h-by-w-by-d-by-c array, a 1-by-1-by-1-by-c
array of means per channel, a numeric scalar, or [], where h, w, d, and c correspond to the height,
width, depth, and the number of channels of the standard deviation, respectively.
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If you specify the StandardDeviation property, then Normalization must be 'zscore'. If
StandardDeviation is [], then the trainNetwork function calculates the standard deviation. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the StandardDeviation property to a numeric
scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Min — Minimum value for rescaling
[] (default) | 4-D array | numeric scalar

Minimum value for rescaling, specified as a h-by-w-by-d-by-c array, a 1-by-1-by-1-by-c array of minima
per channel, a numeric scalar, or [], where h, w, d, and c correspond to the height, width, depth, and
the number of channels of the minima, respectively.

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Min is [], then the trainNetwork function calculates the minima. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the Min property to a numeric scalar or a
numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | 4-D array | numeric scalar

Maximum value for rescaling, specified as a h-by-w-by-d-by-c array, a 1-by-1-by-1-by-c array of
maxima per channel, a numeric scalar, or [], where h, w, d, and c correspond to the height, width,
depth, and the number of channels of the maxima, respectively.

If you specify the Max property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Max is [], then the trainNetwork function calculates the maxima. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the Max property to a numeric scalar or a
numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

This property is read-only.

Number of inputs of the layer. The layer has no inputs.
Data Types: double
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InputNames — Input names
{} (default)

This property is read-only.

Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 3-D Image Input Layer

Create a 3-D image input layer for 132-by-132-by-116 color 3-D images with name 'input'. By
default, the layer performs data normalization by subtracting the mean image of the training set from
every input image.

layer = image3dInputLayer([132 132 116],'Name','input')

layer = 
  Image3DInputLayer with properties:

                      Name: 'input'
                 InputSize: [132 132 116 1]

   Hyperparameters
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
                      Mean: []

Include a 3-D image input layer in a Layer array.

layers = [
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,16,'Stride',4)
    reluLayer
    maxPooling3dLayer(2,'Stride',4)
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    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input         28x28x28x3 images with 'zerocenter' normalization
     2   ''   3-D Convolution         16 5x5x5 convolutions with stride [4  4  4] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   3-D Max Pooling         2x2x2 max pooling with stride [4  4  4] and padding [0  0  0; 0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Version History
Introduced in R2019a

AverageImage property will be removed
Not recommended starting in R2019b

AverageImage will be removed. Use Mean instead. To update your code, replace all instances of
AverageImage with Mean. There are no differences between the properties that require additional
updates to your code.

imageInputLayer and image3dInputLayer, by default, use channel-wise normalization
Behavior change in future release

Starting in R2019b, imageInputLayer and image3dInputLayer, by default, use channel-wise
normalization. In previous versions, these layers use element-wise normalization. To reproduce this
behavior, set the NormalizationDimension option of these layers to 'element'.

See Also
trainNetwork | convolution3dLayer | transposedConv3dLayer | averagePooling3dLayer |
maxPooling3dLayer | fullyConnectedLayer | imageInputLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

1 Deep Learning Functions

1-860



imageInputLayer
Image input layer

Description
An image input layer inputs 2-D images to a network and applies data normalization.

For 3-D image input, use image3dInputLayer.

Creation

Syntax
layer = imageInputLayer(inputSize)
layer = imageInputLayer(inputSize,Name,Value)

Description

layer = imageInputLayer(inputSize) returns an image input layer and specifies the
InputSize property.

layer = imageInputLayer(inputSize,Name,Value) sets the optional Normalization,
NormalizationDimension, Mean, StandardDeviation, Min, Max, SplitComplexInputs, and
Name properties using one or more name-value arguments. Enclose the property names in quotes.

Properties
Image Input

InputSize — Size of the input
row vector of integers

This property is read-only.

Size of the input data, specified as a row vector of integers [h w c], where h, w, and c correspond to
the height, width, and number of channels respectively.

• For grayscale images, specify a vector with c equal to 1.
• For RGB images, specify a vector with c equal to 3.
• For multispectral or hyperspectral images, specify a vector with c equal to the number of

channels.

For 3-D image or volume input, use image3dInputLayer.
Example: [224 224 3]
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Normalization — Data normalization
'zerocenter' (default) | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' | 'none' |
function handle

This property is read-only.

Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:

• 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics when using the
trainNetwork function. To save time when training, specify the required statistics for normalization
and set the ResetInputNormalization option in trainingOptions to 0 (fasle).

NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'element' – Element-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Data Types: char | string

Mean — Mean for zero-center and z-score normalization
[] (default) | 3-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a h-by-w-by-c array, a 1-by-1-by-c array
of means per channel, a numeric scalar, or [], where h, w, and c correspond to the height, width, and
the number of channels of the mean, respectively.

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If
Mean is [], then the trainNetwork function calculates the mean. To train a dlnetwork object using
a custom training loop or assemble a network without training it using the assembleNetwork
function, you must set the Mean property to a numeric scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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StandardDeviation — Standard deviation for z-score normalization
[] (default) | 3-D array | numeric scalar

Standard deviation for z-score normalization, specified as a h-by-w-by-c array, a 1-by-1-by-c array of
means per channel, a numeric scalar, or [], where h, w, and c correspond to the height, width, and
the number of channels of the standard deviation, respectively.

If you specify the StandardDeviation property, then Normalization must be 'zscore'. If
StandardDeviation is [], then the trainNetwork function calculates the standard deviation. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the StandardDeviation property to a numeric
scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Min — Minimum value for rescaling
[] (default) | 3-D array | numeric scalar

Minimum value for rescaling, specified as a h-by-w-by-c array, a 1-by-1-by-c array of minima per
channel, a numeric scalar, or [], where h, w, and c correspond to the height, width, and the number
of channels of the minima, respectively.

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Min is [], then the trainNetwork function calculates the minima. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the Min property to a numeric scalar or a
numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | 3-D array | numeric scalar

Maximum value for rescaling, specified as a h-by-w-by-c array, a 1-by-1-by-c array of maxima per
channel, a numeric scalar, or [], where h, w, and c correspond to the height, width, and the number
of channels of the maxima, respectively.

If you specify the Max property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Max is [], then the trainNetwork function calculates the maxima. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the Max property to a numeric scalar or a
numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SplitComplexInputs — Flag to split input data into real and imaginary components
0 (false) (default) | 1 (true)

This property is read-only.

Flag to split input data into real and imaginary components specified as one of these values:

• 0 (false) – Do not split input data.
• 1 (true) – Split data into real and imaginary components.

When SplitComplexInputs is 1, then the layer outputs twice as many channels as the input data.
For example, if the input data is complex-values with numChannels channels, then the layer outputs
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data with 2*numChannels channels, where channels 1 through numChannels contain the real
components of the input data and numChannels+1 through 2*numChannels contain the imaginary
components of the input data. If the input data is real, then channels numChannels+1 through
2*numChannels are all zero.

To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.

For an example showing how to train a network with complex-valued data, see “Train Network with
Complex-Valued Data”.

DataAugmentation — Data augmentation transforms
'none' (default) | 'randcrop' | 'randfliplr' | cell array of 'randcrop' and 'randfliplr'

This property is read-only.

Note The DataAugmentation property is not recommended. To preprocess images with cropping,
reflection, and other geometric transformations, use augmentedImageDatastore instead.

Data augmentation transforms to use during training, specified as one of the following.

• 'none' — No data augmentation
• 'randcrop' — Take a random crop from the training image. The random crop has the same size

as the input size.
• 'randfliplr' — Randomly flip the input images horizontally with a 50% chance.
• Cell array of 'randcrop' and 'randfliplr'. The software applies the augmentation in the

order specified in the cell array.

Augmentation of image data is another way of reducing overfitting [1], [2].
Data Types: string | char | cell

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

This property is read-only.

Number of inputs of the layer. The layer has no inputs.
Data Types: double

InputNames — Input names
{} (default)
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This property is read-only.

Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Image Input Layer

Create an image input layer for 28-by-28 color images with name 'input'. By default, the layer
performs data normalization by subtracting the mean image of the training set from every input
image.

inputlayer = imageInputLayer([28 28 3],'Name','input')

inputlayer = 
  ImageInputLayer with properties:

                      Name: 'input'
                 InputSize: [28 28 3]
        SplitComplexInputs: 0

   Hyperparameters
          DataAugmentation: 'none'
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
                      Mean: []

Include an image input layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
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    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Version History
Introduced in R2016a

AverageImage property will be removed
Not recommended starting in R2019b

AverageImage will be removed. Use Mean instead. To update your code, replace all instances of
AverageImage with Mean. There are no differences between the properties that require additional
updates to your code.

imageInputLayer and image3dInputLayer, by default, use channel-wise normalization
Behavior change in future release

Starting in R2019b, imageInputLayer and image3dInputLayer, by default, use channel-wise
normalization. In previous versions, these layers use element-wise normalization. To reproduce this
behavior, set the NormalizationDimension option of these layers to 'element'.

References
[1] Krizhevsky, A., I. Sutskever, and G. E. Hinton. "ImageNet Classification with Deep Convolutional

Neural Networks". Advances in Neural Information Processing Systems. Vol 25, 2012.

[2] Cireşan, D., U. Meier, J. Schmidhuber. "Multi-column Deep Neural Networks for Image
Classification". IEEE Conference on Computer Vision and Pattern Recognition, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support 'Normalization' specified using a function handle.
• Code generation does not support complex input and does not support 'SplitComplexInputs'

option.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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Usage notes and limitations:

• Code generation does not support 'Normalization' specified using a function handle.
• Code generation does not support complex input and does not support 'SplitComplexInputs'

option.

See Also
trainNetwork | convolution2dLayer | fullyConnectedLayer | maxPooling2dLayer |
augmentedImageDatastore | image3dInputLayer | Deep Network Designer |
featureInputLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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imageLIME
Explain network predictions using LIME

Syntax
scoreMap = imageLIME(net,X,label)
[scoreMap,featureMap,featureImportance] = imageLIME(net,X,label)
___  = imageLIME( ___ ,Name,Value)

Description
scoreMap = imageLIME(net,X,label) uses the locally-interpretable model-agnostic explanation
(LIME) technique to compute a map of the importance of the features in the input image X when the
network net evaluates the class score for the class given by label. Use this function to explain
classification decisions and check that your network is focusing on the appropriate features of the
image.

The LIME technique approximates the classification behavior of the net using a simpler, more
interpretable model. By generating synthetic data from input X, classifying the synthetic data using
net, and then using the results to fit a simple regression model, the imageLIME function determines
the importance of each feature of X to the network's classification score for class given by label.

This function requires Statistics and Machine Learning Toolbox.

[scoreMap,featureMap,featureImportance] = imageLIME(net,X,label) also returns a
map of the features used to compute the LIME results and the calculated importance of each feature.

___  = imageLIME( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example,
'NumFeatures',100 sets the target number of features to 100.

Examples

Visualize Which Parts of an Image are Important for Classification

Use imageLIME to visualize the parts of an image are important to a network for a classification
decision.

Import the pretrained network SqueezeNet.

net = squeezenet;

Import the image and resize to match the input size for the network.

X = imread("laika_grass.jpg");
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Display the image. The image is of a dog named Laika.
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imshow(X)

Classify the image to get the class label.

label = classify(net,X)

label = categorical
     toy poodle 

Use imageLIME to determine which parts of the image are important to the classification result.

scoreMap = imageLIME(net,X,label);

Plot the result over the original image with transparency to see which areas of the image affect the
classification score.

figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5)
colormap jet
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The network focuses predominantly on Laika's head and back to make the classification decision.
Laika's eye and ear are also important to the classification result.

Visualize Only the Most Important Features

Use imageLIME to determine the most important features in an image and isolate them from the
unimportant features.

Import the pretrained network SqueezeNet.

net = squeezenet;

Import the image and resize to match the input size for the network.

X = imread("sherlock.jpg");
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Classify the image to get the class label.

label = classify(net,X)

label = categorical
     golden retriever 

Compute the map of the feature importance and also obtain the map of the features and the feature
importance. Set the image segmentation method to 'grid', the number of features to 64, and the
number of synthetic images to 3072.

[scoreMap,featureMap,featureImportance]  = imageLIME(net,X,label,'Segmentation','grid','NumFeatures',64,'NumSamples',3072);
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Plot the result over the original image with transparency to see which areas of the image affect the
classification score.

figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5)
colormap jet
colorbar

Use the feature importance to find the indices of the most important five features.

numTopFeatures = 5;
[~,idx] = maxk(featureImportance,numTopFeatures);

Use the map of the features to mask out the image so only the most important five features are
visible. Display the masked image.

mask = ismember(featureMap,idx);
maskedImg = uint8(mask).*X;
figure
imshow(maskedImg);
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View Important Features Using Custom Segmentation Map

Use imageLIME with a custom segmentation map to view the most important features for a
classification decision.

Import the pretrained network GoogLeNet.

net = googlenet;

Import the image and resize to match the input size for the network.

X = imread("sherlock.jpg");
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Classify the image to get the class label.

label = classify(net,X)

label = categorical
     golden retriever 

Create a matrix defining a custom segmentation map which divides the image into triangular
segments. Each triangular segment represents a feature.

Start by defining a matrix with size equal to the input size of the image.

segmentationMap = zeros(inputSize(1));
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Next, create a smaller segmentation map which divides a 56-by-56 pixel region into two triangular
features. Assign values 1 and 2 to the upper and lower segments, representing the first and second
features, respectively.

blockSize = 56;

segmentationSubset = ones(blockSize);
segmentationSubset = tril(segmentationSubset) + segmentationSubset;

% Set the diagonal elements to alternate values 1 and 2.
segmentationSubset(1:(blockSize+1):end) = repmat([1 2],1,blockSize/2)';

To create a custom segmentation map for the whole image, repeat the small segmentation map. Each
time you repeat the smaller map, increase the feature index values so that the pixels in each
triangular segment correspond to a unique feature. In the final matrix, value 1 indicates the first
feature, value 2 the second feature, and so on for each segment in the image.

blocksPerSide = inputSize(1)/blockSize;
subset = 0;
for i=1:blocksPerSide
    for j=1:blocksPerSide
        xidx = (blockSize*(i-1))+1:(blockSize*i);
        yidx = (blockSize*(j-1))+1:(blockSize*j);
        segmentationMap(xidx,yidx) = segmentationSubset + 2*subset;
        subset = subset + 1;
    end
end

View the segmentation map. This map divides the image into 32 triangular regions.

figure
imshow(X)
hold on
imagesc(segmentationMap,'AlphaData',0.8);
title('Custom Segmentation Map')
colormap gray
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Use imageLIME with the custom segmentation map to determine which parts of the image are most
important to the classification result.

scoreMap = imageLIME(net,X,label, ...
    'Segmentation',segmentationMap);

Plot the result of imageLIME over the original image to see which areas of the image affect the
classification score.

figure;
imshow(X)
hold on
title('Image LIME (Golden Retriever)')
colormap jet;
imagesc(scoreMap, "AlphaData", 0.5);
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Red areas of the map have a higher importance — when these areas are removed, the score for the
golden retriever class goes down. The most important feature for this classification is the ear.

Input Arguments
net — Image classification network
SeriesNetwork object | DAGNetwork object

Image classification network, specified as a SeriesNetwork object or a DAGNetwork object. You can
get a trained network by importing a pretrained network or by training your own network using the
trainNetwork function. For more information about pretrained networks, see “Pretrained Deep
Neural Networks”.

net must contain a single input layer and a single output layer. The input layer must be an
imageInputLayer. The output layer must be a classificationLayer.

X — Input image
numeric array

Input image, specified as a numeric array.

The image must be the same size as the image input size of the network net. The input size is
specified by the InputSize property of the network's imageInputLayer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

label — Class label
categorical | char vector | string scalar | vector

Class label used to calculate the feature importance map, specified as a categorical, a char vector, a
string scalar or a vector of these values.
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If you specify label as a vector, the software calculates the feature importance for each class label
independently. In that case, scoreMap(:,:,k) and featureImportance(idx,k) correspond to
the map of feature importance and the importance of feature idx for the kth element in label,
respectively.
Example: ["cat" "dog"]
Data Types: char | string | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumFeatures',100,'Segmentation','grid',
'OutputUpsampling','bicubic','ExecutionEnvironment','gpu' segments the input image
into a grid of approximately 100 features, executes the calculation on the GPU, and upsamples the
resulting map to the same size as the input image using bicubic interpolation.

NumFeatures — Target number of features
49 (default) | positive integer

Target number of features to divide the input image into, specified as the comma-separated pair
consisting of 'NumFeatures' and a positive integer.

A larger value of 'NumFeatures' divides the input image into more, smaller features. To get the
best results when using a larger number of features, also increase the number of synthetic images
using the 'NumSamples' name-value pair.

The exact number of features depends on the input image and segmentation method specified using
the 'Segmentation' name-value pair and can be less than the target number of features.

• When you specify 'Segmentation','superpixels', the actual number of features can be
greater or less than the number specified using 'NumFeatures'.

• When you specify 'Segmentation','grid', the actual number of features can be less than the
number specified using 'NumFeatures'. If your input image is square, specify 'NumFeatures'
as a square number.

• When you specify 'Segmentation',segmentation, where segmentation is a two-dimensional
matrix, 'NumFeatures' is the same as the number of unique elements in the matrix.

Example: 'NumFeatures',100
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumSamples — Number of synthetic images
2048 (default) | positive integer

Number of synthetic images to generate, specified as the comma-separated pair consisting of
'NumSamples' and a positive integer.

A larger number of synthetic images gives better results but takes more time to compute.
Example: 'NumSamples',1024
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Segmentation — Segmentation method
'superpixels' (default) | 'grid' | numeric matrix

Segmentation method to use to divide the input image into features, specified as the comma-
separated pair consisting of 'Segmentation' and 'superpixels', 'grid', or a two-dimensional
segmentation matrix.

The imageLIME function segments the input image into features in the following ways depending on
the segmentation method.

• 'superpixels' — Input image is divided into superpixel features, using the superpixels
function. Features are irregularly shaped, based on the value of the pixels. This option requires
Image Processing Toolbox.

• 'grid' — Input image is divided into a regular grid of features. Features are approximately
square, based on the aspect ratio of the input image and the specified value of 'NumFeatures'.
The number of grid cells can be smaller than the specified value of 'NumFeatures'. If the input
image is square, specify 'NumFeatures' as a square number.

• numeric matrix — Input image is divided into custom features, using the numeric matrix as a map,
where the integer value of each pixel specifies the feature of the corresponding pixel.
'NumFeatures' is the same as the number of unique elements in the matrix. The size of the
matrix must match the size of the input image.

For photographic image data, the 'superpixels' option usually gives better results. In this case,
features are based on the contents of the image, by segmenting the image into regions of similar
pixel value. For other types of images, such as spectrograms, the more regular 'grid' option or a
custom segmentation map can provide more useful results.
Example: 'Segmentation','grid'

Model — Type of simple model
'tree' (default) | 'linear'

Type of simple model to fit, specified as the specified as the comma-separated pair consisting of
'Model' and 'tree' or 'linear'.

The imageLIME function classifies the synthetic images using the network net and then uses the
results to fit a simple, interpretable model. The methods used to fit the results and determine the
importance of each feature depend on the type of simple model used.

• 'tree' — Fit a regression tree using fitrtree then compute the importance of each feature
using predictorImportance

• 'linear' — Fit a linear model with lasso regression using fitrlinear then compute the
importance of each feature using the weights of the linear model.

Example: 'Model','linear'
Data Types: char | string

OutputUpsampling — Output upsampling method
'nearest' (default) | 'bicubic' | 'none'

Output upsampling method to use when segmentation method is 'grid', specified as the comma-
separated pair consisting of 'OutputUpsampling' and one of the following.
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• 'nearest' — Use nearest-neighbor interpolation expand the map to the same size as the input
data. The map indicates the size of the each feature with respect to the size of the input data.

• 'bicubic' — Use bicubic interpolation to produce a smooth map the same size as the input data.
• 'none' — Use no upsampling. The map can be smaller than the input data.

If 'OutputUpsampling' is 'nearest' or 'bicubic', the computed map is upsampled to the size
of the input data using the imresize function.
Example: 'OutputUpsampling','bicubic'

MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use to compute the map feature importance, specified as the comma-
separated pair consisting of 'MiniBatchSize' and a positive integer.

A mini-batch is a subset of the set of synthetic images. The mini-batch size specifies the number of
synthetic images that are passed to the network at once. Larger mini-batch sizes lead to faster
computation, at the cost of more memory.
Example: 'MiniBatchSize',256

ExecutionEnvironment — Hardware resource
'auto' (default) | 'cpu' | 'gpu'

Hardware resource for computing map, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and one of the following.

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.

The GPU option requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also
have a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). If you choose the 'ExecutionEnvironment','gpu'
option and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns
an error.
Example: 'ExecutionEnvironment','gpu'

Output Arguments
scoreMap — Map of feature importance
numeric matrix | numeric array

Map of feature importance, returned as a numeric matrix or a numeric array. Areas in the map with
higher positive values correspond to regions of input data that contribute positively to the specified
classification label.

The value of scoreMap(i,j) denotes the importance of the image pixel (i,j) to the simple model,
except when you use the options 'Segmentation','grid', and 'OutputUpsampling','none'.
In that case, the scoreMap is smaller than the input image, and the value of scoreMap(i,j)
denotes the importance of the feature at position (i,j) in the grid of features.
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If label is specified as a vector, the change in classification score for each class label is calculated
independently. In that case, scoreMap(:,:,k) corresponds to the occlusion map for the kth element
in label.

featureMap — Map of features
numeric matrix

Map of features, returned as a numeric matrix.

For each pixel (i,j) in the input image, idx = featureMap(i,j) is an integer corresponding to
the index of the feature containing that pixel.

featureImportance — Feature importance
numeric vector | numeric matrix

Feature importance, returned as a numeric vector or a numeric matrix.

The value of featureImportance(idx) is the calculated importance of the feature specified by
idx. If you provide labels as a vector of categorical values, char vectors, or string scalars, then
featureImportance(idx,k) corresponds to the importance of feature idx for label(k).

More About
LIME

The locally interpretable model-agnostic explanations (LIME) technique is an explainability technique
used to explain the classification decisions made by a deep neural network.

Given the classification decision of deep network for a piece of input data, the LIME technique
calculates the importance of each feature of the input data to the classification result.

The LIME technique approximates the behavior of a deep neural network using a simpler, more
interpretable model, such as a regression tree. To map the importance of different parts of the input
image, the imageLIME function of performs the following steps.

• Segment the image into features.
• Generate synthetic image data by randomly including or excluding features. Each pixel in an

excluded feature is replaced with the value of the average image pixel.
• Classify the synthetic images using the deep network.
• Fit a regression model using the presence or absence of image features for each synthetic image

as binary regression predictors for the scores of the target class.
• Compute the importance of each feature using the regression model.

The resulting map can be used to determine which features were most important to a particular
classification decision. This can be especially useful for making sure your network is focusing on the
appropriate features when classifying.

Version History
Introduced in R2020b
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See Also
activations | classify | occlusionSensitivity | gradCAM

Topics
“Understand Network Predictions Using LIME”
“Investigate Spectrogram Classifications Using LIME”
“Interpret Deep Network Predictions on Tabular Data Using LIME”
“Understand Network Predictions Using Occlusion”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”
“Investigate Network Predictions Using Class Activation Mapping”
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importCaffeLayers
Import convolutional neural network layers from Caffe

Syntax
layers = importCaffeLayers(protofile)
layers = importCaffeLayers(protofile,'InputSize',sz)

Description
layers = importCaffeLayers(protofile) imports the layers of a Caffe [1] network. The
function returns the layers defined in the .prototxt file protofile.

This function requires Deep Learning Toolbox Importer for Caffe Models support package. If this
support package is not installed, then the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].

layers = importCaffeLayers(protofile,'InputSize',sz) specifies the size of the input
data. If the .prototxt file does not specify the size of the input data, then you must specify the input
size.

Examples

Download Deep Learning Toolbox Importer for Caffe Models Support Package

Download and install Deep Learning Toolbox Importer for Caffe Models support package.

Download the required support package by typing importCaffeLayers at the command line.

importCaffeLayers

If Deep Learning Toolbox Importer for Caffe Models support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install.

Import Layers from Caffe Network

Specify the example file 'digitsnet.prototxt' to import.

protofile = 'digitsnet.prototxt';

Import the network layers.

layers = importCaffeLayers(protofile)

layers = 

  1x7 Layer array with layers:
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     1   'testdata'   Image Input             28x28x1 images
     2   'conv1'      Convolution             20 5x5x1 convolutions with stride [1  1] and padding [0  0]
     3   'relu1'      ReLU                    ReLU
     4   'pool1'      Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]
     5   'ip1'        Fully Connected         10 fully connected layer
     6   'loss'       Softmax                 softmax
     7   'output'     Classification Output   crossentropyex with 'class1', 'class2', and 8 other classes

Input Arguments
protofile — File name
character vector | string scalar

File name of the .prototxt file containing the network architecture, specified as a character vector
or a string scalar. protofile must be in the current folder, in a folder on the MATLAB path, or you
must include a full or relative path to the file. If the .prototxt file does not specify the size of the
input data, you must specify the size using the sz input argument.
Example: 'digitsnet.prototxt'

sz — Size of input data
row vector

Size of input data, specified as a row vector. Specify a vector of two or three integer values [h,w], or
[h,w,c] corresponding to the height, width, and the number of channels of the input data.
Example: [28 28 1]

Output Arguments
layers — Network architecture
Layer array | LayerGraph object

Network architecture, returned as a Layer array or a LayerGraph object. Caffe networks that take
color images as input expect the images to be in BGR format. During import, importCaffeLayers
modifies the network so that the imported MATLAB network takes RGB images as input.

More About
Generate Code for Imported Network Architecture

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Deep Learning Code Generation”.

• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM Compute library. Alternatively, you can generate generic C or
C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).
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importCaffeLayers returns the network architecture layers as a Layer or LayerGraph object.
For code generation, you must first convert the imported Layer or LayerGraph object to a network.
Convert a Layer or LayerGraph object to a DAGNetwork or SeriesNetwork object by using
assembleNetwork. Convert a Layer or LayerGraph object to a dlnetwork object by using
dlnetwork. For more information on MATLAB Coder and GPU Coder support for Deep Learning
Toolbox objects, see “Supported Classes” (MATLAB Coder) and “Supported Classes” (GPU Coder),
respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see “Code Generation” on page 1-866 and “GPU Code
Generation” on page 1-867 of imageInputLayer.

Use Imported Network Layers on GPU

importCaffeLayers does not execute on a GPU. However, importCaffeLayers imports the layers
of a pretrained neural network for deep learning as a Layer array or LayerGraph object, which you
can use on a GPU.

• Convert the imported layers to a DAGNetwork object by using assembleNetwork. On the
DAGNetwork object, you can then predict class labels on either a CPU or GPU by using classify.
Specify the hardware requirements using the name-value argument ExecutionEnvironment.
For networks with multiple outputs, use the predict function and specify the name-value
argument ReturnCategorical as true.

• Convert the imported layers to a dlnetwork object by using dlnetwork. On the dlnetwork
object, you can then predict class labels on either a CPU or GPU by using predict. The function
predict executes on the GPU if either the input data or network parameters are stored on the
GPU.

• If you use minibatchqueue to process and manage the mini-batches of input data, the
minibatchqueue object converts the output to a GPU array by default if a GPU is available.

• Use dlupdate to convert the learnable parameters of a dlnetwork object to GPU arrays.

net = dlupdate(@gpuArray,net)
• You can train the imported layers on either a CPU or GPU by using trainNetwork. To specify

training options, including options for the execution environment, use the trainingOptions
function. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For more information on how to accelerate training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud”.

Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

Tips
• importCaffeLayers can import networks with the following Caffe layer types, with some

limitations:
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Caffe Layer Deep Learning Toolbox Layer
BatchNormLayer batchNormalizationLayer
ConcatLayer depthConcatenationLayer
ConvolutionLayer convolution2dLayer
DeconvolutionLayer transposedConv2dLayer
DropoutLayer dropoutLayer
EltwiseLayer (only sum) additionLayer
EuclideanLossLayer RegressionOutputLayer
InnerProductLayer fullyConnectedLayer
InputLayer imageInputLayer
LRNLayer (Local Response Normalization) crossChannelNormalizationLayer
PoolingLayer maxPooling2dLayer or

averagePooling2dLayer
ReLULayer reluLayer or leakyReluLayer
ScaleLayer batchNormalizationLayer
SigmoidLayer nnet.caffe.layer.SigmoidLayer
SoftmaxLayer softmaxLayer
TanHLayer tanhLayer

If the network contains any other type of layer, then the software returns an error.

The function imports only the layers that protofile specifies with the include-phase TEST. The
function ignores any layers that protofile specifies with the include-phase TRAIN.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

Version History
Introduced in R2017a

References
[1] Caffe. https://caffe.berkeleyvision.org/.

[2] Caffe Model Zoo. https://caffe.berkeleyvision.org/model_zoo.html.

See Also
importCaffeNetwork | importONNXLayers | importTensorFlowLayers | importONNXNetwork
| importTensorFlowNetwork | importNetworkFromPyTorch | assembleNetwork |
exportONNXNetwork | exportNetworkToTensorFlow

Topics
“Deep Learning in MATLAB”
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“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
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importCaffeNetwork
Import pretrained convolutional neural network models from Caffe

Syntax
net = importCaffeNetwork(protofile,datafile)
net = importCaffeNetwork( ___ ,Name,Value)

Description
net = importCaffeNetwork(protofile,datafile) imports a pretrained network from Caffe
[1]. The function returns the pretrained network with the architecture specified by the .prototxt
file protofile and with network weights specified by the .caffemodel file datafile.

This function requires Deep Learning Toolbox Importer for Caffe Models support package. If this
support package is not installed, the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].

net = importCaffeNetwork( ___ ,Name,Value) returns a network with additional options
specified by one or more Name,Value pair arguments using any of the previous syntaxes.

Examples

Download Deep Learning Toolbox Importer for Caffe Models Support Package

Download and install Deep Learning Toolbox Importer for Caffe Models support package.

To download the required support package, type importCaffeNetwork at the command line.

importCaffeNetwork

If Deep Learning Toolbox Importer for Caffe Models support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install.

Import Caffe Network

Specify files to import.

protofile = 'digitsnet.prototxt';
datafile = 'digits_iter_10000.caffemodel';

Import network.

net = importCaffeNetwork(protofile,datafile)

net = 
  SeriesNetwork with properties:
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         Layers: [7×1 nnet.cnn.layer.Layer]
     InputNames: {'testdata'}
    OutputNames: {'ClassificationOutput'}

Input Arguments
protofile — File name
character vector | string scalar

File name of the .prototxt file containing the network architecture, specified as a character vector
or a string scalar. protofile must be in the current folder, in a folder on the MATLAB path, or you
must include a full or relative path to the file. If the .prototxt file does not specify the size of the
input data, you must specify the size using the 'InputSize' name-value pair argument.
Example: 'digitsnet.prototxt'

datafile — File name
character vector | string scalar

File name of the .caffemodel file containing the network weights, specified as a character vector or
a string scalar. datafile must be in the current folder, in a folder on the MATLAB path, or you must
include a full or relative path to the file. To import network layers without weights, use
importCaffeLayers.
Example: 'digits_iter_10000.caffemodel'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: importCaffeNetwork(protofile,datafile,'AverageImage',I) imports a
pretrained network using the average image I for zero-center normalization.

InputSize — Size of input data
row vector

Size of input data, specified as a row vector. Specify a vector of two or three integer values [h,w], or
[h,w,c] corresponding to the height, width, and the number of channels of the input data. If
the .prototxt file does not specify the size of the input data, then you must specify the input size.
Example: [28 28 1]

AverageImage — Average image
matrix

Average image for zero-center normalization, specified as a matrix. If you specify an image, then you
must specify an image of the same size as the input data. If you do not specify an image, the software
uses the data specified in the .prototxt file, if present. Otherwise, the function sets the
Normalization property of the image input layer of the network to 'none'.

 importCaffeNetwork

1-887



Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If you specify a string array or cell array of character vectors str, then the
software sets the classes of the output layer to categorical(str,str). If Classes is 'auto',
then the function sets the classes to categorical(1:N), where N is the number of classes.
Data Types: char | categorical | string | cell

Output Arguments
net — Imported pretrained Caffe network
SeriesNetwork object | DAGNetwork object

Imported pretrained Caffe network, returned as a SeriesNetwork object or DAGNetwork object.
Caffe networks that take color images as input expect the images to be in BGR format. During import,
importCaffeNetwork modifies the network so that the imported MATLAB network takes RGB
images as input.

More About
Generate Code for Imported Network

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Deep Learning Code Generation”.

• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM Compute library. Alternatively, you can generate generic C or
C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).

importCaffeNetwork returns the network net as a DAGNetwork or SeriesNetwork object. Both
these objects support code generation. For more information on MATLAB Coder and GPU Coder
support for Deep Learning Toolbox objects, see “Supported Classes” (MATLAB Coder) and
“Supported Classes” (GPU Coder), respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see “Code Generation” on page 1-866 and “GPU Code
Generation” on page 1-867 of imageInputLayer.
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Use Imported Network on GPU

importCaffeNetwork does not execute on a GPU. However, importCaffeNetwork imports a
pretrained neural network for deep learning as a DAGNetwork or SeriesNetwork object, which you
can use on a GPU.

• You can make predictions with the imported network on either a CPU or GPU by using classify.
Specify the hardware requirements using the name-value argument ExecutionEnvironment.
For networks with multiple outputs, use the predict function.

• You can make predictions with the imported network on either a CPU or GPU by using predict.
Specify the hardware requirements using the name-value argument ExecutionEnvironment. If
the network has multiple outputs, specify the name-value argument ReturnCategorical as
true.

• You can train the imported network on either a CPU or GPU by using trainNetwork. To specify
training options, including options for the execution environment, use the trainingOptions
function. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For more information on how to accelerate training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud”.

Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

Tips
• importCaffeNetwork can import networks with the following Caffe layer types, with some

limitations:

Caffe Layer Deep Learning Toolbox Layer
BatchNormLayer batchNormalizationLayer
ConcatLayer depthConcatenationLayer
ConvolutionLayer convolution2dLayer
DeconvolutionLayer transposedConv2dLayer
DropoutLayer dropoutLayer
EltwiseLayer (only sum) additionLayer
EuclideanLossLayer RegressionOutputLayer
InnerProductLayer fullyConnectedLayer
InputLayer imageInputLayer
LRNLayer (Local Response Normalization) crossChannelNormalizationLayer
PoolingLayer maxPooling2dLayer or

averagePooling2dLayer
ReLULayer reluLayer or leakyReluLayer
ScaleLayer batchNormalizationLayer
SigmoidLayer nnet.caffe.layer.SigmoidLayer
SoftmaxLayer softmaxLayer
TanHLayer tanhLayer
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If the network contains any other type of layer, then the software returns an error.

The function imports only the layers that protofile specifies with the include-phase TEST. The
function ignores any layers that protofile specifies with the include-phase TRAIN.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

Version History
Introduced in R2017a

'ClassNames' option will be removed
Not recommended starting in R2018b

'ClassNames' will be removed. Use 'Classes' instead. To update your code, replace all instances
of 'ClassNames' with 'Classes'. There are some differences between the corresponding
properties in classification output layers that require additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character vectors. The
Classes property is a categorical array. To use the value of Classes with functions that require cell
array input, convert the classes using the cellstr function.

References
[1] Caffe. https://caffe.berkeleyvision.org/.

[2] Caffe Model Zoo. https://caffe.berkeleyvision.org/model_zoo.html.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = importCaffeNetwork.

See Also
importCaffeLayers | importONNXNetwork | importTensorFlowNetwork |
importNetworkFromPyTorch | importONNXLayers | importTensorFlowLayers |
assembleNetwork | exportONNXNetwork | exportNetworkToTensorFlow

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
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importKerasLayers
Import layers from Keras network

Syntax
layers = importKerasLayers(modelfile)
layers = importKerasLayers(modelfile,Name,Value)

Description
layers = importKerasLayers(modelfile) imports the layers of a TensorFlow-Keras network
from a model file. The function returns the layers defined in the HDF5 (.h5) or JSON (.json) file
given by the file name modelfile.

This function requires the Deep Learning Toolbox Converter for TensorFlow Models support package.
If this support package is not installed, then the function provides a download link.

layers = importKerasLayers(modelfile,Name,Value) imports the layers from a TensorFlow-
Keras network with additional options specified by one or more name-value pair arguments.

For example, importKerasLayers(modelfile,'ImportWeights',true) imports the network
layers and the weights from the model file modelfile.

Examples

Download and Install Deep Learning Toolbox Converter for TensorFlow Models

Download and install the Deep Learning Toolbox Converter for TensorFlow Models support package.

Type importKerasLayers at the command line.

importKerasLayers

If the Deep Learning Toolbox Converter for TensorFlow Models support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
importing the layers from the model file 'digitsDAGnet.h5' at the command line. If the required
support package is installed, then the function returns a LayerGraph object.

modelfile = 'digitsDAGnet.h5';
net = importKerasLayers(modelfile)

net = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}
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Import Layers from Keras Network and Plot Architecture

Import the network layers from the model file digitsDAGnet.h5.

modelfile = 'digitsDAGnet.h5';
layers = importKerasLayers(modelfile) 

layers = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Plot the network architecture.

plot(layers)

Import Keras Network Layers and Train Network

Specify the network file to import.
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modelfile = 'digitsDAGnet.h5';

Import network layers.

layers = importKerasLayers(modelfile)

layers = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Load a data set for training a classifier to recognize new digits.

folder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(folder, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Partition the dataset into training and test sets.

numTrainFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainFiles,'randomize');

Set the training options.

options = trainingOptions('sgdm', ...
    'MaxEpochs',10, ...
    'InitialLearnRate',0.001);

Train network using training data.

net = trainNetwork(imdsTrain,layers,options);

Training on single CPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:01 |       15.62% |      31.6977 |          0.0010 |
|       1 |          50 |       00:00:15 |       63.28% |       1.2113 |          0.0010 |
|       2 |         100 |       00:00:29 |       85.16% |       0.4127 |          0.0010 |
|       3 |         150 |       00:00:41 |       96.88% |       0.1749 |          0.0010 |
|       4 |         200 |       00:00:55 |       99.22% |       0.0457 |          0.0010 |
|       5 |         250 |       00:01:09 |      100.00% |       0.0368 |          0.0010 |
|       6 |         300 |       00:01:24 |       96.88% |       0.1207 |          0.0010 |
|       7 |         350 |       00:01:37 |      100.00% |       0.0086 |          0.0010 |
|       7 |         400 |       00:01:53 |      100.00% |       0.0165 |          0.0010 |
|       8 |         450 |       00:02:07 |      100.00% |       0.0098 |          0.0010 |
|       9 |         500 |       00:02:22 |      100.00% |       0.0046 |          0.0010 |
|      10 |         550 |       00:02:38 |      100.00% |       0.0031 |          0.0010 |
|      10 |         580 |       00:02:46 |      100.00% |       0.0059 |          0.0010 |
|========================================================================================|
Training finished: Max epochs completed.

 importKerasLayers

1-893



Run the trained network on the test set that was not used to train the network and predict the image
labels (digits).

YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;

Calculate the accuracy.

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9852

Import Keras Network Architecture and Weights from Same File

Specify the network file to import layers and weights from.

modelfile = 'digitsDAGnet.h5';

Import the network architecture and weights from the files you specified. To import the layer weights,
specify 'ImportWeights' to be true. The function also imports the layers with their weights from
the same HDF5 file.

layers = importKerasLayers(modelfile,'ImportWeights',true)

layers = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

View the size of the weights in the second layer.

weights = layers.Layers(2).Weights;
size(weights)

ans = 1×4

     7     7     1    20

The function has imported the weights so the layer weights are non-empty.

Import Keras Network Architecture and Weights from Separate Files

Specify the network file to import layers from and the file containing weights.

modelfile = 'digitsDAGnet.json';
weights = 'digitsDAGnet.weights.h5';
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Import the network architecture and weights from the files you specified. The .json file does not
include an output layer. Specify the output layer, so that importKerasLayers adds an output layer at
the end of the networks architecture.

layers = importKerasLayers(modelfile, ...
    'ImportWeights',true, ...
    'WeightFile',weights, ...
    'OutputLayerType','classification')

layers = 
  LayerGraph with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")
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Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000
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Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m in
the current folder. Then, create two Gaussian noise layers with the same configurations as the
imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")

Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers
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ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
    ClassWeights: 'none'
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.
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net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Import Keras PReLU Layer

Import layers from a Keras network that has parametric rectified linear unit (PReLU) layers.

A PReLU layer performs a threshold operation, where for each channel, any input value less than zero
is multiplied by a scalar. The PReLU operation is given by

f xi =
xi if xi > 0
aixi if xi ≤ 0

where xi is the input of the nonlinear activation f  on channel i, and ai is the scaling parameter
controlling the slope of the negative part. The subscript i in ai indicates that the parameter can be a
vector and the nonlinear activation can vary on different channels.

importKerasNetwork and importKerasLayers can import a network that includes PReLU layers.
These functions support both scalar-valued and vector-valued scaling parameters. If a scaling
parameter is a vector, then the functions replace the vector with the average of the vector elements.
You can modify a PReLU layer to have a vector-valued scaling parameter after import.

Specify the network file to import.

modelfile = 'digitsDAGnetwithPReLU.h5';

digitsDAGnetwithPReLU includes two PReLU layers. One has a scalar-valued scaling parameter,
and the other has a vector-valued scaling parameter.

Import the network architecture and weights from modelfile.

layers = importKerasLayers(modelfile,'ImportWeights',true);

Warning: Layer 'p_re_lu_1' is a PReLU layer with a vector-valued parameter. The function replaces the parameter with the average of the vector elements. You can change the parameter back to a vector after import.

The importKerasLayers function displays a warning for the PReLu layer p_re_lu_1. The function
replaces the vector-valued scaling parameter of p_re_lu_1 with the average of the vector elements.
You can change the parameter back to a vector. First, find the index of the PReLU layer by viewing
the Layers property.

layers.Layers

ans = 
  13x1 Layer array with layers:

     1   'input_1'                       Image Input             28x28x1 images
     2   'conv2d_1'                      2-D Convolution         20 7x7x1 convolutions with stride [1  1] and padding 'same'
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     3   'conv2d_2'                      2-D Convolution         20 3x3x1 convolutions with stride [1  1] and padding 'same'
     4   'p_re_lu_1'                     PReLU                   PReLU layer
     5   'p_re_lu_2'                     PReLU                   PReLU layer
     6   'max_pooling2d_1'               2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     7   'max_pooling2d_2'               2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     8   'flatten_1'                     Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
     9   'flatten_2'                     Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    10   'concatenate_1'                 Depth concatenation     Depth concatenation of 2 inputs
    11   'dense_1'                       Fully Connected         10 fully connected layer
    12   'dense_1_softmax'               Softmax                 softmax
    13   'ClassificationLayer_dense_1'   Classification Output   crossentropyex

layers has two PReLU layers. Extract the fourth layer p_re_lu_1, which originally had a vector-
valued scaling parameter for a channel dimension.

tempLayer = layers.Layers(4)

tempLayer = 
  PreluLayer with properties:

        Name: 'p_re_lu_1'
    RawAlpha: [20x1 single]

   Learnable Parameters
       Alpha: 0.0044

   State Parameters
    No properties.

  Show all properties

The RawAlpha property contains the vector-valued scaling parameter, and the Alpha property
contains a scalar that is an element average of the vector values. Reshape RawAlpha to place the
vector values in the third dimension, which corresponds to the channel dimension. Then, replace
Alpha with the reshaped RawAlpha values.

tempLayer.Alpha = reshape(tempLayer.RawAlpha,[1,1,numel(tempLayer.RawAlpha)])

tempLayer = 
  PreluLayer with properties:

        Name: 'p_re_lu_1'
    RawAlpha: [20x1 single]

   Learnable Parameters
       Alpha: [1x1x20 single]

   State Parameters
    No properties.

  Show all properties

Replace the p_re_lu_1 layer in layers with tempLayer.

layers = replaceLayer(layers,'p_re_lu_1', tempLayer);
layers.Layers(4)
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ans = 
  PreluLayer with properties:

        Name: 'p_re_lu_1'
    RawAlpha: [20x1 single]

   Learnable Parameters
       Alpha: [1x1x20 single]

   State Parameters
    No properties.

  Show all properties

Now the p_re_lu_1 layer has a vector-valued scaling parameter.

Input Arguments
modelfile — Name of Keras model file
character vector | string scalar

Name of the model file containing the network architecture, and possibly the weights, specified as a
character vector or a string scalar. The file must be in the current folder, in a folder on the MATLAB
path, or you must include a full or relative path to the file.

If modelfile includes

• The network architecture and weights, then it must be in HDF5 (.h5) format.
• Only the network architecture, then it can be in HDF5 or JSON (.json) format.

If modelfile includes only the network architecture, then you can optionally supply the weights
using the 'ImportWeights' and 'WeightFile' name-value pair arguments. If you supply the
weights, then the weights file must be in HDF5 format.
Example: 'digitsnet.h5'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: importKerasLayers(modelfile,'OutputLayerType','classification') imports
the network layers from the model file modelfile and adds an output layer for a classification
problem at the end of the Keras layers.

OutputLayerType — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of output layer that the function appends to the end of the imported network architecture when
modelfile does not specify a loss function, specified as 'classification', 'regression', or
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'pixelclassification'. Appending a pixelClassificationLayer object requires Computer
Vision Toolbox.

If a network in modelfile has multiple outputs, then you cannot specify the output layer types using
this argument. importKerasLayers inserts placeholder layers for the outputs. After importing, you
can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively.
Example: 'OutputLayerType','regression'

ImageInputSize — Size of input images
vector of two or three numerical values

Size of the input images for the network, specified as a vector of two or three numerical values
corresponding to [height,width] for grayscale images and [height,width,channels] for color
images, respectively. The network uses this information when the modelfile does not specify the
input size.

If a network in modelfile has multiple inputs, then you cannot specify the input sizes using this
argument. importKerasLayers inserts placeholder layers for the inputs. After importing, you can
find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively.
Example: 'ImageInputSize',[28 28]

ImportWeights — Indicator to import weights
false (default) | true

Indicator to import weights as well as the network architecture, specified as either false or true.

• If 'ImportWeights' is true and modelfile includes the weights, then importKerasLayers
imports the weights from modelfile, which must have HDF5 (.h5) format.

• If 'ImportWeights' is true and modelfile does not include the weights, then you must
specify a separate file that includes weights, using the 'WeightFile' name-value pair argument.

Example: 'ImportWeights',true
Data Types: logical

WeightFile — Weight file name
character vector | string scalar

Weight file name, from which to import weights when modelfile does not include weights, specified
as a character vector or a string scalar. To use this name-value pair argument, you also must set
'ImportWeights' to true.

Weight file must be in the current folder, in a folder on the MATLAB path, or you must include a full
or relative path to the file.
Example: 'WeightFile','weights.h5'
Data Types: char | string
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Output Arguments
layers — Network architecture
Layer array object | LayerGraph object

Network architecture, returned as a Layer array object when the Keras network is of type
Sequential, or returned as a LayerGraph object when the Keras network is of type Model.

Limitations
• importKerasLayers supports TensorFlow-Keras versions as follows:

• The function fully supports TensorFlow-Keras versions up to 2.2.4.
• The function offers limited support for TensorFlow-Keras versions 2.2.5 to 2.4.0.

More About
Supported Keras Layers

importKerasLayers supports the following TensorFlow-Keras layer types for conversion into built-
in MATLAB layers, with some limitations.

TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
Add additionLayer
Activation, with activation names:

• elu
• gelu
• relu
• linear
• softmax
• sigmoid
• swish
• tanh

Layers:

• eluLayer
• geluLayer
• reluLayer or clippedReluLayer
• None
• softmaxLayer
• sigmoidLayer
• swishLayer
• tanhLayer

Advanced activations:

• ELU
• Softmax
• ReLU
• LeakyReLU
• PReLu*

Layers:

• eluLayer
• softmaxLayer
• reluLayer, clippedReluLayer, or

leakyReluLayer
• leakyReluLayer
• nnet.keras.layer.PreluLayer

AveragePooling1D averagePooling1dLayer with PaddingValue
specified as 'mean'

AveragePooling2D averagePooling2dLayer with PaddingValue
specified as 'mean'
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TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
BatchNormalization batchNormalizationLayer
Bidirectional(LSTM(__)) bilstmLayer
Concatenate depthConcatenationLayer
Conv1D convolution1dLayer
Conv2D convolution2dLayer
Conv2DTranspose transposedConv2dLayer
CuDNNGRU gruLayer
CuDNNLSTM lstmLayer
Dense fullyConnectedLayer
DepthwiseConv2D groupedConvolution2dLayer
Dropout dropoutLayer
Embedding wordEmbeddingLayer
Flatten nnet.keras.layer.FlattenCStyleLayer
GlobalAveragePooling1D globalAveragePooling1dLayer
GlobalAveragePooling2D globalAveragePooling2dLayer
GlobalMaxPool1D globalMaxPooling1dLayer
GlobalMaxPool2D globalMaxPooling2dLayer
GRU gruLayer
Input imageInputLayer, sequenceInputLayer, or

featureInputLayer
LSTM lstmLayer
MaxPool1D maxPooling1dLayer
MaxPool2D maxPooling2dLayer
Multiply multiplicationLayer
SeparableConv2D groupedConvolution2dLayer or

convolution2dLayer
TimeDistributed sequenceFoldingLayer before the wrapped

layer, and sequenceUnfoldingLayer after the
wrapped layer

UpSampling2D resize2dLayer
UpSampling3D resize3dLayer
ZeroPadding1D nnet.keras.layer.ZeroPadding1DLayer
ZeroPadding2D nnet.keras.layer.ZeroPadding2DLayer

* For a PReLU layer, importKerasLayers replaces a vector-valued scaling parameter with the
average of the vector elements. You can change the parameter back to a vector after import. For an
example, see “Import Keras PReLU Layer” on page 1-899.
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Supported Keras Loss Functions

importKerasLayers supports the following Keras loss functions:

• mean_squared_error
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy

Generate Code for Imported Network Architecture

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Deep Learning Code Generation”.

• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM Compute library. Alternatively, you can generate generic C or
C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).

importKerasLayers returns the network architecture layers as a Layer or LayerGraph object.
For code generation, you must first convert the imported Layer or LayerGraph object to a network.
Convert a Layer or LayerGraph object to a DAGNetwork or SeriesNetwork object by using
assembleNetwork. Convert a Layer or LayerGraph object to a dlnetwork object by using
dlnetwork. For more information on MATLAB Coder and GPU Coder support for Deep Learning
Toolbox objects, see “Supported Classes” (MATLAB Coder) and “Supported Classes” (GPU Coder),
respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see “Code Generation” on page 1-866 and “GPU Code
Generation” on page 1-867 of imageInputLayer.

Use Imported Network Layers on GPU

importKerasLayers does not execute on a GPU. However, importKerasLayers imports the layers
of a pretrained neural network for deep learning as a Layer array or LayerGraph object, which you
can use on a GPU.

• Convert the imported layers to a DAGNetwork object by using assembleNetwork. On the
DAGNetwork object, you can then predict class labels on either a CPU or GPU by using classify.
Specify the hardware requirements using the name-value argument ExecutionEnvironment.
For networks with multiple outputs, use the predict function and specify the name-value
argument ReturnCategorical as true.
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• Convert the imported layers to a dlnetwork object by using dlnetwork. On the dlnetwork
object, you can then predict class labels on either a CPU or GPU by using predict. The function
predict executes on the GPU if either the input data or network parameters are stored on the
GPU.

• If you use minibatchqueue to process and manage the mini-batches of input data, the
minibatchqueue object converts the output to a GPU array by default if a GPU is available.

• Use dlupdate to convert the learnable parameters of a dlnetwork object to GPU arrays.

net = dlupdate(@gpuArray,net)

• You can train the imported layers on either a CPU or GPU by using trainNetwork. To specify
training options, including options for the execution environment, use the trainingOptions
function. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For more information on how to accelerate training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud”.

Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

Tips
• If the network contains a layer that Deep Learning Toolbox Converter for TensorFlow Models does

not support (see “Supported Keras Layers” on page 1-903), then importKerasLayers inserts a
placeholder layer in place of the unsupported layer. To find the names and indices of the
unsupported layers in the network, use the findPlaceholderLayers function. You then can
replace a placeholder layer with a new layer that you define. To replace a layer, use
replaceLayer.

• You can replace a placeholder layer with a new layer that you define.

• If the network is a series network, then replace the layer in the array directly. For example,
layer(2) = newlayer;.

• If the network is a DAG network, then replace the layer using replaceLayer. For an example,
see “Assemble Network from Pretrained Keras Layers” on page 1-895.

• You can import a Keras network with multiple inputs and multiple outputs (MIMO). Use
importKerasNetwork if the network includes input size information for the inputs and loss
information for the outputs. Otherwise, use importKerasLayers. The importKerasLayers
function inserts placeholder layers for the inputs and outputs. After importing, you can find and
replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively. The workflow for importing MIMO Keras networks is the same as the workflow for
importing MIMO ONNX networks. For an example, see “Import and Assemble ONNX Network
with Multiple Outputs” on page 1-972. To learn about a deep learning network with multiple
inputs and multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way the images that were used to train the imported model
were preprocessed. The most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR format to RGB format.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).
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For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

• For more tips, see “Tips on Importing Models from TensorFlow, PyTorch, and ONNX”.

Alternative Functionality
• Use importKerasNetwork or importKerasLayers to import a TensorFlow-Keras network in

HDF5 or JSON format. If the TensorFlow network is in the saved model format, use
importTensorFlowNetwork or importTensorFlowLayers.

• If you import a custom TensorFlow-Keras layer or if the software cannot convert a TensorFlow-
Keras layer into an equivalent built-in MATLAB layer, you can use importTensorFlowNetwork
or importTensorFlowLayers, which try to generate a custom layer. For example,
importTensorFlowNetwork and importTensorFlowLayers generate a custom layer when
you import a TensorFlow-Keras Lambda layer.

Version History
Introduced in R2017b

References
[1] Keras: The Python Deep Learning library. https://keras.io.

See Also
importKerasNetwork | importTensorFlowLayers | importONNXLayers |
importTensorFlowNetwork | importNetworkFromPyTorch | findPlaceholderLayers |
replaceLayer | assembleNetwork | importONNXNetwork | exportNetworkToTensorFlow |
exportONNXNetwork

Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
“Tips on Importing Models from TensorFlow, PyTorch, and ONNX”
“Pretrained Deep Neural Networks”
“Define Custom Deep Learning Layers”
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importKerasNetwork
Import pretrained Keras network and weights

Syntax
net = importKerasNetwork(modelfile)
net = importKerasNetwork(modelfile,Name,Value)

Description
net = importKerasNetwork(modelfile) imports a pretrained TensorFlow-Keras network and its
weights from modelfile.

This function requires the Deep Learning Toolbox Converter for TensorFlow Models support package.
If this support package is not installed, the function provides a download link.

net = importKerasNetwork(modelfile,Name,Value) imports a pretrained TensorFlow-Keras
network and its weights with additional options specified by one or more name-value pair arguments.

For example, importKerasNetwork(modelfile,'WeightFile',weights) imports the network
from the model file modelfile and weights from the weight file weights. In this case, modelfile
can be in HDF5 or JSON format, and the weight file must be in HDF5 format.

Examples

Download and Install Deep Learning Toolbox Converter for TensorFlow Models

Download and install the Deep Learning Toolbox Converter for TensorFlow Models support package.

Type importKerasNetwork at the command line.

importKerasNetwork

If the Deep Learning Toolbox Converter for TensorFlow Models support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
importing the network from the model file 'digitsDAGnet.h5' at the command line. If the required
support package is installed, then the function returns a DAGNetwork object.

modelfile = 'digitsDAGnet.h5';
net = importKerasNetwork(modelfile)

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network.  To specify classes, use the 'Classes' argument.

net = 
  DAGNetwork with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
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    OutputNames: {'ClassificationLayer_activation_1'}

Import and Plot Keras Network

Specify the file to import. The file digitsDAGnet.h5 contains a directed acyclic graph convolutional
neural network that classifies images of digits.

modelfile = 'digitsDAGnet.h5';

Import the network.

net = importKerasNetwork(modelfile)

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network.  To specify classes, use the 'Classes' argument.

net = 
  DAGNetwork with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Plot the network architecture.

plot(net)
title('DAG Network Architecture')
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Import Keras Network and Weights

Specify the network and the weight files to import.

modelfile = 'digitsDAGnet.json';
weights = 'digitsDAGnet.weights.h5';

This is a directed acyclic graph convolutional neural network trained on the digits data.

Import network architecture and import the weights from separate files. The .json file does not have
an output layer or information on the cost function. Specify the output layer type when you import the
files.

net = importKerasNetwork(modelfile,'WeightFile',weights, ...
      'OutputLayerType','classification')

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network.  To specify classes, use the 'Classes' argument.

net = 
  DAGNetwork with properties:

         Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
     InputNames: {'input_1'}
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    OutputNames: {'ClassificationLayer_activation_1'}

Import Pretrained Keras Network to Classify Image

Specify the model file.

modelfile = 'digitsDAGnet.h5';

Specify class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import the Keras network with the class names.

net = importKerasNetwork(modelfile,'Classes',classNames);

Read the image to classify.

digitDatasetPath = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
I = imread(fullfile(digitDatasetPath,'5','image4009.png'));

Classify the image using the pretrained network.

label = classify(net,I);

Display the image and the classification result.

imshow(I)
title(['Classification result: ' char(label)])

Input Arguments
modelfile — Name of Keras model file
character vector | string scalar

Name of the model file containing the network architecture, and possibly the weights, specified as a
character vector or a string scalar. The file must be in the current folder, in a folder on the MATLAB
path, or you must include a full or relative path to the file.

If modelfile includes

• The network architecture and weights, then it must be in HDF5 (.h5) format.
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• Only the network architecture, then it can be in HDF5 or JSON (.json) format.

If modelfile includes only the network architecture, then you must supply the weights in an HDF5
file, using the 'WeightFile' name-value pair argument.
Example: 'digitsnet.h5'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
importKerasNetwork(modelfile,'OutputLayerType','classification','Classes',cla
sses) imports a network from the model file modelfile, adds an output layer for a classification
problem at the end of the Keras layers, and specifies classes as the classes of the output layer.

WeightFile — Name of file containing weights
character vector | string scalar

Name of file containing weights, specified as a character vector or a string scalar. WeightFile must
be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to
the file.
Example: 'WeightFile','weights.h5'

OutputLayerType — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of output layer that the function appends to the end of the imported network architecture when
modelfile does not specify a loss function, specified as 'classification', 'regression', or
'pixelclassification'. Appending a pixelClassificationLayer object requires Computer
Vision Toolbox.

If a network in modelfile has multiple outputs, then you cannot specify the output layer types using
this argument. Use importKerasLayers instead. importKerasLayers inserts placeholder layers
for the outputs. After importing, you can find and replace the placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively.
Example: 'OutputLayerType','regression'

ImageInputSize — Size of input images
vector of two or three numerical values

Size of the input images for the network, specified as a vector of two or three numerical values
corresponding to [height,width] for grayscale images and [height,width,channels] for color
images, respectively. The network uses this information when the modelfile does not specify the
input size.

If a network in modelfile has multiple inputs, then you cannot specify the input sizes using this
argument. Use importKerasLayers instead. importKerasLayers inserts placeholder layers for
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the inputs. After importing, you can find and replace the placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively.
Example: 'ImageInputSize',[28 28]

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If you specify a string array or cell array of character vectors str, then the
software sets the classes of the output layer to categorical(str,str). If Classes is 'auto',
then the function sets the classes to categorical(1:N), where N is the number of classes.
Data Types: char | categorical | string | cell

Output Arguments
net — Pretrained Keras network
SeriesNetwork object | DAGNetwork object

Pretrained Keras network, returned as one of the following:

• If the Keras network is of type Sequential, then net is a SeriesNetwork object.
• If the Keras network is of type Model, then net is a DAGNetwork object.

Limitations
• importKerasNetwork supports TensorFlow-Keras versions as follows:

• The function fully supports TensorFlow-Keras versions up to 2.2.4.
• The function offers limited support for TensorFlow-Keras versions 2.2.5 to 2.4.0.

More About
Supported Keras Layers

importKerasNetwork supports the following TensorFlow-Keras layer types for conversion into built-
in MATLAB layers, with some limitations.

TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
Add additionLayer
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TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
Activation, with activation names:

• elu
• gelu
• relu
• linear
• softmax
• sigmoid
• swish
• tanh

Layers:

• eluLayer
• geluLayer
• reluLayer or clippedReluLayer
• None
• softmaxLayer
• sigmoidLayer
• swishLayer
• tanhLayer

Advanced activations:

• ELU
• Softmax
• ReLU
• LeakyReLU
• PReLu*

Layers:

• eluLayer
• softmaxLayer
• reluLayer, clippedReluLayer, or

leakyReluLayer
• leakyReluLayer
• nnet.keras.layer.PreluLayer

AveragePooling1D averagePooling1dLayer with PaddingValue
specified as 'mean'

AveragePooling2D averagePooling2dLayer with PaddingValue
specified as 'mean'

BatchNormalization batchNormalizationLayer
Bidirectional(LSTM(__)) bilstmLayer
Concatenate depthConcatenationLayer
Conv1D convolution1dLayer
Conv2D convolution2dLayer
Conv2DTranspose transposedConv2dLayer
CuDNNGRU gruLayer
CuDNNLSTM lstmLayer
Dense fullyConnectedLayer
DepthwiseConv2D groupedConvolution2dLayer
Dropout dropoutLayer
Embedding wordEmbeddingLayer
Flatten nnet.keras.layer.FlattenCStyleLayer
GlobalAveragePooling1D globalAveragePooling1dLayer
GlobalAveragePooling2D globalAveragePooling2dLayer
GlobalMaxPool1D globalMaxPooling1dLayer
GlobalMaxPool2D globalMaxPooling2dLayer
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TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
GRU gruLayer
Input imageInputLayer, sequenceInputLayer, or

featureInputLayer
LSTM lstmLayer
MaxPool1D maxPooling1dLayer
MaxPool2D maxPooling2dLayer
Multiply multiplicationLayer
SeparableConv2D groupedConvolution2dLayer or

convolution2dLayer
TimeDistributed sequenceFoldingLayer before the wrapped

layer, and sequenceUnfoldingLayer after the
wrapped layer

UpSampling2D resize2dLayer
UpSampling3D resize3dLayer
ZeroPadding1D nnet.keras.layer.ZeroPadding1DLayer
ZeroPadding2D nnet.keras.layer.ZeroPadding2DLayer

* For a PReLU layer, importKerasNetwork replaces a vector-valued scaling parameter with the
average of the vector elements. You can change the parameter back to a vector after import. For an
example, see “Import Keras PReLU Layer” on page 1-899.

Supported Keras Loss Functions

importKerasNetwork supports the following Keras loss functions:

• mean_squared_error
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy

Generate Code for Imported Network

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Deep Learning Code Generation”.

• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM Compute library. Alternatively, you can generate generic C or
C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).
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importKerasNetwork returns the network net as a DAGNetwork or SeriesNetwork object. Both
these objects support code generation. For more information on MATLAB Coder and GPU Coder
support for Deep Learning Toolbox objects, see “Supported Classes” (MATLAB Coder) and
“Supported Classes” (GPU Coder), respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see “Code Generation” on page 1-866 and “GPU Code
Generation” on page 1-867 of imageInputLayer.

Use Imported Network on GPU

importKerasNetwork does not execute on a GPU. However, importKerasNetwork imports a
pretrained neural network for deep learning as a DAGNetwork or SeriesNetwork object, which you
can use on a GPU.

• You can make predictions with the imported network on either a CPU or GPU by using classify.
Specify the hardware requirements using the name-value argument ExecutionEnvironment.
For networks with multiple outputs, use the predict function.

• You can make predictions with the imported network on either a CPU or GPU by using predict.
Specify the hardware requirements using the name-value argument ExecutionEnvironment. If
the network has multiple outputs, specify the name-value argument ReturnCategorical as
true.

• You can train the imported network on either a CPU or GPU by using trainNetwork. To specify
training options, including options for the execution environment, use the trainingOptions
function. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For more information on how to accelerate training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud”.

Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

Tips
• If the network contains a layer that Deep Learning Toolbox Converter for TensorFlow Models does

not support (see “Supported Keras Layers” on page 1-913), then importKerasNetwork returns
an error message. In this case, you can still use importKerasLayers to import the network
architecture and weights.

• You can import a Keras network with multiple inputs and multiple outputs (MIMO). Use
importKerasNetwork if the network includes input size information for the inputs and loss
information for the outputs. Otherwise, use importKerasLayers. The importKerasLayers
function inserts placeholder layers for the inputs and outputs. After importing, you can find and
replace the placeholder layers by using findPlaceholderLayers and replaceLayer,
respectively. The workflow for importing MIMO Keras networks is the same as the workflow for
importing MIMO ONNX networks. For an example, see “Import and Assemble ONNX Network
with Multiple Outputs” on page 1-972. To learn about a deep learning network with multiple
inputs and multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way the images that were used to train the imported model
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were preprocessed. The most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR format to RGB format.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

• For more tips, see “Tips on Importing Models from TensorFlow, PyTorch, and ONNX”.

Alternative Functionality
• Use importKerasNetwork or importKerasLayers to import a TensorFlow-Keras network in

HDF5 or JSON format. If the TensorFlow network is in the saved model format, use
importTensorFlowNetwork or importTensorFlowLayers.

• If you import a custom TensorFlow-Keras layer or if the software cannot convert a TensorFlow-
Keras layer into an equivalent built-in MATLAB layer, you can use importTensorFlowNetwork
or importTensorFlowLayers, which try to generate a custom layer. For example,
importTensorFlowNetwork and importTensorFlowLayers generate a custom layer when
you import a TensorFlow-Keras Lambda layer.

Version History
Introduced in R2017b

'ClassNames' option will be removed
Not recommended starting in R2018b

'ClassNames' will be removed. Use 'Classes' instead. To update your code, replace all instances
of 'ClassNames' with 'Classes'. There are some differences between the corresponding
properties in classification output layers that require additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character vectors. The
Classes property is a categorical array. To use the value of Classes with functions that require cell
array input, convert the classes using the cellstr function.

References
[1] Keras: The Python Deep Learning library. https://keras.io.

See Also
importKerasLayers | importTensorFlowNetwork | importNetworkFromPyTorch |
importONNXNetwork | importTensorFlowLayers | importONNXLayers |
exportNetworkToTensorFlow | exportONNXNetwork

Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
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“Tips on Importing Models from TensorFlow, PyTorch, and ONNX”
“Pretrained Deep Neural Networks”
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importNetworkFromPyTorch
Import PyTorch model as MATLAB network

Syntax
net = importNetworkFromPyTorch(modelfile)
net = importNetworkFromPyTorch(modelfile,PackageName=CustomLayersPackage)

Description
net = importNetworkFromPyTorch(modelfile) imports a pretrained and traced PyTorch®

model from the file modelfile. The function returns the network net as an uninitialized dlnetwork
object.

importNetworkFromPyTorch requires the Deep Learning Toolbox Converter for PyTorch Models
support package. If this support package is not installed, then importNetworkFromPyTorch
provides a download link.

Note The importNetworkFromPyTorch function might generate a custom layer when converting a
PyTorch layer. For more information, see “Algorithms” on page 1-940. The function saves the
generated custom layers in the package +modelfile.

net = importNetworkFromPyTorch(modelfile,PackageName=CustomLayersPackage)
imports a pretrained network from PyTorch and saves the generated custom layers and associated
functions in the package +CustomLayersPackage.

Examples

Import Network from PyTorch and Add Input Layer

Import a pretrained and traced PyTorch model as an uninitialized dlnetwork object. Then, add an
input layer to the imported network.

This example imports the MNASNet (Copyright© Soumith Chintala 2016) PyTorch model. MNASNet
is an image classification model that is trained with images from the ImageNet database. Download
the mnasnet1_0.pt file, which is approximately 17 MB in size, from the MathWorks website.

modelfile = matlab.internal.examples.downloadSupportFile("nnet", ...
    "data/PyTorchModels/mnasnet1_0.pt");

Import the MNASNet model by using the importNetworkFromPyTorch function. The function
imports the model as an uninitialized dlnetwork object without an input layer. The software displays
a warning that provides you information on the number of input layers, what type of input layer to
add, and how to add an input layer.

net = importNetworkFromPyTorch(modelfile)

Warning: Network was imported as an uninitialized dlnetwork. Before using the network, add input layer(s):
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inputLayer1 = imageInputLayer(<inputSize1>, Normalization="none");
net = addInputLayer(net, inputLayer1, Initialize=true);

net = 
  dlnetwork with properties:

         Layers: [152×1 nnet.cnn.layer.Layer]
    Connections: [163×2 table]
     Learnables: [210×3 table]
          State: [104×3 table]
     InputNames: {'TopLevelModule_layers_0'}
    OutputNames: {'aten__linear12'}
    Initialized: 0

  View summary with summary.

Specify the input size of the imported network and create an image input layer. Then, add the image
input layer to the imported network and initialize the network by using the addInputLayer function.

InputSize = [224 224 3];
inputLayer = imageInputLayer(InputSize,Normalization="none");
net = addInputLayer(net,inputLayer,Initialize=true);

Analyze the imported network and view the input layer. The network is ready to use for prediction.

analyzeNetwork(net)
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Import Network from PyTorch and Initialize

Import a pretrained and traced PyTorch model as an uninitialized dlnetwork object. Then, initialize
the imported network.

This example imports the MNASNet (Copyright© Soumith Chintal 2016) PyTorch model. MNASNet is
an image classification model that is trained with images from the ImageNet database. Dowload the
mnasnet1_0.pt file, which is approximately 17 MB in size, from the MathWorks website.

modelfile = matlab.internal.examples.downloadSupportFile("nnet", ...
    "data/PyTorchModels/mnasnet1_0.pt");

Import the MNASNet model by using the importNetworkFromPyTorch function. The function
imports the model as an uninitialized dlnetwork object.

net = importNetworkFromPyTorch(modelfile)

Warning: Network was imported as an uninitialized dlnetwork. Before using the network, add input layer(s):

inputLayer1 = imageInputLayer(<inputSize1>, Normalization="none");
net = addInputLayer(net, inputLayer1, Initialize=true);
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net = 
  dlnetwork with properties:

         Layers: [152×1 nnet.cnn.layer.Layer]
    Connections: [163×2 table]
     Learnables: [210×3 table]
          State: [104×3 table]
     InputNames: {'TopLevelModule_layers_0'}
    OutputNames: {'aten__linear12'}
    Initialized: 0

  View summary with summary.

Specify the input size of the imported network. Then, create a random dlarray object that
represents the input to the network. The data format of the dlarray object must have the
dimensions "SSCB" (spatial, spatial, channel, batch) to represent a 2-D image input. For more
information, see “Data Formats for Prediction with dlnetwork”.

InputSize = [224 224 3];
X = dlarray(rand(InputSize),"SSCB");

Initialize the learnable parameters of the imported network by using the initialize function.

net = initialize(net,X);

Now the imported network is ready to use for prediction. Analyze the imported network.

analyzeNetwork(net)
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Import Network from PyTorch and Classify Image

Import a pretrained and traced PyTorch model as an uninitialized dlnetwork object to classify an
image.

This example imports the MNASNet (Copyright© Soumith Chintala 2016) PyTorch model. MNASNet
is an image classification model that is trained with images from the ImageNet database. Download
the mnasnet1_0.pt file, which is approximately 17 MB in size, from the MathWorks website.

modelfile = matlab.internal.examples.downloadSupportFile("nnet", ...
    "data/PyTorchModels/mnasnet1_0.pt");

Import the MNASNet model by using the importNetworkFromPyTorch function. The function
imports the model as an uninitialized dlnetwork object.

net = importNetworkFromPyTorch(modelfile)

Warning: Network was imported as an uninitialized dlnetwork. Before using the network, add input layer(s):

inputLayer1 = imageInputLayer(<inputSize1>, Normalization="none");
net = addInputLayer(net, inputLayer1, Initialize=true);
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net = 
  dlnetwork with properties:

         Layers: [152×1 nnet.cnn.layer.Layer]
    Connections: [163×2 table]
     Learnables: [210×3 table]
          State: [104×3 table]
     InputNames: {'TopLevelModule_layers_0'}
    OutputNames: {'aten__linear12'}
    Initialized: 0

  View summary with summary.

Specify the input size of the imported network and create an image input layer. Then, add the image
input layer to the imported network and initialize the network by using the addInputLayer function.

InputSize = [224 224 3];
inputLayer = imageInputLayer(InputSize,Normalization="none");
net = addInputLayer(net,inputLayer,Initialize=true);

Read the image you want to classify.

Im = imread("peppers.png");

Resize the image to the input size of the network. Show the image.

InputSize = [224 224 3];
Im = imresize(Im,InputSize(1:2));
imshow(Im)

The inputs to MNASNet require further preprocessing. Rescale the image. Then, normalize the image
by subtracting the training images mean and dividing by the training images standard deviation. For
more information, see “Input Data Preprocessing”.

Im = rescale(Im,0,1);
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meanIm = [0.485 0.456 0.406];
stdIm = [0.229 0.224 0.225];
Im = (Im - reshape(meanIm,[1 1 3]))./reshape(stdIm,[1 1 3]);

Convert the image to a dlarray object. Format the image with the dimensions "SSCB" (spatial,
spatial, channel, batch).

Im_dlarray = dlarray(single(Im),"SSCB");

Get the class names from squeezenet, which is also trained with ImageNet images.

squeezeNet = squeezenet;
ClassNames = squeezeNet.Layers(end).Classes;

Classify the image and find the predicted label.

prob = predict(net,Im_dlarray);
[~,label_ind] = max(prob);

Display the classification result.

ClassNames(label_ind)

ans = categorical
     bell pepper 

Import Network from PyTorch and Find Generated Custom Layers

Import a pretrained and traced PyTorch model as an uninitialized dlnetwork object. Then, find the
custom layers that the software generates.

This example uses the findCustomLayers on page 1-927 helper function.

This example imports the MNASNet (Copyright© Soumith Chintala 2016) PyTorch model. MNASNet
is an image classification model that is trained with images from the ImageNet database. Download
the mnasnet1_0.pt file, which is approximately 17 MB in size, from the MathWorks website.

modelfile = matlab.internal.examples.downloadSupportFile("nnet", ...
    "data/PyTorchModels/mnasnet1_0.pt");

Import the MNASNet model by using the importNetworkFromPyTorch function. The function
imports the model as an uninitialized dlnetwork object.

net = importNetworkFromPyTorch(modelfile);

Warning: Network was imported as an uninitialized dlnetwork. Before using the network, add input layer(s):

inputLayer1 = imageInputLayer(<inputSize1>, Normalization="none");
net = addInputLayer(net, inputLayer1, Initialize=true);

The importNetworkFromPyTorch function generates custom layers for the PyTorch layers that the
function cannot convert to built-in MATLAB layers or functions. For more information, see
“Algorithms” on page 1-940. The software saves the automatically generated custom layers to the
package +mnasnet1_0 in the current folder and the associated functions to the subpackage +ops. To
see the custom layers and associated functions, inspect the package.
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You can also find the indices of the generated custom layers by using the findCustomLayers helper
function. Display the custom layers.

ind = findCustomLayers(net.Layers,'+mnasnet1_0');
net.Layers(ind)

ans = 
  13×1 Layer array with layers:

     1   'aten__add0'         Custom Layer   mnasnet1_0.aten__add0
     2   'aten__add1'         Custom Layer   mnasnet1_0.aten__add1
     3   'aten__add2'         Custom Layer   mnasnet1_0.aten__add2
     4   'aten__add3'         Custom Layer   mnasnet1_0.aten__add3
     5   'aten__add4'         Custom Layer   mnasnet1_0.aten__add4
     6   'aten__add5'         Custom Layer   mnasnet1_0.aten__add5
     7   'aten__add6'         Custom Layer   mnasnet1_0.aten__add6
     8   'aten__add7'         Custom Layer   mnasnet1_0.aten__add7
     9   'aten__add8'         Custom Layer   mnasnet1_0.aten__add8
    10   'aten__add9'         Custom Layer   mnasnet1_0.aten__add9
    11   'aten__dropout_11'   Custom Layer   mnasnet1_0.aten__dropout_11
    12   'aten__linear12'     Custom Layer   mnasnet1_0.aten__linear12
    13   'aten__mean10'       Custom Layer   mnasnet1_0.aten__mean10

Helper Function

This section provides the findCustomLayers helper function, which returns the indices of the
custom layers that importNetworkFromPyTorch automatically generates.

function indices = findCustomLayers(layers,PackageName)

s = what(['.\' PackageName]);

indices = zeros(1,length(s.m));
for i = 1:length(layers)
    for j = 1:length(s.m)
        if strcmpi(class(layers(i)),[PackageName(2:end) '.' s.m{j}(1:end-2)])
            indices(j) = i;
        end
    end
end

end

Train Network Imported from PyTorch to Classify New Images

This example shows how to import a network from PyTorch and train the network to classify new
images. Use the importNetworkFromPytorch function to import the network as a uninitialized
dlnetwork object. Train the network by using a custom training loop.

This example uses the modelLoss on page 1-935, modelPredictions on page 1-936, and
preprocessMiniBatchPredictors on page 1-937 helper functions.

This example provides the supporting file new_fcLayer.m. To access the supporting file, open the
example in Live Editor.
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Load Data

Unzip the MerchData data set, which contains 75 images. Load the new images as an image
datastore. The imageDatastore function automatically labels the images based on folder names and
stores the data as an ImageDatastore object. Divide the data into training and validation data sets.
Use 70% of the images for training and 30% for validation.

unzip("MerchData.zip");
imds = imageDatastore("MerchData", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames"); 
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7);

The network used in this example requires input images of size 224-by-224-by-3. To automatically
resize the training images, use an augmented image datastore. Specify additional augmentation
operations to perform on the training images: randomly translate the images up to 30 pixels in the
horizontal and vertical axes. Data augmentation helps prevent the network from overfitting and
memorizing the exact details of the training images.

inputSize = [224 224 3];

pixelRange = [-30 30];
scaleRange = [0.9 1.1];
imageAugmenter = imageDataAugmenter(...
    RandXReflection=true, ...
    RandXTranslation=pixelRange, ...
    RandYTranslation=pixelRange, ...
    RandXScale=scaleRange, ...
    RandYScale=scaleRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    DataAugmentation=imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Determine the number of classes in the training data.

classes = categories(imdsTrain.Labels);
numClasses = numel(classes);

Import Network

Download the MNASNet (Copyright© Soumith Chintala 2016) PyTorch model. MNASNet is an image
classification model that is trained with images from the ImageNet database. Download the
mnasnet1_0.pt file, which is approximately 17 MB in size, from the MathWorks website.

modelfile = matlab.internal.examples.downloadSupportFile("nnet", ...
    "data/PyTorchModels/mnasnet1_0.pt");

Import the MNASNet model as an uninitialized dlnetwork object, by using the
importNetworkFromPyTorch function.

net = importNetworkFromPyTorch(modelfile)

Warning: Network was imported as an uninitialized dlnetwork. Before using the network, add input layer(s):
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inputLayer1 = imageInputLayer(<inputSize1>, Normalization="none");
net = addInputLayer(net, inputLayer1, Initialize=true);

net = 
  dlnetwork with properties:

         Layers: [152×1 nnet.cnn.layer.Layer]
    Connections: [163×2 table]
     Learnables: [210×3 table]
          State: [104×3 table]
     InputNames: {'TopLevelModule_layers_0'}
    OutputNames: {'aten__linear12'}
    Initialized: 0

  View summary with summary.

Display the final layer of the imported network.

net.Layers(end)

ans = 
  aten__linear12 with properties:

                                  Name: 'aten__linear12'
                             NumInputs: 2
                            InputNames: {'in'  'in_rank'}

   Learnable Parameters
    TopLevelModule_classifier_1_weight: [1280×1000 single]
      TopLevelModule_classifier_1_bias: [0.0493 -0.0804 -0.0906 -0.1006 0.1332 -0.0767 -0.0788 -0.0026 -0.0525 -0.1215 -0.1635 -0.1147 -0.1421 -0.1148 -0.0586 -0.2150 -0.0970 -0.0798 -5.4136e-04 -0.0968 0.0479 0.0780 0.0015 -0.1375 -0.0485 -0.1223 … ]

   State Parameters
    No properties.

  Show all properties

The aten__linear12 layer is a custom layer generated by the importNetworkFromPyTorch
function and the last learnable layer of the imported network. This layer contains information on how
to combine the features that the network extracts into class probabilities and a loss value.

Replace Final Layer

To retrain the imported network to classify new images, replace the final layers with a new fully
connected layer. The new layer new_fclayer is adapted to the new data set and must also be a
custom layer because it has two inputs.

Initialize the new_fcLayer layer and replace the aten__linear12 layer with new_fcLayer.

newLayer = new_fcLayer("fc1","Custom Layer", ...
    {'in' 'in_rank'},{'out'},numClasses);
net = replaceLayer(net,"aten__linear12",newLayer);

Add a softmax layer to the network and connect the softmax layer to the new fully connected layer.

net = addLayers(net,softmaxLayer(Name="sm1"));
net = connectLayers(net,"fc1","sm1");
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Add Input Layer

Add an image input layer to the network and initialize the network.

inputLayer = imageInputLayer(inputSize,Normalization="none");
net = addInputLayer(net,inputLayer,Initialize=true);

Analyze the network. View the first layer and the final layers.

analyzeNetwork(net)
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Define Model Loss Function

Training a deep neural network is an optimization task. By considering a neural network as a function
f (X; θ), where X is the network input, and θ is the set of learnable parameters, you can optimize θ so
that it minimizes some loss value based on the training data. For example, optimize the learnable
parameters θ such that, for given inputs X with corresponding targets T, they minimize the error
between the predictions Y = f (X; θ) and T.

Create the modelLoss function, listed in the Model Loss Function on page 1-935 section of the
example, which takes as input the dlnetwork object and a mini-batch of input data with
corresponding targets. The function returns the loss, the gradients of the loss with respect to the
learnable parameters, and the network state.

Specify Training Options

Train for 15 epochs with a mini-batch size of 20.

numEpochs = 15;
miniBatchSize = 20;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.001 with a decay of
0.005, and a momentum of 0.9.
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initialLearnRate = 0.001;
decay = 0.005;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during
training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with the underlying
type single. Do not format the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray object if a GPU is available. Using a GPU requires Parallel Computing Toolbox™
and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(augimdsTrain,...
    MiniBatchSize=miniBatchSize,...
    MiniBatchFcn=@preprocessMiniBatch,...
    MiniBatchFormat=["SSCB" ""]);

Initialize the velocity parameter for the gradient descent with momentum (SGDM) solver.

velocity = [];

Calculate the total number of iterations for the training progress monitor.

numObservationsTrain = numel(imdsTrain.Files);
numIterationsPerEpoch = ceil(numObservationsTrain/miniBatchSize);
numIterations = numEpochs*numIterationsPerEpoch;

Initialize the trainingProgressMonitor object. Because the timer starts when you create the
monitor object, create the object immediately after the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info=["Epoch","LearnRate"],XLabel="Iteration");

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. For each mini-batch:

• Evaluate the model loss, gradients, and state using the dlfeval and modelLoss on page 1-935
functions and update the network state.

• Determine the learning rate for the time-based decay learning rate schedule.
• Update the network parameters using the sgdmupdate function.
• Update the loss, learn rate, and epoch values in the training progress monitor.
• Stop if the Stop property is true. The Stop property value of the TrainingProgressMonitor

object changes to true when you click the Stop button.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
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    epoch = epoch + 1;

    % Shuffle data.
    shuffle(mbq);
    
    % Loop over mini-batches.
    while hasdata(mbq) && ~monitor.Stop

        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [X,T] = next(mbq);
        
        % Evaluate the model gradients, state, and loss using dlfeval and the
        % modelLoss function and update the network state.
        [loss,gradients,state] = dlfeval(@modelLoss,net,X,T);
        net.State = state;
        
        % Determine learning rate for time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);
        
        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch,LearnRate=learnRate);
        monitor.Progress = 100*iteration/numIterations;
    end
end
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Classify Validation Images

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

After training, making predictions on new data does not require the labels. Create a
minibatchqueue object containing only the predictors of the test data:

• To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
• Specify the same mini-batch size used for training.
• Preprocess the predictors using the preprocessMiniBatchPredictors function, listed at the

end of the example.
• For the single output of the datastore, specify the mini-batch format "SSCB" (spatial, spatial,

channel, batch).

numOutputs = 1;

mbqTest = minibatchqueue(augimdsValidation,numOutputs, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatchPredictors, ...
    MiniBatchFormat="SSCB");

Loop over the mini-batches and classify the images using the modelPredictions function, listed at
the end of the example.

YTest = modelPredictions(net,mbqTest,classes);

Evaluate the classification accuracy.
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TTest = imdsValidation.Labels;
accuracy = mean(TTest == YTest)

accuracy = 0.9500

Visualize the predictions in a confusion chart. Large values on the diagonal indicate accurate
predictions for the corresponding class. Large values on the off-diagonal indicate strong confusion
between the corresponding classes.

figure
confusionchart(TTest,YTest)

Helper Functions

Model Loss Function

The modelLoss function takes as input a dlnetwork object net and a mini-batch of input data X
with corresponding targets T. The function returns the loss, the gradients of the loss with respect to
the learnable parameters in net, and the network state. To compute the gradients automatically, use
the dlgradient function.

function [loss,gradients,state] = modelLoss(net,X,T)

% Forward data through network.
[Y,state] = forward(net,X);

% Calculate cross-entropy loss.
loss = crossentropy(Y,T);
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% Calculate gradients of loss with respect to learnable parameters.
gradients = dlgradient(loss,net.Learnables);

end

Model Predictions Function

The modelPredictions function takes as input a dlnetwork object net, a minibatchqueue of
input data mbq, and the network classes. The function computes the model predictions by iterating
over all the data in the minibatchqueue object. The function uses the onehotdecode function to
find the predicted class with the highest score.

function Y = modelPredictions(net,mbq,classes)

Y = [];

% Loop over mini-batches.
while hasdata(mbq)
    X = next(mbq);

    % Make prediction.
    scores = predict(net,X);

    % Decode labels and append to output.
    labels = onehotdecode(scores,classes,1)';
    Y = [Y; labels];
end

end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using these
steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

end

1 Deep Learning Functions

1-936



Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenating into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image to use
as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(dataX)

% Concatenate.
X = cat(4,dataX{1:end});

end

Input Arguments
modelfile — Name of PyTorch model file
character vector | string scalar

Name of the PyTorch model file containing the network, specified as a character vector or string
scalar. The file must be in the current folder or in a folder on the MATLAB path, or you must include a
full or relative path of the file. The PyTorch model must be pretrained and traced over one inference
iteration.

For information on how to trace a PyTorch model, see https://pytorch.org/docs/stable/generated/
torch.jit.trace.html.
Example: "mobilenet_v3.pt"

CustomLayersPackage — Name of custom layers package
character vector | string scalar

Name of the package in which importNetworkFromPyTorch saves custom layers, specified as a
character vector or string scalar. importNetworkFromPyTorch saves the custom layers package
+CustomLayersPackage in the current folder. If you do not specify CustomLayersPackage, then
importNetworkFromPyTorch saves the custom layers in a package named +modelfile in the
current folder. For more information on packages, see “Packages Create Namespaces”.

See “Algorithms” on page 1-940 about information on when the importNetworkFromPyTorch
function generates a custom layer. The function saves each generated custom layer to a separate
program file in +CustomLayersPackage. To view or edit a custom layer, open the associated
program file. For more information on custom layers, see “Deep Learning Custom Layers”.

The package +CustomLayersPackage can also contain the subpackage +ops. This subpackage
contains MATLAB functions that the automatically generated custom layers use.
importNetworkFromPyTorch saves each MATLAB function in a separate program file in the
subpackage +ops. The object functions of dlnetwork, such as the predict function, use these
functions when interacting with the custom layers. The subpackage +ops might also contain
“Placeholder Functions” on page 1-939.
Example: "mobilenet_v3"
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Output Arguments
net — Pretrained PyTorch network
dlnetwork object

Pretrained PyTorch network, returned as an uninitialized dlnetwork object. Before using the
imported network, you must add an input layer or initialize the network. For examples, see “Import
Network from PyTorch and Add Input Layer” on page 1-919 and “Import Network from PyTorch and
Initialize” on page 1-921.

Limitations
• The importNetworkFromPyTorch function fully supports PyTorch version v1.9.1. Models

created in other PyTorch versions are most likely importable.
• The importNetworkFromPyTorch function can import only image classification models.
• You can run importNetworkFromPyTorch on a Windows or Mac OS platform.

More About
Conversion of PyTorch Layers and Functions into Built-In MATLAB Layers and Functions

The importNetworkFromPyTorch function supports the PyTorch layers, functions, and operators
listed in this section for conversion into built-in MATLAB layers and functions with dlarray support.
For more information on functions that operate on dlarray objects, see “List of Functions with
dlarray Support”. You might observe limitations in the conversion.

Conversion of PyTorch Layers

This table shows the correspondence between PyTorch layers and Deep Learning Toolbox layers. In
some cases, when importNetworkFromPyTorch cannot convert a PyTorch layer into a MATLAB
layer, the software converts the PyTorch layer into a Deep Learning Toolbox function with dlarray
support.

PyTorch Layer Corresponding Deep
Learning Toolbox Layer

Alternative Deep Learning
Toolbox Function

torch.nn.AdaptiveAvgPool
2d

nnet.pytorch.layer.Adapt
iveAveragePoolingLayer

pyAdaptiveAvgPool2d

torch.nn.AvgPool2d averagePooling2dLayer Not applicable
torch.nn.BatchNorm2d batchNormalizationLayer Not applicable
torch.nn.Conv2d convolution2dLayer Not applicable
torch.nn.Dropout dropoutLayer Not applicable
torch.nn.Linear fullyConnectedLayer pyLinear
torch.nn.MaxPool2d maxPooling2dLayer Not applicable
torch.nn.ReLU reluLayer relu
torch.nn.Sigmoid sigmoidLayer pySigmoid

1 Deep Learning Functions

1-938



Conversion of PyTorch Functions

This table shows the correspondence between PyTorch functions and Deep Learning Toolbox
functions.

PyTorch Function Corresponding Deep Learning Toolbox
Function

torch.nn.functional.hardsigmoid pyAdaptiveAvgPool2d
torch.nn.functional.dropout pyDropout
torch.nn.functional.hardsigmoid pyHardSigmoid
torch.nn.functional.hardwish pyHardSwish
torch.nn.functional.linear pyLinear

Conversion of PyTorch Mathematical Operators

This table shows the correspondence between PyTorch mathematical operators and Deep Learning
Toolbox functions. For the cat PyTorch operator, importNetworkFromPyTorch first tries to convert
it to a concatenation layer and alternatively to a function.

PyTorch Operator Corresponding Deep
Learning Toolbox Layer or
Function

Alternative Deep Learning
Toolbox Function

+, -, *, / pyElementwiseBinary Not applicable
torch.cat concatenationLayer pyConcat
torch.chunk pyChunk Not applicable
torch.concat pyConcat Not applicable
torch.mean pyMean Not applicable
torch.reshape pyView Not applicable
torch.size pySize Not applicable
torch.transpose pyTranspose Not applicable

Conversion of PyTorch Matrix Operators

This table shows the correspondence between PyTorch matrix operators and Deep Learning Toolbox
functions.

PyTorch Operator Corresponding Deep Learning Toolbox
Function or Operator

Indexing (for example, X[:,1]) pySlice
torch.tensor.contiguous =
torch.tensor.select pySlice
torch.tensor.view pyView

Placeholder Functions

When the importNetworkFromPyTorch function cannot convert a PyTorch layer into a built-in
MATLAB layer or generate a custom layer with associated MATLAB functions, the function creates a
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custom layer with a placeholder function. You must complete the placeholder function before you can
use the network.

This code snippet shows the definition of a custom layer with the placeholder function
pyAtenUnsupportedOperator.

classdef UnsupportedOperator < nnet.layer.Layer

function [output] = predict(obj,arg1)
% Placeholder function for aten::<unsupportedOperator>
output= pyAtenUnsupportedOperator(arg1,params);
end

end

Tips
• To use a pretrained network for prediction or transfer learning on new images, you must

preprocess your images in the same way the images that were used to train the imported model
were preprocessed. The most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR format to RGB format.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

• The members of the package +PackageName are not accessible if the package parent folder is not
on the MATLAB path. For more information, see “Packages and the MATLAB Path”.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

• For more tips, see “Tips on Importing Models from TensorFlow, PyTorch, and ONNX”.

Algorithms
The importNetworkFromPyTorch function imports a PyTorch layer into MATLAB by trying these
steps in order:

1 The function tries to import the PyTorch layer as a built-in MATLAB layer. For more information,
see “Conversion of PyTorch Layers” on page 1-938.

2 The function tries to import the PyTorch layer as a built-in MATLAB function. For more
information, see “Conversion of PyTorch Layers” on page 1-938.

3 The function tries to import the PyTorch layer as a custom layer. importNetworkFromPyTorch
saves the generated custom layers and the associated functions in the package +modelfile. For
an example, see “Import Network from PyTorch and Find Generated Custom Layers” on page 1-
925.

4 The function imports the PyTorch layer as a custom layer with a placeholder function. For more
information, see “Placeholder Functions” on page 1-939.

In the first three cases, the imported network is ready for prediction after you initialize it.
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Version History
Introduced in R2022b

See Also
importTensorFlowNetwork | importONNXNetwork | exportNetworkToTensorFlow |
exportONNXNetwork | dlnetwork | dlarray | addInputLayer

Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
“Tips on Importing Models from TensorFlow, PyTorch, and ONNX”
“Pretrained Deep Neural Networks”
“Deploy Imported TensorFlow Model with MATLAB Compiler”
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importONNXFunction
Import pretrained ONNX network as a function

Syntax
params = importONNXFunction(modelfile,NetworkFunctionName)

Description
params = importONNXFunction(modelfile,NetworkFunctionName) imports an ONNX (Open
Neural Network Exchange) network from the file modelfile and returns an ONNXParameters
object (params) that contains the network parameters. The function also creates a model function
with the name specified by NetworkFunctionName that contains the network architecture. For more
information about the network function, see “Imported ONNX Model Function” on page 1-953.

Use the ONNXParameters object and the NetworkFunctionName model function to perform
common deep learning tasks, such as image and sequence data classification, transfer learning,
object detection, and image segmentation. importONNXFunction is useful when you cannot import
the network using the importONNXNetwork function (for example, importONNXFunction can
import YOLOv3) or if you want to define your own custom training loop (for more details, see “Train
Network Using Custom Training Loop” on page 1-683).

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support
package. If this support package is not installed, then the function provides a download link.

Examples

Import ONNX Network as Function

Import an ONNX network as a function. You can use the imported model function for deep learning
tasks, such as prediction and transfer learning.

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support
package. You can enter importONNXFunction at the command line to check if the support package
is installed. If it is not installed, then the function provides a link to the required support package in
the Add-On Explorer. To install the support package, click the link, and then click Install.

Specify the file to import as shufflenet with operator set 9 from the ONNX Model Zoo.
shufflenet is a convolutional neural network that is trained on images from the ImageNet
database.

modelfile = "shufflenet-9.onnx";

Import the network as a function to generate a model function that you can readily use for deep
learning tasks.

params = importONNXFunction(modelfile,"shufflenetFcn")

Function containing the imported ONNX network architecture was saved to the file shufflenetFcn.m.
To learn how to use this function, type: help shufflenetFcn.
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params = 
  ONNXParameters with properties:

             Learnables: [1x1 struct]
          Nonlearnables: [1x1 struct]
                  State: [1x1 struct]
          NumDimensions: [1x1 struct]
    NetworkFunctionName: 'shufflenetFcn'

importONNXFunction returns the ONNXParameters object params, which contains the network
parameters, and the model function shufflnetFcn, which contains the network architecture.
importONNXFunction saves shufflenetFcn in the current folder. You can open the model function
to view or edit the network architecture by using open shufflenetFcn.

Deep Learning Toolbox Converter for ONNX Model Format also provides the importONNXNetwork
and importONNXLayers functions, which you can use to import a pretrained ONNX network. For
information on which import function best suits different scenarios, see “Select Function to Import
ONNX Pretrained Network”.

Predict Using Imported ONNX Function

Import an ONNX network as a function, and use the pretrained network to predict the class label of
an input image.

Specify the file to import as shufflenet with operator set 9 from the ONNX Model Zoo.
shufflenet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

modelfile = 'shufflenet-9.onnx';

Import the pretrained ONNX network as a function by using importONNXFunction, which returns
the ONNXParameters object params. This object contains the network parameters. The function also
creates a new model function in the current folder that contains the network architecture. Specify the
name of the model function as shufflenetFcn.

params = importONNXFunction(modelfile,'shufflenetFcn');

A function containing the imported ONNX network has been saved to the file shufflenetFcn.m.
To learn how to use this function, type: help shufflenetFcn.

Read the image you want to classify and display the size of the image. The image is 792-by-1056
pixels and has three color channels (RGB).

I = imread('peacock.jpg');
size(I)

ans = 1×3

         792        1056           3

Resize the image to the input size of the network. Show the image.
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I = imresize(I,[224 224]);
imshow(I)

The inputs to shufflenet require further preprocessing (for more details, see ShuffleNet in ONNX
Model Zoo). Rescale the image. Normalize the image by subtracting the training images mean and
dividing by the training images standard deviation.

I = rescale(I,0,1);

meanIm = [0.485 0.456 0.406];
stdIm = [0.229 0.224 0.225];
I = (I - reshape(meanIm,[1 1 3]))./reshape(stdIm,[1 1 3]);

imshow(I)
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Import the class names from squeezenet, which is also trained with images from the ImageNet
database.

net = squeezenet;
ClassNames = net.Layers(end).ClassNames;

Calculate the class probabilities by specifying the image to classify I and the ONNXParameters
object params as input arguments to the model function shufflenetFcn.

scores = shufflenetFcn(I,params);

Find the class index with the highest probability. Display the predicted class for the input image and
the corresponding classification score.

indMax = find(scores==max(scores));
ClassNames(indMax)

ans = 1×1 cell array
    {'peacock'}

scoreMax = scores(indMax)

scoreMax = 0.7517

Train Imported ONNX Function Using Custom Training Loop

Import the squeezenet convolution neural network as a function and fine-tune the pretrained
network with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper
Functions on page 1-950.
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Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network. Specify the mini-
batch size.

unzip("MerchData.zip");
miniBatchSize = 8;
imds = imageDatastore("MerchData", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames", ...
    ReadSize=miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end
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Extract the training set and one-hot encode the categorical classification labels.

XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';

Determine the number of classes in the data.

classes = categories(YTrain_categ);
numClasses = numel(classes)

numClasses = 5

squeezenet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

Import the pretrained squeezenet network as a function.

squeezenetONNX()
params = importONNXFunction("squeezenet.onnx","squeezenetFcn")

Function containing the imported ONNX network architecture was saved to the file squeezenetFcn.m.
To learn how to use this function, type: help squeezenetFcn.

params = 
  ONNXParameters with properties:

             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'squeezenetFcn'

params is an ONNXParameters object that contains the network parameters. squeezenetFcn is a
model function that contains the network architecture. importONNXFunction saves
squeezenetFcn in the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf("%.2f accuracy before transfer learning\n",accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network by typing params.Learnables. These parameters,
such as the weights (W) and bias (B) of convolution and fully connected layers, are updated by the
network during training. Nonlearnable parameters remain constant during training.

The last two learnable parameters of the pretrained network are configured for 1000 classes.

conv10_W: [1×1×512×1000 dlarray]

conv10_B: [1000×1 dlarray]
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The parameters conv10_W and conv10_B must be fine-tuned for the new classification problem.
Transfer the parameters to classify five classes by initializing the parameters.

params.Learnables.conv10_W = rand(1,1,512,5);
params.Learnables.conv10_B = rand(5,1);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you
do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers
can significantly speed up network training.

params = freezeParameters(params,"all");

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,"conv10_W");
params = unfreezeParameters(params,"conv10_B");

The network is ready for training. Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Calculate the total number of iterations for the training progress monitor.

numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
numIterations = numEpochs*numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object immediately after the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the network.

epoch = 0;
iteration = 0;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop

    epoch = epoch + 1;
    
    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(:,idx);
    
    % Loop over mini-batches.
    i = 0;
    while i < numIterationsPerEpoch && ~monitor.Stop
        i = i + 1;
        iteration = iteration + 1;
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        % Read mini-batch of data.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);        
        Y = YTrain(:,idx);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            X = gpuArray(X);         
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
        params.State = state;
        
        % Determine the learning rate for the time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);
        
        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Calculate the classification accuracy of the network after fine-tuning.
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accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf("%.2f accuracy after transfer learning\n",accuracyAfterTraining);

1.00 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.

The getNetworkAccuracy function evaluates the network performance by calculating the
classification accuracy.

function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = squeezenetFcn(X,onnxParams,Training=false);

[~,YIdx] = max(Y,[],1);
[~,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;

end

The modelGradients function calculates the loss and gradients.

function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = squeezenetFcn(X,onnxParams,Training=true);
loss = crossentropy(y,Y,DataFormat="CB");
grad = dlgradient(loss,onnxParams.Learnables);

end

The squeezenetONNX function generates an ONNX model of the squeezenet network.

function squeezenetONNX()
    
exportONNXNetwork(squeezenet,"squeezenet.onnx");

end

Sequence Classification Using Imported ONNX Function

Import an ONNX long short-term memory (LSTM) network as a function, and use the pretrained
network to classify sequence data. An LSTM network enables you to input sequence data into a
network, and make predictions based on the individual time steps of the sequence data.

This example uses the helper function preparePermutationVector. To view the code for this
function, see Helper Function on page 1-952.

lstmNet has a similar architecture to the LSTM network created in “Sequence Classification Using
Deep Learning”. lstmNet is trained to recognize the speaker given time series data representing two
Japanese vowels spoken in succession. The training data contains time series data for nine speakers.
Each sequence has 12 features and varies in length.
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Specify lstmNet as the model file.

modelfile = 'lstmNet.onnx';

Import the pretrained ONNX network as a function by using importONNXFunction, which returns
the ONNXParameters object params containing the network parameters. The function also creates a
new model function in the current folder that contains the network architecture. Specify the name of
the model function as lstmnetFcn.

params = importONNXFunction(modelfile,'lstmnetFcn');

A function containing the imported ONNX network has been saved to the file lstmnetFcn.m.
To learn how to use this function, type: help lstmnetFcn.

Load the Japanese Vowels test data. XTest is a cell array containing 370 sequences of dimension 12
and varying length. YTest is a categorical vector of labels "1","2",..."9", which correspond to the nine
speakers.

[XTest,YTest] = japaneseVowelsTestData;

lstmNet was trained using mini-batches with sequences of similar length. To organize the test data
in the same way, sort the test data by sequence length.

numObservationsTest = numel(XTest);
for i=1:numObservationsTest
    sequence = XTest{i};
    sequenceLengthsTest(i) = size(sequence,2);
end
[sequenceLengthsTest,idx] = sort(sequenceLengthsTest);
XTest = XTest(idx);
YTest = YTest(idx);

Use preparePermutationVector to compute the permutation vector inputPerm, which permutes
the dimension ordering of the input sequence data to the dimension ordering of the imported LSTM
network input. You can type help lstmnetFcn to view the dimension ordering of the network input
SEQUENCEINPUT.

inputPerm = preparePermutationVector(["FeaturesLength","SequenceLength","BatchSize"],...
    ["SequenceLength","BatchSize","FeaturesLength"]);

Calculate the class probabilities by specifying the sequence data to classify XTest and the
ONNXParameters object params as input arguments to the model function lstmnetFcn. Customize
the input dimension ordering by assigning the numeric vector inputPerm to the name-value
argument 'InputDataPermutation'. Return scores in the dimension ordering of the network
output by assigning 'none' to the name-value argument 'OutputDataPermutation'.

for i = 1:length(XTest)
    scores = lstmnetFcn(XTest{i},params,'InputDataPermutation',inputPerm,'OutputDataPermutation','none');
    YPred(i) = find(scores==max(scores));
end
YPred = categorical(YPred');

Calculate the classification accuracy of the predictions.

acc = sum(YPred == YTest)./numel(YTest)

acc = 0.9514
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Helper Function

This section provides the code of the helper function preparePermutationVector used in this
example.

The preparePermutationVector function returns a permutation vector perm, which permutes the
dimension ordering in fromDimOrder to the dimension ordering in toDimOrder. You can specify the
input arguments fromDimOrder and toDimOrder as character vectors, string scalars, string arrays,
cell arrays of character vectors, or numeric vectors. Both arguments must have the same type and
the same unique elements. For example, if fromDimOrder is the character vector 'hwcn',
toDimOrder can be the character vector 'nchw' (where h, w, and c correspond to the height, width,
and number of channels of the image, respectively, and n is the number of observations).

function perm = preparePermutationVector(fromDimOrder, toDimOrder)

% Check if both fromDimOrder and toDimOrder are vectors.
if ~isvector(fromDimOrder) || ~isvector(toDimOrder)
    error(message('nnet_cnn_onnx:onnx:FPVtypes'));
end

% Convert fromDimOrder and toDimOrder to the appropriate type.
if isstring(fromDimOrder) && isscalar(fromDimOrder)
    fromDimOrder = char(fromDimOrder);
end
if isstring(toDimOrder) && isscalar(toDimOrder)
    toDimOrder = char(toDimOrder);
end

% Check if fromDimOrder and toDimOrder have unique elements.
[fromSorted, ifrom] = unique(fromDimOrder);
[toSorted, ~, iToInv] = unique(toDimOrder);

if numel(fromSorted) ~= numel(fromDimOrder)
    error(message('nnet_cnn_onnx:onnx:FPVfromunique'));
end
if numel(toSorted) ~= numel(toDimOrder)
    error(message('nnet_cnn_onnx:onnx:FPVtounique'));
end

% Check if fromDimOrder and toDimOrder have the same number of elements.
if ~isequal(fromSorted, toSorted)
    error(message('nnet_cnn_onnx:onnx:FPVsame'));
end

% Compute the permutation vector.
perm = ifrom(iToInv);
perm = perm(:)';

end

Input Arguments
modelfile — Name of ONNX model file
character vector | string scalar
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Name of the ONNX model file containing the network, specified as a character vector or string scalar.
The file must be in the current folder or a folder on the MATLAB path, or you must include a full or
relative path to the file.
Example: 'shufflenet.onnx'

NetworkFunctionName — Name of model function
character vector | string scalar

Name of the model function, specified as a character vector or string scalar. The function
NetworkFunctionName contains the architecture of the imported ONNX network. The file is saved
in an M-file in the current folder, or you must include a full or relative path to the file. The
NetworkFunctionName file is required for using the network. For more information, see “Imported
ONNX Model Function” on page 1-953.
Example: 'shufflenetFcn'

Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters of the imported ONNX model. Use dot notation to reference properties of params. For
example, params.Learnables displays the network learnable parameters, such as the weights of
the convolution layers.

Limitations
• importONNXFunction supports these ONNX versions:

• ONNX intermediate representation version 6
• ONNX operator sets 7 to 13

More About
Imported ONNX Model Function

importONNXFunction creates a model function that contains the network architecture of the
imported ONNX model. Specify the name NetworkFunctionName as an input argument to
importONNXFunction.

Syntax

Use the following syntaxes to interface with the imported ONNX model function
(NetworkFunctionName):

• [Y,state] = NetworkFunctionName(X,params) returns the output data Y and the updated
network state for the input data X.

• [Y,state] = NetworkFunctionName(X,params,Name,Value) uses additional options
specified by one or more name-value pair arguments.
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• [Y1,Y2,...,Yn,state] = NetworkFunctionName(X1,X2,...,Xn,params) returns
multiple output data (Y1,Y2,...,Yn) and the updated network state for the multiple input data
(X1,X2,...,Xn).

• [Y1,Y2,...,Yn,state] = NetworkFunctionName(X1,X2,...,Xn,params,Name,Value)
uses additional options specified by one or more name-value pair arguments for multiple inputs
and outputs.

Input Arguments

Argument Description
X Input data, specified as an array or dlarray.
params Network parameters, specified as an

ONNXParameters object.

Name-Value Pair Arguments

Argument name Description
'Training' Training option, specified as 'false' (default) or

'true'.

• Set value to 'false' to use ONNXFunction
to predict. For an example, see “Predict Using
Imported ONNX Function” on page 1-943.

• Set value to 'true' to use ONNXFunction to
train. For an example, see “Train Imported
ONNX Function Using Custom Training Loop”
on page 1-945.

'InputDataPermutation' Permutation applied to the dimension ordering of
input X, specified as 'auto' (default), 'none', a
numeric vector, or a cell array.

Assign a value to the name-value pair argument
'InputDataPermutation' to permute the
input data into the dimension ordering required
by the imported ONNX model.

• Assign the value 'auto' to apply an
automatic permutation based on assumptions
about common input data X. For more details,
see “Automatic Input Data Permutation” on
page 1-955.

• Assign the value 'none' to pass X in the
original ordering.

• Assign a numeric vector value to customize
the input dimension ordering; for example, [4
3 1 2]. For an example, see “Sequence
Classification Using Imported ONNX
Function” on page 1-950.

• Assign a cell array value for multiple inputs;
for example, {[3 2 1],'none'}.
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Argument name Description
'OutputDataPermutation' Permutation applied to the dimension ordering of

output Y, specified as 'auto' (default), 'none',
a numeric vector, or a cell array.

Assign a value to the name-value pair argument
'OutputDataPermutation' to match the
dimension ordering of the imported ONNX model.

• Assign the value 'auto' to return Y in Deep
Learning Toolbox ordering. For more details,
see “Automatic Output Data Permutation” on
page 1-956.

• Assign the value 'none' to return Y in ONNX
ordering. For an example, see “Sequence
Classification Using Imported ONNX
Function” on page 1-950.

• Assign a numeric vector value to customize
the output dimension ordering; for example,
[3 4 2 1].

• Assign a cell array value for multiple outputs;
for example, {[3 2 1],'none'}.

Output Arguments

Argument Description
Y Output data, returned as an array or dlarray.

• If X is an array or you use ONNXFunction to
predict, Y is a array.

• If X is a dlarray or you use ONNXFunction
for training, Y is a dlarray.

state Updated network state, specified as a structure.

The network state contains information
remembered by the network between iterations
and updated across multiple training batches.

The interpretation of input argument X and output argument Y can differ between models. For more
information about the model input and output arguments, refer to help for the imported model
function NetworkFunctionName, or refer to the ONNX documentation [1].

Automatic Permutation for Imported Model Function

By default, NetworkFunctionName automatically permutes input and output data to facilitate image
classification tasks. Automatic permutation might be unsuitable for other tasks, such as object
detection and time series classification.
Automatic Input Data Permutation

To automatically permute the input, NetworkFunctionName assumes the following based on the
input dimensions specified by the imported ONNX network.

 importONNXFunction

1-955



Number of ONNX
Model Input
Dimensions

Interpretation of
Input Data

ONNX Standard
Dimension
Ordering

Deep Learning
Toolbox Standard
Dimension
Ordering

Automatic
Permutation of
Input

4 2-D image NCHW

H, W, and C
correspond to the
height, width, and
number of
channels of the
image,
respectively, and N
is the number of
observations.

HWCN

H, W, and C
correspond to the
height, width, and
number of
channels of the
image,
respectively, and N
is the number of
observations.

[ 4 3 1 2 ]

If the size of the input dimensions is a number other than 4, NetworkFunctionName specifies the
input argument 'InputDataPermutation' as 'none'.

Automatic Output Data Permutation

To automatically permute the output, NetworkFunctionName assumes the following based on the
output dimensions specified by the imported ONNX network.

Number of ONNX
Model Output
Dimensions

Interpretation of
Output Data

ONNX Standard
Dimension
Ordering

Deep Learning
Toolbox Standard
Dimension
Ordering

Automatic
Permutation of
Output

2 2-D image
classification
scores

NK

K is the number of
classes and N is the
number of
observations.

KN

K is the number of
classes and N is the
number of
observations.

[ 2 1 ]

4 2-D image pixel
classification
scores

NKHW

H and W
correspond to the
height and width
of the image,
respectively, K is
the number of
classes, and N is
the number of
observations.

HWKN

H and W
correspond to the
height and width
of the image,
respectively, K is
the number of
classes, and N is
the number of
observations.

[3 4 2 1]

If the size of the output dimensions is a number other than 2 or 4, NetworkFunctionName specifies
the input argument 'OutputDataPermutation' as 'none'.

1 Deep Learning Functions

1-956



ONNX Operators That importONNXFunction Supports

importONNXFunction supports the following ONNX operators, with some limitations. Compare
these operators with the operators supported by importONNXNetwork and importONNXLayers for
conversion into equivalent built-in MATLAB layers.

ONNX Operators Supported by
importONNXFunction

importONNXNetwork and importONNXLayers
Support

Abs No
Add Yes
And No
ArgMax No
AveragePool Yes
BatchNormalization Yes
Cast No
Ceil No
Clip Yes
Compress No
Concat Yes
Constant Yes
ConstantOfShape No
Conv Yes
ConvTranspose Yes
DepthToSpace Yes
Div Yes
Dropout Yes
Equal No
Exp No
Expand No
Flatten Yes
Floor No
Gather No
Gemm Yes
GlobalAveragePool Yes
Greater Yes
GRU Yes
Hardmax No
Identity Yes
If No
InstanceNormalization Yes
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ONNX Operators Supported by
importONNXFunction

importONNXNetwork and importONNXLayers
Support

LeakyRelu Yes
Less No
LessOrEqual No
Log No
Loop No
LRN Yes
LSTM Yes
MatMul Yes
MaxPool Yes
Mul Yes
Neg No
NonMaxSuppression No
NonZero No
Not No
OneHot No
Or No
Pad No
Pow No
PRelu Yes
RandomUniform No
Range No
Reciprocal No
ReduceMax No
ReduceMean No
ReduceMin No
ReduceProd No
ReduceSum No
Relu Yes
Reshape Yes
Resize Yes
RoiAlign No
Round No
Scan No
Scatter No
ScatterElements No
SequenceAt No
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ONNX Operators Supported by
importONNXFunction

importONNXNetwork and importONNXLayers
Support

Shape No
Sigmoid Yes
Slice No
Softmax Yes
SpaceToDepth Yes
Split No
SplitToSequence No
Sqrt No
Squeeze No
Sub Yes
Sum Yes
Tanh Yes
Tile No
TopK No
Transpose No
Unsqueeze No
Upsample No
Where No

Tips
• Refer to the ONNX documentation for each model to see the required preprocessing of the

network inputs. For example, you need to resize (using imresize), rescale, and normalize the
input images to networks trained with the ImageNet dataset (such as AlexNet, GoogleNet,
ShuffleNet, and SqueezeNet).

Alternative Functionality
importONNXFunction is useful when you cannot import a pretrained ONNX network by using
importONNXNetwork. If you want to generate code for a pretrained network, use
importONNXLayers. Find and replace the generated placeholder layers by using
findPlaceholderLayers and replaceLayer, respectively. Then, use assembleNetwork to
return a DAGNetwork object. You can generate code for a trained DAGNetwork. For more information
on the import functions that best suit different scenarios, see “Select Function to Import ONNX
Pretrained Network”.

Version History
Introduced in R2020b
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References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

See Also
importONNXNetwork | importONNXLayers | ONNXParameters

Topics
“Make Predictions Using Model Function”
“Train Network Using Custom Training Loop”
“Pretrained Deep Neural Networks”
“Select Function to Import ONNX Pretrained Network”
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importONNXLayers
Import layers from ONNX network

Syntax
lgraph = importONNXLayers(modelfile)
lgraph = importONNXLayers(modelfile,Name=Value)

Description
lgraph = importONNXLayers(modelfile) imports the layers and weights of a pretrained ONNX
(Open Neural Network Exchange) network from the file modelfile. The function returns lgraph as
a LayerGraph object compatible with a DAGNetwork or dlnetwork object.

importONNXLayers requires the Deep Learning Toolbox Converter for ONNX Model Format support
package. If this support package is not installed, then importONNXLayers provides a download link.

Note By default, importONNXLayers tries to generate a custom layer when the software cannot
convert an ONNX operator into an equivalent built-in MATLAB layer. For a list of operators for which
the software supports conversion, see “ONNX Operators Supported for Conversion into Built-In
MATLAB Layers” on page 1-977.

importONNXLayers saves the generated custom layers in the package +modelfile.

importONNXLayers does not automatically generate a custom layer for each ONNX operator that is
not supported for conversion into a built-in MATLAB layer. For more information on how to handle
unsupported layers, see “Tips” on page 1-983.

lgraph = importONNXLayers(modelfile,Name=Value) imports the layers and weights from an
ONNX network with additional options specified by one or more name-value arguments. For example,
OutputLayerType="classification" imports a layer graph compatible with a DAGNetwork
object, with a classification output layer appended to the end of the first output branch of the
imported network architecture.

Examples

Download and Install Deep Learning Toolbox Converter for ONNX Model Format

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support
package.

Type importONNXLayers at the command line.

importONNXLayers

If Deep Learning Toolbox Converter for ONNX Model Format is not installed, then the function
provides a link to the required support package in the Add-On Explorer. To install the support
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package, click the link, and then click Install. Check that the installation is successful by importing
the network from the model file "simplenet.onnx" at the command line. If the support package is
installed, then the function returns a LayerGraph object.

modelfile = "simplenet.onnx";
lgraph = importONNXLayers(modelfile)

lgraph = 
  LayerGraph with properties:

         Layers: [9×1 nnet.cnn.layer.Layer]
    Connections: [8×2 table]
     InputNames: {'imageinput'}
    OutputNames: {'ClassificationLayer_softmax1002'}

Plot the network architecture.

plot(lgraph)

Import ONNX Model as Layer Graph Compatible with DAGNetwork

Import a pretrained ONNX network as a LayerGraph object. Then, assemble the imported layers
into a DAGNetwork object, and use the assembled network to classify an image.
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Generate an ONNX model of the squeezenet convolution neural network.

squeezeNet = squeezenet;
exportONNXNetwork(squeezeNet,"squeezeNet.onnx");

Specify the model file and the class names.

modelfile = "squeezenet.onnx";
ClassNames = squeezeNet.Layers(end).Classes;

Import the layers and weights of the ONNX network. By default, importONNXLayers imports the
network as a LayerGraph object compatible with a DAGNetwork object.

lgraph = importONNXLayers(modelfile)

lgraph = 
  LayerGraph with properties:

         Layers: [70×1 nnet.cnn.layer.Layer]
    Connections: [77×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_prob'}

Analyze the imported network architecture.

analyzeNetwork(lgraph)
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Display the last layer of the imported network. The output shows that the layer graph has a
ClassificationOutputLayer at the end of the network architecture.

lgraph.Layers(end)

ans = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_prob'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

The classification layer does not contain the classes, so you must specify these before assembling the
network. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ...,
N, where N is the number of classes.

The classification layer has the name 'ClassificationLayer_prob'. Set the classes to
ClassNames, and then replace the imported classification layer with the new one.

cLayer = lgraph.Layers(end);
cLayer.Classes = ClassNames;
lgraph = replaceLayer(lgraph,'ClassificationLayer_prob',cLayer);

Assemble the layer graph using assembleNetwork to return a DAGNetwork object.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [70×1 nnet.cnn.layer.Layer]
    Connections: [77×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_prob'}

Read the image you want to classify and display the size of the image. The image is 384-by-512 pixels
and has three color channels (RGB).

I = imread("peppers.png");
size(I)

ans = 1×3

   384   512     3

Resize the image to the input size of the network. Show the image.

I = imresize(I,[227 227]);
imshow(I)
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Classify the image using the imported network.

label = classify(net,I)

label = categorical
     bell pepper 

Import ONNX Model as Layer Graph Compatible with dlnetwork

Import a pretrained ONNX network as a LayerGraph object compatible with a dlnetwork object.
Then, convert the layer graph to a dlnetwork to classify an image.

Generate an ONNX model of the squeezenet convolution neural network.

squeezeNet = squeezenet;
exportONNXNetwork(squeezeNet,"squeezeNet.onnx");

Specify the model file and the class names.

modelfile = "squeezenet.onnx";
ClassNames = squeezeNet.Layers(end).Classes;

Import the layers and weights of the ONNX network. Specify to import the network as a LayerGraph
object compatible with a dlnetwork object.

lgraph = importONNXLayers(modelfile,TargetNetwork="dlnetwork")

lgraph = 
  LayerGraph with properties:

         Layers: [70×1 nnet.cnn.layer.Layer]
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    Connections: [77×2 table]
     InputNames: {'data'}
    OutputNames: {1×0 cell}

Read the image you want to classify and display the size of the image. The image is 384-by-512 pixels
and has three color channels (RGB).

I = imread("peppers.png");
size(I)

ans = 1×3

   384   512     3

Resize the image to the input size of the network. Show the image.

I = imresize(I,[227 227]);
imshow(I)

Convert the imported layer graph to a dlnetwork object.

dlnet = dlnetwork(lgraph);

Convert the image to a dlarray. Format the images with the dimensions "SSCB" (spatial, spatial,
channel, batch). In this case, the batch size is 1 and you can omit it ("SSC").

I_dlarray = dlarray(single(I),"SSCB");

Classify the sample image and find the predicted label.

prob = predict(dlnet,I_dlarray);
[~,label] = max(prob);

Display the classification result.
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ClassNames(label)

ans = categorical
     bell pepper 

Import ONNX Model as Layer Graph with Autogenerated Custom Layers

Import a pretrained ONNX network as a LayerGraph object, and assemble the imported layers into a
DAGNetwork object. Then, use the DAGNetwork to classify an image. The imported network contains
ONNX operators that are not supported for conversion into built-in MATLAB layers. The software
automatically generates custom layers when you import these operators.

This example uses the helper function findCustomLayers. To view the code for this function, see
Helper Function on page 1-969.

Specify the file to import as shufflenet with operator set 9 from the ONNX Model Zoo.
shufflenet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

modelfile = "shufflenet-9.onnx";

Import the layers and weights of shufflenet. By default, importONNXLayers imports the network
as a LayerGraph object compatible with a DAGNetwork object. If the imported network contains
ONNX operators not supported for conversion into built-in MATLAB layers, then importONNXLayers
can automatically generate custom layers in place of these layers. importONNXLayers saves each
generated custom layer to a separate .m file in the package +shufflenet_9 in the current folder.
Specify the package name by using the name-value argument PackageName.

lgraph = importONNXLayers(modelfile,PackageName="shufflenet_9")

lgraph = 
  LayerGraph with properties:

         Layers: [173×1 nnet.cnn.layer.Layer]
    Connections: [188×2 table]
     InputNames: {'gpu_0_data_0'}
    OutputNames: {'ClassificationLayer_gpu_0_softmax_1'}

Find the indices of the automatically generated custom layers by using the helper function
findCustomLayers, and display the custom layers.

ind = findCustomLayers(lgraph.Layers,'+shufflenet_9');
lgraph.Layers(ind)

ans = 
  16×1 Layer array with layers:

     1   'Reshape_To_ReshapeLayer1004'   shufflenet_9.Reshape_To_ReshapeLayer1004   shufflenet_9.Reshape_To_ReshapeLayer1004
     2   'Reshape_To_ReshapeLayer1009'   shufflenet_9.Reshape_To_ReshapeLayer1009   shufflenet_9.Reshape_To_ReshapeLayer1009
     3   'Reshape_To_ReshapeLayer1014'   shufflenet_9.Reshape_To_ReshapeLayer1014   shufflenet_9.Reshape_To_ReshapeLayer1014
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     4   'Reshape_To_ReshapeLayer1019'   shufflenet_9.Reshape_To_ReshapeLayer1019   shufflenet_9.Reshape_To_ReshapeLayer1019
     5   'Reshape_To_ReshapeLayer1024'   shufflenet_9.Reshape_To_ReshapeLayer1024   shufflenet_9.Reshape_To_ReshapeLayer1024
     6   'Reshape_To_ReshapeLayer1029'   shufflenet_9.Reshape_To_ReshapeLayer1029   shufflenet_9.Reshape_To_ReshapeLayer1029
     7   'Reshape_To_ReshapeLayer1034'   shufflenet_9.Reshape_To_ReshapeLayer1034   shufflenet_9.Reshape_To_ReshapeLayer1034
     8   'Reshape_To_ReshapeLayer1039'   shufflenet_9.Reshape_To_ReshapeLayer1039   shufflenet_9.Reshape_To_ReshapeLayer1039
     9   'Reshape_To_ReshapeLayer1044'   shufflenet_9.Reshape_To_ReshapeLayer1044   shufflenet_9.Reshape_To_ReshapeLayer1044
    10   'Reshape_To_ReshapeLayer1049'   shufflenet_9.Reshape_To_ReshapeLayer1049   shufflenet_9.Reshape_To_ReshapeLayer1049
    11   'Reshape_To_ReshapeLayer1054'   shufflenet_9.Reshape_To_ReshapeLayer1054   shufflenet_9.Reshape_To_ReshapeLayer1054
    12   'Reshape_To_ReshapeLayer1059'   shufflenet_9.Reshape_To_ReshapeLayer1059   shufflenet_9.Reshape_To_ReshapeLayer1059
    13   'Reshape_To_ReshapeLayer1064'   shufflenet_9.Reshape_To_ReshapeLayer1064   shufflenet_9.Reshape_To_ReshapeLayer1064
    14   'Reshape_To_ReshapeLayer1069'   shufflenet_9.Reshape_To_ReshapeLayer1069   shufflenet_9.Reshape_To_ReshapeLayer1069
    15   'Reshape_To_ReshapeLayer1074'   shufflenet_9.Reshape_To_ReshapeLayer1074   shufflenet_9.Reshape_To_ReshapeLayer1074
    16   'Reshape_To_ReshapeLayer1079'   shufflenet_9.Reshape_To_ReshapeLayer1079   shufflenet_9.Reshape_To_ReshapeLayer1079

The classification layer does not contain the classes, so you must specify these before assembling the
network. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ...,
N, where N is the number of classes.

Import the class names from squeezenet, which is also trained with images from the ImageNet
database.

SqueezeNet = squeezenet;
classNames = SqueezeNet.Layers(end).ClassNames;

The classification layer cLayer is the final layer of lgraph. Set the classes to classNames and then
replace the imported classification layer with the new one.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_gpu_0_softmax_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

cLayer.Classes = classNames;
lgraph = replaceLayer(lgraph,lgraph.Layers(end).Name,cLayer);

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [173×1 nnet.cnn.layer.Layer]
    Connections: [188×2 table]
     InputNames: {'gpu_0_data_0'}
    OutputNames: {'ClassificationLayer_gpu_0_softmax_1'}
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Read the image you want to classify and display the size of the image. The image is 792-by-1056
pixels and has three color channels (RGB).

I = imread("peacock.jpg");
size(I)

ans = 1×3

         792        1056           3

Resize the image to the input size of the network. Show the image.

I = imresize(I,[224 224]);
imshow(I)

The inputs to shufflenet require further preprocessing (for details, see ShuffleNet in ONNX Model
Zoo). Rescale the image. Normalize the image by subtracting the mean of the training images and
dividing by the standard deviation of the training images.

I = rescale(I,0,1);

meanIm = [0.485 0.456 0.406];
stdIm = [0.229 0.224 0.225];
I = (I - reshape(meanIm,[1 1 3]))./reshape(stdIm,[1 1 3]);

Classify the image using the imported network.

label = classify(net,I)

label = categorical
     peacock 
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Helper Function

This section provides the code of the helper function findCustomLayers used in this example.
findCustomLayers returns the indices of the custom layers that importONNXLayers
automatically generates.

function indices = findCustomLayers(layers,PackageName)

s = what(['.\' PackageName]);

indices = zeros(1,length(s.m));
for i = 1:length(layers)
    for j = 1:length(s.m)
        if strcmpi(class(layers(i)),[PackageName(2:end) '.' s.m{j}(1:end-2)])
            indices(j) = i;
        end
    end
end

end

Import ONNX Model as Layer Graph with Placeholder Layers

Import an ONNX long short-term memory (LSTM) network as a layer graph, and then find and
replace the placholder layers. An LSTM network enables you to input sequence data into a network,
and make predictions based on the individual time steps of the sequence data.

lstmNet has a similar architecture to the LSTM network created in “Sequence Classification Using
Deep Learning”. lstmNet is trained to recognize the speaker given time series data representing two
Japanese vowels spoken in succession.

Specify lstmNet as the model file.

modelfile = "lstmNet.onnx";

Import the layers and weights of the ONNX network. By default, importONNXLayers imports the
network as a LayerGraph object compatible with a DAGNetwork object.

lgraph = importONNXLayers("lstmNet.onnx")

Warning: Unable to import some ONNX operators, because they are not supported. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

1 operators(s)    :    Unable to create an output layer for the ONNX network output 'softmax1001' because its data format is unknown or unsupported by MATLAB output layers.
                        If you know its format, pass it using the 'OutputDataFormats' argument.

To import the ONNX network as a function, use importONNXFunction.

lgraph = 
  LayerGraph with properties:

         Layers: [6×1 nnet.cnn.layer.Layer]
    Connections: [5×2 table]
     InputNames: {'sequenceinput'}
    OutputNames: {1×0 cell}
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importONNXLayers displays a warning and inserts a placeholder layer for the output layer.

You can check for placeholder layers by viewing the Layers property of lgraph or by using the
findPlaceholderLayers function.

lgraph.Layers

ans = 
  6×1 Layer array with layers:

     1   'sequenceinput'                 Sequence Input                        Sequence input with 12 dimensions
     2   'lstm1000'                      LSTM                                  LSTM with 100 hidden units
     3   'fc_MatMul'                     Fully Connected                       9 fully connected layer
     4   'fc_Add'                        Elementwise Affine                    Applies an elementwise scaling followed by an addition to the input.
     5   'Flatten_To_SoftmaxLayer1005'   lstmNet.Flatten_To_SoftmaxLayer1005   lstmNet.Flatten_To_SoftmaxLayer1005
     6   'OutputLayer_softmax1001'       PLACEHOLDER LAYER                     Placeholder for 'added_outputLayer' ONNX operator

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  PlaceholderLayer with properties:

        Name: 'OutputLayer_softmax1001'
    ONNXNode: [1×1 struct]
     Weights: []

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Create an output layer to replace the placeholder layer. First, create a classification layer with the
name OutputLayer_softmax1001. If you do not specify the classes, then the software
automatically sets them to 1, 2, ..., N, where N is the number of classes. In this case, the class data is
a categorical vector of labels "1","2",..."9", which correspond to nine speakers.

outputLayer = classificationLayer('Name','OutputLayer_softmax1001');

Replace the placeholder layers with outputLayer by using the replaceLayer function.

lgraph = replaceLayer(lgraph,'OutputLayer_softmax1001',outputLayer);

Display the Layers property of the layer graph to confirm the replacement.

lgraph.Layers

ans = 
  6×1 Layer array with layers:

     1   'sequenceinput'                 Sequence Input                        Sequence input with 12 dimensions
     2   'lstm1000'                      LSTM                                  LSTM with 100 hidden units
     3   'fc_MatMul'                     Fully Connected                       9 fully connected layer
     4   'fc_Add'                        Elementwise Affine                    Applies an elementwise scaling followed by an addition to the input.
     5   'Flatten_To_SoftmaxLayer1005'   lstmNet.Flatten_To_SoftmaxLayer1005   lstmNet.Flatten_To_SoftmaxLayer1005
     6   'OutputLayer_softmax1001'       Classification Output                 crossentropyex
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Alternatively, define the output layer when you import the layer graph by using the
OutputLayerType or OutputDataFormats option. Check if the imported layer graphs have
placeholder layers by using findPlaceholderLayers.

lgraph1 = importONNXLayers("lstmNet.onnx",OutputLayerType="classification");
findPlaceholderLayers(lgraph1)

ans = 
  0×1 Layer array with properties:

lgraph2 = importONNXLayers("lstmNet.onnx",OutputDataFormats="BC");
findPlaceholderLayers(lgraph2)

ans = 
  0×1 Layer array with properties:

The imported layer graphs lgraph1 and lgraph2 do not have placeholder layers.

Import and Assemble ONNX Network with Multiple Outputs

Import an ONNX network that has multiple outputs by using importONNXLayers, and then assemble
the imported layer graph into a DAGNetwork object.

Specify the network file from which to import layers and weights.

modelfile = "digitsMIMO.onnx";

Import the layers and weights from modelfile. The network in digitsMIMO.onnx has two output
layers: one classification layer (ClassificationLayer_sm_1) to classify digits and one regression
layer (RegressionLayer_fc_1_Flatten) to compute the mean squared error for the predicted
angles of the digits.

lgraph = importONNXLayers(modelfile)

lgraph = 
  LayerGraph with properties:

         Layers: [19×1 nnet.cnn.layer.Layer]
    Connections: [19×2 table]
     InputNames: {'input'}
    OutputNames: {'ClassificationLayer_sm_1'  'RegressionLayer_fc_1_Flatten'}

Plot the layer graph using plot, and display the layers of lgraph.

plot(lgraph)
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lgraph.Layers

ans = 
  19×1 Layer array with layers:

     1   'input'                          Image Input             28×28×1 images
     2   'conv_1'                         Convolution             16 5×5×1 convolutions with stride [1  1] and padding [2  2  2  2]
     3   'BN_1'                           Batch Normalization     Batch normalization with 16 channels
     4   'relu_1'                         ReLU                    ReLU
     5   'conv_2'                         Convolution             32 1×1×16 convolutions with stride [2  2] and padding [0  0  0  0]
     6   'conv_3'                         Convolution             32 3×3×16 convolutions with stride [2  2] and padding [1  1  1  1]
     7   'BN_2'                           Batch Normalization     Batch normalization with 32 channels
     8   'relu_2'                         ReLU                    ReLU
     9   'conv_4'                         Convolution             32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'BN_3'                           Batch Normalization     Batch normalization with 32 channels
    11   'relu_3'                         ReLU                    ReLU
    12   'plus_1'                         Addition                Element-wise addition of 2 inputs
    13   'fc_1'                           Convolution             1 14×14×32 convolutions with stride [1  1] and padding [0  0  0  0]
    14   'fc_2'                           Convolution             10 14×14×32 convolutions with stride [1  1] and padding [0  0  0  0]
    15   'sm_1_Flatten'                   ONNX Flatten            Flatten activations into 1-D assuming C-style (row-major) order
    16   'sm_1'                           Softmax                 softmax
    17   'fc_1_Flatten'                   ONNX Flatten            Flatten activations into 1-D assuming C-style (row-major) order
    18   'ClassificationLayer_sm_1'       Classification Output   crossentropyex
    19   'RegressionLayer_fc_1_Flatten'   Regression Output       mean-squared-error

The classification layer does not contain the classes, so you must specify these before assembling the
network. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ...,
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N, where N is the number of classes. Specify the classes of cLayer as 0, 1, ..., 9. Then, replace the
imported classification layer with the new one.

ClassNames = string(0:9);
cLayer = lgraph.Layers(18);
cLayer.Classes = ClassNames;
lgraph = replaceLayer(lgraph,"ClassificationLayer_sm_1",cLayer);

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

assembledNet = assembleNetwork(lgraph)

assembledNet = 
  DAGNetwork with properties:

         Layers: [19×1 nnet.cnn.layer.Layer]
    Connections: [19×2 table]
     InputNames: {'input'}
    OutputNames: {'ClassificationLayer_sm_1'  'RegressionLayer_fc_1_Flatten'}

Input Arguments
modelfile — Name of ONNX model file
character vector | string scalar

Name of the ONNX model file containing the network, specified as a character vector or string scalar.
The file must be in the current folder or in a folder on the MATLAB path, or you must include a full or
relative path to the file.
Example: "cifarResNet.onnx"

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
importONNXLayers(modelfile,TargetNetwork="dagnetwork",GenerateCustomLayers=tr
ue,PackageName="CustomLayers") imports the network layers from modelfile as a layer graph
compatible with a DAGNetwork object and saves the automatically generated custom layers in the
package +CustomLayers in the current folder.

GenerateCustomLayers — Option for custom layer generation
true or 1 (default) | false or 0

Option for custom layer generation, specified as a numeric or logical 1 (true) or 0 (false). If you set
GenerateCustomLayers to true, importONNXLayers tries to generate a custom layer when the
software cannot convert an ONNX operator into an equivalent built-in MATLAB layer.
importONNXLayers saves each generated custom layer to a separate .m file in +PackageName. To
view or edit a custom layer, open the associated .m file. For more information on custom layers, see
“Deep Learning Custom Layers”.
Example: GenerateCustomLayers=false
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PackageName — Name of custom layers package
character vector | string scalar

Name of the package in which importONNXLayers saves custom layers, specified as a character
vector or string scalar. importONNXLayers saves the custom layers package +PackageName in the
current folder. If you do not specify PackageName, then importONNXLayers saves the custom layers
in a package named +modelfile in the current folder. For more information on packages, see
“Packages Create Namespaces”.
Example: PackageName="shufflenet_9"
Example: PackageName="CustomLayers"

TargetNetwork — Target type of Deep Learning Toolbox network
"dagnetwork" (default) | "dlnetwork"

Target type of Deep Learning Toolbox network for imported network architecture, specified as
"dagnetwork" or "dlnetwork". The function importONNXLayers imports the network
architecture as a LayerGraph object compatible with a DAGNetwork or dlnetwork object.

• If you specify TargetNetwork as "dagnetwork", the imported lgraph must include input and
output layers specified by the ONNX model or that you specify using the name-value arguments
InputDataFormats, OutputDataFormats, or OutputLayerType.

• If you specify TargetNetwork as "dlnetwork", importONNXLayers appends a
CustomOutputLayer at the end of each output branch of lgraph, and might append a
CustomInputLayer at the beginning of an input branch. The function appends a
CustomInputLayer if the input data formats or input image sizes are not known. For network-
specific information on the data formats of these layers, see the properties of the
CustomInputLayer and CustomOutputLayer objects. For information on how to interpret Deep
Learning Toolbox input and output data formats, see “Conversion of ONNX Input and Output
Tensors into Built-In MATLAB Layers” on page 1-979.

Example: TargetNetwork="dlnetwork" imports a LayerGraph object compatible with a
dlnetwork object.

InputDataFormats — Data format of network inputs
character vector | string scalar | string array

Data format of the network inputs, specified as a character vector, string scalar, or string array.
importONNXLayers tries to interpret the input data formats from the ONNX file. The name-value
argument InputDataFormats is useful when importONNXLayers cannot derive the input data
formats.

Set InputDataFomats to a data format in the ordering of an ONNX input tensor. For example, if you
specify InputDataFormats as "BSSC", the imported network has one imageInputLayer input. For
more information on how importONNXLayers interprets the data format of ONNX input tensors and
how to specify InputDataFormats for different Deep Learning Toolbox input layers, see
“Conversion of ONNX Input and Output Tensors into Built-In MATLAB Layers” on page 1-979.

If you specify an empty data format ([] or ""), importONNXLayers automatically interprets the
input data format.
Example: InputDataFormats='BSSC'
Example: InputDataFormats="BSSC"
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Example: InputDataFormats=["BCSS","","BC"]
Example: InputDataFormats={'BCSS',[],'BC'}
Data Types: char | string | cell

OutputDataFormats — Data format of network outputs
character vector | string scalar | string array

Data format of the network outputs, specified as a character vector, string scalar, or string array.
importONNXLayers tries to interpret the output data formats from the ONNX file. The name-value
argument OutputDataFormats is useful when importONNXLayers cannot derive the output data
formats.

Set OutputDataFormats to a data format in the ordering of an ONNX output tensor. For example, if
you specify OutputDataFormats as "BC", the imported network has one classificationLayer
output. For more information on how importONNXLayers interprets the data format of ONNX output
tensors and how to specify OutputDataFormats for different Deep Learning Toolbox output layers,
see “Conversion of ONNX Input and Output Tensors into Built-In MATLAB Layers” on page 1-979.

If you specify an empty data format ([] or ""), importONNXLayers automatically interprets the
output data format.
Example: OutputDataFormats='BC'
Example: OutputDataFormats="BC"
Example: OutputDataFormats=["BCSS","","BC"]
Example: OutputDataFormats={'BCSS',[],'BC'}
Data Types: char | string | cell

ImageInputSize — Size of input image for first network input
vector of two or three numerical values

Size of the input image for the first network input, specified as a vector of three or four numerical
values corresponding to [height,width,channels] for 2-D images and
[height,width,depth,channels] for 3-D images. The network uses this information only when
the ONNX model in modelfile does not specify the input size.
Example: ImageInputSize=[28 28 1] for a 2-D grayscale input image
Example: ImageInputSize=[224 224 3] for a 2-D color input image
Example: ImageInputSize=[28 28 36 3] for a 3-D color input image

OutputLayerType — Layer type for first network output
"classification" | "regression" | "pixelclassification"

Layer type for the first network output, specified as "classification", "regression", or
"pixelclassification". The function importONNXLayers appends a
ClassificationOutputLayer, RegressionOutputLayer, or pixelClassificationLayer
object to the end of the first output branch of the imported network architecture. Appending a
pixelClassificationLayer object requires Computer Vision Toolbox. If the ONNX model in
modelfile specifies the output layer type or you specify TargetNetwork as "dlnetwork",
importONNXLayers ignores the name-value argument OutputLayerType.
Example: OutputLayerType="regression"
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FoldConstants — Constant folding optimization
"deep" (default) | "shallow" | "none"

Constant folding optimization, specified as "deep", "shallow", or "none". Constant folding
optimizes the imported network architecture by computing operations on ONNX initializers (initial
constant values) during the conversion of ONNX operators to equivalent built-in MATLAB layers.

If the ONNX network contains operators that the software cannot convert to equivalent built-in
MATLAB layers (see “ONNX Operators Supported for Conversion into Built-In MATLAB Layers” on
page 1-977), then importONNXLayers inserts a placeholder layer in place of each unsupported
layer. For more information, see “Tips” on page 1-983.

Constant folding optimization can reduce the number of placeholder layers. When you set
FoldConstants to "deep", the imported layers include the same or fewer placeholder layers,
compared to when you set the argument to "shallow". However, the importing time might increase.
Set FoldConstants to "none" to disable the network architecture optimization.
Example: FoldConstants="shallow"

Output Arguments
lgraph — Network architecture of pretrained ONNX model
LayerGraph object

Network architecture of the pretrained ONNX model, returned as a LayerGraph object.

To use the imported layer graph for prediction, you must convert the LayerGraph object to a
DAGNetwork or dlnetwork object. Specify the name-value argument TargetNetwork as
"dagnetwork" or "dlnetwork" depending on the intended workflow.

• Convert a LayerGraph to a DAGNetwork by using assembleNetwork. On the DAGNetwork
object, you then predict class labels using the classify function.

• Convert a LayerGraph to a dlnetwork by using dlnetwork. On the dlnetwork object, you then
predict class labels using the predict function. Specify the input data as a dlarray using the
correct data format (for more information, see the fmt argument of dlarray).

Limitations
• importONNXLayers supports ONNX versions as follows:

• The function supports ONNX intermediate representation version 7.
• The function supports ONNX operator sets 6 to 14.

Note If you import an exported network, layers of the reimported network might differ from the
original network and might not be supported.

More About
ONNX Operators Supported for Conversion into Built-In MATLAB Layers

importONNXLayers supports the following ONNX operators for conversion into built-in MATLAB
layers, with some limitations.
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ONNX Operator Deep Learning Toolbox Layer
Add additionLayer or

nnet.onnx.layer.ElementwiseAffineLayer
AveragePool averagePooling1dLayer or

averagePooling2dLayer
BatchNormalization batchNormalizationLayer
Concat concatenationLayer
Constant None (Imported as weights)
Conv* convolution1dLayer or

convolution2dLayer
ConvTranspose transposedConv2dLayer
Dropout dropoutLayer
Elu eluLayer
Gemm fullyConnectedLayer if ONNX network is

recurrent, otherwise
nnet.onnx.layer.FlattenLayer followed by
convolution2dLayer

GlobalAveragePool globalAveragePooling1dLayer or
globalAveragePooling2dLayer

GlobalMaxPool globalMaxPooling1dLayer or
globalMaxPooling2dLayer

GRU gruLayer
InstanceNormalization groupNormalizationLayer with numGroups

specified as "channel-wise"
LeakyRelu leakyReluLayer
LRN CrossChannelNormalizationLayer
LSTM lstmLayer or bilstmLayer
MatMul fullyConnectedLayer if ONNX network is

recurrent, otherwise convolution2dLayer
MaxPool maxPooling1dLayer or maxPooling2dLayer
Mul multiplicationLayer
Relu reluLayer or clippedReluLayer
Sigmoid sigmoidLayer
Softmax softmaxLayer
Sum additionLayer
Tanh tanhLayer

* If importONNXLayers imports the Conv ONNX operator as a convolution2dLayer and the Conv
operator is a vector with only two elements [p1,p2], importONNXLayers sets the Padding option
of convolution2dLayer to [p1,p2,p1,p2].
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ONNX Operator ONNX Importer Custom Layer
Clip nnet.onnx.layer.ClipLayer
Div nnet.onnx.layer.ElementwiseAffineLayer
Flatten nnet.onnx.layer.FlattenLayer or

nnet.onnx.layer.Flatten3dLayer
Identity nnet.onnx.layer.IdentityLayer
ImageScaler nnet.onnx.layer.ElementwiseAffineLayer
PRelu nnet.onnx.layer.PReluLayer
Reshape nnet.onnx.layer.FlattenLayer
Sub nnet.onnx.layer.ElementwiseAffineLayer

ONNX Operator Image Processing Toolbox
DepthToSpace depthToSpace2dLayer
Resize resize2dLayer or resize3dLayer
SpaceToDepth spaceToDepthLayer
Upsample resize2dLayer or resize3dLayer

Conversion of ONNX Input and Output Tensors into Built-In MATLAB Layers

importONNXLayers tries to interpret the data format of the ONNX network's input and output
tensors, and then convert them into built-in MATLAB input and output layers. For details on the
interpretation, see the tables Conversion of ONNX Input Tensors into Deep Learning Toolbox Layers
and Conversion of ONNX Output Tensors into MATLAB Layers.

In Deep Learning Toolbox, each data format character must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations
• T — Time or sequence
• U — Unspecified
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Conversion of ONNX Input Tensors into Deep Learning Toolbox Layers

Data Formats Data Interpretation Deep Learning
Toolbox LayerONNX Input

Tensor
MATLAB Input
Format

Shape Type

BC CB c-by-n array, where
c is the number of
features and n is
the number of
observations

Features featureInputLa
yer

BCSS, BSSC, CSS,
SSC

SSCB h-by-w-by-c-by-n
numeric array,
where h, w, c and
n are the height,
width, number of
channels of the
images, and
number of
observations,
respectively

2-D image imageInputLaye
r

BCSSS, BSSSC,
CSSS, SSSC

SSSCB h-by-w-by-d-by-c-
by-n numeric array,
where h, w, d, c
and n are the
height, width,
depth, number of
channels of the
images, and
number of image
observations,
respectively

3-D image image3dInputLa
yer

TBC CBT c-by-s-by-n matrix,
where c is the
number of features
of the sequence, s
is the sequence
length, and n is the
number of
sequence
observations

Vector sequence sequenceInputL
ayer
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Data Formats Data Interpretation Deep Learning
Toolbox LayerONNX Input

Tensor
MATLAB Input
Format

Shape Type

TBCSS SSCBT h-by-w-by-c-by-s-
by-n array, where
h, w, c and n
correspond to the
height, width, and
number of
channels of the
image,
respectively, s is
the sequence
length, and n is the
number of image
sequence
observations

2-D image
sequence

sequenceInputL
ayer

TBCSSS SSSCBT h-by-w-by-d-by-c-
by-s-by-n array,
where h, w, d, and
c correspond to the
height, width,
depth, and number
of channels of the
image,
respectively, s is
the sequence
length, and n is the
number of image
sequence
observations

3-D image
sequence

sequenceInputL
ayer

Conversion of ONNX Output Tensors into MATLAB Layers

Data Formats MATLAB Layer
ONNX Output Tensor MATLAB Output Format
BC, TBC CB, CBT classificationLayer
BCSS, BSSC, CSS, SSC, BCSSS,
BSSSC, CSSS, SSSC

SSCB, SSSCB pixelClassificationLayer

TBCSS, TBCSSS SSCBT, SSSCBT regressionLayer

Generate Code for Imported Network Architecture

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Deep Learning Code Generation”.

• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM Compute library. Alternatively, you can generate generic C or
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C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).

importONNXLayers returns the network architecture lgraph as a LayerGraph object. For code
generation, you must first convert the imported LayerGraph object to a network. Convert a
LayerGraph object to a DAGNetwork or dlnetwork object by using assembleNetwork or
dlnetwork. For more information on MATLAB Coder and GPU Coder support for Deep Learning
Toolbox objects, see “Supported Classes” (MATLAB Coder) and “Supported Classes” (GPU Coder),
respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see “Code Generation” on page 1-866 and “GPU Code
Generation” on page 1-867 of imageInputLayer.

Use Imported Network Layers on GPU

importONNXLayers does not execute on a GPU. However, importONNXLayers imports the layers of
a pretrained neural network for deep learning as a LayerGraph object, which you can use on a GPU.

• Convert the imported LayerGraph object to a DAGNetwork object by using assembleNetwork.
On the DAGNetwork object, you can then predict class labels on either a CPU or GPU by using
classify. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For networks with multiple outputs, use the predict function and
specify the name-value argument ReturnCategorical as true.

• Convert the imported LayerGraph object to a dlnetwork object by using dlnetwork. On the
dlnetwork object, you can then predict class labels on either a CPU or GPU by using predict.
The function predict executes on the GPU if either the input data or network parameters are
stored on the GPU.

• If you use minibatchqueue to process and manage the mini-batches of input data, the
minibatchqueue object converts the output to a GPU array by default if a GPU is available.

• Use dlupdate to convert the learnable parameters of a dlnetwork object to GPU arrays.

net = dlupdate(@gpuArray,net)

• You can train the imported LayerGraph object on either a CPU or GPU by using trainNetwork.
To specify training options, including options for the execution environment, use the
trainingOptions function. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For more information on how to accelerate training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud”.

Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
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Tips
• If the imported network contains an ONNX operator not supported for conversion into a built-in

MATLAB layer (see “ONNX Operators Supported for Conversion into Built-In MATLAB Layers” on
page 1-977) and importONNXLayers does not generate a custom layer, then importONNXLayers
inserts a placeholder layer in place of the unsupported layer. To find the names and indices of the
unsupported layers in the network, use the findPlaceholderLayers function. You then can
replace a placeholder layer with a new layer that you define. To replace a layer, use
replaceLayer. For an example, see “Import and Assemble ONNX Network with Multiple
Outputs” on page 1-972.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way the images that were used to train the imported model
were preprocessed. The most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR format to RGB format.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

• For more tips, see “Tips on Importing Models from TensorFlow, PyTorch, and ONNX”.

Alternative Functionality
Deep Learning Toolbox Converter for ONNX Model Format provides three functions to import a
pretrained ONNX network: importONNXNetwork, importONNXLayers, and
importONNXFunction. For more information on which import function best suits different scenarios,
see “Select Function to Import ONNX Pretrained Network”.

Version History
Introduced in R2018a

ImportWeights option has been removed
Warns starting in R2021b

ImportWeights has been removed. Starting in R2021b, the ONNX model weights are automatically
imported. In most cases, you do not need to make any changes to your code.

• If ImportWeights is not set in your code, importONNXLayers now imports the weights.
• If ImportWeights is set to true in your code, the behavior of importONNXLayers remains the

same.
• If ImportWeights is set to false in your code, importONNXLayers now ignores the name-value

argument ImportWeights and imports the weights.

importONNXLayers cannot create input and output layers from ONNX file information
Behavior changed in R2021b
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If you import an ONNX model as a LayerGraph object compatible with a DAGNetwork object, the
imported layer graph must include input and output layers. importONNXLayers tries to convert the
input and output ONNX tensors into built-in MATLAB layers. When importing some networks, which
importONNXLayers could previously import with input and output built-in MATLAB layers,
importONNXLayers might now insert placeholder layers. In this case, do one of the following to
update your code:

• Specify the name-value argument TargetNetwork as "dlnetwork" to import the network as a
LayerGraph object compatible with a dlnetwork object.

• Use the name-value arguments InputDataFormats, OutputDataFormats, and
OutputLayerType to specify the imported network's inputs and outputs.

• Use importONNXFunction to import the network as a model function and an ONNXParameters
object.

Names of imported layers might differ
Behavior changed in R2021b

The layer names of an imported layer graph might differ from previous releases. To update your code,
replace the existing name of a layer with the new name or lgraph.Layers(n).Name.

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

See Also
importONNXNetwork | importONNXFunction | importTensorFlowLayers |
importTensorFlowNetwork | importNetworkFromPyTorch | exportONNXNetwork |
exportNetworkToTensorFlow | findPlaceholderLayers | replaceLayer | assembleNetwork

Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
“Tips on Importing Models from TensorFlow, PyTorch, and ONNX”
“Pretrained Deep Neural Networks”
“Define Custom Deep Learning Layers”
“Assemble Network from Pretrained Keras Layers”
“Select Function to Import ONNX Pretrained Network”
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importONNXNetwork
Import pretrained ONNX network

Syntax
net = importONNXNetwork(modelfile)
net = importONNXNetwork(modelfile,Name=Value)

Description
net = importONNXNetwork(modelfile) imports a pretrained ONNX (Open Neural Network
Exchange) network from the file modelfile. The function returns the network net as a DAGNetwork
or dlnetwork object.

importONNXNetwork requires the Deep Learning Toolbox Converter for ONNX Model Format
support package. If this support package is not installed, then importONNXNetwork provides a
download link.

Note By default, importONNXNetwork tries to generate a custom layer when the software cannot
convert an ONNX operator into an equivalent built-in MATLAB layer. For a list of operators for which
the software supports conversion, see “ONNX Operators Supported for Conversion into Built-In
MATLAB Layers” on page 1-998.

importONNXNetwork saves the generated custom layers in the package +modelfile.

importONNXNetwork does not automatically generate a custom layer for each ONNX operator that
is not supported for conversion into a built-in MATLAB layer. For more information on how to handle
unsupported layers, see “Alternative Functionality” on page 1-1004.

net = importONNXNetwork(modelfile,Name=Value) imports a pretrained ONNX network with
additional options specified by one or more name-value arguments. For example,
OutputLayerType="classification" imports the network as a DAGNetwork object with a
classification output layer appended to the end of the first output branch of the imported network
architecture.

Examples

Download and Install Deep Learning Toolbox Converter for ONNX Model Format

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support
package.

Type importONNXNetwork at the command line.

importONNXNetwork

If Deep Learning Toolbox Converter for ONNX Model Format is not installed, then the function
provides a link to the required support package in the Add-On Explorer. To install the support
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package, click the link, and then click Install. Check that the installation is successful by importing
the network from the model file "simplenet.onnx" at the command line. If the support package is
installed, then the function returns a DAGNetwork object.

modelfile = "simplenet.onnx";
net = importONNXNetwork(modelfile)

net = 
  DAGNetwork with properties:

         Layers: [9×1 nnet.cnn.layer.Layer]
    Connections: [8×2 table]
     InputNames: {'imageinput'}
    OutputNames: {'ClassificationLayer_softmax1002'}

Plot the network architecture.

plot(net)

Import ONNX Network as DAGNetwork

Import a pretrained ONNX network as a DAGNetwork object, and use the imported network to
classify an image.
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Generate an ONNX model of the squeezenet convolution neural network.

squeezeNet = squeezenet;
exportONNXNetwork(squeezeNet,"squeezeNet.onnx");

Specify the class names.

ClassNames = squeezeNet.Layers(end).Classes;

Import the pretrained squeezeNet.onnx model, and specify the classes. By default,
importONNXNetwork imports the network as a DAGNetwork object.

net = importONNXNetwork("squeezeNet.onnx",Classes=ClassNames)

net = 
  DAGNetwork with properties:

         Layers: [70×1 nnet.cnn.layer.Layer]
    Connections: [77×2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_prob'}

Analyze the imported network.

analyzeNetwork(net)
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Read the image you want to classify and display the size of the image. The image is 384-by-512 pixels
and has three color channels (RGB).

I = imread("peppers.png");
size(I)

ans = 1×3

   384   512     3

Resize the image to the input size of the network. Show the image.

I = imresize(I,[227 227]);
imshow(I)

Classify the image using the imported network.

label = classify(net,I)

label = categorical
     bell pepper 

Import ONNX Network as dlnetwork

Import a pretrained ONNX network as a dlnetwork object, and use the imported network to classify
an image.

Generate an ONNX model of the squeezenet convolution neural network.

squeezeNet = squeezenet;
exportONNXNetwork(squeezeNet,"squeezeNet.onnx");
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Specify the class names.

ClassNames = squeezeNet.Layers(end).Classes;

Import the pretrained squeezeNet.onnx model as a dlnetwork object.

net = importONNXNetwork("squeezeNet.onnx",TargetNetwork="dlnetwork")

net = 
  dlnetwork with properties:

         Layers: [70×1 nnet.cnn.layer.Layer]
    Connections: [77×2 table]
     Learnables: [52×3 table]
          State: [0×3 table]
     InputNames: {'data'}
    OutputNames: {'probOutput'}
    Initialized: 1

Read the image you want to classify and display the size of the image. The image is 384-by-512 pixels
and has three color channels (RGB).

I = imread("peppers.png");
size(I)

ans = 1×3

   384   512     3

Resize the image to the input size of the network. Show the image.

I = imresize(I,[227 227]);
imshow(I)
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Convert the image to a dlarray. Format the images with the dimensions "SSCB" (spatial, spatial,
channel, batch). In this case, the batch size is 1 and you can omit it ("SSC").

I_dlarray = dlarray(single(I),"SSCB");

Classify the sample image and find the predicted label.

prob = predict(net,I_dlarray);
[~,label] = max(prob);

Display the classification result.

ClassNames(label)

ans = categorical
     bell pepper 

Import ONNX Network with Autogenerated Custom Layers

Import a pretrained ONNX network as a DAGNetwork object, and use the imported network to
classify an image. The imported network contains ONNX operators that are not supported for
conversion into built-in MATLAB layers. The software automatically generates custom layers when
you import these operators.

This example uses the helper function findCustomLayers. To view the code for this function, see
Helper Function on page 1-993.

Specify the model file to import as shufflenet with operator set 9 from the ONNX Model Zoo.
shufflenet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

modelfile = "shufflenet-9.onnx";

Import the class names from squeezenet, which is also trained with images from the ImageNet
database.

squeezeNet = squeezenet;
ClassNames = squeezeNet.Layers(end).ClassNames;

Import shufflenet. By default, importONNXNetwork imports the network as a DAGNetwork
object. If the imported network contains ONNX operators not supported for conversion into built-in
MATLAB layers, then importONNXNetwork can automatically generate custom layers in place of
these operators. importONNXNetwork saves each generated custom layer to a separate .m file in the
package +shufflenet_9 in the current folder. Specify the package name by using the name-value
argument PackageName.

net = importONNXNetwork(modelfile,...
    Classes=ClassNames,PackageName="shufflenet_9")

net = 
  DAGNetwork with properties:
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         Layers: [173×1 nnet.cnn.layer.Layer]
    Connections: [188×2 table]
     InputNames: {'gpu_0_data_0'}
    OutputNames: {'ClassificationLayer_gpu_0_softmax_1'}

Find the indices of the automatically generated custom layers by using the helper function
findCustomLayers, and display the custom layers.

ind = findCustomLayers(net.Layers,'+shufflenet_9');
net.Layers(ind)

ans = 
  16×1 Layer array with layers:

     1   'Reshape_To_ReshapeLayer1004'   shufflenet_9.Reshape_To_ReshapeLayer1004   shufflenet_9.Reshape_To_ReshapeLayer1004
     2   'Reshape_To_ReshapeLayer1009'   shufflenet_9.Reshape_To_ReshapeLayer1009   shufflenet_9.Reshape_To_ReshapeLayer1009
     3   'Reshape_To_ReshapeLayer1014'   shufflenet_9.Reshape_To_ReshapeLayer1014   shufflenet_9.Reshape_To_ReshapeLayer1014
     4   'Reshape_To_ReshapeLayer1019'   shufflenet_9.Reshape_To_ReshapeLayer1019   shufflenet_9.Reshape_To_ReshapeLayer1019
     5   'Reshape_To_ReshapeLayer1024'   shufflenet_9.Reshape_To_ReshapeLayer1024   shufflenet_9.Reshape_To_ReshapeLayer1024
     6   'Reshape_To_ReshapeLayer1029'   shufflenet_9.Reshape_To_ReshapeLayer1029   shufflenet_9.Reshape_To_ReshapeLayer1029
     7   'Reshape_To_ReshapeLayer1034'   shufflenet_9.Reshape_To_ReshapeLayer1034   shufflenet_9.Reshape_To_ReshapeLayer1034
     8   'Reshape_To_ReshapeLayer1039'   shufflenet_9.Reshape_To_ReshapeLayer1039   shufflenet_9.Reshape_To_ReshapeLayer1039
     9   'Reshape_To_ReshapeLayer1044'   shufflenet_9.Reshape_To_ReshapeLayer1044   shufflenet_9.Reshape_To_ReshapeLayer1044
    10   'Reshape_To_ReshapeLayer1049'   shufflenet_9.Reshape_To_ReshapeLayer1049   shufflenet_9.Reshape_To_ReshapeLayer1049
    11   'Reshape_To_ReshapeLayer1054'   shufflenet_9.Reshape_To_ReshapeLayer1054   shufflenet_9.Reshape_To_ReshapeLayer1054
    12   'Reshape_To_ReshapeLayer1059'   shufflenet_9.Reshape_To_ReshapeLayer1059   shufflenet_9.Reshape_To_ReshapeLayer1059
    13   'Reshape_To_ReshapeLayer1064'   shufflenet_9.Reshape_To_ReshapeLayer1064   shufflenet_9.Reshape_To_ReshapeLayer1064
    14   'Reshape_To_ReshapeLayer1069'   shufflenet_9.Reshape_To_ReshapeLayer1069   shufflenet_9.Reshape_To_ReshapeLayer1069
    15   'Reshape_To_ReshapeLayer1074'   shufflenet_9.Reshape_To_ReshapeLayer1074   shufflenet_9.Reshape_To_ReshapeLayer1074
    16   'Reshape_To_ReshapeLayer1079'   shufflenet_9.Reshape_To_ReshapeLayer1079   shufflenet_9.Reshape_To_ReshapeLayer1079

Read the image you want to classify and display the size of the image. The image is 792-by-1056
pixels and has three color channels (RGB).

I = imread("peacock.jpg");
size(I)

ans = 1×3

         792        1056           3

Resize the image to the input size of the network. Show the image.

I = imresize(I,[224 224]);
imshow(I)
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The inputs to shufflenet require further preprocessing (for details, see ShuffleNet in ONNX Model
Zoo). Rescale the image. Normalize the image by subtracting the mean of the training images and
dividing by the standard deviation of the training images.

I = rescale(I,0,1);

meanIm = [0.485 0.456 0.406];
stdIm = [0.229 0.224 0.225];
I = (I - reshape(meanIm,[1 1 3]))./reshape(stdIm,[1 1 3]);

imshow(I)
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Classify the image using the imported network.

label = classify(net,I)

label = categorical
     peacock 

Helper Function

This section provides the code of the helper function findCustomLayers used in this example.
findCustomLayers returns the indices of the custom layers that importONNXNetwork
automatically generates.

function indices = findCustomLayers(layers,PackageName)

s = what(['.\' PackageName]);

indices = zeros(1,length(s.m));
for i = 1:length(layers)
    for j = 1:length(s.m)
        if strcmpi(class(layers(i)),[PackageName(2:end) '.' s.m{j}(1:end-2)])
            indices(j) = i;
        end
    end
end

end

Import ONNX Network with Multiple Outputs

Import an ONNX network that has multiple outputs as a DAGNetwork object.

Specify the ONNX model file and import the pretrained ONNX model. By default,
importONNXNetwork imports the network as a DAGNetwork object.

modelfile = "digitsMIMO.onnx";
net = importONNXNetwork(modelfile)

net = 
  DAGNetwork with properties:

         Layers: [19×1 nnet.cnn.layer.Layer]
    Connections: [19×2 table]
     InputNames: {'input'}
    OutputNames: {'ClassificationLayer_sm_1'  'RegressionLayer_fc_1_Flatten'}

The network has two output layers: one classification layer (ClassificationLayer_sm_1) to
classify digits and one regression layer (RegressionLayer_fc_1_Flatten) to compute the mean
squared error for the predicted angles of the digits. Plot the network architecture.

plot(net)
title('digitsMIMO Network Architecture')
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To make predictions using the imported network, use the predict function and set the
ReturnCategorical option to true.

Input Arguments
modelfile — Name of ONNX model file
character vector | string scalar

Name of the ONNX model file containing the network, specified as a character vector or string scalar.
The file must be in the current folder or in a folder on the MATLAB path, or you must include a full or
relative path to the file.
Example: "cifarResNet.onnx"

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
importONNXNetwork(modelfile,TargetNetwork="dagnetwork",GenerateCustomLayers=t
rue,PackageName="CustomLayers") imports the network in modelfile as a DAGNetwork object
and saves the automatically generated custom layers in the package +CustomLayers in the current
folder.
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GenerateCustomLayers — Option for custom layer generation
true or 1 (default) | false or 0

Option for custom layer generation, specified as a numeric or logical 1 (true) or 0 (false). If you set
GenerateCustomLayers to true, importONNXNetwork tries to generate a custom layer when the
software cannot convert an ONNX operator into an equivalent built-in MATLAB layer.
importONNXNetwork saves each generated custom layer to a separate .m file in +PackageName. To
view or edit a custom layer, open the associated .m file. For more information on custom layers, see
“Deep Learning Custom Layers”.
Example: GenerateCustomLayers=false

PackageName — Name of custom layers package
character vector | string scalar

Name of the package in which importONNXNetwork saves custom layers, specified as a character
vector or string scalar. importONNXNetwork saves the custom layers package +PackageName in the
current folder. If you do not specify PackageName, then importONNXNetwork saves the custom
layers in a package named +modelfile in the current folder. For more information on packages, see
“Packages Create Namespaces”.
Example: PackageName="shufflenet_9"
Example: PackageName="CustomLayers"

TargetNetwork — Target type of Deep Learning Toolbox network
"dagnetwork" (default) | "dlnetwork"

Target type of Deep Learning Toolbox network, specified as "dagnetwork" or "dlnetwork". The
function importONNXNetwork imports the network net as a DAGNetwork or dlnetwork object.

• If you import the network as a DAGNetwork object, net must include input and output layers
specified by the ONNX model or that you specify using the name-value arguments
InputDataFormats, OutputDataFormats, or OutputLayerType.

• If you import the network as a dlnetwork object, importONNXNetwork appends a
CustomOutputLayer at the end of each output branch of net, and might append a
CustomInputLayer at the beginning of an input branch. The function appends a
CustomInputLayer if the input data formats or input image sizes are not known. For network-
specific information on the data formats of these layers, see the properties of the
CustomInputLayer and CustomOutputLayer objects. For information on how to interpret Deep
Learning Toolbox input and output data formats, see “Conversion of ONNX Input and Output
Tensors into Built-In MATLAB Layers” on page 1-999.

Example: TargetNetwork="dlnetwork"

InputDataFormats — Data format of network inputs
character vector | string scalar | string array

Data format of the network inputs, specified as a character vector, string scalar, or string array.
importONNXNetwork tries to interpret the input data formats from the ONNX file. The name-value
argument InputDataFormats is useful when importONNXNetwork cannot derive the input data
formats.

Set InputDataFomats to a data format in the ordering of an ONNX input tensor. For example, if you
specify InputDataFormats as "BSSC", the imported network has one imageInputLayer input. For
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more information on how importONNXNetwork interprets the data format of ONNX input tensors
and how to specify InputDataFormats for different Deep Learning Toolbox input layers, see
“Conversion of ONNX Input and Output Tensors into Built-In MATLAB Layers” on page 1-999.

If you specify an empty data format ([] or ""), importONNXNetwork automatically interprets the
input data format.
Example: InputDataFormats='BSSC'
Example: InputDataFormats="BSSC"
Example: InputDataFormats=["BCSS","","BC"]
Example: InputDataFormats={'BCSS',[],'BC'}
Data Types: char | string | cell

OutputDataFormats — Data format of network outputs
character vector | string scalar | string array

Data format of the network outputs, specified as a character vector, string scalar, or string array.
importONNXNetwork tries to interpret the output data formats from the ONNX file. The name-value
argument OutputDataFormats is useful when importONNXNetwork cannot derive the output data
formats.

Set OutputDataFormats to a data format in the ordering of an ONNX output tensor. For example, if
you specify OutputDataFormats as "BC", the imported network has one classificationLayer
output. For more information on how importONNXNetwork interprets the data format of ONNX
output tensors and how to specify OutputDataFormats for different Deep Learning Toolbox output
layers, see “Conversion of ONNX Input and Output Tensors into Built-In MATLAB Layers” on page 1-
999.

If you specify an empty data format ([] or ""), importONNXNetwork automatically interprets the
output data format.
Example: OutputDataFormats='BC'
Example: OutputDataFormats="BC"
Example: OutputDataFormats=["BCSS","","BC"]
Example: OutputDataFormats={'BCSS',[],'BC'}
Data Types: char | string | cell

ImageInputSize — Size of input image for first network input
vector of two or three numerical values

Size of the input image for the first network input, specified as a vector of three or four numerical
values corresponding to [height,width,channels] for 2-D images and
[height,width,depth,channels] for 3-D images. The network uses this information only when
the ONNX model in modelfile does not specify the input size.
Example: ImageInputSize=[28 28 1] for a 2-D grayscale input image
Example: ImageInputSize=[224 224 3] for a 2-D color input image
Example: ImageInputSize=[28 28 36 3] for a 3-D color input image

OutputLayerType — Layer type for first network output
"classification" | "regression" | "pixelclassification"

1 Deep Learning Functions

1-996



Layer type for the first network output, specified as "classification", "regression", or
"pixelclassification". The function importONNXNetwork appends a
ClassificationOutputLayer, RegressionOutputLayer, or pixelClassificationLayer
object to the end of the first output branch of the imported network architecture. Appending a
pixelClassificationLayer object requires Computer Vision Toolbox. If the ONNX model in
modelfile specifies the output layer type or you specify TargetNetwork as "dlnetwork",
importONNXNetwork ignores the name-value argument OutputLayerType.
Example: OutputLayerType="regression"

Classes — Classes of output layer for first network output
"auto" (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer for the first network output, specified as a categorical vector, string array,
cell array of character vectors, or "auto". If Classes is "auto", then importONNXNetwork sets
the classes to categorical(1:N), where N is the number of classes. If you specify a string array or
cell array of character vectors str, then importONNXNetwork sets the classes of the output layer to
categorical(str,str). If you specify TargetNetwork as "dlnetwork", importONNXNetwork
ignores the name-value argument Classes.
Example: Classes={'0','1','3'}
Example: Classes=categorical({'dog','cat'})
Data Types: char | categorical | string | cell

FoldConstants — Constant folding optimization
"deep" (default) | "shallow" | "none"

Constant folding optimization, specified as "deep", "shallow", or "none". Constant folding
optimizes the imported network architecture by computing operations on ONNX initializers (initial
constant values) during the conversion of ONNX operators to equivalent built-in MATLAB layers.

If the ONNX network contains operators that the software cannot convert to equivalent built-in
MATLAB layers (see “ONNX Operators Supported for Conversion into Built-In MATLAB Layers” on
page 1-998), constant folding optimization can reduce the number of unsupported layers. When you
set FoldConstants to "deep", the network has the same or fewer unsupported layers, compared to
when you set the argument to "shallow". However, the network importing time might increase. Set
FoldConstants to "none" to disable the network architecture optimization.

If the network still contains unsupported layers after constant folding optimization,
importONNXNetwork returns an error. In this case, you can import the network by using
importONNXLayers or importONNXFunction. For more information, see “Alternative
Functionality” on page 1-1004.
Example: FoldConstants="shallow"

Output Arguments
net — Pretrained ONNX network
DAGNetwork object | dlnetwork object

Pretrained ONNX network, returned as a DAGNetwork or dlnetwork object.

• Specify TargetNetwork as "dagnetwork" to import the network as a DAGNetwork object. On
the DAGNetwork object, you then predict class labels by using the classify function.
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• Specify TargetNetwork as "dlnetwork" to import the network as a dlnetwork object. On the
dlnetwork object, you then predict class labels by using the predict function. Specify the input
data as a dlarray using the correct data format (for more information, see the fmt argument of
dlarray).

Limitations
• importONNXNetwork supports ONNX versions as follows:

• The function supports ONNX intermediate representation version 7.
• The function supports ONNX operator sets 6 to 14.

Note If you import an exported network, layers of the reimported network might differ from the
original network and might not be supported.

More About
ONNX Operators Supported for Conversion into Built-In MATLAB Layers

importONNXNetwork supports the following ONNX operators for conversion into built-in MATLAB
layers, with some limitations.

ONNX Operator Deep Learning Toolbox Layer
Add additionLayer or

nnet.onnx.layer.ElementwiseAffineLayer
AveragePool averagePooling1dLayer or

averagePooling2dLayer
BatchNormalization batchNormalizationLayer
Concat concatenationLayer
Constant None (Imported as weights)
Conv* convolution1dLayer or

convolution2dLayer
ConvTranspose transposedConv2dLayer
Dropout dropoutLayer
Elu eluLayer
Gemm fullyConnectedLayer if ONNX network is

recurrent, otherwise
nnet.onnx.layer.FlattenLayer followed by
convolution2dLayer

GlobalAveragePool globalAveragePooling1dLayer or
globalAveragePooling2dLayer

GlobalMaxPool globalMaxPooling1dLayer or
globalMaxPooling2dLayer

GRU gruLayer
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ONNX Operator Deep Learning Toolbox Layer
InstanceNormalization groupNormalizationLayer with numGroups

specified as "channel-wise"
LeakyRelu leakyReluLayer
LRN CrossChannelNormalizationLayer
LSTM lstmLayer or bilstmLayer
MatMul fullyConnectedLayer if ONNX network is

recurrent, otherwise convolution2dLayer
MaxPool maxPooling1dLayer or maxPooling2dLayer
Mul multiplicationLayer
Relu reluLayer or clippedReluLayer
Sigmoid sigmoidLayer
Softmax softmaxLayer
Sum additionLayer
Tanh tanhLayer

* If importONNXNetwork imports the Conv ONNX operator as a convolution2dLayer and the
Conv operator is a vector with only two elements [p1,p2], importONNXNetwork sets the Padding
option of convolution2dLayer to [p1,p2,p1,p2].

ONNX Operator ONNX Importer Custom Layer
Clip nnet.onnx.layer.ClipLayer
Div nnet.onnx.layer.ElementwiseAffineLayer
Flatten nnet.onnx.layer.FlattenLayer or

nnet.onnx.layer.Flatten3dLayer
Identity nnet.onnx.layer.IdentityLayer
ImageScaler nnet.onnx.layer.ElementwiseAffineLayer
PRelu nnet.onnx.layer.PReluLayer
Reshape nnet.onnx.layer.FlattenLayer
Sub nnet.onnx.layer.ElementwiseAffineLayer

ONNX Operator Image Processing Toolbox
DepthToSpace depthToSpace2dLayer
Resize resize2dLayer or resize3dLayer
SpaceToDepth spaceToDepthLayer
Upsample resize2dLayer or resize3dLayer

Conversion of ONNX Input and Output Tensors into Built-In MATLAB Layers

importONNXNetwork tries to interpret the data format of the ONNX network's input and output
tensors, and then convert them into built-in MATLAB input and output layers. For details on the
interpretation, see the tables Conversion of ONNX Input Tensors into Deep Learning Toolbox Layers
and Conversion of ONNX Output Tensors into MATLAB Layers.
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In Deep Learning Toolbox, each data format character must be one of these labels:

• S — Spatial
• C — Channel
• B — Batch observations
• T — Time or sequence
• U — Unspecified
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Conversion of ONNX Input Tensors into Deep Learning Toolbox Layers

Data Formats Data Interpretation Deep Learning
Toolbox LayerONNX Input

Tensor
MATLAB Input
Format

Shape Type

BC CB c-by-n array, where
c is the number of
features and n is
the number of
observations

Features featureInputLa
yer

BCSS, BSSC, CSS,
SSC

SSCB h-by-w-by-c-by-n
numeric array,
where h, w, c and
n are the height,
width, number of
channels of the
images, and
number of
observations,
respectively

2-D image imageInputLaye
r

BCSSS, BSSSC,
CSSS, SSSC

SSSCB h-by-w-by-d-by-c-
by-n numeric array,
where h, w, d, c
and n are the
height, width,
depth, number of
channels of the
images, and
number of image
observations,
respectively

3-D image image3dInputLa
yer

TBC CBT c-by-s-by-n matrix,
where c is the
number of features
of the sequence, s
is the sequence
length, and n is the
number of
sequence
observations

Vector sequence sequenceInputL
ayer
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Data Formats Data Interpretation Deep Learning
Toolbox LayerONNX Input

Tensor
MATLAB Input
Format

Shape Type

TBCSS SSCBT h-by-w-by-c-by-s-
by-n array, where
h, w, c and n
correspond to the
height, width, and
number of
channels of the
image,
respectively, s is
the sequence
length, and n is the
number of image
sequence
observations

2-D image
sequence

sequenceInputL
ayer

TBCSSS SSSCBT h-by-w-by-d-by-c-
by-s-by-n array,
where h, w, d, and
c correspond to the
height, width,
depth, and number
of channels of the
image,
respectively, s is
the sequence
length, and n is the
number of image
sequence
observations

3-D image
sequence

sequenceInputL
ayer

Conversion of ONNX Output Tensors into MATLAB Layers

Data Formats MATLAB Layer
ONNX Output Tensor MATLAB Output Format
BC, TBC CB, CBT classificationLayer
BCSS, BSSC, CSS, SSC, BCSSS,
BSSSC, CSSS, SSSC

SSCB, SSSCB pixelClassificationLayer

TBCSS, TBCSSS SSCBT, SSSCBT regressionLayer

Generate Code for Imported Network

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Deep Learning Code Generation”.

• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM Compute library. Alternatively, you can generate generic C or
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C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).

importONNXNetwork returns the network net as a DAGNetwork or dlnetwork object. Both these
objects support code generation. For more information on MATLAB Coder and GPU Coder support for
Deep Learning Toolbox objects, see “Supported Classes” (MATLAB Coder) and “Supported Classes”
(GPU Coder), respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see “Code Generation” on page 1-866 and “GPU Code
Generation” on page 1-867 of imageInputLayer.

Use Imported Network on GPU

importONNXNetwork does not execute on a GPU. However, importONNXNetwork imports a
pretrained neural network for deep learning as a DAGNetwork or dlnetwork object, which you can
use on a GPU.

• If you import the network as a DAGNetwork object, you can make predictions with the imported
network on either a CPU or GPU by using classify. Specify the hardware requirements using
the name-value argument ExecutionEnvironment. For networks with multiple outputs, use the
predict function for DAGNetwork objects.

• If you import the network as a DAGNetwork object, you can make predictions with the imported
network on either a CPU or GPU by using predict. Specify the hardware requirements using the
name-value argument ExecutionEnvironment. If the network has multiple outputs, specify the
name-value argument ReturnCategorical as true.

• If you import the network as a dlnetwork object, you can make predictions with the imported
network on either a CPU or GPU by using predict. The function predict executes on the GPU if
either the input data or network parameters are stored on the GPU.

• If you use minibatchqueue to process and manage the mini-batches of input data, the
minibatchqueue object converts the output to a GPU array by default if a GPU is available.

• Use dlupdate to convert the learnable parameters of a dlnetwork object to GPU arrays.

net = dlupdate(@gpuArray,net)

• You can train the imported network on either a CPU or GPU by using trainNetwork. To specify
training options, including options for the execution environment, use the trainingOptions
function. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For more information on how to accelerate training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud”.

Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
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Tips
• To use a pretrained network for prediction or transfer learning on new images, you must

preprocess your images in the same way the images that were used to train the imported model
were preprocessed. The most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR format to RGB format.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

• For more tips, see “Tips on Importing Models from TensorFlow, PyTorch, and ONNX”.

Alternative Functionality
Deep Learning Toolbox Converter for ONNX Model Format provides three functions to import a
pretrained ONNX network: importONNXNetwork, importONNXLayers, and
importONNXFunction.

If the imported network contains an ONNX operator not supported for conversion into a built-in
MATLAB layer (see “ONNX Operators Supported for Conversion into Built-In MATLAB Layers” on
page 1-998) and importONNXNetwork does not generate a custom layer, then importONNXNetwork
returns an error. In this case, you can still use importONNXLayers to import the network
architecture and weights or importONNXFunction to import the network as an ONNXParameters
object and a model function.

For more information on which import function best suits different scenarios, see “Select Function to
Import ONNX Pretrained Network”.

Version History
Introduced in R2018a

ClassNames option has been removed
Errors starting in R2021b

ClassNames has been removed. Use Classes instead. To update your code, replace all instances of
ClassNames with Classes.

importONNXNetwork cannot create input and output layers from ONNX file information
Behavior changed in R2021b

If you import an ONNX model as a DAGNetwork object, the imported network must include input and
output layers. importONNXNetwork tries to convert the input and output ONNX tensors into built-in
MATLAB layers. When importing some networks, which importONNXNetwork could previously
import with input and output built-in MATLAB layers, importONNXNetwork might now return an
error. In this case, do one of the following to update your code:
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• Specify the name-value argument TargetNetwork as "dlnetwork" to import the network as a
dlnetwork object.

• Use the name-value arguments InputDataFormats, OutputDataFormats, and
OutputLayerType to specify the imported network's inputs and outputs.

• Use importONNXLayers to import the network as a layer graph with placeholder layers.
• Use importONNXFunction to import the network as a model function and an ONNXParameters

object.

Layer names of imported network might differ
Behavior changed in R2021b

The layer names of an imported network might differ from previous releases. To update your code,
replace the existing name of a layer with the new name or net.Layers(n).Name.

References
[1] Open Neural Network Exchange. https://github.com/onnx/.

[2] ONNX. https://onnx.ai/.

See Also
importONNXLayers | importONNXFunction | importTensorFlowNetwork |
importTensorFlowLayers | importNetworkFromPyTorch | exportONNXNetwork |
exportNetworkToTensorFlow

Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
“Tips on Importing Models from TensorFlow, PyTorch, and ONNX”
“Pretrained Deep Neural Networks”
“Inference Comparison Between ONNX and Imported Networks for Image Classification”
“Select Function to Import ONNX Pretrained Network”
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importTensorFlowLayers
Import layers from TensorFlow network

Syntax
lgraph = importTensorFlowLayers(modelFolder)
lgraph = importTensorFlowLayers(modelFolder,Name,Value)

Description
lgraph = importTensorFlowLayers(modelFolder) returns the layers of a TensorFlow network
from the folder modelFolder, which contains the model in the saved model format (compatible only
with TensorFlow 2). The function can import TensorFlow networks created with the TensorFlow-Keras
sequential or functional API. importTensorFlowLayers imports the layers defined in the
saved_model.pb file and the learned weights contained in the variables subfolder, and returns
lgraph as a LayerGraph object.

importTensorFlowLayers requires the Deep Learning Toolbox Converter for TensorFlow Models
support package. If this support package is not installed, then importTensorFlowLayers provides
a download link.

Note importTensorFlowLayers tries to generate a custom layer when you import a custom
TensorFlow layer or when the software cannot convert a TensorFlow layer into an equivalent built-in
MATLAB layer. For a list of layers for which the software supports conversion, see “TensorFlow-Keras
Layers Supported for Conversion into Built-In MATLAB Layers” on page 1-1014.

importTensorFlowLayers saves the generated custom layers and the associated TensorFlow
operators in the package +modelFolder.

importTensorFlowLayers does not automatically generate a custom layer for each TensorFlow
layer that is not supported for conversion into a built-in MATLAB layer. For more information on how
to handle unsupported layers, see “Tips” on page 1-1019.

lgraph = importTensorFlowLayers(modelFolder,Name,Value) imports the layers and
weights from a TensorFlow network with additional options specified by one or more name-value
arguments. For example, 'OutputLayerType','classification' appends a classification output
layer to the end of the imported network architecture.

Examples

Import TensorFlow Network as Layer Graph Compatible with DAGNetwork

Import a pretrained TensorFlow network in the saved model format as a LayerGraph object. Then,
assemble the imported layers into a DAGNetwork object, and use the assembled network to classify
an image.

Specify the model folder.
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if ~exist('digitsDAGnet','dir')
    unzip('digitsDAGnet.zip')
end
modelFolder = './digitsDAGnet';

Specify the class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import the layers and weights of a TensorFlow network in the saved model format. By default,
importTensorFlowLayers imports the network as a LayerGraph object compatible with a
DAGNetwork object. Specify the output layer type for an image classification problem.

lgraph = importTensorFlowLayers(modelFolder,'OutputLayerType','classification')

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation.

lgraph = 
  LayerGraph with properties:

         Layers: [13×1 nnet.cnn.layer.Layer]
    Connections: [13×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Display the last layer of the imported network. The output shows that importTensorFlowLayers
appends a ClassificationOutputLayer to the end of the network architecture.

lgraph.Layers(end)

ans = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

The classification layer does not contain the classes, so you must specify these before assembling the
network. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ...,
N, where N is the number of classes.

The classification layer has the name 'ClassificationLayer_activation_1'. Set the classes to
classNames and then replace the imported classification layer with the new one.

cLayer = lgraph.Layers(end);
cLayer.Classes = classNames;
lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble the layer graph using assembleNetwork to return a DAGNetwork object.

net = assembleNetwork(lgraph)
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net = 
  DAGNetwork with properties:

         Layers: [13×1 nnet.cnn.layer.Layer]
    Connections: [13×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Read the image you want to classify.

digitDatasetPath = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
I = imread(fullfile(digitDatasetPath,'5','image4009.png'));

Classify the image using the imported network.

label = classify(net,I);

Display the image and the classification result.

imshow(I)
title(['Classification result ' classNames{label}])

Import TensorFlow Network as Layer Graph Compatible with dlnetwork

Import a pretrained TensorFlow network in the saved model format as a LayerGraph object
compatible with a dlnetwork object. Then, convert the LayerGraph object to a dlnetwork to
classify an image.

Specify the model folder.

if ~exist('digitsDAGnet','dir')
    unzip('digitsDAGnet.zip')
end
modelFolder = './digitsDAGnet';

Specify the class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import the TensorFlow network as layers compatible with a dlnetwork object.

lgraph = importTensorFlowLayers(modelFolder,'TargetNetwork','dlnetwork')
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Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation.

lgraph = 
  LayerGraph with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [12×2 table]
     InputNames: {'input_1'}
    OutputNames: {1×0 cell}

Read the image you want to classify and display the size of the image. The image is a grayscale (one-
channel) image with size 28-by-28 pixels.

digitDatasetPath = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
I = imread(fullfile(digitDatasetPath,'5','image4009.png'));
size(I)

ans = 1×2

    28    28

Convert the imported layer graph to a dlnetwork object.

dlnet = dlnetwork(lgraph);

Display the input size of the network. In this case, the image size matches the network input size. If
they do not match, you must resize the image by using imresize(I, netInputSize(1:2)).

dlnet.Layers(1).InputSize

ans = 1×3

    28    28     1

Convert the image to a dlarray. Format the images with the dimensions 'SSCB' (spatial, spatial,
channel, batch). In this example, the batch size is 1 and you can omit it ('SSC').

I_dlarray = dlarray(single(I),'SSCB');

Classify the sample image and find the predicted label.

prob = predict(dlnet,I_dlarray);
[~,label] = max(prob);

Display the image and the classification result.

imshow(I)
title(['Classification result ' classNames{label}])
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Import TensorFlow Network as Layer Graph with Autogenerated Custom Layers

Import a pretrained TensorFlow network in the saved model format as a LayerGraph object. Then,
assemble the imported layers into a DAGNetwork object. The imported network contains layers that
are not supported for conversion into built-in MATLAB layers. The software automatically generates
custom layers when you import these layers.

This example uses the helper function findCustomLayers. To view the code for this function, see
Helper Function on page 1-1011.

Specify the model folder.

if ~exist('digitsDAGnetwithnoise','dir')
    unzip('digitsDAGnetwithnoise.zip')
end
modelFolder = './digitsDAGnetwithnoise';

Specify the class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import the layers and weights of a TensorFlow network in the saved model format. By default,
importTensorFlowLayers imports the network as a LayerGraph object compatible with a
DAGNetwork object. Specify the output layer type for an image classification problem.

lgraph = importTensorFlowLayers(modelFolder,'OutputLayerType','classification');

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation.

If the imported network contains layers not supported for conversion into built-in MATLAB layers,
then importTensorFlowLayers can automatically generate custom layers in place of these layers.
importTensorFlowLayers saves each generated custom layer to a separate .m file in the package
+digitsDAGnetwithnoise in the current folder.

Find the indices of the automatically generated custom layers, using the helper function
findCustomLayers, and display the custom layers.

ind = findCustomLayers(lgraph.Layers,'+digitsDAGnetwithnoise');
lgraph.Layers(ind)

ans = 
  2×1 Layer array with layers:

1 Deep Learning Functions

1-1010



     1   'gaussian_noise_1'   GaussianNoise   digitsDAGnetwithnoise.kGaussianNoise1Layer3766
     2   'gaussian_noise_2'   GaussianNoise   digitsDAGnetwithnoise.kGaussianNoise2Layer3791

The classification layer does not contain the classes, so you must specify these before assembling the
network. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ...,
N, where N is the number of classes.

The classification layer has the name 'ClassificationLayer_activation_1'. Set the classes to
classNames and then replace the imported classification layer with the new one.

cLayer = lgraph.Layers(end);
cLayer.Classes = classNames;
lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15×1 nnet.cnn.layer.Layer]
    Connections: [15×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Helper Function

This section provides the code of the helper function findCustomLayers used in this example.
findCustomLayers returns the indices of the custom layers that importTensorFlowNetwork
automatically generates.

function indices = findCustomLayers(layers,PackageName)

s = what(['.\' PackageName]);

indices = zeros(1,length(s.m));
for i = 1:length(layers)
    for j = 1:length(s.m)
        if strcmpi(class(layers(i)),[PackageName(2:end) '.' s.m{j}(1:end-2)])
            indices(j) = i;
        end
    end
end

end

Input Arguments
modelFolder — Name of TensorFlow model folder
character vector | string scalar

Name of the folder containing the TensorFlow model, specified as a character vector or string scalar.
modelFolder must be in the current folder, or you must include a full or relative path to the folder.
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modelFolder must contain the file saved_model.pb, and the subfolder variables. It can also
contain the subfolders assets and assets.extra.

• The file saved_model.pb contains the layer graph architecture and training options (for
example, optimizer, losses, and metrics).

• The subfolder variables contains the weights learned by the pretrained TensorFlow network. By
default, importTensorFlowLayers imports the weights.

• The subfolder assets contains supplementary files (for example, vocabularies), which the layer
graph can use. importTensorFlowLayers does not import the files in assets.

• The subfolder assets.extra contains supplementary files (for example, information for users),
which coexist with the layer graph.

Example: 'MobileNet'
Example: './MobileNet'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
importTensorFlowLayers(modelFolder,'TargetNetwork','dagnetwork','OutputLayerT
ype','classification') imports the network layers and weights from modelFolder, saves the
automatically generated custom layers in the package +modelFolder in the current folder, specifies
that the imported layers are compatible with a DAGNetwork object, and appends a classification
output layer to the end of the imported layers.

PackageName — Name of custom layers package
character vector | string scalar

Name of the package in which importTensorFlowLayers saves custom layers, specified as a
character vector or string scalar. importTensorFlowLayers saves the custom layers package
+PackageName in the current folder. If you do not specify 'PackageName', then
importTensorFlowLayers saves the custom layers in a package named +modelFolder in the
current folder. For more information on packages, see “Packages Create Namespaces”.

importTensorFlowLayers tries to generate a custom layer when you import a custom TensorFlow
layer or when the software cannot convert a TensorFlow layer into an equivalent built-in MATLAB
layer. importTensorFlowLayers saves each generated custom layer to a separate .m file in
+PackageName. To view or edit a custom layer, open the associated .m file. For more information on
custom layers, see “Deep Learning Custom Layers”.

The package +PackageName can also contain the subpackage +ops. This subpackage contains
MATLAB functions corresponding to TensorFlow operators (see “Supported TensorFlow Operators”
on page 1-1016) that are used in the automatically generated custom layers.
importTensorFlowLayers saves the associated MATLAB function for each operator in a
separate .m file in the subpackage +ops. The object functions of dlnetwork, such as the predict
function, use these operators when interacting with the custom layers.
Example: 'PackageName','MobileNet'
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Example: 'PackageName','CustomLayers'

TargetNetwork — Target type of Deep Learning Toolbox network
'dagnetwork' (default) | 'dlnetwork'

Target type of Deep Learning Toolbox network for imported network architecture, specified as
'dagnetwork' or 'dlnetwork'.

• If you specify 'TargetNetwork' as 'dagnetwork', the imported network architecture is
compatible with a DAGNetwork object. In this case, the imported lgraph must include an output
layer specified by the TensorFlow saved model loss function or the name-value argument
'OutputLayerType'.

• If you specify 'TargetNetwork' as 'dlnetwork', the imported network architecture is
compatible with a dlnetwork object. In this case, the imported lgraph does not include an
output layer.

Example: 'TargetNetwork','dlnetwork' imports a LayerGraph object compatible with a
dlnetwork object.

OutputLayerType — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of output layer that importTensorFlowLayers appends to the end of the imported network
architecture, specified as 'classification', 'regression', or 'pixelclassification'.
Appending a pixelClassificationLayer object requires Computer Vision Toolbox.

• If you specify 'TargetNetwork' as 'dagnetwork' and the saved model in modelFolder does
not specify a loss function, you must assign a value to the name-value argument
'OutputLayerType'. A DAGNetwork object must have an output layer.

• If you specify 'TargetNetwork' as 'dlnetwork', importTensorFlowLayers ignores the
name-value argument 'OutputLayerType'. A dlnetwork object does not have an output layer.

Example: 'OutputLayerType','classification'

ImageInputSize — Size of input images
vector of two or three numerical values

Size of the input images for the network, specified as a vector of two or three numerical values
corresponding to [height,width] for grayscale images and [height,width,channels] for color
images, respectively. The network uses this information when the saved_model.pb file in
modelFolder does not specify the input size.
Example: 'ImageInputSize',[28 28]

Verbose — Indicator to display import progress information
true or 1 (default) | false or 0

Indicator to display import progress information in the command window, specified as a numeric or
logical 1 (true) or 0 (false).
Example: 'Verbose','true'
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Output Arguments
lgraph — Network architecture
LayerGraph object

Network architecture, returned as a LayerGraph object.

To use the imported layer graph for prediction, you must convert the LayerGraph object to a
DAGNetwork or dlnetwork object. Specify the name-value argument 'TargetNetwork' as
'dagnetwork' or 'dlnetwork' depending on the intended workflow.

• Convert a LayerGraph to a DAGNetwork by using assembleNetwork. On the DAGNetwork
object, you then predict class labels using the classify function.

• Convert a LayerGraph to a dlnetwork by using dlnetwork. On the dlnetwork object, you then
predict class labels using the predict function. Specify the input data as a dlarray using the
correct data format (for more information, see the fmt argument of dlarray).

Limitations
• importTensorFlowLayers supports TensorFlow versions v2.0 to 2.6.

More About
TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers

importTensorFlowLayers supports the following TensorFlow-Keras layer types for conversion into
built-in MATLAB layers, with some limitations.

TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
Add additionLayer
Activation, with activation names:

• elu
• gelu
• relu
• linear
• softmax
• sigmoid
• swish
• tanh

Layers:

• eluLayer
• geluLayer
• reluLayer or clippedReluLayer
• None
• softmaxLayer
• sigmoidLayer
• swishLayer
• tanhLayer
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TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
Advanced activations:

• ELU
• Softmax
• ReLU
• LeakyReLU
• PReLu*

Layers:

• eluLayer
• softmaxLayer
• reluLayer, clippedReluLayer, or

leakyReluLayer
• leakyReluLayer
• nnet.keras.layer.PreluLayer

AveragePooling1D averagePooling1dLayer with PaddingValue
specified as 'mean'

AveragePooling2D averagePooling2dLayer with PaddingValue
specified as 'mean'

BatchNormalization batchNormalizationLayer
Bidirectional(LSTM(__)) bilstmLayer
Concatenate depthConcatenationLayer
Conv1D convolution1dLayer
Conv2D convolution2dLayer
Conv2DTranspose transposedConv2dLayer
CuDNNGRU gruLayer
CuDNNLSTM lstmLayer
Dense fullyConnectedLayer
DepthwiseConv2D groupedConvolution2dLayer
Dropout dropoutLayer
Embedding wordEmbeddingLayer
Flatten nnet.keras.layer.FlattenCStyleLayer
GlobalAveragePooling1D globalAveragePooling1dLayer
GlobalAveragePooling2D globalAveragePooling2dLayer
GlobalMaxPool1D globalMaxPooling1dLayer
GlobalMaxPool2D globalMaxPooling2dLayer
GRU gruLayer
Input imageInputLayer, sequenceInputLayer, or

featureInputLayer
LSTM lstmLayer
MaxPool1D maxPooling1dLayer
MaxPool2D maxPooling2dLayer
Multiply multiplicationLayer
SeparableConv2D groupedConvolution2dLayer or

convolution2dLayer
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TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
TimeDistributed sequenceFoldingLayer before the wrapped

layer, and sequenceUnfoldingLayer after the
wrapped layer

UpSampling2D resize2dLayer
UpSampling3D resize3dLayer
ZeroPadding1D nnet.keras.layer.ZeroPadding1DLayer
ZeroPadding2D nnet.keras.layer.ZeroPadding2DLayer

* For a PReLU layer, importTensorFlowLayers replaces a vector-valued scaling parameter with
the average of the vector elements. You can change the parameter back to a vector after import. For
an example, see “Import Keras PReLU Layer” on page 1-899.

Supported TensorFlow-Keras Loss Functions

importTensorFlowLayers supports the following Keras loss functions:

• mean_squared_error
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy

Supported TensorFlow Operators

importTensorFlowLayers supports the following TensorFlow operators for conversion into
MATLAB functions with dlarray support.

TensorFlow Operator Corresponding MATLAB Function
Add tfAdd
AddN tfAddN
AddV2 tfAdd
Assert assert
AvgPool tfAvgPool
BatchMatMulV2 tfBatchMatMulV2
BiasAdd tfBiasAdd
BroadcastTo tfBroadcastTo
Cast tfCast
ConcatV2 tfCat
Const None (translated to weights in custom layer)
Conv2D tfConv2D
DepthToSpace depthToSpace
DepthwiseConv2dNative tfDepthwiseConv2D
Exp exp
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TensorFlow Operator Corresponding MATLAB Function
ExpandDims tfExpandDims
FusedBatchNormV3 tfBatchnorm
GatherV2 tfGather
GreaterEqual ge, >=
Identity None (translated to value assignment in custom

layer)
IdentityN tfIdentityN
L2Loss tfL2Loss
LeakyRelu leakyrelu
Less lt, <
Log log
MatMul tfMatMul
MaxPool tfMaxPool
Maximum tfMaximum
Mean tfMean
Minimum tfMinimum
MirrorPad tfMirrorPad
Mul tfMul
Neg minus, -
Pack tfStack
Pad tfPad
PadV2 tfPad
PartitionedCall None (translated to function in custom layer

methods)
Pow power, .^
Prod tfProd
RandomStandardNormal tfRandomStandardNormal
Range tfRange
ReadVariableOp None (translated to value assignment in custom

layer)
RealDiv tfDiv
Relu relu
Relu6 relu and min
Reshape tfReshape
ResizeNearestNeighbor dlresize
Rsqrt sqrt
Shape tfShape
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TensorFlow Operator Corresponding MATLAB Function
Sigmoid sigmoid
Size tfSize
Softmax softmax
SpaceToDepth spaceToDepth
Square .^2
Sqrt sqrt
SquaredDifference tfMul or tfSub
Squeeze tfSqueeze
StatefulPartitionedCall None (translated to function in custom layer

methods)
StopGradient tfStopGradient
StridedSlice tfStridedSlice or tfSqueeze
Sub tfSub
Tanh tanh
Tile tfTile
Transpose tfTranspose

For more information on functions that operate on dlarray objects, see “List of Functions with
dlarray Support”.

Generate Code for Imported Network Architecture

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Deep Learning Code Generation”.

• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM Compute library. Alternatively, you can generate generic C or
C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).

importTensorFlowLayers returns the network architecture lgraph as a LayerGraph object. For
code generation, you must first convert the imported LayerGraph object to a network. Convert a
LayerGraph object to a DAGNetwork or dlnetwork object by using assembleNetwork or
dlnetwork. For more information on MATLAB Coder and GPU Coder support for Deep Learning
Toolbox objects, see “Supported Classes” (MATLAB Coder) and “Supported Classes” (GPU Coder),
respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
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(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see “Code Generation” on page 1-866 and “GPU Code
Generation” on page 1-867 of imageInputLayer.

Use Imported Network Layers on GPU

importTensorFlowLayers does not execute on a GPU. However, importTensorFlowLayers
imports the layers of a pretrained neural network for deep learning as a LayerGraph object, which
you can use on a GPU.

• Convert the imported LayerGraph object to a DAGNetwork object by using assembleNetwork.
On the DAGNetwork object, you can then predict class labels on either a CPU or GPU by using
classify. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For networks with multiple outputs, use the predict function and
specify the name-value argument ReturnCategorical as true.

• Convert the imported LayerGraph object to a dlnetwork object by using dlnetwork. On the
dlnetwork object, you can then predict class labels on either a CPU or GPU by using predict.
The function predict executes on the GPU if either the input data or network parameters are
stored on the GPU.

• If you use minibatchqueue to process and manage the mini-batches of input data, the
minibatchqueue object converts the output to a GPU array by default if a GPU is available.

• Use dlupdate to convert the learnable parameters of a dlnetwork object to GPU arrays.

net = dlupdate(@gpuArray,net)

• You can train the imported LayerGraph object on either a CPU or GPU by using trainNetwork.
To specify training options, including options for the execution environment, use the
trainingOptions function. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For more information on how to accelerate training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud”.

Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

Tips
• If the imported network contains a layer not supported for conversion into a built-in MATLAB

layer (see “TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers” on
page 1-1014) and importTensorFlowLayers does not automatically generate a custom layer,
then importTensorFlowLayers inserts a placeholder layer in place of the unsupported layer. To
find the names and indices of the unsupported layers in the network, use the
findPlaceholderLayers function. You then can replace a placeholder layer with a new layer
that you define. To replace a layer, use replaceLayer.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way the images that were used to train the imported model
were preprocessed. The most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR format to RGB format.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).
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For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

• The members of the package +PackageName (custom layers and TensorFlow operators) are not
accessible if the package parent folder is not on the MATLAB path. For more information, see
“Packages and the MATLAB Path”.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

• For more tips, see “Tips on Importing Models from TensorFlow, PyTorch, and ONNX”.

Alternative Functionality
Use importTensorFlowNetwork or importTensorFlowLayers to import a TensorFlow network in
the saved model format [2]. Alternatively, if the network is in HDF5 or JSON format, use
importKerasNetwork or importKerasLayers to import the network.

Version History
Introduced in R2021a

References
[1] TensorFlow. https://www.tensorflow.org/.

[2] Using the SavedModel format. https://www.tensorflow.org/guide/saved_model.

See Also
importTensorFlowNetwork | exportNetworkToTensorFlow | importNetworkFromPyTorch |
importKerasLayers | importKerasNetwork | importONNXLayers | importONNXNetwork |
exportONNXNetwork | layerGraph | assembleNetwork | findPlaceholderLayers |
replaceLayer

Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
“Tips on Importing Models from TensorFlow, PyTorch, and ONNX”
“Pretrained Deep Neural Networks”
“Assemble Network from Pretrained Keras Layers”
“Define Custom Deep Learning Layers”
“Make Predictions Using dlnetwork Object” on page 1-541
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importTensorFlowNetwork
Import pretrained TensorFlow network

Syntax
net = importTensorFlowNetwork(modelFolder)
net = importTensorFlowNetwork(modelFolder,Name,Value)

Description
net = importTensorFlowNetwork(modelFolder) imports a pretrained TensorFlow network
from the folder modelFolder, which contains the model in the saved model format (compatible only
with TensorFlow 2). The function can import TensorFlow networks created with the TensorFlow-Keras
sequential or functional API. importTensorFlowNetwork imports the layers defined in the
saved_model.pb file and the learned weights contained in the variables subfolder, and returns
the network net as a DAGNetwork or dlnetwork object.

importTensorFlowNetwork requires the Deep Learning Toolbox Converter for TensorFlow Models
support package. If this support package is not installed, then importTensorFlowNetwork provides
a download link.

Note importTensorFlowNetwork tries to generate a custom layer when you import a custom
TensorFlow layer or when the software cannot convert a TensorFlow layer into an equivalent built-in
MATLAB layer. For a list of layers for which the software supports conversion, see “TensorFlow-Keras
Layers Supported for Conversion into Built-In MATLAB Layers” on page 1-1031.

importTensorFlowNetwork saves the generated custom layers and the associated TensorFlow
operators in the package +modelFolder.

importTensorFlowNetwork does not automatically generate a custom layer for each TensorFlow
layer that is not supported for conversion into a built-in MATLAB layer. For more information on how
to handle unsupported layers, see “Tips” on page 1-1036.

net = importTensorFlowNetwork(modelFolder,Name,Value) imports the pretrained
TensorFlow network with additional options specified by one or more name-value arguments. For
example, 'OutputLayerType','classification' imports the network as a DAGNetwork with a
classification output layer appended to the end of the imported network architecture.

Examples

Import TensorFlow Network as DAGNetwork to Classify Image

Import a pretrained TensorFlow network in the saved model format as a DAGNetwork object, and use
the imported network to classify an image.

Specify the model folder.
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if ~exist('digitsDAGnet','dir')
    unzip('digitsDAGnet.zip')
end
modelFolder = './digitsDAGnet';

Specify the class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import a TensorFlow network in the saved model format. By default, importTensorFlowNetwork
imports the network as a DAGNetwork object. Specify the output layer type for an image
classification problem.

net = importTensorFlowNetwork(modelFolder,'OutputLayerType','classification','Classes',classNames)

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation. Assembling network...
Import finished.

net = 
  DAGNetwork with properties:

         Layers: [13×1 nnet.cnn.layer.Layer]
    Connections: [13×2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Plot the network architecture.

plot(net)
title('DAG Network Architecture')
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Read the image you want to classify and display the size of the image. The image is a grayscale (one-
channel) image with size 28-by-28 pixels.

digitDatasetPath = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
I = imread(fullfile(digitDatasetPath,'5','image4009.png'));
size(I)

ans = 1×2

    28    28

Display the input size of the network. In this case, the image size matches the network input size. If
they do not match, you must resize the image by using imresize(I, netInputSize(1:2)).

net.Layers(1).InputSize

ans = 1×3

    28    28     1

Classify the image using the pretrained network.

label = classify(net,I);

Display the image and the classification result.
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imshow(I)
title(['Classification result ' char(label)])

Import TensorFlow Network as dlnetwork to Classify Image

Import a pretrained TensorFlow Network in the saved model format as a dlnetwork object, and use
the imported network to predict class labels.

Specify the model folder.

if ~exist('digitsDAGnet','dir')
    unzip('digitsDAGnet.zip')
end
modelFolder = './digitsDAGnet';

Specify the class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import a TensorFlow network in the saved model format as a dlnetwork object.

net = importTensorFlowNetwork(modelFolder,'TargetNetwork','dlnetwork')

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation. Assembling network...
Import finished.

net = 
  dlnetwork with properties:

         Layers: [12×1 nnet.cnn.layer.Layer]
    Connections: [12×2 table]
     Learnables: [6×3 table]
          State: [0×3 table]
     InputNames: {'input_1'}
    OutputNames: {'activation_1'}
    Initialized: 1

Read the image you want to classify and display the size of the image. The image is a grayscale (one-
channel) image with size 28-by-28 pixels.

digitDatasetPath = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
I = imread(fullfile(digitDatasetPath,'5','image4009.png'));
size(I)
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ans = 1×2

    28    28

Display the input size of the network. In this case, the image size matches the network input size. If
they do not match, you must resize the image by using imresize(I, netInputSize(1:2)).

netInputSize = net.Layers(1).InputSize

netInputSize = 1×3

    28    28     1

Convert the image to a dlarray. Format the images with the dimensions 'SSCB' (spatial, spatial,
channel, batch). In this case, the batch size is 1 and you can omit it ('SSC').

I_dlarray = dlarray(single(I),'SSCB');

Classify the sample image and find the predicted label.

prob = predict(net,I_dlarray);
[~,label] = max(prob);

Display the image and the classification result.

imshow(I)
title(['Classification result ' classNames{label}]) 

Import TensorFlow Network with Autogenerated Custom Layers

Import a pretrained TensorFlow network in the saved model format as a DAGNetwork object, and use
the imported network to classify an image. The imported network contains layers that are not
supported for conversion into built-in MATLAB layers. The software automatically generates custom
layers when you import these layers.

This example uses the helper function findCustomLayers. To view the code for this function, see
Helper Function on page 1-1028.

Specify the model folder.

if ~exist('digitsDAGnetwithnoise','dir')
    unzip('digitsDAGnetwithnoise.zip')
end
modelFolder = './digitsDAGnetwithnoise';
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Specify the class names.

classNames = {'0','1','2','3','4','5','6','7','8','9'};

Import a TensorFlow network in the saved model format. By default, importTensorFlowNetwork
imports the network as a DAGNetwork object. Specify the output layer type for an image
classification problem.

net = importTensorFlowNetwork(modelFolder,'OutputLayerType','classification','Classes',classNames);

Importing the saved model...
Translating the model, this may take a few minutes...
Finished translation. Assembling network...
Import finished.

If the imported network contains layers not supported for conversion into built-in MATLAB layers,
then importTensorFlowNetwork can automatically generate custom layers in place of these layers.
importTensorFlowNetwork saves each generated custom layer to a separate .m file in the package
+digitsDAGnetwithnoise in the current folder.

Find the indices of the automatically generated custom layers using the helper function
findCustomLayers, and display the custom layers.

ind = findCustomLayers(net.Layers,'+digitsDAGnetwithnoise');
net.Layers(ind)

ans = 
  2×1 Layer array with layers:

     1   'gaussian_noise_1'   GaussianNoise   digitsDAGnetwithnoise.kGaussianNoise1Layer3766
     2   'gaussian_noise_2'   GaussianNoise   digitsDAGnetwithnoise.kGaussianNoise2Layer3791

Plot the network architecture.

plot(net)
title('DAG Network Architecture')
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Read the image you want to classify.

digitDatasetPath = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
I = imread(fullfile(digitDatasetPath,'5','image4009.png'));

Classify the image using the pretrained network.

label = classify(net,I);

Display the image and the classification result.

imshow(I)
title(['Classification result ' char(label)])
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Helper Function

This section provides the code of the helper function findCustomLayers used in this example.
findCustomLayers returns the indices of the custom layers that importTensorFlowNetwork
automatically generates.

function indices = findCustomLayers(layers,PackageName)

s = what(['.\' PackageName]);

indices = zeros(1,length(s.m));
for i = 1:length(layers)
    for j = 1:length(s.m)
        if strcmpi(class(layers(i)),[PackageName(2:end) '.' s.m{j}(1:end-2)])
            indices(j) = i;
        end
    end
end

end

Input Arguments
modelFolder — Name of TensorFlow model folder
character vector | string scalar

Name of the folder containing the TensorFlow model, specified as a character vector or string scalar.
modelFolder must be in the current folder, or you must include a full or relative path to the folder.
modelFolder must contain the file saved_model.pb, and the subfolder variables. It can also
contain the subfolders assets and assets.extra.

• The file saved_model.pb contains the layer graph architecture and training options (for
example, optimizer, losses, and metrics).

• The subfolder variables contains the weights learned by the pretrained TensorFlow network. By
default, importTensorFlowNetwork imports the weights.

• The subfolder assets contains supplementary files (for example, vocabularies), which the layer
graph can use. importTensorFlowNetwork does not import the files in assets.

• The subfolder assets.extra contains supplementary files (for example, information for users),
which coexist with the layer graph.

Example: 'MobileNet'
Example: './MobileNet'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
importTensorFlowNetwork(modelFolder,'TargetNetwork','dagnetwork','OutputLayer
Type','classification') imports a network from modelFolder as a DAGNetwork object, saves
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the automatically generated custom layers in the package +modelFolder in the current folder, and
appends a classification output layer to the end of the imported network architecture.

PackageName — Name of custom layers package
character vector | string scalar

Name of the package in which importTensorFlowNetwork saves custom layers, specified as a
character vector or string scalar. importTensorFlowNetwork saves the custom layers package
+PackageName in the current folder. If you do not specify 'PackageName', then
importTensorFlowNetwork saves the custom layers in a package named +modelFolder in the
current folder. For more information on packages, see “Packages Create Namespaces”.

importTensorFlowNetwork tries to generate a custom layer when you import a custom TensorFlow
layer or when the software cannot convert a TensorFlow layer into an equivalent built-in MATLAB
layer. importTensorFlowNetwork saves each generated custom layer to a separate .m file in
+PackageName. To view or edit a custom layer, open the associated .m file. For more information on
custom layers, see “Deep Learning Custom Layers”.

The package +PackageName can also contain the subpackage +ops. This subpackage contains
MATLAB functions corresponding to TensorFlow operators (see “Supported TensorFlow Operators”
on page 1-1032) that are used in the automatically generated custom layers.
importTensorFlowNetwork saves the associated MATLAB function for each operator in a
separate .m file in the subpackage +ops. The object functions of dlnetwork, such as the predict
function, use these operators when interacting with the custom layers.
Example: 'PackageName','MobileNet'
Example: 'PackageName','CustomLayers'

TargetNetwork — Target type of Deep Learning Toolbox network
'dagnetwork' (default) | 'dlnetwork'

Target type of Deep Learning Toolbox network, specified as 'dagnetwork' or 'dlnetwork'.

• Specify 'TargetNetwork as 'dagnetwork' to import the network as a DAGNetwork object. In
this case, net must include an output layer specified by the TensorFlow saved model loss function
or the name-value argument 'OutputLayerType'.

• Specify 'TargetNetwork as 'dlnetwork' to import the network as a dlnetwork object. In this
case, net does not include an output layer.

Example: 'TargetNetwork','dlnetwork'

OutputLayerType — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of output layer that importTensorFlowNetwork appends to the end of the imported network
architecture, specified as 'classification', 'regression', or 'pixelclassification'.
Appending a pixelClassificationLayer object requires Computer Vision Toolbox.

• If you specify 'TargetNetwork' as 'dagnetwork' and the saved model in modelFolder does
not specify a loss function, you must assign a value to the name-value argument
'OutputLayerType'. A DAGNetwork object must have an output layer.

• If you specify 'TargetNetwork' as 'dlnetwork', importTensorFlowNetwork ignores the
name-value argument 'OutputLayerType'. A dlnetwork object does not have an output layer.
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Example: 'OutputLayerType','classification'

ImageInputSize — Size of input images
vector of two or three numerical values

Size of the input images for the network, specified as a vector of two or three numerical values
corresponding to [height,width] for grayscale images and [height,width,channels] for color
images, respectively. The network uses this information when the saved_model.pb file in
modelFolder does not specify the input size.
Example: 'ImageInputSize',[28 28]

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If you specify a string array or cell array of character vectors str, then
importTensorFlowNetwork sets the classes of the output layer to categorical(str,str). If
Classes is 'auto', then importTensorFlowNetwork sets the classes to categorical(1:N),
where N is the number of classes.

• If you specify 'TargetNetwork' as 'dagnetwork', importTensorFlowNetwork stores
information on classes in the output layer of the DAGNetwork object.

• If you specify 'TargetNetwork' as 'dlnetwork', importTensorFlowNetwork ignores the
name-value argument 'Classes'. A dlnetwork object does not have an output layer to store
information on classes.

Example: 'Classes',{'0','1','3'}
Example: 'Classes',categorical({'dog','cat'})
Data Types: char | categorical | string | cell

Verbose — Indicator to display import progress information
true or 1 (default) | false or 0

Indicator to display import progress information in the command window, specified as a numeric or
logical 1 (true) or 0 (false).
Example: 'Verbose','true'

Output Arguments
net — Pretrained TensorFlow network
DAGNetwork object | dlnetwork object

Pretrained TensorFlow network, returned as a DAGNetwork or dlnetwork object.

• Specify 'TargetNetwork as 'dagnetwork' to import the network as a DAGNetwork object. On
the DAGNetwork object, you then predict class labels by using the classify function.

• Specify 'TargetNetwork as 'dlnetwork' to import the network as a dlnetwork object. On the
dlnetwork object, you then predict class labels by using the predict function. Specify the input
data as a dlarray using the correct data format (for more information, see the fmt argument of
dlarray).

1 Deep Learning Functions

1-1030



Limitations
• importTensorFlowNetwork supports TensorFlow versions v2.0 to 2.6.

More About
TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers

importTensorFlowNetwork supports the following TensorFlow-Keras layer types for conversion
into built-in MATLAB layers, with some limitations.

TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
Add additionLayer
Activation, with activation names:

• elu
• gelu
• relu
• linear
• softmax
• sigmoid
• swish
• tanh

Layers:

• eluLayer
• geluLayer
• reluLayer or clippedReluLayer
• None
• softmaxLayer
• sigmoidLayer
• swishLayer
• tanhLayer

Advanced activations:

• ELU
• Softmax
• ReLU
• LeakyReLU
• PReLu*

Layers:

• eluLayer
• softmaxLayer
• reluLayer, clippedReluLayer, or

leakyReluLayer
• leakyReluLayer
• nnet.keras.layer.PreluLayer

AveragePooling1D averagePooling1dLayer with PaddingValue
specified as 'mean'

AveragePooling2D averagePooling2dLayer with PaddingValue
specified as 'mean'

BatchNormalization batchNormalizationLayer
Bidirectional(LSTM(__)) bilstmLayer
Concatenate depthConcatenationLayer
Conv1D convolution1dLayer
Conv2D convolution2dLayer
Conv2DTranspose transposedConv2dLayer
CuDNNGRU gruLayer
CuDNNLSTM lstmLayer
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TensorFlow-Keras Layer Corresponding Deep Learning Toolbox Layer
Dense fullyConnectedLayer
DepthwiseConv2D groupedConvolution2dLayer
Dropout dropoutLayer
Embedding wordEmbeddingLayer
Flatten nnet.keras.layer.FlattenCStyleLayer
GlobalAveragePooling1D globalAveragePooling1dLayer
GlobalAveragePooling2D globalAveragePooling2dLayer
GlobalMaxPool1D globalMaxPooling1dLayer
GlobalMaxPool2D globalMaxPooling2dLayer
GRU gruLayer
Input imageInputLayer, sequenceInputLayer, or

featureInputLayer
LSTM lstmLayer
MaxPool1D maxPooling1dLayer
MaxPool2D maxPooling2dLayer
Multiply multiplicationLayer
SeparableConv2D groupedConvolution2dLayer or

convolution2dLayer
TimeDistributed sequenceFoldingLayer before the wrapped

layer, and sequenceUnfoldingLayer after the
wrapped layer

UpSampling2D resize2dLayer
UpSampling3D resize3dLayer
ZeroPadding1D nnet.keras.layer.ZeroPadding1DLayer
ZeroPadding2D nnet.keras.layer.ZeroPadding2DLayer

* For a PReLU layer, importTensorFlowNetwork replaces a vector-valued scaling parameter with
the average of the vector elements. You can change the parameter back to a vector after import. For
an example, see “Import Keras PReLU Layer” on page 1-899.

Supported TensorFlow-Keras Loss Functions

importTensorFlowNetwork supports the following Keras loss functions:

• mean_squared_error
• categorical_crossentropy
• sparse_categorical_crossentropy
• binary_crossentropy

Supported TensorFlow Operators

importTensorFlowNetwork supports the following TensorFlow operators for conversion into
MATLAB functions with dlarray support.
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TensorFlow Operator Corresponding MATLAB Function
Add tfAdd
AddN tfAddN
AddV2 tfAdd
Assert assert
AvgPool tfAvgPool
BatchMatMulV2 tfBatchMatMulV2
BiasAdd tfBiasAdd
BroadcastTo tfBroadcastTo
Cast tfCast
ConcatV2 tfCat
Const None (translated to weights in custom layer)
Conv2D tfConv2D
DepthToSpace depthToSpace
DepthwiseConv2dNative tfDepthwiseConv2D
Exp exp
ExpandDims tfExpandDims
FusedBatchNormV3 tfBatchnorm
GatherV2 tfGather
GreaterEqual ge, >=
Identity None (translated to value assignment in custom

layer)
IdentityN tfIdentityN
L2Loss tfL2Loss
LeakyRelu leakyrelu
Less lt, <
Log log
MatMul tfMatMul
MaxPool tfMaxPool
Maximum tfMaximum
Mean tfMean
Minimum tfMinimum
MirrorPad tfMirrorPad
Mul tfMul
Neg minus, -
Pack tfStack
Pad tfPad
PadV2 tfPad
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TensorFlow Operator Corresponding MATLAB Function
PartitionedCall None (translated to function in custom layer

methods)
Pow power, .^
Prod tfProd
RandomStandardNormal tfRandomStandardNormal
Range tfRange
ReadVariableOp None (translated to value assignment in custom

layer)
RealDiv tfDiv
Relu relu
Relu6 relu and min
Reshape tfReshape
ResizeNearestNeighbor dlresize
Rsqrt sqrt
Shape tfShape
Sigmoid sigmoid
Size tfSize
Softmax softmax
SpaceToDepth spaceToDepth
Square .^2
Sqrt sqrt
SquaredDifference tfMul or tfSub
Squeeze tfSqueeze
StatefulPartitionedCall None (translated to function in custom layer

methods)
StopGradient tfStopGradient
StridedSlice tfStridedSlice or tfSqueeze
Sub tfSub
Tanh tanh
Tile tfTile
Transpose tfTranspose

For more information on functions that operate on dlarray objects, see “List of Functions with
dlarray Support”.

Generate Code for Imported Network

You can use MATLAB Coder or GPU Coder together with Deep Learning Toolbox to generate MEX,
standalone CPU, CUDA MEX, or standalone CUDA code for an imported network. For more
information, see “Deep Learning Code Generation”.
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• Use MATLAB Coder with Deep Learning Toolbox to generate MEX or standalone CPU code that
runs on desktop or embedded targets. You can deploy generated standalone code that uses the
Intel MKL-DNN library or the ARM Compute library. Alternatively, you can generate generic C or
C++ code that does not call third-party library functions. For more information, see “Deep
Learning with MATLAB Coder” (MATLAB Coder).

• Use GPU Coder with Deep Learning Toolbox to generate CUDA MEX or standalone CUDA code
that runs on desktop or embedded targets. You can deploy generated standalone CUDA code that
uses the CUDA deep neural network library (cuDNN), the TensorRT high performance inference
library, or the ARM Compute library for Mali GPU. For more information, see “Deep Learning with
GPU Coder” (GPU Coder).

importTensorFlowNetwork returns the network net as a DAGNetwork or dlnetwork object. Both
these objects support code generation. For more information on MATLAB Coder and GPU Coder
support for Deep Learning Toolbox objects, see “Supported Classes” (MATLAB Coder) and
“Supported Classes” (GPU Coder), respectively.

You can generate code for any imported network whose layers support code generation. For lists of
the layers that support code generation with MATLAB Coder and GPU Coder, see “Supported Layers”
(MATLAB Coder) and “Supported Layers” (GPU Coder), respectively. For more information on the
code generation capabilities and limitations of each built-in MATLAB layer, see the Extended
Capabilities section of the layer. For example, see “Code Generation” on page 1-866 and “GPU Code
Generation” on page 1-867 of imageInputLayer.

Use Imported Network on GPU

importTensorFlowNetwork does not execute on a GPU. However, importTensorFlowNetwork
imports a pretrained neural network for deep learning as a DAGNetwork or dlnetwork object, which
you can use on a GPU.

• If you import the network as a DAGNetwork object, you can make predictions with the imported
network on either a CPU or GPU by using classify. Specify the hardware requirements using
the name-value argument ExecutionEnvironment. For networks with multiple outputs, use the
predict function for DAGNetwork objects.

• If you import the network as a DAGNetwork object, you can make predictions with the imported
network on either a CPU or GPU by using predict. Specify the hardware requirements using the
name-value argument ExecutionEnvironment. If the network has multiple outputs, specify the
name-value argument ReturnCategorical as true.

• If you import the network as a dlnetwork object, you can make predictions with the imported
network on either a CPU or GPU by using predict. The function predict executes on the GPU if
either the input data or network parameters are stored on the GPU.

• If you use minibatchqueue to process and manage the mini-batches of input data, the
minibatchqueue object converts the output to a GPU array by default if a GPU is available.

• Use dlupdate to convert the learnable parameters of a dlnetwork object to GPU arrays.

net = dlupdate(@gpuArray,net)

• You can train the imported network on either a CPU or GPU by using trainNetwork. To specify
training options, including options for the execution environment, use the trainingOptions
function. Specify the hardware requirements using the name-value argument
ExecutionEnvironment. For more information on how to accelerate training, see “Scale Up
Deep Learning in Parallel, on GPUs, and in the Cloud”.
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Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

Tips
• If the imported network contains a layer not supported for conversion into a built-in MATLAB

layer (see “TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers” on
page 1-1031) and importTensorFlowNetwork does not generate a custom layer, then
importTensorFlowNetwork returns an error. In this case, you can still use
importTensorFlowLayers to import the network architecture.

• To use a pretrained network for prediction or transfer learning on new images, you must
preprocess your images in the same way the images that were used to train the imported model
were preprocessed. The most common preprocessing steps are resizing images, subtracting image
average values, and converting the images from BGR format to RGB format.

• To resize images, use imresize. For example, imresize(image,[227,227,3]).
• To convert images from RGB to BGR format, use flip. For example, flip(image,3).

For more information on preprocessing images for training and prediction, see “Preprocess
Images for Deep Learning”.

• The members of the package +PackageName (custom layers and TensorFlow operators) are not
accessible if the package parent folder is not on the MATLAB path. For more information, see
“Packages and the MATLAB Path”.

• MATLAB uses one-based indexing, whereas Python uses zero-based indexing. In other words, the
first element in an array has an index of 1 and 0 in MATLAB and Python, respectively. For more
information on MATLAB indexing, see “Array Indexing”. In MATLAB, to use an array of indices
(ind) created in Python, convert the array to ind+1.

• For more tips, see “Tips on Importing Models from TensorFlow, PyTorch, and ONNX”.

Alternative Functionality
Use importTensorFlowNetwork or importTensorFlowLayers to import a TensorFlow network in
the saved model format [2]. Alternatively, if the network is in HDF5 or JSON format, use
importKerasNetwork or importKerasLayers to import the network.

Version History
Introduced in R2021a

References
[1] TensorFlow. https://www.tensorflow.org/.

[2] Using the SavedModel format. https://www.tensorflow.org/guide/saved_model.

See Also
importTensorFlowLayers | exportNetworkToTensorFlow | importNetworkFromPyTorch |
importKerasNetwork | importKerasLayers | importONNXNetwork | importONNXLayers |
exportONNXNetwork

1 Deep Learning Functions

1-1036

https://www.tensorflow.org/
https://www.tensorflow.org/guide/saved_model


Topics
“Interoperability Between Deep Learning Toolbox, TensorFlow, PyTorch, and ONNX”
“Tips on Importing Models from TensorFlow, PyTorch, and ONNX”
“Inference Comparison Between TensorFlow and Imported Networks for Image Classification”
“Pretrained Deep Neural Networks”
“Make Predictions Using dlnetwork Object” on page 1-541
“Deploy Imported TensorFlow Model with MATLAB Compiler”
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inceptionresnetv2
Pretrained Inception-ResNet-v2 convolutional neural network

Syntax
net = inceptionresnetv2

Description
Inception-ResNet-v2 is a convolutional neural network that is trained on more than a million images
from the ImageNet database [1]. The network is 164 layers deep and can classify images into 1000
object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has
learned rich feature representations for a wide range of images. The network has an image input size
of 299-by-299. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Inception-ResNet-v2 network. Follow the
steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with Inception-ResNet-v2.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load Inception-ResNet-v2 instead of GoogLeNet.

net = inceptionresnetv2 returns a pretrained Inception-ResNet-v2 network.

This function requires the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support
package. If this support package is not installed, then the function provides a download link.

Examples

Load Inception-ResNet-v2 Network

Download and install the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support
package.

Type inceptionresnetv2 at the command line.

inceptionresnetv2

If the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support package is not
installed, then the function provides a link to the required support package in the Add-On Explorer.
To install the support package, click the link, and then click Install. Check that the installation is
successful by typing inceptionresnetv2 at the command line. If the required support package is
installed, then the function returns a DAGNetwork object.

net = inceptionresnetv2

net = 

  DAGNetwork with properties:
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         Layers: [825×1 nnet.cnn.layer.Layer]
    Connections: [922×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(inceptionresnetv2)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained Inception-ResNet-v2 convolutional neural network
DAGNetwork object

Pretrained Inception-ResNet-v2 convolutional neural network, returned as a DAGNetwork object.

Version History
Introduced in R2017b

References
[1] ImageNet. http://www.image-net.org
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[2] Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. "Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning." In AAAI, vol. 4, p. 12.
2017.

[3] https://keras.io/api/applications/inceptionresnetv2/

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = inceptionresnetv2 or
by passing the inceptionresnetv2 function to coder.loadDeepLearningNetwork. For example:
net = coder.loadDeepLearningNetwork('inceptionresnetv2')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = inceptionresnetv2 or
by passing the inceptionresnetv2 function to coder.loadDeepLearningNetwork. For example:
net = coder.loadDeepLearningNetwork('inceptionresnetv2')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | resnet18 | resnet50 | resnet101 |
inceptionv3 | densenet201 | squeezenet | trainNetwork | layerGraph | DAGNetwork |
importKerasLayers | importKerasNetwork

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

1 Deep Learning Functions

1-1040

https://keras.io/api/applications/inceptionresnetv2/


inceptionv3
Inception-v3 convolutional neural network

Syntax
net = inceptionv3
net = inceptionv3('Weights','imagenet')

lgraph = inceptionv3('Weights','none')

Description
Inception-v3 is a convolutional neural network that is 48 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 299-by-299. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Inception-v3 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with Inception-v3.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load Inception-v3 instead of GoogLeNet.

net = inceptionv3 returns an Inception-v3 network trained on the ImageNet database.

This function requires the Deep Learning Toolbox Model for Inception-v3 Network support package.
If this support package is not installed, then the function provides a download link.

net = inceptionv3('Weights','imagenet') returns an Inception-v3 network trained on the
ImageNet database. This syntax is equivalent to net = inceptionv3.

lgraph = inceptionv3('Weights','none') returns the untrained Inception-v3 network
architecture. The untrained model does not require the support package.

Examples

Download Inception-v3 Support Package

Download and install the Deep Learning Toolbox Model for Inception-v3 Network support package.

Type inceptionv3 at the command line.

inceptionv3

If the Deep Learning Toolbox Model for Inception-v3 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing inceptionv3 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

inceptionv3

ans = 

  DAGNetwork with properties:

         Layers: [316×1 nnet.cnn.layer.Layer]
    Connections: [350×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(inceptionv3)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained Inception-v3 convolutional neural network
DAGNetwork object

Pretrained Inception-v3 convolutional neural network, returned as a DAGNetwork object.
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lgraph — Untrained Inception-v3 convolutional neural network architecture
LayerGraph object

Untrained Inception-v3 convolutional neural network architecture, returned as a LayerGraph object.

Version History
Introduced in R2017b

References
[1] ImageNet. http://www.image-net.org

[2] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. "Rethinking
the inception architecture for computer vision." In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818-2826. 2016.

[3] https://keras.io/api/applications/inceptionv3/

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = inceptionv3 or by
passing the inceptionv3 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('inceptionv3')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax inceptionv3('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = inceptionv3 or by
passing the inceptionv3 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('inceptionv3').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax inceptionv3('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | resnet18 | resnet50 | trainNetwork |
inceptionresnetv2 | squeezenet | layerGraph | DAGNetwork | densenet201

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
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“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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initialize
Initialize learnable and state parameters of a dlnetwork

Syntax
netUpdated = initialize(net)
netUpdated = initialize(net,X1,...,Xn)

Description

Tip Most dlnetwork objects are initialized by default. You only need to manually initialize a
dlnetwork if it is uninitialized. You can check if a network is initialized using the Initialized
property of the dlnetwork object.

netUpdated = initialize(net) initializes any unset learnable parameters and state values of
net based on the input sizes defined by the network input layers. Any learnable or state parameters
that already contain values remain unchanged.

A network with unset, empty values for learnable and state parameters is uninitialized. You must
initialize an uninitialized dlnetwork before you can use it. By default, dlnetwork objects are
constructed with initial parameters and do not need initializing.

netUpdated = initialize(net,X1,...,Xn) initializes any unset learnable parameters and
state values of net based on the example network inputs or network data layout objects X1,...,Xn.
Use this syntax when the network has inputs that are not connected to an input layer.

Examples

Initialize dlnetwork Containing Input Layer

Define a simple image classification network as a layer array.

layers = [
    imageInputLayer([28 28 1],Normalization="none")
    convolution2dLayer(5,20)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer];

Convert the layer graph to a dlnetwork object. Create an uninitialized dlnetwork object by setting
the Initialize option to false.

net = dlnetwork(layers,Initialize=false);

View the learnable parameters of the network. Because the network is not initialized, the values are
empty.

net.Learnables
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ans=6×3 table
       Layer       Parameter       Value    
    ___________    _________    ____________

    "conv"         "Weights"    {0x0 double}
    "conv"         "Bias"       {0x0 double}
    "batchnorm"    "Offset"     {0x0 double}
    "batchnorm"    "Scale"      {0x0 double}
    "fc"           "Weights"    {0x0 double}
    "fc"           "Bias"       {0x0 double}

Initialize the learnable parameters of the network using the initialize function.

net = initialize(net);

View the learnable parameters of the network. Because the network is now initialized, the values are
nonempty with sizes inferred using the size of the input layer.

net.Learnables

ans=6×3 table
       Layer       Parameter           Value       
    ___________    _________    ___________________

    "conv"         "Weights"    { 5x5x1x20 dlarray}
    "conv"         "Bias"       { 1x1x20   dlarray}
    "batchnorm"    "Offset"     { 1x1x20   dlarray}
    "batchnorm"    "Scale"      { 1x1x20   dlarray}
    "fc"           "Weights"    {10x11520  dlarray}
    "fc"           "Bias"       {10x1      dlarray}

Initialize dlnetwork Not Containing Input Layer

Define a multi-input image classification network.

numFilters = 24;

layersBranch1 = [
    convolution2dLayer(3,6*numFilters,Padding="same",Stride=2)
    groupNormalizationLayer("all-channels")
    reluLayer
    convolution2dLayer(3,numFilters,Padding="same")
    groupNormalizationLayer("channel-wise")
    additionLayer(2,Name="add")
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer];

layersBranch2 = [
    convolution2dLayer(1,numFilters,Name="conv_branch")
    groupNormalizationLayer("all-channels",Name="groupnorm_branch")];

lgraph = layerGraph(layersBranch1);
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lgraph = addLayers(lgraph,layersBranch2);
lgraph = connectLayers(lgraph,"groupnorm_branch","add/in2"); 

Visualize the layer graph in a plot.

figure
plot(lgraph)

Convert the layer graph to a dlnetwork object. Create an uninitialized dlnetwork object by setting
the Initialize option to false.

net = dlnetwork(lgraph,Initialize=false);

View the learnable parameters of the network. Because the network is not initialized, the values are
empty.

net.Learnables

ans=14×3 table
          Layer           Parameter       Value    
    __________________    _________    ____________

    "conv_1"              "Weights"    {0x0 double}
    "conv_1"              "Bias"       {0x0 double}
    "groupnorm_1"         "Offset"     {0x0 double}
    "groupnorm_1"         "Scale"      {0x0 double}
    "conv_2"              "Weights"    {0x0 double}
    "conv_2"              "Bias"       {0x0 double}
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    "groupnorm_2"         "Offset"     {0x0 double}
    "groupnorm_2"         "Scale"      {0x0 double}
    "conv_branch"         "Weights"    {0x0 double}
    "conv_branch"         "Bias"       {0x0 double}
    "groupnorm_branch"    "Offset"     {0x0 double}
    "groupnorm_branch"    "Scale"      {0x0 double}
    "fc"                  "Weights"    {0x0 double}
    "fc"                  "Bias"       {0x0 double}

View the names of the network inputs.

net.InputNames

ans = 1x2 cell
    {'conv_1'}    {'conv_branch'}

Create random dlarray objects representing inputs to the network. Use an example input of size 64-
by-64 with 3 channels for the main branch of the network. Use an input of size 64-by-64 with 18
channels for the second branch.

inputSize = [64 64 3];
inputSizeBranch = [32 32 18];

X1 = dlarray(rand(inputSize),"SSCB");
X2 = dlarray(rand(inputSizeBranch),"SSCB");

Initialize the learnable parameters of the network using the initialize function and specify the
example inputs. Specify the inputs with order corresponding to the InputNames property of the
network.

net = initialize(net,X1,X2);

View the learnable parameters of the network. Because the network is now initialized, the values are
nonempty with sizes inferred using the size of the input data.

net.Learnables

ans=14×3 table
          Layer           Parameter            Value        
    __________________    _________    _____________________

    "conv_1"              "Weights"    { 3x3x3x144  dlarray}
    "conv_1"              "Bias"       { 1x1x144    dlarray}
    "groupnorm_1"         "Offset"     { 1x1x144    dlarray}
    "groupnorm_1"         "Scale"      { 1x1x144    dlarray}
    "conv_2"              "Weights"    { 3x3x144x24 dlarray}
    "conv_2"              "Bias"       { 1x1x24     dlarray}
    "groupnorm_2"         "Offset"     { 1x1x24     dlarray}
    "groupnorm_2"         "Scale"      { 1x1x24     dlarray}
    "conv_branch"         "Weights"    { 1x1x18x24  dlarray}
    "conv_branch"         "Bias"       { 1x1x24     dlarray}
    "groupnorm_branch"    "Offset"     { 1x1x24     dlarray}
    "groupnorm_branch"    "Scale"      { 1x1x24     dlarray}
    "fc"                  "Weights"    {10x24576    dlarray}
    "fc"                  "Bias"       {10x1        dlarray}
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Initialize Network using Network Data Layout Objects

Create an uninitialized dlnetwork object that has two unconnected inputs.

layers = [
    convolution2dLayer(5,16,Name="conv")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(50)
    flattenLayer
    concatenationLayer(1,2,Name="cat")
    fullyConnectedLayer(10)
    softmaxLayer];

net = dlnetwork(layers,Initialize=false);

View the input names of the network.

net.InputNames

ans = 1×2 cell
    {'conv'}    {'cat/in2'}

Create network data layout objects that represent input data for the inputs. For the first input,
specify a batch of 28-by-28 grayscale images. For the second input specify a batch of single-channel
feature data.

layout1 = networkDataLayout([28 28 1 NaN],"SSCB");
layout2 = networkDataLayout([1 NaN],"CB");

Initialize the network using the network data layout objects.

net = initialize(net,layout1,layout2)

net = 
  dlnetwork with properties:

         Layers: [8×1 nnet.cnn.layer.Layer]
    Connections: [7×2 table]
     Learnables: [8×3 table]
          State: [2×3 table]
     InputNames: {'conv'  'cat/in2'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Input Arguments
net — Uninitialized network
dlnetwork object
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Uninitialized network, specified as a dlnetwork object.

X1,...,Xn — Example network inputs or data layouts
formatted dlarray object | formatted networkDataLayout object

Example network inputs or data layouts, specified as formatted dlarray objects or formatted
networkDataLayout objects. The software propagates X1,...Xn through the network to determine
the appropriate sizes and formats of the learnable and state parameters of the dlnetwork.

Provide example inputs in the same order as the order specified by the InputNames property of the
input network.

Note Automatic initialization uses only the size and format information of the input data. For
initialization that depends on the values on the input data, you must initialize the learnable
parameters manually.

Output Arguments
netUpdated — Initialized network
dlnetwork object

Initialized network, returned as an initialized dlnetwork object.

Version History
Introduced in R2021a

See Also
dlarray | dlnetwork | summary | networkDataLayout

Topics
“Deep Learning Network Composition”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Specify Training Options in Custom Training Loop”
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instancenorm
Normalize across each channel for each observation independently

Syntax
Y = instancenorm(X,offset,scaleFactor)
Y = instancenorm(X,offset,scaleFactor,'DataFormat',FMT)
Y = instancenorm( ___ Name,Value)

Description
The instance normalization operation normalizes the input data across each channel for each
observation independently. To improve the convergence of training the convolutional neural network
and reduce the sensitivity to network hyperparameters, use instance normalization between
convolution and nonlinear operations such as relu.

After normalization, the operation shifts the input by a learnable offset β and scales it by a learnable
scale factor γ.

The instancenorm function applies the layer normalization operation to dlarray data. Using
dlarray objects makes working with high dimensional data easier by allowing you to label the
dimensions. For example, you can label which dimensions correspond to spatial, time, channel, and
batch dimensions using the "S", "T", "C", and "B" labels, respectively. For unspecified and other
dimensions, use the "U" label. For dlarray object functions that operate over particular dimensions,
you can specify the dimension labels by formatting the dlarray object directly, or by using the
DataFormat option.

Note To apply instance normalization within a layerGraph object or Layer array, use
instanceNormalizationLayer.

Y = instancenorm(X,offset,scaleFactor) applies the instance normalization operation to the
input data X and transforms using the specified offset and scale factor.

The function normalizes over grouped subsets of the 'S' (spatial), 'T' (time), and 'U' (unspecified)
dimensions of X for each observation in the 'C' (channel) and 'B' (batch) dimensions, independently.

For unformatted input data, use the 'DataFormat' option.

Y = instancenorm(X,offset,scaleFactor,'DataFormat',FMT) applies the instance
normalization operation to the unformatted dlarray object X with format specified by FMT using any
of the previous syntaxes. The output Y is an unformatted dlarray object with dimensions in the
same order as X. For example, 'DataFormat','SSCB' specifies data for 2-D image input with
format 'SSCB' (spatial, spatial, channel, batch).

Y = instancenorm( ___ Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example, 'Epsilon',3e-5
sets the variance offset to 3e-5.
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Examples

Apply Instance Normalization

Create randomized input data with two spatial, one channel, and one observation dimension.

width = 12;
height = 12;
channels = 6;
numObservations = 16;
X = randn(width,height,channels,numObservations);
dlX = dlarray(X,'SSCB'); 

Create the learnable parameters.

offset = dlarray(zeros(channels,1));
scaleFactor = dlarray(ones(channels,1));

Calculate the instance normalization.

dlZ = instancenorm(dlX,offset,scaleFactor);

View the size and format of the normalized data.

size(dlZ)

ans = 1×4

    12    12     6    16

dims(dlZ)

ans = 
'SSCB'

Input Arguments
X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

If X is an unformatted dlarray or a numeric array, then you must specify the format using the
DataFormat option. If X is a numeric array, then either scaleFactor or offset must be a dlarray
object.

X must have a 'C' (channel) dimension.

offset — Offset
dlarray | numeric array

Offset β, specified as a formatted dlarray, an unformatted dlarray, or a numeric array with one
nonsingleton dimension with size matching the size of the 'C' (channel) dimension of the input X.
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If offset is a formatted dlarray object, then the nonsingleton dimension must have label 'C'
(channel).

scaleFactor — Scale factor
dlarray | numeric array

Scale factor γ, specified as a formatted dlarray, an unformatted dlarray, or a numeric array with
one nonsingleton dimension with size matching the size of the 'C' (channel) dimension of the input
X.

If scaleFactor is a formatted dlarray object, then the nonsingleton dimension must have label
'C' (channel).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Epsilon',3e-5 sets the variance offset to 3e-5.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

Epsilon — Variance offset
1e-5 (default) | numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting
of 'Epsilon' and a numeric scalar greater than or equal to 1e-5.
Data Types: single | double
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Output Arguments
Y — Normalized data
dlarray

Normalized data, returned as a dlarray. The output Y has the same underlying data type as the
input X.

If the input data X is a formatted dlarray, Y has the same dimension format as X. If the input data is
not a formatted dlarray, Y is an unformatted dlarray with the same dimension order as the input
data.

Algorithms
The instance normalization operation normalizes the elements xi of the input by first calculating the
mean μI and variance σI

2 over the spatial and time dimensions for each channel in each observation
independently. Then, it calculates the normalized activations as

xi =
xi− μI

σI
2 + ϵ

,

where ϵ is a constant that improves numerical stability when the variance is very small.

To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
operations that follow instance normalization, the instance normalization operation further shifts and
scales the activations using the transformation

yi = γx i + β,

where the offset β and scale factor γ are learnable parameters that are updated during network
training.

Version History
Introduced in R2021a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• X
• offset
• scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

1 Deep Learning Functions

1-1054



See Also
relu | fullyconnect | dlconv | dlarray | dlgradient | dlfeval | batchnorm | layernorm |
groupnorm

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
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instanceNormalizationLayer
Instance normalization layer

Description
An instance normalization layer normalizes a mini-batch of data across each channel for each
observation independently. To improve the convergence of training the convolutional neural network
and reduce the sensitivity to network hyperparameters, use instance normalization layers between
convolutional layers and nonlinearities, such as ReLU layers.

After normalization, the layer scales the input with a learnable scale factor γ and shifts it by a
learnable offset β.

Creation
Syntax
layer = instanceNormalizationLayer
layer = instanceNormalizationLayer(Name,Value)

Description

layer = instanceNormalizationLayer creates an instance normalization layer.

layer = instanceNormalizationLayer(Name,Value) creates an instance normalization layer
and sets the optional Epsilon, “Parameters and Initialization” on page 1-1057, “Learning Rate and
Regularization” on page 1-1058, and Name properties using one or more name-value arguments. You
can specify multiple name-value arguments. Enclose each property name in quotes.
Example: instanceNormalizationLayer('Name','instancenorm') creates an instance
normalization layer with the name 'instancenorm'

Properties
Instance Normalization

Epsilon — Constant to add to mini-batch variances
1e-5 (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than
1e-5.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical
stability and avoid division by zero.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumChannels — Number of input channels
'auto' (default) | positive integer
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This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

ScaleInitializer — Function to initialize channel scale factors
'ones' (default) | 'narrow-normal' | function handle

Function to initialize the channel scale factors, specified as one of the following:

• 'ones' – Initialize the channel scale factors with ones.
• 'zeros' – Initialize the channel scale factors with zeros.
• 'narrow-normal' – Initialize the channel scale factors by independently sampling from a normal

distribution with a mean of zero and standard deviation of 0.01.
• Function handle – Initialize the channel scale factors with a custom function. If you specify a

function handle, then the function must be of the form scale = func(sz), where sz is the size
of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the Scale property is empty.
Data Types: char | string | function_handle

OffsetInitializer — Function to initialize channel offsets
'zeros' (default) | 'ones' | 'narrow-normal' | function handle

Function to initialize the channel offsets, specified as one of the following:

• 'zeros' – Initialize the channel offsets with zeros.
• 'ones' – Initialize the channel offsets with ones.
• 'narrow-normal' – Initialize the channel offsets by independently sampling from a normal

distribution with a mean of zero and standard deviation of 0.01.
• Function handle – Initialize the channel offsets with a custom function. If you specify a function

handle, then the function must be of the form offset = func(sz), where sz is the size of the
scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.
Data Types: char | string | function_handle

Scale — Channel scale factors
[] (default) | numeric array

Channel scale factors γ, specified as a numeric array.
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The channel scale factors are learnable parameters. When you train a network, if Scale is nonempty,
then trainNetwork uses the Scale property as the initial value. If Scale is empty, then
trainNetwork uses the initializer specified by ScaleInitializer.

At training time, Scale is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Data Types: single | double

Offset — Channel offsets
[] (default) | numeric array

Channel offsets β, specified as a numeric array.

The channel offsets are learnable parameters. When you train a network, if Offset is nonempty, then
trainNetwork uses the Offset property as the initial value. If Offset is empty, then
trainNetwork uses the initializer specified by OffsetInitializer.

At training time, Offset is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Data Types: single | double

Learning Rate and Regularization

ScaleLearnRateFactor — Learning rate factor for scale factors
1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the
scale factors in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OffsetLearnRateFactor — Learning rate factor for offsets
1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
offsets in a layer. For example, if OffsetLearnRateFactor is 2, then the learning rate for the
offsets in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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ScaleL2Factor — L2 regularization factor for scale factors
1 (default) | nonnegative scalar

L2 regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the scale factors in a layer. For example, if ScaleL2Factor is 2, then the L2 regularization
for the offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OffsetL2Factor — L2 regularization factor for offsets
1 (default) | nonnegative scalar

L2 regularization factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the offsets in a layer. For example, if OffsetL2Factor is 2, then the L2 regularization for the
offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.
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Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Instance Normalization Layer

Create an instance normalization layer with the name 'instancenorm'.

layer = instanceNormalizationLayer('Name','instancenorm')

layer = 
  InstanceNormalizationLayer with properties:

           Name: 'instancenorm'
    NumChannels: 'auto'

   Hyperparameters
        Epsilon: 1.0000e-05

   Learnable Parameters
         Offset: []
          Scale: []

  Show all properties

Include an instance normalization layer in a Layer array.

layers = [
    imageInputLayer([28 28 3])
    convolution2dLayer(5,20)
    instanceNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  8x1 Layer array with layers:

     1   ''   Image Input              28x28x3 images with 'zerocenter' normalization
     2   ''   2-D Convolution          20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Instance Normalization   Instance normalization
     4   ''   ReLU                     ReLU
     5   ''   2-D Max Pooling          2x2 max pooling with stride [2  2] and padding [0  0  0  0]
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     6   ''   Fully Connected          10 fully connected layer
     7   ''   Softmax                  softmax
     8   ''   Classification Output    crossentropyex

Algorithms
The instance normalization operation normalizes the elements xi of the input by first calculating the
mean μI and variance σI

2 over the spatial and time dimensions for each channel in each observation
independently. Then, it calculates the normalized activations as

xi =
xi− μI

σI
2 + ϵ

,

where ϵ is a constant that improves numerical stability when the variance is very small.

To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
operations that follow instance normalization, the instance normalization operation further shifts and
scales the activations using the transformation

yi = γx i + β,

where the offset β and scale factor γ are learnable parameters that are updated during network
training.

Version History
Introduced in R2021a

See Also
trainNetwork | trainingOptions | reluLayer | convolution2dLayer |
fullyConnectedLayer | batchNormalizationLayer | groupNormalizationLayer |
layerNormalizationLayer

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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isdlarray
Check if object is dlarray

Syntax
tf = isdlarray(X)

Description
tf = isdlarray(X) returns logical 1 (true) if X is a dlarray, and logical 0 (false) otherwise.
You can use this function with an if statement to avoid executing code that expects dlarray input.

Examples

Check if Object is a dlarray

Create a 2-by-3-by-4 array of random values.

X = rand(2,3,4)

X = 
X(:,:,1) =

    0.8147    0.1270    0.6324
    0.9058    0.9134    0.0975

X(:,:,2) =

    0.2785    0.9575    0.1576
    0.5469    0.9649    0.9706

X(:,:,3) =

    0.9572    0.8003    0.4218
    0.4854    0.1419    0.9157

X(:,:,4) =

    0.7922    0.6557    0.8491
    0.9595    0.0357    0.9340

Check if the array is a dlarray object.

isdlarray(X)

ans = logical
   0
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Convert the array to dlarray.

X = dlarray(X)

X = 
  2x3x4 dlarray

(:,:,1) =

    0.8147    0.1270    0.6324
    0.9058    0.9134    0.0975

(:,:,2) =

    0.2785    0.9575    0.1576
    0.5469    0.9649    0.9706

(:,:,3) =

    0.9572    0.8003    0.4218
    0.4854    0.1419    0.9157

(:,:,4) =

    0.7922    0.6557    0.8491
    0.9595    0.0357    0.9340

Check if the array is a dlarray object.

isdlarray(X)

ans = logical
   1

Input Arguments
X — Input variable
workspace variable

Input variable, specified as a workspace variable. X can be any data type.

Version History
Introduced in R2020b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
dlarray | extractdata

Topics
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
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isequal
Check equality of deep learning layer graphs or networks

Syntax
tf = isequal(net1,net2)
tf = isequal(net1,...,netN)

Description
tf = isequal(net1,net2) checks the equality of SeriesNetwork, DAGNetwork, LayerGraph,
or dlnetwork objects net1 and net2.

• If both inputs are SeriesNetwork or DAGNetwork objects, or one of each, then the function
returns 1 (true) when the properties and architectures match. Otherwise, the function returns 0
(false).

• If both inputs are LayerGraph objects, then the function returns 1 (true) when the properties and
architectures match. Otherwise, the function returns 0 (false).

• If both inputs are dlnetwork objects, then the function returns 1 (true) when the properties and
architectures match. Otherwise, the function returns 0 (false).

• For other combinations, the function returns 0 (false).

The isequal function can operate on arrays of networks and layer graphs. In this case, the function
performs element-wise comparison.

tf = isequal(net1,...,netN) checks equality of the N networks or layer graphs net1, …, netN.

Examples

Check if Layer Graphs are Equal

Create two instances of SqueezeNet layer graphs.

lgraph1 = squeezenet('Weights','none');
lgraph2 = squeezenet('Weights','none');

Check if the layer graphs are equal using the isequal function.

tf = isequal(lgraph1,lgraph2)

tf = logical
   1

Check if Networks are Equal

Create two instances of a pretrained SqueezeNet network.
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net1 = squeezenet;
net2 = squeezenet;

Check if the networks are equal using the isequal function.

tf = isequal(net1,net2)

tf = logical
   1

Input Arguments
net1,net2 — Network or layer graph
SeriesNetwork object | DAGNetwork object | dlnetwork object | LayerGraph object

Network or layer graph, specified as a SeriesNetwork, DAGNetwork, dlnetwork , or LayerGraph
object.

Version History
Introduced in R2021a

See Also
isequaln | trainNetwork | SeriesNetwork | DAGNetwork | analyzeNetwork |
assembleNetwork | dlnetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Train Convolutional Neural Network for Regression”
“Sequence Classification Using Deep Learning”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”
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isequaln
Check equality of deep learning layer graphs or networks ignoring NaN values

Syntax
tf = isequaln(net1,net2)
tf = isequaln(net1,...,netN)

Description
tf = isequaln(net1,net2) checks the equality of SeriesNetwork, DAGNetwork, LayerGraph,
or dlnetwork objects net1 and net2.

• If both inputs are SeriesNetwork or DAGNetwork objects, or one of each, then the function
returns 1 (true) when the properties and architectures match, ignoring NaN values. Otherwise, the
function returns 0 (false).

• If both inputs are LayerGraph objects, then the function returns 1 (true) when the properties and
architectures match, ignoring NaN values. Otherwise, the function returns 0 (false).

• If both inputs are dlnetwork objects, then the function returns 1 (true) when the properties and
architectures match, ignoring NaN values. Otherwise, the function returns 0 (false).

• For other combinations, the function returns 0 (false).

The isequaln function can operate on arrays of networks and layer graphs. In this case, the function
performs element-wise comparison.

tf = isequaln(net1,...,netN) checks equality of the N networks or layer graphs net1, …,
netN, ignoring NaN values.

Examples

Check if Layer Graphs are Equal Ignoring NaN Values

Create two instances of SqueezeNet layer graphs.

lgraph1 = squeezenet('Weights','none');
lgraph2 = squeezenet('Weights','none');

Check if the layer graphs are equal ignoring NaN values using the isequaln function.

tf = isequaln(lgraph1,lgraph2)

tf = logical
   1
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Check if Networks are Equal Ignoring NaN Values

Create two instances of a pretrained SqueezeNet network.

net1 = squeezenet;
net2 = squeezenet;

Check if the networks are equal ignoring NaN values using the isequaln function.

tf = isequaln(net1,net2)

tf = logical
   1

Input Arguments
net1,net2 — Network or layer graph
SeriesNetwork object | DAGNetwork object | dlnetwork object | LayerGraph object

Network or layer graph, specified as a SeriesNetwork, DAGNetwork, dlnetwork , or LayerGraph
object.

Version History
Introduced in R2021a

See Also
isequal | trainNetwork | SeriesNetwork | DAGNetwork | analyzeNetwork |
assembleNetwork | dlnetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Train Convolutional Neural Network for Regression”
“Sequence Classification Using Deep Learning”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”
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l1loss
L1 loss for regression tasks

Syntax
loss = l1loss(Y,targets)
loss = l1loss(Y,targets,weights)
loss = l1loss( ___ ,DataFormat=FMT)
loss = l1loss( ___ ,Name=Value)

Description
The L1 loss operation computes the L1 loss given network predictions and target values. When the
Reduction option is "sum" and the NormalizationFactor option is "batch-size", the
computed value is known as the mean absolute error (MAE).

The l1loss function calculates the L1 loss using dlarray data. Using dlarray objects makes
working with high dimensional data easier by allowing you to label the dimensions. For example, you
can label which dimensions correspond to spatial, time, channel, and batch dimensions using the "S",
"T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the "U" label. For
dlarray object functions that operate over particular dimensions, you can specify the dimension
labels by formatting the dlarray object directly, or by using the DataFormat option.

loss = l1loss(Y,targets) computes the MAE loss for the predictions Y and the target values
targets. The input Y must be a formatted dlarray. The output loss is an unformatted dlarray
scalar.

loss = l1loss(Y,targets,weights) computes the weighted L1 loss using the weight values
weights. The output loss is an unformatted dlarray scalar.

loss = l1loss( ___ ,DataFormat=FMT) computes the loss for the unformatted dlarray object Y
and the target values with the format specified by FMT. Use this syntax with any of the input
arguments in previous syntaxes.

loss = l1loss( ___ ,Name=Value) specifies additional options using one or more name-value
arguments. For example, l1loss(Y,targets,Reduction="none") computes the L1 loss without
reducing the output to a scalar.

Examples

Mean Absolute Error Loss

Create an array of predictions for 12 observations over 10 responses.

numResponses = 10;
numObservations = 12;

Y = rand(numResponses,numObservations);
dlY = dlarray(Y,'CB');
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View the size and format of the predictions.

size(dlY)

ans = 1×2

    10    12

dims(dlY)

ans = 
'CB'

Create an array of random targets.

targets = rand(numResponses,numObservations);

View the size of the targets.

size(targets)

ans = 1×2

    10    12

Compute the mean absolute error (MAE) loss between the predictions and the targets using the
l1loss function.

loss = l1loss(dlY,targets)

loss = 
  1x1 dlarray

    3.1679

Masked Mean Absolute Error for Padded Sequences

Create arrays of predictions and targets for 12 sequences of varying lengths over 10 responses.

numResponses = 10;
numObservations = 12;
maxSequenceLength = 15;

sequenceLengths = randi(maxSequenceLength,[1 numObservations]);

Y = cell(numObservations,1);
targets = cell(numObservations,1);

for i = 1:numObservations
    Y{i} = rand(numResponses,sequenceLengths(i));
    targets{i} = rand(numResponses,sequenceLengths(i));
end

View the cell arrays of predictions and targets.
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Y

Y=12×1 cell array
    {10x13 double}
    {10x14 double}
    {10x2  double}
    {10x14 double}
    {10x10 double}
    {10x2  double}
    {10x5  double}
    {10x9  double}
    {10x15 double}
    {10x15 double}
    {10x3  double}
    {10x15 double}

targets

targets=12×1 cell array
    {10x13 double}
    {10x14 double}
    {10x2  double}
    {10x14 double}
    {10x10 double}
    {10x2  double}
    {10x5  double}
    {10x9  double}
    {10x15 double}
    {10x15 double}
    {10x3  double}
    {10x15 double}

Pad the prediction and target sequences in the second dimension using the padsequences function
and also return the corresponding mask.

[Y,mask] = padsequences(Y,2);
targets = padsequences(targets,2);

Convert the padded sequences to dlarray with the format "CTB" (channel, time, batch). Because
formatted dlarray objects automatically permute the dimensions of the underlying data, keep the
order consistent by also converting the targets and mask to formatted dlarray objects with the
format "CTB" (channel, batch, time).

dlY = dlarray(Y,"CTB");
targets = dlarray(targets,"CTB");
mask = dlarray(mask,"CTB");

View the sizes of the prediction scores, targets, and mask.

size(dlY)

ans = 1×3

    10    12    15

size(targets)
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ans = 1×3

    10    12    15

size(mask)

ans = 1×3

    10    12    15

Compute the mean absolute error (MAE) between the predictions and the targets. To prevent the loss
values calculated from padding from contributing to the loss, set the Mask option to the mask
returned by the padsequences function.

loss = l1loss(dlY,targets,Mask=mask)

loss = 
  1x1 dlarray

   32.6172

Input Arguments
Y — Predictions
dlarray | numeric array

Predictions, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When Y
is not a formatted dlarray, you must specify the dimension format using the DataFormat option.

If Y is a numeric array, targets must be a dlarray.

targets — Target responses
dlarray | numeric array

Target responses, specified as a formatted or unformatted dlarray or a numeric array.

The size of each dimension of targets must match the size of the corresponding dimension of Y.

If targets is a formatted dlarray, then its format must be the same as the format of Y, or the same
as DataFormat if Y is unformatted.

If targets is an unformatted dlarray or a numeric array, then the function applies the format of Y
or the value of DataFormat to targets.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
order "S" (spatial), "C" (channel), "B" (batch), "T" (time), then "U" (unspecified). To ensure that the
dimensions of Y and targets are consistent, when Y is a formatted dlarray, also specify targets
as a formatted dlarray.

weights — Weights
dlarray | numeric array
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Weights, specified as a formatted or unformatted dlarray or a numeric array.

If weights is a vector and Y has two or more nonsingleton dimensions, then weights must be a
formatted dlarray, where the dimension label of the nonsingleton dimension is either "C" (channel)
or "B" (batch) and has a size that matches the size of the corresponding dimension in Y.

If weights is a formatted dlarray with two or more nonsingleton dimensions, then its format must
match the format of Y.

If weights is not a formatted dlarray and has two or more nonsingleton dimensions, then its size
must match the size of Y and the function uses the same format as Y. Alternatively, to specify the
weights format, use the WeightsFormat option.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: loss = l1loss(Y,targets,Reduction="none") specifies to compute the L1 loss
without reducing the output to a scalar

Mask — Mask indicating which elements to include for loss computation
dlarray | logical array | numeric array

Mask indicating which elements to include for loss computation, specified as a dlarray object, a
logical array, or a numeric array with the same size as Y.

The function includes and excludes elements of the input data for loss computation when the
corresponding value in the mask is 1 and 0, respectively.

If Mask is a formatted dlarray object, then its format must match that of Y. If Mask is not a
formatted dlarray object, then the function uses the same format as Y.

If you specify the DataFormat option, then the function also uses the specified format for the mask.

The size of each dimension of Mask must match the size of the corresponding dimension in Y. The
default value is a logical array of ones.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
this order: "S" (spatial), "C" (channel), "B" (batch), "T" (time), and "U" (unspecified). For example,
dlarray objects automatically permute the dimensions of data with format "TSCSBS" to have format
"SSSCBT".

To ensure that the dimensions of Y and the mask are consistent, when Y is a formatted dlarray, also
specify the mask as a formatted dlarray.

Reduction — Mode for reducing array of loss values
"sum" (default) | "none"

Mode for reducing the array of loss values, specified as one of the following:

• "sum" — Sum all of the elements in the array of loss values. In this case, the output loss is
scalar.
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• "none" — Do not reduce the array of loss values. In this case, the output loss is an unformatted
dlarray object with the same size as Y.

NormalizationFactor — Divisor for normalizing reduced loss
"batch-size" (default) | "all-elements" | "mask-included" | "none"

Divisor for normalizing the reduced loss when Reduction is "sum", specified as one of the following:

• "batch-size" — Normalize the loss by dividing it by the number of observations in X.
• "all-elements" — Normalize the loss by dividing it by the number of elements of X.
• "mask-included" — Normalize the loss by dividing the loss values by the number of included

elements specified by the mask for each observation independently. To use this option, you must
specify a mask using the Mask option.

• "none" — Do not normalize the loss.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

WeightsFormat — Dimension order of weights
character vector | string scalar

Dimension order of the weights, specified as a character vector or string scalar that provides a label
for each dimension of the weights.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified
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You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify WeightsFormat when weights is a numeric vector and Y has two or more
nonsingleton dimensions.

If weights is not a vector, or both weights and Y are vectors, then default value of WeightsFormat
is the same as the format of Y.
Data Types: char | string

Output Arguments
loss — L1 loss
dlarray

L1 loss, returned as an unformatted dlarray. The output loss is an unformatted dlarray with the
same underlying data type as the input Y.

The size of loss depends on the Reduction option.

Algorithms
L1 Loss

The L1 loss operation computes the L1 loss given network predictions and target values. When the
Reduction option is "sum" and the NormalizationFactor option is "batch-size", the
computed value is known as the mean absolute error (MAE).

For each element Yj of the input, the l1loss function computes the corresponding element-wise loss
values using

loss j = Y j− T j ,

where Yj is a predicted value and Tj is the corresponding target value.

To reduce the loss values to a scalar, the function then reduces the element-wise loss using the
formula

loss = 1
N∑j m jw jloss j,

where N is the normalization factor, mj is the mask value for element j, and wj is the weight value for
element j.

If you do not opt to reduce the loss, then the function applies the mask and the weights to the loss
values directly:

loss j* = m jw jloss j

Version History
Introduced in R2021b
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• Y
• targets
• weights
• Mask

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlgradient | dlfeval | softmax | sigmoid | crossentropy | l2loss | huber | mse |
ctc

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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l2loss
L2 loss for regression tasks

Syntax
loss = l2loss(Y,targets)
loss = l2loss(Y,targets,weights)
loss = l2loss( ___ ,DataFormat=FMT)
loss = l2loss( ___ ,Name=Value)

Description
The L2 loss operation computes the L2 loss (based on the squared L2 norm) given network predictions
and target values. When the Reduction option is "sum" and the NormalizationFactor option is
"batch-size", the computed value is known as the mean squared error (MSE).

The l2loss function calculates the L2 loss using dlarray data. Using dlarray objects makes
working with high dimensional data easier by allowing you to label the dimensions. For example, you
can label which dimensions correspond to spatial, time, channel, and batch dimensions using the "S",
"T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the "U" label. For
dlarray object functions that operate over particular dimensions, you can specify the dimension
labels by formatting the dlarray object directly, or by using the DataFormat option.

loss = l2loss(Y,targets) computes MSE loss for the predictions Y and the target values
targets. The input Y must be a formatted dlarray. The output loss is an unformatted dlarray
scalar.

loss = l2loss(Y,targets,weights) computes the weighted L2 loss using the weight values
weights. The output loss is an unformatted dlarray scalar.

loss = l2loss( ___ ,DataFormat=FMT) computes the loss for the unformatted dlarray object Y
and the target values with the format specified by FMT. Use this syntax with any of the input
arguments in previous syntaxes.

loss = l2loss( ___ ,Name=Value) specifies additional options using one or more name-value
arguments. For example, l2loss(Y,targets,Reduction="none") computes the L2 loss without
reducing the output to a scalar.

Examples

Mean Squared Error Loss

Create an array of predictions for 12 observations over 10 responses.

numResponses = 10;
numObservations = 12;
Y = rand(numResponses,numObservations);
dlY = dlarray(Y,'CB');

View the size and format of the predictions.
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size(dlY)

ans = 1×2

    10    12

dims(dlY)

ans = 
'CB'

Create an array of random targets.

targets = rand(numResponses,numObservations);

View the size of the targets.

size(targets)

ans = 1×2

    10    12

Compute the mean squared error (MSE) loss between the predictions and the targets using the
l2loss function.

loss = l2loss(dlY,targets)

loss = 
  1x1 dlarray

    1.4748

Masked Mean Squared Error for Padded Sequences

Create arrays of predictions and targets for 12 sequences of varying lengths over 10 responses.

numResponses = 10;
numObservations = 12;
maxSequenceLength = 15;

sequenceLengths = randi(maxSequenceLength,[1 numObservations]);

Y = cell(numObservations,1);
targets = cell(numObservations,1);

for i = 1:numObservations
    Y{i} = rand(numResponses,sequenceLengths(i));
    targets{i} = rand(numResponses,sequenceLengths(i));
end

View the cell arrays of predictions and targets.

Y
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Y=12×1 cell array
    {10x13 double}
    {10x14 double}
    {10x2  double}
    {10x14 double}
    {10x10 double}
    {10x2  double}
    {10x5  double}
    {10x9  double}
    {10x15 double}
    {10x15 double}
    {10x3  double}
    {10x15 double}

targets

targets=12×1 cell array
    {10x13 double}
    {10x14 double}
    {10x2  double}
    {10x14 double}
    {10x10 double}
    {10x2  double}
    {10x5  double}
    {10x9  double}
    {10x15 double}
    {10x15 double}
    {10x3  double}
    {10x15 double}

Pad the prediction and target sequences in the second dimension using the padsequences function
and also return the corresponding mask.

[Y,mask] = padsequences(Y,2);
targets = padsequences(targets,2);

Convert the padded sequences to dlarray with the format "CTB" (channel, time, batch). Because
formatted dlarray objects automatically permute the dimensions of the underlying data, keep the
order consistent by also converting the targets and mask to formatted dlarray objects with the
format "CTB" (channel, batch, time).

dlY = dlarray(Y,"CTB");
targets = dlarray(targets,"CTB");
mask = dlarray(mask,"CTB");

View the sizes of the prediction scores, targets, and mask.

size(dlY)

ans = 1×3

    10    12    15

size(targets)

ans = 1×3
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    10    12    15

size(mask)

ans = 1×3

    10    12    15

Compute the mean squared error (MSE) between the predictions and the targets. To prevent the loss
values calculated from padding from contributing to the loss, set the Mask option to the mask
returned by the padsequences function.

loss = l2loss(dlY,targets,Mask=mask)

loss = 
  1x1 dlarray

   16.3668

Input Arguments
Y — Predictions
dlarray | numeric array

Predictions, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When Y
is not a formatted dlarray, you must specify the dimension format using the DataFormat option.

If Y is a numeric array, targets must be a dlarray.

targets — Target responses
dlarray | numeric array

Target responses, specified as a formatted or unformatted dlarray or a numeric array.

The size of each dimension of targets must match the size of the corresponding dimension of Y.

If targets is a formatted dlarray, then its format must be the same as the format of Y, or the same
as DataFormat if Y is unformatted.

If targets is an unformatted dlarray or a numeric array, then the function applies the format of Y
or the value of DataFormat to targets.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
order "S" (spatial), "C" (channel), "B" (batch), "T" (time), then "U" (unspecified). To ensure that the
dimensions of Y and targets are consistent, when Y is a formatted dlarray, also specify targets
as a formatted dlarray.

weights — Weights
dlarray | numeric array

Weights, specified as a formatted or unformatted dlarray or a numeric array.
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If weights is a vector and Y has two or more nonsingleton dimensions, then weights must be a
formatted dlarray, where the dimension label of the nonsingleton dimension is either "C" (channel)
or "B" (batch) and has a size that matches the size of the corresponding dimension in Y.

If weights is a formatted dlarray with two or more nonsingleton dimensions, then its format must
match the format of Y.

If weights is not a formatted dlarray and has two or more nonsingleton dimensions, then its size
must match the size of Y and the function uses the same format as Y. Alternatively, to specify the
weights format, use the WeightsFormat option.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: loss = l2loss(Y,targets,Reduction="none") specifies to compute the L2 loss
without reducing the output to a scalar

Mask — Mask indicating which elements to include for loss computation
dlarray | logical array | numeric array

Mask indicating which elements to include for loss computation, specified as a dlarray object, a
logical array, or a numeric array with the same size as Y.

The function includes and excludes elements of the input data for loss computation when the
corresponding value in the mask is 1 and 0, respectively.

If Mask is a formatted dlarray object, then its format must match that of Y. If Mask is not a
formatted dlarray object, then the function uses the same format as Y.

If you specify the DataFormat option, then the function also uses the specified format for the mask.

The size of each dimension of Mask must match the size of the corresponding dimension in Y. The
default value is a logical array of ones.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
this order: "S" (spatial), "C" (channel), "B" (batch), "T" (time), and "U" (unspecified). For example,
dlarray objects automatically permute the dimensions of data with format "TSCSBS" to have format
"SSSCBT".

To ensure that the dimensions of Y and the mask are consistent, when Y is a formatted dlarray, also
specify the mask as a formatted dlarray.

Reduction — Mode for reducing array of loss values
"sum" (default) | "none"

Mode for reducing the array of loss values, specified as one of the following:

• "sum" — Sum all of the elements in the array of loss values. In this case, the output loss is
scalar.

• "none" — Do not reduce the array of loss values. In this case, the output loss is an unformatted
dlarray object with the same size as Y.
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NormalizationFactor — Divisor for normalizing reduced loss
"batch-size" (default) | "all-elements" | "mask-included" | "none"

Divisor for normalizing the reduced loss when Reduction is "sum", specified as one of the following:

• "batch-size" — Normalize the loss by dividing it by the number of observations in X.
• "all-elements" — Normalize the loss by dividing it by the number of elements of X.
• "mask-included" — Normalize the loss by dividing the loss values by the number of included

elements specified by the mask for each observation independently. To use this option, you must
specify a mask using the Mask option.

• "none" — Do not normalize the loss.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

WeightsFormat — Dimension order of weights
character vector | string scalar

Dimension order of the weights, specified as a character vector or string scalar that provides a label
for each dimension of the weights.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.
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You must specify WeightsFormat when weights is a numeric vector and Y has two or more
nonsingleton dimensions.

If weights is not a vector, or both weights and Y are vectors, then default value of WeightsFormat
is the same as the format of Y.
Data Types: char | string

Output Arguments
loss — L2 loss
dlarray

L2 loss, returned as an unformatted dlarray. The output loss is an unformatted dlarray with the
same underlying data type as the input Y.

The size of loss depends on the Reduction option.

Algorithms
L2 Loss

The L2 loss operation computes the L2 loss (based on the squared L2 norm) given network predictions
and target values. When the Reduction option is "sum" and the NormalizationFactor option is
"batch-size", the computed value is known as the mean squared error (MSE).

For each element Yj of the input, the l2loss function computes the corresponding element-wise loss
values using

loss j = Y j− T j
2,

where Yj is a predicted value and Tj is the corresponding target value.

To reduce the loss values to a scalar, the function then reduces the element-wise loss using the
formula

loss = 1
N∑j m jw jloss j,

where N is the normalization factor, mj is the mask value for element j, and wj is the weight value for
element j.

If you do not opt to reduce the loss, then the function applies the mask and the weights to the loss
values directly:

loss j* = m jw jloss j

Version History
Introduced in R2021b
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• Y
• targets
• weights
• Mask

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlgradient | dlfeval | softmax | sigmoid | crossentropy | l1loss | huber | mse |
ctc

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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Layer
Network layer for deep learning

Description
Layers that define the architecture of neural networks for deep learning.

Creation
For a list of deep learning layers in MATLAB, see “List of Deep Learning Layers”. To specify the
architecture of a neural network with all layers connected sequentially, create an array of layers
directly. To specify the architecture of a network where layers can have multiple inputs or outputs,
use a LayerGraph object.

Alternatively, you can import layers from Caffe, Keras, and ONNX using importCaffeLayers,
importKerasLayers, and importONNXLayers respectively.

To learn how to create your own custom layers, see “Define Custom Deep Learning Layers”.

Object Functions
trainNetwork Train deep learning neural network

Examples

Construct Network Architecture

Define a convolutional neural network architecture for classification with one convolutional layer, a
ReLU layer, and a fully connected layer.

layers = [ ...
    imageInputLayer([28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  6x1 Layer array with layers:

     1   ''   Image Input             28x28x3 images with 'zerocenter' normalization
     2   ''   2-D Convolution         10 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Fully Connected         10 fully connected layer
     5   ''   Softmax                 softmax
     6   ''   Classification Output   crossentropyex

layers is a Layer object.
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Alternatively, you can create the layers individually and then concatenate them.

input = imageInputLayer([28 28 3]);
conv = convolution2dLayer([5 5],10);
relu = reluLayer;
fc = fullyConnectedLayer(10);
sm = softmaxLayer;
co = classificationLayer;

layers = [ ...
    input
    conv
    relu
    fc
    sm
    co]

layers = 
  6x1 Layer array with layers:

     1   ''   Image Input             28x28x3 images with 'zerocenter' normalization
     2   ''   2-D Convolution         10 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Fully Connected         10 fully connected layer
     5   ''   Softmax                 softmax
     6   ''   Classification Output   crossentropyex

Access Layers and Properties in Layer Array

Define a convolutional neural network architecture for classification with one convolutional layer, a
ReLU layer, and a fully connected layer.

layers = [ ...
    imageInputLayer([28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Display the image input layer by selecting the first layer.

layers(1)

ans = 
  ImageInputLayer with properties:

                      Name: ''
                 InputSize: [28 28 3]
        SplitComplexInputs: 0

   Hyperparameters
          DataAugmentation: 'none'
             Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
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                      Mean: []

View the input size of the image input layer.

layers(1).InputSize

ans = 1×3

    28    28     3

Display the stride for the convolutional layer.

layers(2).Stride

ans = 1×2

     1     1

Access the bias learn rate factor for the fully connected layer.

layers(4).BiasLearnRateFactor

ans = 1

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. To easily add connections
later, specify names for the first ReLU layer and the addition layer.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(5,16,'Padding','same')
    batchNormalizationLayer
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    additionLayer(2,'Name','add')
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    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the third
ReLU layer. This arrangement enables the addition layer to add the outputs of the third ReLU layer
and the 1-by-1 convolutional layer. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)

1 Deep Learning Functions

1-1088



Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The third ReLU layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the third ReLU layer and the 'skipConv'
layer. To check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16x1 nnet.cnn.layer.Layer]
    Connections: [16x2 table]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9934
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Version History
Introduced in R2016a

See Also
importCaffeLayers | trainNetwork | LayerGraph | Layer | importKerasLayers |
assembleNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
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layerGraph
Graph of network layers for deep learning

Description
A layer graph specifies the architecture of a deep learning network with a more complex graph
structure in which layers can have inputs from multiple layers and outputs to multiple layers.
Networks with this structure are called directed acyclic graph (DAG) networks. After you create a
layerGraph object, you can use the object functions to plot the graph and modify it by adding,
removing, connecting, and disconnecting layers. To train the network, use the layer graph as input to
the trainNetwork function or convert it to a dlnetwork and train it using a custom training loop.

Creation

Syntax
lgraph = layerGraph
lgraph = layerGraph(layers)
lgraph = layerGraph(net)

Description

lgraph = layerGraph creates an empty layer graph that contains no layers. You can add layers to
the empty graph by using the addLayers function.

lgraph = layerGraph(layers) creates a layer graph from an array of network layers and sets
the Layers property. The layers in lgraph are connected in the same sequential order as in layers.

lgraph = layerGraph(net) extracts the layer graph of a SeriesNetwork, DAGNetwork, or
dlnetwork object. For example, you can extract the layer graph of a pretrained network to perform
transfer learning.

Input Arguments

net — Deep learning network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Deep learning network, specified as a SeriesNetwork, DAGNetwork, or dlnetwork object.

Properties
Layers — Network layers
Layer array

This property is read-only.

Network layers, specified as a Layer array.
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Connections — Layer connections
table

This property is read-only.

Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, Source, specifies the
source of each connection. The second column, Destination, specifies the destination of each
connection. The connection sources and destinations are either layer names or have the form
'layerName/IOName', where 'IOName' is the name of the layer input or output.
Data Types: table

InputNames — Network input layer names
cell array of character vectors

This property is read-only.

Network input layer names, specified as a cell array of character vectors.
Data Types: cell

OutputNames — Network output layer names
cell array

Network output layer names, specified as a cell array of character vectors.
Data Types: cell

Object Functions
addLayers Add layers to layer graph or network
removeLayers Remove layers from layer graph or network
replaceLayer Replace layer in layer graph or network
connectLayers Connect layers in layer graph or network
disconnectLayers Disconnect layers in layer graph or network
plot Plot neural network architecture

Examples

Add Layers to Layer Graph

Create an empty layer graph and an array of layers. Add the layers to the layer graph and plot the
graph. addLayers connects the layers sequentially.

lgraph = layerGraph;

layers = [
    imageInputLayer([32 32 3],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

lgraph = addLayers(lgraph,layers);
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figure
plot(lgraph)

Create Layer Graph from an Array of Layers

Create an array of layers.

layers = [
    imageInputLayer([28 28 1],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)
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Extract Layer Graph of DAG Network

Load a pretrained SqueezeNet network. You can use this trained network for classification and
prediction.

net = squeezenet;

To modify the network structure, first extract the structure of the DAG network by using
layerGraph. You can then use the object functions of LayerGraph to modify the network
architecture.

lgraph = layerGraph(net)

lgraph = 
  LayerGraph with properties:

         Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
     InputNames: {'data'}
    OutputNames: {'ClassificationLayer_predictions'}
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Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

• A main branch with layers connected sequentially.
• A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable

the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. To easily add connections
later, specify names for the first ReLU layer and the addition layer.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(5,16,'Padding','same')
    batchNormalizationLayer
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)
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Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the third
ReLU layer. This arrangement enables the addition layer to add the outputs of the third ReLU layer
and the 1-by-1 convolutional layer. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
'in1' and 'in2'. The third ReLU layer is already connected to the 'in1' input. Connect the
'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the
'add' layer. The addition layer now sums the outputs of the third ReLU layer and the 'skipConv'
layer. To check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
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Display the properties of the trained network. The network is a DAGNetwork object.

net

net = 
  DAGNetwork with properties:

         Layers: [16x1 nnet.cnn.layer.Layer]
    Connections: [16x2 table]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9934
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Version History
Introduced in R2017b

See Also
trainNetwork | DAGNetwork | addLayers | removeLayers | connectLayers |
disconnectLayers | plot | googlenet | resnet18 | resnet50 | resnet101 |
inceptionresnetv2 | squeezenet | additionLayer | replaceLayer |
depthConcatenationLayer | inceptionv3 | analyzeNetwork | assembleNetwork | Deep
Network Designer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
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layernorm
Normalize data across all channels for each observation independently

Syntax
Y = layernorm(X,offset,scaleFactor)
Y = layernorm(X,offset,scaleFactor,'DataFormat',FMT)
Y = layernorm( ___ ,Name,Value)

Description
The layer normalization operation normalizes the input data across all channels for each observation
independently. To speed up training of recurrent and multilayer perceptron neural networks and
reduce the sensitivity to network initialization, use layer normalization after the learnable operations,
such as LSTM and fully connect operations.

After normalization, the operation shifts the input by a learnable offset β and scales it by a learnable
scale factor γ.

The layernorm function applies the layer normalization operation to dlarray data. Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note To apply layer normalization within a layerGraph object or Layer array, use
layerNormalizationLayer.

Y = layernorm(X,offset,scaleFactor) applies the layer normalization operation to the input
data X and transforms it using the specified offset and scale factor.

The function normalizes over the 'S' (spatial), 'T' (time), 'C' (channel), and 'U' (unspecified)
dimensions of X for each observation in the 'B' (batch) dimension, independently.

For unformatted input data, use the 'DataFormat' option.

Y = layernorm(X,offset,scaleFactor,'DataFormat',FMT) applies the layer normalization
operation to the unformatted dlarray object X with the format specified by FMT. The output Y is an
unformatted dlarray object with dimensions in the same order as X. For example,
'DataFormat','SSCB' specifies data for 2-D image input with the format 'SSCB' (spatial, spatial,
channel, batch).

To specify the format of the scale and offset, use the 'ScaleFormat' and 'OffsetFormat' options,
respectively.

Y = layernorm( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example, 'Epsilon',1e-4
sets the epsilon value to 1e-4.
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Examples

Apply Layer Normalization

Create a formatted dlarray object containing a batch of 128 sequences of length 100 with 10
channels. Specify the format 'CBT' (channel, batch, time).

numChannels = 10;
miniBatchSize = 128;
sequenceLength = 100;

X = rand(numChannels,miniBatchSize,sequenceLength);
dlX = dlarray(X,'CBT');

View the size and format of the input data.

size(dlX)

ans = 1×3

    10   128   100

dims(dlX)

ans = 
'CBT'

For per-observation channel-wise layer normalization, initialize the offset and scale with a vector of
zeros and ones, respectively.

offset = zeros(numChannels,1);
scaleFactor = ones(numChannels,1);

Apply the layer normalization operation using the layernorm function.

dlY = layernorm(dlX,offset,scaleFactor);

View the size and the format of the output dlY.

size(dlY)

ans = 1×3

    10   128   100

dims(dlY)

ans = 
'CBT'
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Apply Element-Wise Layer Normalization

To perform element-wise layer normalization, specify an offset and scale factor with the same size as
the input data.

Create a formatted dlarray object containing a batch of 128 sequences of length 100 with 10
channels. Specify the format 'CBT' (channel, batch, time).

numChannels = 10;
miniBatchSize = 128;
sequenceLength = 100;
X = rand(numChannels,miniBatchSize,sequenceLength);
dlX = dlarray(X,'CBT');

View the size and format of the input data.

size(dlX)

ans = 1×3

    10   128   100

dims(dlX)

ans = 
'CBT'

For element-wise layer normalization, initialize the offset and scale with an array of zeros and ones,
respectively.

offset = zeros(numChannels,sequenceLength);
scaleFactor = ones(numChannels,sequenceLength);

Apply the layer normalization operation using the layernorm function. Specify the offset and scale
formats as 'CT' (channel, time) using the 'OffsetFormat' and 'ScaleFormat' options,
respectively.

dlY = layernorm(dlX,offset,scaleFactor,'OffsetFormat','CT','ScaleFormat','CT');

View the size and the format of the output dlY.

size(dlY)

ans = 1×3

    10   128   100

dims(dlY)

ans = 
'CBT'

Input Arguments
X — Input data
dlarray | numeric array
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Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

If X is an unformatted dlarray or a numeric array, then you must specify the format using the
DataFormat option. If X is a numeric array, then either scaleFactor or offset must be a dlarray
object.

X must have a 'C' (channel) dimension.

offset — Offset
dlarray | numeric array

Offset β, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

The size and format of the offset depends on the type of transformation.

Task Description
Channel-wise transformation Array with one nonsingleton dimension with size

matching the size of the 'C' (channel) dimension
of the input X.

For channel-wise transformation, if offset is a
formatted dlarray object, then the nonsingleton
dimension must have label 'C' (channel).

Element-wise transformation Array with a 'C' (channel) dimension with the
same size as the 'C' (channel) dimension of the
input X and zero or the same number of 'S'
(spatial), 'T' (time), and 'U' (unspecified)
dimensions of the input X.

Each dimension must have size 1 or have sizes
matching the corresponding dimensions in the
input X. For any repeated dimensions, for
example, multiple 'S' (spatial) dimensions, the
sizes must match the corresponding dimensions
in X or must all be singleton.

The software automatically expands any singleton
dimensions to match the size of a single
observation in the input X.

For element-wise transformation, if offset is a
numeric array or an unformatted dlarray, then
you must specify the offset format using the
'OffsetFormat' option.

scaleFactor — Scale factor
dlarray | numeric array

Scale factor γ, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

The size and format of the offset depends on the type of transformation.
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Task Description
Channel-wise transformation Array with one nonsingleton dimension with size

matching the size of the 'C' (channel) dimension
of the input X.

For channel-wise transformation, if
scaleFactor is a formatted dlarray object,
then the nonsingleton dimension must have label
'C' (channel).

Element-wise transformation Array with a 'C' (channel) dimension with the
same size as the 'C' (channel) dimension of the
input X and zero or the same number of 'S'
(spatial), 'T' (time), and 'U' (unspecified)
dimensions of the input X.

Each dimension must have size 1 or have sizes
matching the corresponding dimensions in the
input X. For any repeated dimensions, for
example, multiple 'S' (spatial) dimensions, the
sizes must match the corresponding dimensions
in X or must all be singleton.

The software automatically expands any singleton
dimensions to match the size of a single
observation in the input X.

For element-wise transformation, if
scaleFactor is a numeric array or an
unformatted dlarray, then you must specify the
scale format using the 'ScaleFormat' option.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Epsilon',1e-4 sets the variance offset value to 1e-4.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
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• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

Epsilon — Variance offset
1e-5 (default) | numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting
of 'Epsilon' and a numeric scalar greater than or equal to 1e-5.
Data Types: single | double

ScaleFormat — Dimension order of unformatted scale factor
character vector | string scalar

Dimension order of the unformatted scale factor, specified as the comma-separated pair consisting of
'ScaleFormat' and a character vector or string scalar.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

For layer normalization, the scale factor must have a "C" (channel) dimension. You can specify
multiple dimensions labeled 'S' or 'U'. You can use the label "T" (time) at most once. The scale
factor must not have a "B" (batch) dimension.

You must specify 'ScaleFormat' for element-wise normalization when scaleFactor is a numeric
array or an a unformatted dlarray.
Example: 'ScaleFormat',"SSCB"
Data Types: char | string

OffsetFormat — Dimension order of unformatted offset
character vector | string scalar

Dimension order of the unformatted offset, specified as the comma-separated pair consisting of
'OffsetFormat' and a character vector or string scalar.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:
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• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

For layer normalization, the offset must have a "C" (channel) dimension. You can specify multiple
dimensions labeled "S" or 'U'. You can use the label "T" (time) at most once. The offset must not
have a "B" (batch) dimension.

You must specify 'OffsetFormat' for element-wise normalization when offset is a numeric array
or an unformatted dlarray.
Example: 'OffsetFormat',"SSCB"
Data Types: char | string

Output Arguments
Y — Normalized data
dlarray

Normalized data, returned as a dlarray. The output Y has the same underlying data type as the
input X.

If the input data X is a formatted dlarray, Y has the same dimension labels as X. If the input data is
not a formatted dlarray, Y is an unformatted dlarray with the same dimension order as the input
data.

Algorithms
The layer normalization operation normalizes the elements xi of the input by first calculating the
mean μL and variance σL

2 over the spatial, time, and channel dimensions for each observation
independently. Then, it calculates the normalized activations as

xi =
xi− μL

σL
2 + ϵ

,

where ϵ is a constant that improves numerical stability when the variance is very small.

To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
operations that follow layer normalization, the layer normalization operation further shifts and scales
the activations using the transformation

yi = γx i + β,

where the offset β and scale factor γ are learnable parameters that are updated during network
training.

Version History
Introduced in R2021a
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References
[1] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normalization.” Preprint,

submitted July 21, 2016. https://arxiv.org/abs/1607.06450.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• X
• offset
• scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
relu | fullyconnect | dlconv | dlarray | dlgradient | dlfeval | groupnorm | batchnorm

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Update Batch Normalization Statistics Using Model Function”
“Train Network Using Model Function”
“Train Network with Multiple Outputs”
“List of Functions with dlarray Support”
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layerNormalizationLayer
Layer normalization layer

Description
A layer normalization layer normalizes a mini-batch of data across all channels for each observation
independently. To speed up training of recurrent and multilayer perceptron neural networks and
reduce the sensitivity to network initialization, use layer normalization layers after the learnable
layers, such as LSTM and fully connected layers.

After normalization, the layer scales the input with a learnable scale factor γ and shifts it by a
learnable offset β.

Creation

Syntax
layer = layerNormalizationLayer
layer = layerNormalizationLayer(Name,Value)

Description

layer = layerNormalizationLayer creates a layer normalization layer.

layer = layerNormalizationLayer(Name,Value) sets the optional Epsilon, “Parameters and
Initialization” on page 1-1112, “Learning Rate and Regularization” on page 1-1113, and Name
properties using one or more name-value arguments. For example,
layerNormalizationLayer('Name','layernorm') creates a layer normalization layer with
name 'layernorm'.

Properties
Layer Normalization

Epsilon — Constant to add to mini-batch variances
1e-5 (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than
1e-5.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical
stability and avoid division by zero.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumChannels — Number of input channels
'auto' (default) | positive integer
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This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

ScaleInitializer — Function to initialize channel scale factors
'ones' (default) | 'narrow-normal' | function handle

Function to initialize the channel scale factors, specified as one of the following:

• 'ones' – Initialize the channel scale factors with ones.
• 'zeros' – Initialize the channel scale factors with zeros.
• 'narrow-normal' – Initialize the channel scale factors by independently sampling from a normal

distribution with a mean of zero and standard deviation of 0.01.
• Function handle – Initialize the channel scale factors with a custom function. If you specify a

function handle, then the function must be of the form scale = func(sz), where sz is the size
of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the Scale property is empty.
Data Types: char | string | function_handle

OffsetInitializer — Function to initialize channel offsets
'zeros' (default) | 'ones' | 'narrow-normal' | function handle

Function to initialize the channel offsets, specified as one of the following:

• 'zeros' – Initialize the channel offsets with zeros.
• 'ones' – Initialize the channel offsets with ones.
• 'narrow-normal' – Initialize the channel offsets by independently sampling from a normal

distribution with a mean of zero and standard deviation of 0.01.
• Function handle – Initialize the channel offsets with a custom function. If you specify a function

handle, then the function must be of the form offset = func(sz), where sz is the size of the
scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.
Data Types: char | string | function_handle

Scale — Channel scale factors
[] (default) | numeric array

Channel scale factors γ, specified as a numeric array.
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The channel scale factors are learnable parameters. When you train a network, if Scale is nonempty,
then trainNetwork uses the Scale property as the initial value. If Scale is empty, then
trainNetwork uses the initializer specified by ScaleInitializer.

At training time, Scale is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Data Types: single | double

Offset — Channel offsets
[] (default) | numeric array

Channel offsets β, specified as a numeric array.

The channel offsets are learnable parameters. When you train a network, if Offset is nonempty, then
trainNetwork uses the Offset property as the initial value. If Offset is empty, then
trainNetwork uses the initializer specified by OffsetInitializer.

At training time, Offset is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

Data Types: single | double

Learning Rate and Regularization

ScaleLearnRateFactor — Learning rate factor for scale factors
1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the
scale factors in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OffsetLearnRateFactor — Learning rate factor for offsets
1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
offsets in a layer. For example, if OffsetLearnRateFactor is 2, then the learning rate for the
offsets in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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ScaleL2Factor — L2 regularization factor for scale factors
1 (default) | nonnegative scalar

L2 regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the scale factors in a layer. For example, if ScaleL2Factor is 2, then the L2 regularization
for the offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OffsetL2Factor — L2 regularization factor for offsets
1 (default) | nonnegative scalar

L2 regularization factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the learning
rate for the offsets in a layer. For example, if OffsetL2Factor is 2, then the L2 regularization for the
offsets in the layer is twice the global L2 regularization factor. You can specify the global L2
regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.
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Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Layer Normalization Layer

Create a layer normalization layer with the name 'layernorm'.

layer = layerNormalizationLayer('Name','layernorm')

layer = 
  LayerNormalizationLayer with properties:

           Name: 'layernorm'
    NumChannels: 'auto'

   Hyperparameters
        Epsilon: 1.0000e-05

   Learnable Parameters
         Offset: []
          Scale: []

  Show all properties

Include a layer normalization layer in a Layer array.

layers = [
    imageInputLayer([32 32 3]) 
    convolution2dLayer(3,16,'Padding',1)
    layerNormalizationLayer
    reluLayer   
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding',1)
    layerNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             32x32x3 images with 'zerocenter' normalization
     2   ''   2-D Convolution         16 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
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     3   ''   Layer Normalization     Layer normalization
     4   ''   ReLU                    ReLU
     5   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   2-D Convolution         32 3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     7   ''   Layer Normalization     Layer normalization
     8   ''   ReLU                    ReLU
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

Algorithms
The layer normalization operation normalizes the elements xi of the input by first calculating the
mean μL and variance σL

2 over the spatial, time, and channel dimensions for each observation
independently. Then, it calculates the normalized activations as

xi =
xi− μL

σL
2 + ϵ

,

where ϵ is a constant that improves numerical stability when the variance is very small.

To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
operations that follow layer normalization, the layer normalization operation further shifts and scales
the activations using the transformation

yi = γx i + β,

where the offset β and scale factor γ are learnable parameters that are updated during network
training.

Version History
Introduced in R2021a

References
[1] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normalization.” Preprint,

submitted July 21, 2016. https://arxiv.org/abs/1607.06450.

See Also
batchNormalizationLayer | trainNetwork | trainingOptions | reluLayer |
convolution2dLayer | groupNormalizationLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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leakyrelu
Apply leaky rectified linear unit activation

Syntax
Y = leakyrelu(X)
Y = leakyrelu(X,scaleFactor)

Description
The leaky rectified linear unit (ReLU) activation operation performs a nonlinear threshold operation,
where any input value less than zero is multiplied by a fixed scale factor.

This operation is equivalent to

f (x) =
x, x ≥ 0
scale * x, x < 0

.

Note This function applies the leaky ReLU operation to dlarray data. If you want to apply leaky
ReLU activation within a layerGraph object or Layer array, use the following layer:

• leakyReluLayer

Y = leakyrelu(X) computes the leaky ReLU activation of the input X by applying a threshold
operation. All values in X less than zero are multiplied by a default scale factor of 0.01.

Y = leakyrelu(X,scaleFactor) specifies the scale factor for the leaky ReLU operation.

Examples

Apply Leaky ReLU Operation

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
X = dlarray(X,"SSCB");

View the size and format of the input data.

size(X)

ans = 1×4
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    28    28     3   128

dims(X)

ans = 
'SSCB'

Apply the leaky ReLU operation using the leakyrelu function.

Y = leakyrelu(X);

View the size and format of the output.

size(Y)

ans = 1×4

    28    28     3   128

dims(Y)

ans = 
'SSCB'

Specify Leaky ReLU Scale

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
X = dlarray(X,"SSCB");

View the size and format of the input data.

size(X)

ans = 1×4

    28    28     3   128

dims(X)

ans = 
'SSCB'

Apply the leaky ReLU operation using the leakyrelu function and specify a scale of 0.5.

Y = leakyrelu(X,0.5);

View the size and format of the output.

size(Y)
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ans = 1×4

    28    28     3   128

dims(Y)

ans = 
'SSCB'

Input Arguments
X — Input data
dlarray object

Input data, specified as a formatted or unformatted dlarray object.

scaleFactor — Scale factor for negative inputs
0.01 (default) | numeric scalar

Scale factor for negative inputs, specified as a numeric scalar. The default value is 0.01.
Data Types: single | double

Output Arguments
Y — Leaky ReLU activations
dlarray

Leaky ReLU activations, returned as a dlarray. The output Y has the same underlying data type as
the input X.

If the input data X is a formatted dlarray, Y has the same dimension format as X. If the input data is
not a formatted dlarray, Y is an unformatted dlarray with the same dimension order as the input
data.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a gpuArray or a dlarray with underlying data of type gpuArray,
this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
dlarray | dlconv | batchnorm | relu | gelu | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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leakyReluLayer
Leaky Rectified Linear Unit (ReLU) layer

Description
A leaky ReLU layer performs a threshold operation, where any input value less than zero is multiplied
by a fixed scalar.

This operation is equivalent to:

f (x) =
x, x ≥ 0
scale * x, x < 0

.

Creation

Syntax
layer = leakyReluLayer
layer = leakyReluLayer(scale)
layer = leakyReluLayer( ___ ,'Name',Name)

Description

layer = leakyReluLayer returns a leaky ReLU layer.

layer = leakyReluLayer(scale) returns a leaky ReLU layer with a scalar multiplier for negative
inputs equal to scale.

layer = leakyReluLayer( ___ ,'Name',Name) returns a leaky ReLU layer and sets the optional
Name property.

Properties
Leaky ReLU

Scale — Scalar multiplier for negative input values
0.01 (default) | numeric scalar

Scalar multiplier for negative input values, specified as a numeric scalar.
Example: 0.4

Layer

Name — Layer name
'' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Leaky ReLU Layer

Create a leaky ReLU layer with the name 'leaky1' and a scalar multiplier for negative inputs equal
to 0.1.

layer = leakyReluLayer(0.1,'Name','leaky1')

layer = 
  LeakyReLULayer with properties:

     Name: 'leaky1'

   Hyperparameters
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    Scale: 0.1000

Include a leaky ReLU layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
    batchNormalizationLayer
    leakyReluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32)
    batchNormalizationLayer
    leakyReluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         16 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization     Batch normalization
     4   ''   Leaky ReLU              Leaky ReLU with scale 0.01
     5   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   2-D Convolution         32 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     7   ''   Batch Normalization     Batch normalization
     8   ''   Leaky ReLU              Leaky ReLU with scale 0.01
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

Version History
Introduced in R2017b

References
[1] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural

network acoustic models." In Proc. ICML, vol. 30, no. 1. 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | reluLayer | clippedReluLayer | swishLayer
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Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Activation Layers”
“List of Deep Learning Layers”
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loadTFLiteModel
Load TensorFlow Lite model

Syntax
net = loadTFLiteModel(modelFileName)

Description
net = loadTFLiteModel(modelFileName) loads a pretrained TensorFlow Lite model file
modelFileName and returns a TFLiteModel object.

Use this TFLiteModel object with the predict function in your MATLAB code to perform inference
in MATLAB execution, code generation, or MATLAB Function block in Simulink models. For more
information, see “Prerequisites for Deep Learning with TensorFlow Lite Models”.

To use this function, you must install the Deep Learning Toolbox Interface for TensorFlow Lite
support package.

Examples

Perform Inference with TensorFlow Lite Model

Suppose that your current working directory contains a TensorFlow Lite Model named
mobilenet_v1_0.5_224.tflite.

Load the model by using the loadTFLite function. Inspect the object this function creates.

net = loadTFLiteModel('mobilenet_v1_0.5_224.tflite');
disp(net)

  TFLiteModel with properties:
            ModelName: 'mobilenet_v1_0.5_224.tflite'
            NumInputs: 1
           NumOutputs: 1
            InputSize: {[224 224 3]}
           OutputSize: {[1001 1]}
           NumThreads: 8
                 Mean: 127.5000
    StandardDeviation: 127.5000

Create a MATLAB function that can perform inference using the object net. This function loads the
Mobilenet-V1 model into a persistent network object. Then the function performs prediction by
passing the network object to the predict function. Subsequent calls to this function reuse this the
persistent object.

function out = tflite_predict(in)
persistent net;
if isempty(net)
    net = loadTFLiteModel('mobilenet_v1_0.5_224.tflite');
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end
out = predict(net,in);
end

For an example that shows how to generate code for this function and deploy on Raspberry Pi
hardware, see “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi”.

Note By default, the Mean and StandardDeviation properties of a TFLiteModel object are both
set to 127.5. To change these default values after you create the object, make assignments by using
the dot notation. For example:

net.Mean = 0;
net.StandardDeviation = 1;

If the input data is not normalized, you must set Mean to 0 and StandardDeviation to 1.
Otherwise, set these properties based on how the input data is normalized.

Input Arguments
modelFileName — TensorFlow Lite model file name
character vector | string scalar

Name of the TensorFlow Lite model file, specified as a character vector or a string scalar.

Output Arguments
net — Object representing TensorFlow Lite model
TFLiteModel object

TFLiteModel object that represents the TensorFlow Lite model file.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
TFLiteModel | predict

Topics
“Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi”
“Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and
Raspberry Pi”
“Prerequisites for Deep Learning with TensorFlow Lite Models”
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lstm
Long short-term memory

Syntax
Y = lstm(X,H0,C0,weights,recurrentWeights,bias)
[Y,hiddenState,cellState] = lstm(X,H0,C0,weights,recurrentWeights,bias)
[ ___ ] = lstm( ___ ,'DataFormat',FMT)

Description
The long short-term memory (LSTM) operation allows a network to learn long-term dependencies
between time steps in time series and sequence data.

Note This function applies the deep learning LSTM operation to dlarray data. If you want to apply
an LSTM operation within a layerGraph object or Layer array, use the following layer:

• lstmLayer

Y = lstm(X,H0,C0,weights,recurrentWeights,bias) applies a long short-term memory
(LSTM) calculation to input X using the initial hidden state H0, initial cell state C0, and parameters
weights, recurrentWeights, and bias. The input X must be a formatted dlarray. The output Y is
a formatted dlarray with the same dimension format as X, except for any 'S' dimensions.

The lstm function updates the cell and hidden states using the hyperbolic tangent function (tanh) as
the state activation function. The lstm function uses the sigmoid function given by σ(x) = (1 + e−x)−1

as the gate activation function.

[Y,hiddenState,cellState] = lstm(X,H0,C0,weights,recurrentWeights,bias) also
returns the hidden state and cell state after the LSTM operation.

[ ___ ] = lstm( ___ ,'DataFormat',FMT) also specifies the dimension format FMT when X is not
a formatted dlarray. The output Y is an unformatted dlarray with the same dimension order as X,
except for any 'S' dimensions.

Examples

Apply LSTM Operation to Sequence Data

Perform an LSTM operation using three hidden units.

Create the input sequence data as 32 observations with 10 channels and a sequence length of 64

numFeatures = 10;
numObservations = 32;
sequenceLength = 64;
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X = randn(numFeatures,numObservations,sequenceLength);
dlX = dlarray(X,'CBT');

Create the initial hidden and cell states with three hidden units. Use the same initial hidden state and
cell state for all observations.

numHiddenUnits = 3;
H0 = zeros(numHiddenUnits,1);
C0 = zeros(numHiddenUnits,1);

Create the learnable parameters for the LSTM operation.

weights = dlarray(randn(4*numHiddenUnits,numFeatures),'CU');
recurrentWeights = dlarray(randn(4*numHiddenUnits,numHiddenUnits),'CU');
bias = dlarray(randn(4*numHiddenUnits,1),'C');

Perform the LSTM calculation

[dlY,hiddenState,cellState] = lstm(dlX,H0,C0,weights,recurrentWeights,bias);

View the size and dimensions of dlY.

size(dlY)

ans = 1×3

     3    32    64

dlY.dims

ans = 
'CBT'

View the size of hiddenState and cellState.

size(hiddenState)

ans = 1×2

     3    32

size(cellState)

ans = 1×2

     3    32

Check that the output hiddenState is the same as the last time step of output dlY.

if extractdata(dlY(:,:,end)) == hiddenState
   disp("The hidden state and the last time step are equal.");
else 
   disp("The hidden state and the last time step are not equal.")
end

The hidden state and the last time step are equal.
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You can use the hidden state and cell state to keep track of the state of the LSTM operation and input
further sequential data.

Input Arguments
X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When X
is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT.
If X is a numeric array, at least one of H0, C0, weights, recurrentWeights, or bias must be a
dlarray.

X must contain a sequence dimension labeled 'T'. If X has any spatial dimensions labeled 'S', they
are flattened into the 'C' channel dimension. If X does not have a channel dimension, then one is
added. If X has any unspecified dimensions labeled 'U', they must be singleton.
Data Types: single | double

H0 — Initial hidden state vector
dlarray | numeric array

Initial hidden state vector, specified as a formatted dlarray, an unformatted dlarray, or a numeric
array.

If H0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch
dimension labeled 'B' with the same size as the 'B' dimension of X. If H0 does not have a 'B'
dimension, the function uses the same hidden state vector for each observation in X.

The size of the 'C' dimension determines the number of hidden units. The size of the 'C' dimension
of H0 must be equal to the size of the 'C' dimensions of C0.

If H0 is a not a formatted dlarray, the size of the first dimension determines the number of hidden
units and must be the same size as the first dimension or the 'C' dimension of C0.
Data Types: single | double

C0 — Initial cell state vector
dlarray | numeric array

Initial cell state vector, specified as a formatted dlarray, an unformatted dlarray, or a numeric
array.

If C0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch
dimension labeled 'B' with the same size as the 'B' dimension of X. If C0 does not have a 'B'
dimension, the function uses the same cell state vector for each observation in X.

The size of the 'C' dimension determines the number of hidden units. The size of the 'C' dimension
of C0 must be equal to the size of the 'C' dimensions of H0.

If C0 is a not a formatted dlarray, the size of the first dimension determines the number of hidden
units and must be the same size as the first dimension or the 'C' dimension of H0.
Data Types: single | double
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weights — Weights
dlarray | numeric array

Weights, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

Specify weights as a matrix of size 4*NumHiddenUnits-by-InputSize, where NumHiddenUnits is
the size of the 'C' dimension of both C0 and H0, and InputSize is the size of the 'C' dimension of
X multiplied by the size of each 'S' dimension of X, where present.

If weights is a formatted dlarray, it must contain a 'C' dimension of size 4*NumHiddenUnits and
a 'U' dimension of size InputSize.
Data Types: single | double

recurrentWeights — Recurrent weights
dlarray | numeric array

Recurrent weights, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

Specify recurrentWeights as a matrix of size 4*NumHiddenUnits-by-NumHiddenUnits, where
NumHiddenUnits is the size of the 'C' dimension of both C0 and H0.

If recurrentWeights is a formatted dlarray, it must contain a 'C' dimension of size
4*NumHiddenUnits and a 'U' dimension of size NumHiddenUnits.
Data Types: single | double

bias — Bias
dlarray vector | numeric vector

Bias, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

Specify bias as a vector of length 4*NumHiddenUnits, where NumHiddenUnits is the size of the
'C' dimension of both C0 and H0.

If bias is a formatted dlarray, the nonsingleton dimension must be labeled with 'C'.
Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data is not a formatted dlarray.
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Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
Y — LSTM output
dlarray

LSTM output, returned as a dlarray. The output Y has the same underlying data type as the input X.

If the input data X is a formatted dlarray, Y has the same dimension format as X, except for any 'S'
dimensions. If the input data is not a formatted dlarray, Y is an unformatted dlarray with the
same dimension order as the input data.

The size of the 'C' dimension of Y is the same as the number of hidden units, specified by the size of
the 'C' dimension of H0 or C0.

hiddenState — Hidden state vector
dlarray | numeric array

Hidden state vector for each observation, returned as a dlarray or a numeric array with the same
data type as H0.

If the input H0 is a formatted dlarray, then the output hiddenState is a formatted dlarray with
the format 'CB'.

cellState — Cell state vector
dlarray | numeric array

Cell state vector for each observation, returned as a dlarray or a numeric array. cellState is
returned with the same data type as C0.

If the input C0 is a formatted dlarray, the output cellState is returned as a formatted dlarray
with the format 'CB'.

Limitations
• functionToLayerGraph does not support the lstm function. If you use

functionToLayerGraph with a function that contains the lstm operation, the resulting
LayerGraph contains placeholder layers.

More About
Long Short-Term Memory

The LSTM operation allows a network to learn long-term dependencies between time steps in time
series and sequence data. For more information, see the definition of “Long Short-Term Memory
Layer” on page 1-1149 on the lstmLayer reference page.

Version History
Introduced in R2019b
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• X
• H0
• C0
• weights
• recurrentWeights
• bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | fullyconnect | softmax | dlgradient | dlfeval | gru | attention

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”
“Multilabel Text Classification Using Deep Learning”
“List of Functions with dlarray Support”
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lstmLayer
Long short-term memory (LSTM) layer

Description
An LSTM layer learns long-term dependencies between time steps in time series and sequence data.

The layer performs additive interactions, which can help improve gradient flow over long sequences
during training.

Creation

Syntax
layer = lstmLayer(numHiddenUnits)
layer = lstmLayer(numHiddenUnits,Name,Value)

Description

layer = lstmLayer(numHiddenUnits) creates an LSTM layer and sets the NumHiddenUnits
property.

layer = lstmLayer(numHiddenUnits,Name,Value) sets additional OutputMode, “Activations”
on page 1-1135, “State” on page 1-1135, “Parameters and Initialization” on page 1-1136, “Learning
Rate and Regularization” on page 1-1138, and Name properties using one or more name-value pair
arguments. You can specify multiple name-value pair arguments. Enclose each property name in
quotes.

Properties
LSTM

NumHiddenUnits — Number of hidden units
positive integer

This property is read-only.

Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time
steps (the hidden state). The hidden state can contain information from all previous time steps,
regardless of the sequence length. If the number of hidden units is too large, then the layer might
overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split
your sequences into smaller sequences for when using the trainNetwork function, use the
SequenceLength training option.
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The layer outputs data with NumHiddenUnits channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputMode — Output mode
'sequence' (default) | 'last'

This property is read-only.

Output mode, specified as one of the following:

• 'sequence' – Output the complete sequence.
• 'last' – Output the last time step of the sequence.

HasStateInputs — Flag for state inputs to layer
0 (false) (default) | 1 (true)

This property is read-only.

Flag for state inputs to the layer, specified as 0 (false) or 1 (true).

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.

HasStateOutputs — Flag for state outputs from layer
0 (false) (default) | 1 (true)

This property is read-only.

Flag for state outputs from the layer, specified as 0 (false) or 1 (true).

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

InputSize — Input size
'auto' (default) | positive integer

This property is read-only.

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software
automatically assigns the input size at training time.
Data Types: double | char
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Activations

StateActivationFunction — Activation function to update the cell and hidden state
'tanh' (default) | 'softsign'

This property is read-only.

Activation function to update the cell and hidden state, specified as one of the following:

• 'tanh' – Use the hyperbolic tangent function (tanh).
• 'softsign' – Use the softsign function softsign(x) = x

1 + x .

The layer uses this option as the function σc in the calculations to update the cell and hidden state.
For more information on how activation functions are used in an LSTM layer, see “Long Short-Term
Memory Layer” on page 1-1149.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | 'hard-sigmoid'

This property is read-only.

Activation function to apply to the gates, specified as one of the following:

• 'sigmoid' – Use the sigmoid function σ(x) = (1 + e−x)−1.
• 'hard-sigmoid' – Use the hard sigmoid function

σ(x) =
0
0.2x + 0.5
1

if x < − 2.5
if−2.5 ≤ x ≤ 2.5
if x > 2.5

.

The layer uses this option as the function σg in the calculations for the layer gates.

State

CellState — Cell state
[] (default) | numeric vector

Cell state to use in the layer operation, specified as a NumHiddenUnits-by-1 numeric vector. This
value corresponds to the initial cell state when data is passed to the layer.

After setting this property manually, calls to the resetState function set the cell state to this value.

If HasStateInputs is true, then the CellState property must be empty.
Data Types: single | double

HiddenState — Hidden state
[] (default) | numeric vector

Hidden state to use in the layer operation, specified as a NumHiddenUnits-by-1 numeric vector. This
value corresponds to the initial hidden state when data is passed to the layer.

After setting this property manually, calls to the resetState function set the hidden state to this
value.
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If HasStateInputs is true, then the HiddenState property must be empty.
Data Types: single | double

Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input weights, specified as one of the following:

• 'glorot' – Initialize the input weights with the Glorot initializer [4] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(InputSize + numOut), where numOut = 4*NumHiddenUnits.

• 'he' – Initialize the input weights with the He initializer [5]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [6]

• 'narrow-normal' – Initialize the input weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the input weights with zeros.
• 'ones' – Initialize the input weights with ones.
• Function handle – Initialize the input weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
input weights.

The layer only initializes the input weights when the InputWeights property is empty.
Data Types: char | string | function_handle

RecurrentWeightsInitializer — Function to initialize recurrent weights
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the recurrent weights, specified as one of the following:

• 'orthogonal' – Initialize the recurrent weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [6]

• 'glorot' – Initialize the recurrent weights with the Glorot initializer [4] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(numIn + numOut), where numIn = NumHiddenUnits and numOut =
4*NumHiddenUnits.

• 'he' – Initialize the recurrent weights with the He initializer [5]. The He initializer samples from
a normal distribution with zero mean and variance 2/NumHiddenUnits.

• 'narrow-normal' – Initialize the recurrent weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the recurrent weights with zeros.
• 'ones' – Initialize the recurrent weights with ones.
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• Function handle – Initialize the recurrent weights with a custom function. If you specify a function
handle, then the function must be of the form weights = func(sz), where sz is the size of the
recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'unit-forget-gate' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'unit-forget-gate' – Initialize the forget gate bias with ones and the remaining biases with
zeros.

• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with
zero mean and standard deviation 0.01.

• 'ones' – Initialize the bias with ones.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

InputWeights — Input weights
[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the four input weight matrices for the components
(gates) in the LSTM layer. The four matrices are concatenated vertically in the following order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The input weights are learnable parameters. When training a network, if InputWeights is
nonempty, then trainNetwork uses the InputWeights property as the initial value. If
InputWeights is empty, then trainNetwork uses the initializer specified by
InputWeightsInitializer.

At training time, InputWeights is a 4*NumHiddenUnits-by-InputSize matrix.

RecurrentWeights — Recurrent weights
[] (default) | matrix

Recurrent weights, specified as a matrix.

The recurrent weight matrix is a concatenation of the four recurrent weight matrices for the
components (gates) in the LSTM layer. The four matrices are vertically concatenated in the following
order:
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1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is
nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If
RecurrentWeights is empty, then trainNetwork uses the initializer specified by
RecurrentWeightsInitializer.

At training time RecurrentWeights is a 4*NumHiddenUnits-by-NumHiddenUnits matrix.

Bias — Layer biases
[] (default) | numeric vector

Layer biases, specified as a numeric vector.

The bias vector is a concatenation of the four bias vectors for the components (gates) in the layer. The
four vectors are concatenated vertically in the following order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 4*NumHiddenUnits-by-1 numeric vector.

Learning Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights
1 (default) | nonnegative scalar | 1-by-4 numeric vector

Learning rate factor for the input weights, specified as a nonnegative scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the
learning rate factor for the input weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in InputWeights,
specify a 1-by-4 vector. The entries of InputWeightsLearnRateFactor correspond to the learning
rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
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4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | nonnegative scalar | 1-by-4 numeric vector

Learning rate factor for the recurrent weights, specified as a nonnegative scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the
learning rate for the recurrent weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in
RecurrentWeights, specify a 1-by-4 vector. The entries of RecurrentWeightsLearnRateFactor
correspond to the learning rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-4 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.

To control the value of the learning rate factor for the four individual vectors in Bias, specify a 1-by-4
vector. The entries of BiasLearnRateFactor correspond to the learning rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
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Example: [1 2 1 1]

InputWeightsL2Factor — L2 regularization factor for input weights
1 (default) | nonnegative scalar | 1-by-4 numeric vector

L2 regularization factor for the input weights, specified as a nonnegative scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2,
then the L2 regularization factor for the input weights of the layer is twice the current global L2
regularization factor. The software determines the L2 regularization factor based on the settings
specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in InputWeights,
specify a 1-by-4 vector. The entries of InputWeightsL2Factor correspond to the L2 regularization
factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights
1 (default) | nonnegative scalar | 1-by-4 numeric vector

L2 regularization factor for the recurrent weights, specified as a nonnegative scalar or a 1-by-4
numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the recurrent weights of the layer. For example, if
RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the
layer is twice the current global L2 regularization factor. The software determines the L2
regularization factor based on the settings specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in
RecurrentWeights, specify a 1-by-4 vector. The entries of RecurrentWeightsL2Factor
correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]
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BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar | 1-by-4 numeric vector

L2 regularization factor for the biases, specified as a nonnegative scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the four individual vectors in Bias, specify a 1-
by-4 vector. The entries of BiasL2Factor correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 | 3

This property is read-only.

Number of inputs of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.
Data Types: double

InputNames — Input names
{'in'} | {'in','hidden','cell'}
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This property is read-only.

Input names of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.

NumOutputs — Number of outputs
1 | 3

This property is read-only.

Number of outputs of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.
Data Types: double

OutputNames — Output names
{'out'} | {'out','hidden','cell'}

This property is read-only.

Output names of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

Examples

Create LSTM Layer

Create an LSTM layer with the name 'lstm1' and 100 hidden units.

layer = lstmLayer(100,'Name','lstm1')

layer = 
  LSTMLayer with properties:

                       Name: 'lstm1'
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                 InputNames: {'in'}
                OutputNames: {'out'}
                  NumInputs: 1
                 NumOutputs: 1
             HasStateInputs: 0
            HasStateOutputs: 0

   Hyperparameters
                  InputSize: 'auto'
             NumHiddenUnits: 100
                 OutputMode: 'sequence'
    StateActivationFunction: 'tanh'
     GateActivationFunction: 'sigmoid'

   Learnable Parameters
               InputWeights: []
           RecurrentWeights: []
                       Bias: []

   State Parameters
                HiddenState: []
                  CellState: []

  Show all properties

Include an LSTM layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.

Load the Japanese Vowels data set as described in [1] and [2]. XTrain is a cell array containing 270
sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. Y is a
categorical vector of labels 1,2,...,9. The entries in XTrain are matrices with 12 rows (one row for
each feature) and a varying number of columns (one column for each time step).
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[XTrain,YTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),'Location','northeastoutside')

Define the LSTM network architecture. Specify the input size as 12 (the number of features of the
input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the
sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a
softmax layer and a classification layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:
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     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the
mini-batch size to 27 and set the maximum number of epochs to 70.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(XTrain,YTrain,layers,options);
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Load the test set and classify the sequences into speakers.

[XTest,YTest] = japaneseVowelsTestData;

Classify the test data. Specify the same mini-batch size used for training.

YPred = classify(net,XTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy of the predictions.

acc = sum(YPred == YTest)./numel(YTest)

acc = 0.9432

1 Deep Learning Functions

1-1146



Classification LSTM Networks

To create an LSTM network for sequence-to-label classification, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, a softmax layer, and a classification
output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of classes. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For an example showing how to train an LSTM network for sequence-to-label classification and
classify new data, see “Sequence Classification Using Deep Learning”.

To create an LSTM network for sequence-to-sequence classification, use the same architecture as for
sequence-to-label classification, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Regression LSTM Networks

To create an LSTM network for sequence-to-one regression, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, and a regression output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of responses. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
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    fullyConnectedLayer(numResponses)
    regressionLayer];

To create an LSTM network for sequence-to-sequence regression, use the same architecture as for
sequence-to-one regression, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numResponses)
    regressionLayer];

For an example showing how to train an LSTM network for sequence-to-sequence regression and
predict on new data, see “Sequence-to-Sequence Regression Using Deep Learning”.

Deeper LSTM Networks

You can make LSTM networks deeper by inserting extra LSTM layers with the output mode
'sequence' before the LSTM layer. To prevent overfitting, you can insert dropout layers after the
LSTM layers.

For sequence-to-label classification networks, the output mode of the last LSTM layer must be
'last'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','last')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For sequence-to-sequence classification networks, the output mode of the last LSTM layer must be
'sequence'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','sequence')
    dropoutLayer(0.2)
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    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Algorithms
Long Short-Term Memory Layer

An LSTM layer learns long-term dependencies between time steps in time series and sequence data.

The state of the layer consists of the hidden state (also known as the output state) and the cell state.
The hidden state at time step t contains the output of the LSTM layer for this time step. The cell state
contains information learned from the previous time steps. At each time step, the layer adds
information to or removes information from the cell state. The layer controls these updates using
gates.

The following components control the cell state and hidden state of the layer.

Component Purpose
Input gate (i) Control level of cell state update
Forget gate (f) Control level of cell state reset (forget)
Cell candidate (g) Add information to cell state
Output gate (o) Control level of cell state added to hidden state

This diagram illustrates the flow of data at time step t. The diagram highlights how the gates forget,
update, and output the cell and hidden states.
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The learnable weights of an LSTM layer are the input weights W (InputWeights), the recurrent
weights R (RecurrentWeights), and the bias b (Bias). The matrices W, R, and b are concatenations
of the input weights, the recurrent weights, and the bias of each component, respectively. These
matrices are concatenated as follows:

W =

Wi
Wf
Wg
Wo

, R =

Ri
Rf
Rg
Ro

, b =

bi
bf
bg
bo

,

where i, f, g, and o denote the input gate, forget gate, cell candidate, and output gate, respectively.

The cell state at time step t is given by

ct = f t ⊙ ct − 1 + it ⊙ gt,

where ⊙ denotes the Hadamard product (element-wise multiplication of vectors).

The hidden state at time step t is given by

ht = ot⊙ σc(ct),

where σc denotes the state activation function. The lstmLayer function, by default, uses the
hyperbolic tangent function (tanh) to compute the state activation function.

The following formulas describe the components at time step t.
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Component Formula
Input gate it = σg(Wixt + Riht − 1 + bi)
Forget gate f t = σg(Wfxt + Rfht − 1 + bf )
Cell candidate gt = σc(Wgxt + Rght − 1 + bg)
Output gate ot = σg(Woxt + Roht − 1 + bo)

In these calculations, σg denotes the gate activation function. The lstmLayer function, by default,
uses the sigmoid function given by σ(x) = (1 + e−x)−1 to compute the gate activation function.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of LSTMLayer objects and the corresponding output
format. If the output of the layer is passed to a custom layer that does not inherit from the
nnet.layer.Formattable class, or a FunctionLayer object with the Formattable option set to
false, then the layer receives an unformatted dlarray object with dimensions ordered
corresponding to the formats outlined in this table.

Input Format OutputMode Output Format
'CB' (channel, batch) 'sequence' 'CB' (channel, batch)

'last'
'CBT' (channel, batch, time) 'sequence' 'CBT' (channel, batch, time)

'last' 'CB' (channel, batch)

In dlnetwork objects, LSTMLayer objects also support the following input and output format
combinations.

Input Format OutputMode Output Format
'SCB' (spatial, channel, batch) 'sequence' 'CB' (channel, batch)
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Input Format OutputMode Output Format
'last'

'SSCB' (spatial, spatial,
channel)

'sequence' 'CB' (channel, batch)
'last'

'SSSCB' (spatial, spatial,
spatial, channel)

'sequence' 'CB' (channel, batch)
'last'

'SCBT' (spatial, channel, batch) 'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

'SSCBT' (spatial, spatial,
channel, batch, time)

'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

'SSSCBT' (spatial, spatial,
spatial, channel, batch, time)

'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

To use these input formats in trainNetwork workflows, first convert the data to 'CBT' (channel,
batch, time) format using flattenLayer.

If the HasStateInputs property is 1 (true), then the layer has two additional inputs with names
'hidden' and 'cell', which correspond to the hidden state and cell state, respectively. These
additional inputs expect input format 'CB' (channel, batch).

If the HasStateOutputs property is 1 (true), then the layer has two additional outputs with names
'hidden' and 'cell', which correspond to the hidden state and cell state, respectively. These
additional outputs have output format 'CB' (channel, batch).

Version History
Introduced in R2017b

Default input weights initialization is Glorot
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer input weights of this layer using the
Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer input weights using the by sampling
from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'InputWeightsInitializer' option of the layer to 'narrow-normal'.

Default recurrent weights initialization is orthogonal
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer recurrent weights of this layer with
Q, the orthogonal matrix given by the QR decomposition of Z = QR for a random matrix Z sampled
from a unit normal distribution. This behavior helps stabilize training and usually reduces the training
time of deep networks.
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In previous releases, the software, by default, initializes the layer recurrent weights using the by
sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior,
set the 'RecurrentWeightsInitializer' option of the layer to 'narrow-normal'.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When generating code with Intel MKL-DNN:

• The StateActivationFunction property must be set to 'tanh'.
• The GateActivationFunction property must be set to 'sigmoid'.
• The HasStateInputs and HasStateOutputs properties must be set to 0 (false).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For GPU code generation, the StateActivationFunction property must be set to 'tanh'.
• For GPU code generation, the GateActivationFunction property must be set to 'sigmoid'.
• The HasStateInputs and HasStateOutputs properties must be set to 0 (false).
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See Also
trainingOptions | trainNetwork | sequenceInputLayer | bilstmLayer | gruLayer |
convolution1dLayer | maxPooling1dLayer | averagePooling1dLayer |
globalMaxPooling1dLayer | globalAveragePooling1dLayer | Deep Network Designer

Topics
“Sequence Classification Using Deep Learning”
“Sequence Classification Using 1-D Convolutions”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Sequence-to-One Regression Using Deep Learning”
“Classify Videos Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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lstmProjectedLayer
Long short-term memory (LSTM) projected layer

Description
An LSTM projected layer learns long-term dependencies between time steps in time series and
sequence data using projected learnable weights.

To compress a deep learning network, you can use projected layers. A projected layer is a variant of a
deep learning layer that enables compression by reducing the number of stored learnable
parameters. The layer introduces learnable projector matrices Q and replaces multiplications of the
form Wx, where W is a learnable matrix, with the multiplication WQQ⊤x and stores Q and W ′ = WQ
instead of storing W. When Q projects x into a lower dimensional space, this typically requires less
memory to store the learnable parameters and can have similarly strong prediction accuracy.

Reducing the number of learnable parameters by projecting an LSTM layer rather than reducing the
number of hidden units of the LSTM layer maintains the output size of the layer and in turn the sizes
of the downstream layers which can result in better prediction accuracy.

Creation

Syntax
layer = lstmProjectedLayer(numHiddenUnits,outputProjectorSize,
inputProjectorSize)
layer = lstmProjectedLayer( ___ ,Name=Value)

Description

layer = lstmProjectedLayer(numHiddenUnits,outputProjectorSize,
inputProjectorSize) creates an LSTM projected layer and sets the NumHiddenUnits,
OutputProjectorSize, and InputProjectorSize properties.

layer = lstmProjectedLayer( ___ ,Name=Value) sets the OutputMode, HasStateInputs,
HasStateOutputs, “Activations” on page 1-1158, “State” on page 1-1158, “Parameters and
Initialization” on page 1-1159, “Learning Rate and Regularization” on page 1-1163, and Name
properties using one or more name-value arguments.

Properties
Projected LSTM

NumHiddenUnits — Number of hidden units
positive integer

This property is read-only.
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Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time
steps (the hidden state). The hidden state can contain information from all previous time steps,
regardless of the sequence length. If the number of hidden units is too large, then the layer might
overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split
your sequences into smaller sequences for when using the trainNetwork function, use the
SequenceLength training option.

The layer outputs data with NumHiddenUnits channels.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputProjectorSize — Output projector size
positive integer

This property is read-only.

Output projector size, specified as a positive integer.

The LSTM layer operation uses four matrix multiplications of the form Rht − 1, where R denotes the
recurrent weights and ht denotes the hidden state (or equivalently, the layer output) at time step t.

The LSTM projected layer operation instead uses multiplications of the from RQoQo
⊤ht − 1, where Qo is

a NumHiddenUnits-by-OutputProjectorSize matrix known as the output projector. The layer
uses the same projector Qo for each of the four multiplications.

In order to perform the four multiplications of the form Rht − 1, an LSTM layer stores four recurrent
weights R, which requires storing 4*NumHiddenUnits^2 learnable parameters. By instead storing
the 4*NumHiddenUnits-by-OutputProjectorSize matrix R′ = RQo and Qo, an LSTM projected
layer can perform the multiplication RQoQo

⊤ht − 1 when only storing
5*NumHiddenUnits*OutputProjectorSize learnable parameters.

Tip To ensure that RQoQo
⊤ht − 1 requires fewer learnable parameters, set the

OutputProjectorSize property to a value less than (4/5)*NumHiddenUnits.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InputProjectorSize — Input projector size
positive integer

This property is read-only.

Input projector size, specified as a positive integer.

The LSTM layer operation uses four matrix multiplications of the form Wxt, where W denotes the
recurrent weights and xt denotes the layer input at time step t.
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The LSTM projected layer operation instead uses multiplications of the from WQiQi
⊤xt, where Qi is an

InputSize-by-InputProjectorSize matrix known as the input projector. The layer uses the same
projector Qi for each of the four multiplications.

In order to perform the four multiplications of the form Wxt, an LSTM layer stores four weight
matrices W, which requires storing 4*NumHiddenUnits*InputSize learnable parameters. By
instead storing the 4*NumHiddenUnits-by-InputProjectorSize matrix W ′ = WQi and Qi, an
LSTM projected layer can perform the multiplication WQiQi

⊤xt when only storing
(4*NumHiddenUnits+InputSize)*InputProjectorSize learnable parameters.

Tip To ensure that WQiQi
⊤xt requires fewer learnable parameters, set the InputProjectorSize

property to a value less than (4*numHiddenUnits*inputSize)/(4*numHiddenUnits
+inputSize).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputMode — Output mode
'sequence' (default) | 'last'

This property is read-only.

Output mode, specified as one of the following:

• 'sequence' – Output the complete sequence.
• 'last' – Output the last time step of the sequence.

HasStateInputs — Flag for state inputs to layer
0 (false) (default) | 1 (true)

This property is read-only.

Flag for state inputs to the layer, specified as 0 (false) or 1 (true).

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.

HasStateOutputs — Flag for state outputs from layer
0 (false) (default) | 1 (true)

This property is read-only.

Flag for state outputs from the layer, specified as 0 (false) or 1 (true).

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.
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If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

InputSize — Input size
'auto' (default) | positive integer

This property is read-only.

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software
automatically assigns the input size at training time.
Data Types: double | char

Activations

StateActivationFunction — Activation function to update the cell and hidden state
'tanh' (default) | 'softsign'

This property is read-only.

Activation function to update the cell and hidden state, specified as one of the following:

• 'tanh' – Use the hyperbolic tangent function (tanh).
• 'softsign' – Use the softsign function softsign(x) = x

1 + x .

The layer uses this option as the function σc in the calculations to update the cell and hidden state.
For more information on how activation functions are used in an LSTM layer, see “Long Short-Term
Memory Layer” on page 1-1149.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | 'hard-sigmoid'

This property is read-only.

Activation function to apply to the gates, specified as one of the following:

• 'sigmoid' – Use the sigmoid function σ(x) = (1 + e−x)−1.
• 'hard-sigmoid' – Use the hard sigmoid function

σ(x) =
0
0.2x + 0.5
1

if x < − 2.5
if−2.5 ≤ x ≤ 2.5
if x > 2.5

.

The layer uses this option as the function σg in the calculations for the layer gates.

State

CellState — Cell state
[] (default) | numeric vector

Cell state to use in the layer operation, specified as a NumHiddenUnits-by-1 numeric vector. This
value corresponds to the initial cell state when data is passed to the layer.
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After setting this property manually, calls to the resetState function set the cell state to this value.

If HasStateInputs is true, then the CellState property must be empty.
Data Types: single | double

HiddenState — Hidden state
[] (default) | numeric vector

Hidden state to use in the layer operation, specified as a NumHiddenUnits-by-1 numeric vector. This
value corresponds to the initial hidden state when data is passed to the layer.

After setting this property manually, calls to the resetState function set the hidden state to this
value.

If HasStateInputs is true, then the HiddenState property must be empty.
Data Types: single | double

Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input weights, specified as one of the following:

• 'glorot' – Initialize the input weights with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(InputProjectorSize + numOut), where numOut =
4*NumHiddenUnits.

• 'he' – Initialize the input weights with the He initializer [2]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputProjectorSize.

• 'orthogonal' – Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'narrow-normal' – Initialize the input weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the input weights with zeros.
• 'ones' – Initialize the input weights with ones.
• Function handle – Initialize the input weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
input weights.

The layer only initializes the input weights when the InputWeights property is empty.
Data Types: char | string | function_handle

RecurrentWeightsInitializer — Function to initialize recurrent weights
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the recurrent weights, specified as one of the following:

• 'orthogonal' – Initialize the recurrent weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]
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• 'glorot' – Initialize the recurrent weights with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(numIn + numOut), where numIn = OutputProjectorSize and
numOut = 4*NumHiddenUnits.

• 'he' – Initialize the recurrent weights with the He initializer [2]. The He initializer samples from
a normal distribution with zero mean and variance 2/OutputProjectorSize.

• 'narrow-normal' – Initialize the recurrent weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the recurrent weights with zeros.
• 'ones' – Initialize the recurrent weights with ones.
• Function handle – Initialize the recurrent weights with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.
Data Types: char | string | function_handle

InputProjectorInitializer — Function to initialize input projector
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input projector, specified as one of the following:

• 'orthogonal' – Initialize the input projector with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

• 'glorot' – Initialize the input projector with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(InputSize + inputProjectorSize).

• 'he' – Initialize the input projector with the He initializer [2]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputSize.

• 'narrow-normal' – Initialize the input projector by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the input weights with zeros.
• 'ones' – Initialize the input weights with ones.
• Function handle – Initialize the input projector with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
input projector.

The layer only initializes the input projector when the InputProjector property is empty.
Data Types: char | string | function_handle

OutputProjectorInitializer — Function to initialize output projector
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the output projector, specified as one of the following:

• 'orthogonal' – Initialize the output projector with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]
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• 'glorot' – Initialize the output projector with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(NumHiddenUnits + OutputProjectorSize).

• 'he' – Initialize the output projector with the He initializer [2]. The He initializer samples from a
normal distribution with zero mean and variance 2/NumHiddenUnits.

• 'narrow-normal' – Initialize the output projector by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the output projector with zeros.
• 'ones' – Initialize the output projector with ones.
• Function handle – Initialize the output projector with a custom function. If you specify a function

handle, then the function must be of the form weights = func(sz), where sz is the size of the
output projector.

The layer only initializes the output projector when the OutputProjector property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'unit-forget-gate' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'unit-forget-gate' – Initialize the forget gate bias with ones and the remaining biases with
zeros.

• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with
zero mean and standard deviation 0.01.

• 'ones' – Initialize the bias with ones.
• Function handle – Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

InputWeights — Input weights
[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the four input weight matrices for the components
(gates) in the LSTM layer. The four matrices are concatenated vertically in the following order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The input weights are learnable parameters. When training a network, if InputWeights is
nonempty, then trainNetwork uses the InputWeights property as the initial value. If
InputWeights is empty, then trainNetwork uses the initializer specified by
InputWeightsInitializer.
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At training time, InputWeights is a 4*NumHiddenUnits-by-InputProjectorSize matrix.

RecurrentWeights — Recurrent weights
[] (default) | matrix

Recurrent weights, specified as a matrix.

The recurrent weight matrix is a concatenation of the four recurrent weight matrices for the
components (gates) in the LSTM layer. The four matrices are vertically concatenated in the following
order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is
nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If
RecurrentWeights is empty, then trainNetwork uses the initializer specified by
RecurrentWeightsInitializer.

At training time RecurrentWeights is a 4*NumHiddenUnits-by-OutputProjectorSize matrix.

InputProjector — Input projector
[] (default) | matrix

Input projector, specified as a matrix.

The input projector weights are learnable parameters. When training a network, if InputProjector
is nonempty, then trainNetwork uses the InputProjector property as the initial value. If
InputProjector is empty, then trainNetwork uses the initializer specified by
InputProjectorInitializer.

At training time InputProjector is a InputSize-by-InputProjectorSize matrix.
Data Types: single | double

OutputProjector — Output projector
[] (default) | matrix

Output projector, specified as a matrix.

The output projector weights are learnable parameters. When training a network, if
OutputProjector is nonempty, then trainNetwork uses the OutputProjector property as the
initial value. If OutputProjector is empty, then trainNetwork uses the initializer specified by
OutputProjectorInitializer.

At training time OutputProjector is a NumHiddenUnits-by-OutputProjectorSize matrix.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric vector

Layer biases, specified as a numeric vector.
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The bias vector is a concatenation of the four bias vectors for the components (gates) in the layer. The
four vectors are concatenated vertically in the following order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 4*NumHiddenUnits-by-1 numeric vector.

Learning Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights
1 (default) | nonnegative scalar | 1-by-4 numeric vector

Learning rate factor for the input weights, specified as a nonnegative scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the
learning rate factor for the input weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in InputWeights,
specify a 1-by-4 vector. The entries of InputWeightsLearnRateFactor correspond to the learning
rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | nonnegative scalar | 1-by-4 numeric vector

Learning rate factor for the recurrent weights, specified as a nonnegative scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the
learning rate for the recurrent weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.
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To control the value of the learning rate factor for the four individual matrices in
RecurrentWeights, specify a 1-by-4 vector. The entries of RecurrentWeightsLearnRateFactor
correspond to the learning rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

InputProjectorLearnRateFactor — Learning rate factor for input projector
1 (default) | nonnegative scalar

Learning rate factor for the input projector, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input projector of the layer. For example, if InputProjectorLearnRateFactor is 2, then
the learning rate factor for the input projector of the layer is twice the current global learning rate.
The software determines the global learning rate based on the settings specified with the
trainingOptions function.

OutputProjectorLearnRateFactor — Learning rate factor for output projector
1 (default) | nonnegative scalar

Learning rate factor for the output projector, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the output projector of the layer. For example, if OutputProjectorLearnRateFactor is 2, then
the learning rate factor for the output projector of the layer is twice the current global learning rate.
The software determines the global learning rate based on the settings specified with the
trainingOptions function.

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-4 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.

To control the value of the learning rate factor for the four individual vectors in Bias, specify a 1-by-4
vector. The entries of BiasLearnRateFactor correspond to the learning rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
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4 Output gate

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

InputWeightsL2Factor — L2 regularization factor for input weights
1 (default) | nonnegative scalar | 1-by-4 numeric vector

L2 regularization factor for the input weights, specified as a nonnegative scalar or a 1-by-4 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2,
then the L2 regularization factor for the input weights of the layer is twice the current global L2
regularization factor. The software determines the L2 regularization factor based on the settings
specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in InputWeights,
specify a 1-by-4 vector. The entries of InputWeightsL2Factor correspond to the L2 regularization
factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights
1 (default) | nonnegative scalar | 1-by-4 numeric vector

L2 regularization factor for the recurrent weights, specified as a nonnegative scalar or a 1-by-4
numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the recurrent weights of the layer. For example, if
RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the
layer is twice the current global L2 regularization factor. The software determines the L2
regularization factor based on the settings specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in
RecurrentWeights, specify a 1-by-4 vector. The entries of RecurrentWeightsL2Factor
correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
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4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]

InputProjectorL2Factor — L2 regularization factor for input projector
1 (default) | nonnegative scalar

L2 regularization factor for the input projector, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input projector of the layer. For example, if InputProjectorL2Factor
is 2, then the L2 regularization factor for the input projector of the layer is twice the current global
L2 regularization factor. The software determines the global L2 regularization factor based on the
settings specified with the trainingOptions function.

OutputProjectorL2Factor — L2 regularization factor for output projector
1 (default) | nonnegative scalar

L2 regularization factor for the output projector, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the output projector of the layer. For example, if
OutputProjectorL2Factor is 2, then the L2 regularization factor for the output projector of the
layer is twice the current global L2 regularization factor. The software determines the global L2
regularization factor based on the settings specified with the trainingOptions function.

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar | 1-by-4 numeric vector

L2 regularization factor for the biases, specified as a nonnegative scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the four individual vectors in Bias, specify a 1-
by-4 vector. The entries of BiasL2Factor correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the vectors, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1]
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Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 | 3

This property is read-only.

Number of inputs of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.
Data Types: double

InputNames — Input names
{'in'} | {'in','hidden','cell'}

This property is read-only.

Input names of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in',
'hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.

NumOutputs — Number of outputs
1 | 3

This property is read-only.

Number of outputs of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.
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If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.
Data Types: double

OutputNames — Output names
{'out'} | {'out','hidden','cell'}

This property is read-only.

Output names of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out',
'hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

Examples

Create LSTM Projected Layer

Create an LSTM projected layer with 100 hidden units, an output projector size of 30, an input
projector size of 16, and name "lstmp".

layer = lstmProjectedLayer(100,30,16,Name="lstmp")

layer = 
  LSTMProjectedLayer with properties:

                       Name: 'lstmp'
                 InputNames: {'in'}
                OutputNames: {'out'}
                  NumInputs: 1
                 NumOutputs: 1
             HasStateInputs: 0
            HasStateOutputs: 0

   Hyperparameters
                  InputSize: 'auto'
             NumHiddenUnits: 100
         InputProjectorSize: 16
        OutputProjectorSize: 30
                 OutputMode: 'sequence'
    StateActivationFunction: 'tanh'
     GateActivationFunction: 'sigmoid'

   Learnable Parameters
               InputWeights: []
           RecurrentWeights: []
                       Bias: []
             InputProjector: []
            OutputProjector: []
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   State Parameters
                HiddenState: []
                  CellState: []

  Show all properties

Include an LSTM projected layer in a layer array.

inputSize = 12;
numHiddenUnits = 100;
outputProjectorSize = max(1,floor(0.75*numHiddenUnits));
inputProjectorSize = max(1,floor(0.25*inputSize));

layers = [
    sequenceInputLayer(inputSize)
    lstmProjectedLayer(numHiddenUnits,outputProjectorSize,inputProjectorSize)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Compare Network Projection Sizes

Compare the sizes of networks that do and do not contain projected layers.

Define an LSTM network architecture. Specify the input size as 12 (the number of features of the
input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the
sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a
softmax layer and a classification layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,OutputMode="last")
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5×1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Analyze the network using the analyzeNetwork function. Notice that the network has
approximately 46,100 learnable parameters.

analyzeNetwork(layers)
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Create an identical network with an LSTM projected layer in place of the LSTM layer.

For the LSTM projected layer:

• Specify the same number of hidden units as the LSTM layer
• Specify an output projector size of 25% of the number of hidden units.
• Specify an input projector size of 75% of the input size.
• Ensure that the output and input projector sizes are positive by taking the maximum of the sizes

and 1.

outputProjectorSize = max(1,floor(0.25*numHiddenUnits));
inputProjectorSize = max(1,floor(0.75*inputSize));

layersProjected = [ ...
    sequenceInputLayer(inputSize)
    lstmProjectedLayer(numHiddenUnits,outputProjectorSize,inputProjectorSize,OutputMode="last")
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Analyze the network using the analyzeNetwork function. Notice that the network has
approximately 17,500 learnable parameters, which is a reduction of more than half. Notice that the
sizes of the learnable parameters of the layers following the projected layer have the same sizes as
before. Reducing the number of learnable parameters by projecting an LSTM layer rather than
reducing the number of hidden units of the LSTM layer maintains the output size of the layer and in
turn the sizes of the downstream layers which can result in better prediction accuracy.

analyzeNetwork(layers)
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Algorithms
Long Short-Term Memory Layer

An LSTM layer learns long-term dependencies between time steps in time series and sequence data.

The state of the layer consists of the hidden state (also known as the output state) and the cell state.
The hidden state at time step t contains the output of the LSTM layer for this time step. The cell state
contains information learned from the previous time steps. At each time step, the layer adds
information to or removes information from the cell state. The layer controls these updates using
gates.

The following components control the cell state and hidden state of the layer.

Component Purpose
Input gate (i) Control level of cell state update
Forget gate (f) Control level of cell state reset (forget)
Cell candidate (g) Add information to cell state
Output gate (o) Control level of cell state added to hidden state

This diagram illustrates the flow of data at time step t. The diagram highlights how the gates forget,
update, and output the cell and hidden states.
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The learnable weights of an LSTM layer are the input weights W (InputWeights), the recurrent
weights R (RecurrentWeights), and the bias b (Bias). The matrices W, R, and b are concatenations
of the input weights, the recurrent weights, and the bias of each component, respectively. These
matrices are concatenated as follows:

W =

Wi
Wf
Wg
Wo

, R =

Ri
Rf
Rg
Ro

, b =

bi
bf
bg
bo

,

where i, f, g, and o denote the input gate, forget gate, cell candidate, and output gate, respectively.

The cell state at time step t is given by

ct = f t ⊙ ct − 1 + it ⊙ gt,

where ⊙ denotes the Hadamard product (element-wise multiplication of vectors).

The hidden state at time step t is given by

ht = ot⊙ σc(ct),

where σc denotes the state activation function. The lstmLayer function, by default, uses the
hyperbolic tangent function (tanh) to compute the state activation function.

The following formulas describe the components at time step t.
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Component Formula
Input gate it = σg(Wixt + Riht − 1 + bi)
Forget gate f t = σg(Wfxt + Rfht − 1 + bf )
Cell candidate gt = σc(Wgxt + Rght − 1 + bg)
Output gate ot = σg(Woxt + Roht − 1 + bo)

In these calculations, σg denotes the gate activation function. The lstmLayer function, by default,
uses the sigmoid function given by σ(x) = (1 + e−x)−1 to compute the gate activation function.

LSTM Projected Layer
An LSTM projected layer learns long-term dependencies between time steps in time series and
sequence data using projected learnable weights.

To compress a deep learning network, you can use projected layers. A projected layer is a variant of a
deep learning layer that enables compression by reducing the number of stored learnable
parameters. The layer introduces learnable projector matrices Q and replaces multiplications of the
form Wx, where W is a learnable matrix, with the multiplication WQQ⊤x and stores Q and W ′ = WQ
instead of storing W. When Q projects x into a lower dimensional space, this typically requires less
memory to store the learnable parameters and can have similarly strong prediction accuracy.

Reducing the number of learnable parameters by projecting an LSTM layer rather than reducing the
number of hidden units of the LSTM layer maintains the output size of the layer and in turn the sizes
of the downstream layers which can result in better prediction accuracy.
Output Projection

The LSTM layer operation uses four matrix multiplications of the form Rht − 1, where R denotes the
recurrent weights and ht denotes the hidden state (or equivalently, the layer output) at time step t.

The LSTM projected layer operation instead uses multiplications of the from RQoQo
⊤ht − 1, where Qo is

a NumHiddenUnits-by-OutputProjectorSize matrix known as the output projector. The layer
uses the same projector Qo for each of the four multiplications.

In order to perform the four multiplications of the form Rht − 1, an LSTM layer stores four recurrent
weights R, which requires storing 4*NumHiddenUnits^2 learnable parameters. By instead storing
the 4*NumHiddenUnits-by-OutputProjectorSize matrix R′ = RQo and Qo, an LSTM projected
layer can perform the multiplication RQoQo

⊤ht − 1 when only storing
5*NumHiddenUnits*OutputProjectorSize learnable parameters.
Input Projection

The LSTM layer operation uses four matrix multiplications of the form Wxt, where W denotes the
recurrent weights and xt denotes the layer input at time step t.

The LSTM projected layer operation instead uses multiplications of the from WQiQi
⊤xt, where Qi is an

InputSize-by-InputProjectorSize matrix known as the input projector. The layer uses the same
projector Qi for each of the four multiplications.

In order to perform the four multiplications of the form Wxt, an LSTM layer stores four weight
matrices W, which requires storing 4*NumHiddenUnits*InputSize learnable parameters. By
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instead storing the 4*NumHiddenUnits-by-InputProjectorSize matrix W ′ = WQi and Qi, an
LSTM projected layer can perform the multiplication WQiQi

⊤xt when only storing
(4*NumHiddenUnits+InputSize)*InputProjectorSize learnable parameters.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of LSTMProjectedLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format OutputMode Output Format
'CB' (channel, batch) 'sequence' 'CB' (channel, batch)

'last'
'CBT' (channel, batch, time) 'sequence' 'CBT' (channel, batch, time)

'last' 'CB' (channel, batch)

In dlnetwork objects, LSTMProjectedLayer objects also support the following input and output
format combinations.

Input Format OutputMode Output Format
'SCB' (spatial, channel, batch) 'sequence' 'CB' (channel, batch)

'last'
'SSCB' (spatial, spatial,
channel)

'sequence' 'CB' (channel, batch)
'last'

'SSSCB' (spatial, spatial,
spatial, channel)

'sequence' 'CB' (channel, batch)
'last'
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Input Format OutputMode Output Format
'SCBT' (spatial, channel, batch) 'sequence' 'CBT' (channel, batch, time)

'last' 'CB' (channel, batch)
'SSCBT' (spatial, spatial,
channel, batch, time)

'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

'SSSCBT' (spatial, spatial,
spatial, channel, batch, time)

'sequence' 'CBT' (channel, batch, time)
'last' 'CB' (channel, batch)

To use these input formats in trainNetwork workflows, first convert the data to 'CBT' (channel,
batch, time) format using flattenLayer.

If the HasStateInputs property is 1 (true), then the layer has two additional inputs with names
'hidden' and 'cell', which correspond to the hidden state and cell state, respectively. These
additional inputs expect input format 'CB' (channel, batch).

If the HasStateOutputs property is 1 (true), then the layer has two additional outputs with names
'hidden' and 'cell', which correspond to the hidden state and cell state, respectively. These
additional outputs have output format 'CB' (channel, batch).

Version History
Introduced in R2022b

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

[3] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks." arXiv preprint arXiv:1312.6120 (2013).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

LSTM projected layer objects support generic C and C++ code generation only.

See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | bilstmLayer |
gruLayer | convolution1dLayer
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Topics
“Train Network with LSTM Projected Layer”
“Sequence Classification Using Deep Learning”
“Sequence Classification Using 1-D Convolutions”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Sequence-to-One Regression Using Deep Learning”
“Classify Videos Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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maxpool
Pool data to maximum value

Syntax
Y = maxpool(X,poolsize)
[Y,indx,inputSize] = maxpool(X,poolsize)
Y = maxpool(X,'global')
___  = maxpool( ___ ,'DataFormat',FMT)
___  = maxpool( ___ ,Name,Value)

Description
The maximum pooling operation performs downsampling by dividing the input into pooling regions
and computing the maximum value of each region.

The maxpool function applies the maximum pooling operation to dlarray data. Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note To apply maximum pooling within a layerGraph object or Layer array, use one of the
following layers:

• maxPooling2dLayer
• maxPooling3dLayer

Y = maxpool(X,poolsize) applies the maximum pooling operation to the formatted dlarray
object X. The function downsamples the input by dividing it into regions defined by poolsize and
calculating the maximum value of the data in each region. The output Y is a formatted dlarray with
the same dimension format as X.

The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T' dimension using the
'PoolFormat' option.

For unformatted input data, use the 'DataFormat' option.

[Y,indx,inputSize] = maxpool(X,poolsize) also returns the linear indices of the maximum
value within each pooled region and the size of the input feature map X for use with the maxunpool
function.

Y = maxpool(X,'global') computes the global maximum over the spatial dimensions of the input
X. This syntax is equivalent to setting poolsize in the previous syntaxes to the size of the 'S'
dimensions of X.
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___  = maxpool( ___ ,'DataFormat',FMT) applies the maximum pooling operation to the
unformatted dlarray object X with format specified by FMT using any of the previous syntaxes. The
output Y is an unformatted dlarray object with dimensions in the same order as X. For example,
'DataFormat','SSCB' specifies data for 2-D maximum pooling with format 'SSCB' (spatial,
spatial, channel, batch).

___  = maxpool( ___ ,Name,Value) specifies options using one or more name-value pair
arguments. For example, 'PoolFormat','T' specifies a pooling region for 1-D pooling with format
'T' (time).

Examples

Perform 2-D Maximum Pooling

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X,'SSCB');

View the size and format of the input data.

size(dlX)

ans = 1×4

    28    28     3   128

dims(dlX)

ans = 
'SSCB'

Apply 2-D maximum pooling with 2-by-2 pooling windows using the maxpool function.

poolSize = [2 2];
dlY = maxpool(dlX,poolSize);

View the size and format of the output.

size(dlY)

ans = 1×4

    27    27     3   128

dims(dlY)

ans = 
'SSCB'
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Perform 2-D Global Maximum Pooling

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X,'SSCB');

View the size and format of the input data.

size(dlX)

ans = 1×4

    28    28     3   128

dims(dlX)

ans = 
'SSCB'

Apply 2-D global maximum pooling using the maxpool function by specifying the 'global' option.

dlY = maxpool(dlX,'global');

View the size and format of the output.

size(dlY)

ans = 1×4

     1     1     3   128

dims(dlY)

ans = 
'SSCB'

Perform 1-D Maximum Pooling

Create a formatted dlarray object containing a batch of 128 sequences of length 100 with 12
channels. Specify the format 'CBT' (channel, batch, time).

miniBatchSize = 128;
sequenceLength = 100;
numChannels = 12;
X = rand(numChannels,miniBatchSize,sequenceLength);
dlX = dlarray(X,'CBT');

View the size and format of the input data.
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size(dlX)

ans = 1×3

    12   128   100

dims(dlX)

ans = 
'CBT'

Apply 1-D maximum pooling with pooling regions of size 2 with a stride of 2 using the maxpool
function by specifying the 'PoolFormat' and 'Stride' options.

poolSize = 2;
dlY = maxpool(dlX,poolSize,'PoolFormat','T','Stride',2);

View the size and format of the output.

size(dlY)

ans = 1×3

    12   128    50

dims(dlY)

ans = 
'CBT'

Unpool 2-D Maximum Pooled Data

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X,'SSCB');

View the size and format of the input data.

size(dlX)

ans = 1×4

    28    28     3   128

dims(dlX)

ans = 
'SSCB'
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Pool the data to maximum values over pooling regions of size 2 using a stride of 2.

[dlY,indx,dataSize] = maxpool(dlX,2,'Stride',2);

View the size and format of the pooled data.

size(dlY)

ans = 1×4

    14    14     3   128

dims(dlY)

ans = 
'SSCB'

View the data size.

dataSize

dataSize = 1×4

    28    28     3   128

Unpool the data using the indices and data size from the maxpool operation.

dlY = maxunpool(dlY,indx,dataSize);

View the size and format of the unpooled data.

size(dlY)

ans = 1×4

    28    28     3   128

dims(dlY)

ans = 
'SSCB'

Unpool 1-D Maximum Pooled Data

Create a formatted dlarray object containing a batch of 128 sequences of length 100 with 12
channels. Specify the format 'CBT' (channel, batch, time).

miniBatchSize = 128;
sequenceLength = 100;
numChannels = 12;
X = rand(numChannels,miniBatchSize,sequenceLength);
dlX = dlarray(X,'CBT');

View the size and format of the input data.
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size(dlX)

ans = 1×3

    12   128   100

dims(dlX)

ans = 
'CBT'

Apply 1-D maximum pooling with pooling regions of size 2 with a stride of 2 using the maxpool
function by specifying the 'PoolFormat' and 'Stride' options.

poolSize = 2;
[dlY,indx,dataSize] = maxpool(dlX,poolSize,'PoolFormat','T','Stride',2);

View the size and format of the output.

size(dlY)

ans = 1×3

    12   128    50

dims(dlY)

ans = 
'CBT'

Unpool the data using the indices and data size from the maxpool operation.

dlY = maxunpool(dlY,indx,dataSize);

View the size and format of the unpooled data.

size(dlY)

ans = 1×3

    12   128   100

dims(dlY)

ans = 
'CBT'

Input Arguments
X — Input data
dlarray

Input data, specified as a formatted or unformatted dlarray object.

If X is an unformatted dlarray, then you must specify the format using the DataFormat option.
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The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T' dimension using the
'PoolFormat' option.

poolsize — Size of pooling regions
positive integer | vector of positive integers

Size of the pooling regions, specified as a numeric scalar or numeric vector.

To pool using a pooling region with edges of the same size, specify poolsize as a scalar. The pooling
regions have the same size along all dimensions specified by 'PoolFormat'.

To pool using a pooling region with edges of different sizes, specify poolsize as a vector, where
poolsize(i) is the size of corresponding dimension in 'PoolFormat'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Stride',2 specifies the stride of the pooling regions as 2.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

• "S" — Spatial
• "C" — Channel
• "B" — Batch (for example, samples and observations)
• "T" — Time (for example, time steps of sequences)
• "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.
Data Types: char | string

PoolFormat — Dimension order of pooling region
character vector | string scalar

Dimension order of the pooling region, specified as the comma-separated pair consisting of
'PoolFormat' and a character vector or string scalar that provides a label for each dimension of the
pooling region.

The default value of 'PoolFormat' depends on the task:
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Task Default
1-D pooling 'S' (spatial)
2-D pooling 'SS' (spatial, spatial)
3-D pooling 'SSS' (spatial, spatial, spatial)

The format must have either no 'S' (spatial) dimensions, or as many 'S' (spatial) dimensions as the
input data.

The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T' dimension using the
'PoolFormat' option.
Example: 'PoolFormat','T'

Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of
'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same
value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the
number of spatial dimensions of the input data, the vector values are used for the corresponding
spatial dimensions.

The default value of 'Stride' is 1. If 'Stride' is less than poolsize in any dimension, then the
pooling regions overlap.

The Stride parameter is not supported for global pooling using the 'global' option.
Example: 'Stride',3
Data Types: single | double

Padding — Size of padding applied to edges of data
0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of
'Padding' and one of the following:

• 'same' — Padding size is set so that the output size is the same as the input size when the stride
is 1. More generally, the output size of each spatial dimension is ceil(inputSize/stride),
where inputSize is the size of the input along a spatial dimension.

• Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.
• Numeric vector — A different amount of padding is applied along each spatial dimension. Use a

vector of size d, where d is the number of spatial dimensions of the input data. The ith element of
the vector specifies the size of padding applied to the start and the end along the ith spatial
dimension.

• Numeric matrix — A different amount of padding is applied to the start and end of each spatial
dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input
data. The element (1,d) specifies the size of padding applied to the start of spatial dimension d.
The element (2,d) specifies the size of padding applied to the end of spatial dimension d. For
example, in 2-D, the format is [top, left; bottom, right].

The 'Padding' parameter is not supported for global pooling using the 'global' option.
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Example: 'Padding','same'
Data Types: single | double

Output Arguments
Y — Pooled data
dlarray

Pooled data, returned as a dlarray with the same underlying data type as X.

If the input data X is a formatted dlarray, then Y has the same format as X. If the input data is not a
formatted dlarray, then Y is an unformatted dlarray with the same dimension order as the input
data.

indx — Indices of maximum values
dlarray

Indices of maximum values in each pooled region, returned as a dlarray. Each value in indx
represents the location of the corresponding maximum value in Y, given as a linear index of the
values in X.

If X is a formatted dlarray, indx has the same size and format as the output Y.

If X is not a formatted dlarray, indx is an unformatted dlarray. In that case, indx is returned
with the following dimension order: all 'S' dimensions, followed by 'C', 'B', and 'T' dimensions,
then all 'U' dimensions. The size of indx matches the size of Y when Y is permuted to match the
previously stated dimension order.

Use the indx output with the maxunpool function to unpool the output of maxpool.

indx output is not supported when using the 'global' option.

inputSize — Size of input feature map
numeric vector

Size of the input feature map, returned as a numeric vector.

Use the inputSize output with the maxunpool function to unpool the output of maxpool.

inputSize output is not supported when using the 'global' option.

More About
Maximum Pooling

The maxpool function pools the input data to maximum values. For more information, see the “2-D
Max Pooling Layer” on page 1-1198 section of the maxPooling2dLayer reference page.

Version History
Introduced in R2019b
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maxpool indices output argument changes shape and data type
Behavior changed in R2020a

Starting in R2020a, the data type and shape of the indices output argument of the maxpool function
are changed. The maxpool function outputs the indices of the maximum values as a dlarray with
the same shape and format as the pooled data, instead of a numeric vector.

The indices output of maxpool remains compatible with the indices input of maxunpool. The
maxunpool function accepts the indices of the maximum values as a dlarray with the same shape
and format as the input data. To prevent errors, use only the indices output of the maxpool function
as the indices input to the maxunpool function.

To reproduce the previous behavior and obtain the indices output as a numeric vector, use the
following code:

[Y,indx,inputSize] = maxpool(Y,poolsize);
indx = extractdata(indx);
indx = reshape(indx,[],1);

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
avgpool | dlconv | maxunpool | dlgradient | dlfeval | dlarray

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”

1 Deep Learning Functions

1-1186



maxPooling1dLayer
1-D max pooling layer

Description
A 1-D max pooling layer performs downsampling by dividing the input into 1-D pooling regions, then
computing the maximum of each region.

The dimension that the layer pools over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Creation
Syntax
layer = maxPooling1dLayer(poolSize)
layer = maxPooling1dLayer(poolSize,Name=Value)

Description

layer = maxPooling1dLayer(poolSize) creates a 1-D max pooling layer and sets the PoolSize
property.

layer = maxPooling1dLayer(poolSize,Name=Value) also specifies the padding or sets the
Stride and Name properties using one or more optional name-value arguments. For example,
maxPooling1dLayer(3,Padding=1,Stride=2) creates a 1-D max pooling layer with a pool size
of 3, a stride of 2, and padding of size 1 on both the left and right of the input.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: maxPooling1dLayer(3,Padding=1) creates a 1-D max pooling layer with a pool size of 3
and padding of size 1 on the left and right of the layer input.

Padding — Padding to apply to input
[0 0] (default) | "same" | nonnegative integer | vector of nonnegative integers

Padding to apply to the input, specified as one of the following:
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• "same" — Apply padding such that the output size is ceil(inputSize/stride), where
inputSize is the length of the input. When Stride is 1, the output is the same size as the input.

• Nonnegative integer sz — Add padding of size sz to both ends of the input.
• Vector [l r] of nonnegative integers — Add padding of size l to the left and r to the right of the

input.

Example: Padding=[2 1] adds padding of size 2 to the left and size 1 to the right.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Properties
Max Pooling

PoolSize — Width of pooling regions
positive integer

Width of the pooling regions, specified as a positive integer.

The width of the pooling regions PoolSize must be greater than or equal to the padding dimensions
PaddingSize.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stride — Step size for traversing input
1 (default) | positive integer

Step size for traversing the input, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PaddingSize — Size of padding
[0 0] (default) | vector of two nonnegative integers

Size of padding to apply to each side of the input, specified as a vector [l r] of two nonnegative
integers, where l is the padding applied to the left and r is the padding applied to the right.

When you create a layer, use the Padding name-value argument to specify the padding size.
Data Types: double

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

This property is read-only.

Method to determine padding size, specified as one of the following:

• 'manual' – Pad using the integer or vector specified by Padding.
• 'same' – Apply padding such that the output size is ceil(inputSize/Stride), where

inputSize is the length of the input. When Stride is 1, the output is the same as the input.

To specify the layer padding, use the Padding name-value argument.
Data Types: char
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Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create 1-D Max Pooling Layer

Create a 1-D max pooling layer with a pool size of 3.

layer = maxPooling1dLayer(3);

Include a 1-D max pooling layer in a layer array.
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layers = [
    sequenceInputLayer(12)
    convolution1dLayer(11,96)
    reluLayer
    maxPooling1dLayer(3)
    convolution1dLayer(11,96)
    reluLayer
    globalMaxPooling1dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  10x1 Layer array with layers:

     1   ''   Sequence Input           Sequence input with 12 dimensions
     2   ''   1-D Convolution          96 11 convolutions with stride 1 and padding [0  0]
     3   ''   ReLU                     ReLU
     4   ''   1-D Max Pooling          Max pooling with pool size 3, stride 1, and padding [0  0]
     5   ''   1-D Convolution          96 11 convolutions with stride 1 and padding [0  0]
     6   ''   ReLU                     ReLU
     7   ''   1-D Global Max Pooling   1-D global max pooling
     8   ''   Fully Connected          10 fully connected layer
     9   ''   Softmax                  softmax
    10   ''   Classification Output    crossentropyex

Algorithms
1-D Max Pooling Layer

A 1-D max pooling layer performs downsampling by dividing the input into 1-D pooling regions, then
computing the maximum of each region. The layer pools the input by moving the pooling regions
along the input horizontally.

The dimension that the layer pools over depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Version History
Introduced in R2021b

See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | bilstmLayer |
gruLayer | convolution1dLayer | averagePooling1dLayer | globalMaxPooling1dLayer |
globalAveragePooling1dLayer
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Topics
“Sequence Classification Using 1-D Convolutions”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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maxPooling2dLayer
Max pooling layer

Description
A 2-D max pooling layer performs downsampling by dividing the input into rectangular pooling
regions, then computing the maximum of each region.

Creation

Syntax
layer = maxPooling2dLayer(poolSize)
layer = maxPooling2dLayer(poolSize,Name,Value)

Description

layer = maxPooling2dLayer(poolSize) creates a max pooling layer and sets the PoolSize
property.

layer = maxPooling2dLayer(poolSize,Name,Value) sets the optional Stride, Name, and
HasUnpoolingOutputs properties using name-value pairs. To specify input padding, use the
'Padding' name-value pair argument. For example, maxPooling2dLayer(2,'Stride',3)
creates a max pooling layer with pool size [2 2] and stride [3 3]. You can specify multiple name-
value pairs. Enclose each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the padding to add along the
edges of the layer input and to set the Stride, Name, and HasUnpoolingOutputs properties.
Enclose names in single quotes.
Example: maxPooling2dLayer(2,'Stride',3) creates a max pooling layer with pool size [2 2]
and stride [3 3].

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If
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the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input

and padding of size b to the left and right.
• Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l

to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Max Pooling

PoolSize — Dimensions of pooling regions
vector of two positive integers

Dimensions of the pooling regions, specified as a vector of two positive integers [h w], where h is
the height and w is the width. When creating the layer, you can specify PoolSize as a scalar to use
the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 1] specifies pooling regions of height 2 and width 1.

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector of two positive
integers [a b], where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b l r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, l is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
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Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

Padding — Size of padding
[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When
creating a layer, use the 'Padding' name-value pair argument to specify the padding size.

Size of padding to apply to input borders vertically and horizontally, specified as a vector [a b] of
two nonnegative integers, where a is the padding applied to the top and bottom of the input data and
b is the padding applied to the left and right.
Example: [1 1] adds one row of padding to the top and bottom, and one column of padding to the
left and right of the input.

HasUnpoolingOutputs — Flag for outputs to unpooling layer
false (default) | true

Flag for outputs to unpooling layer, specified as true or false.

If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output
with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the
HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs
that you can connect to a max unpooling layer:

• 'indices' — Indices of the maximum value in each pooled region.
• 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be
nonoverlapping.
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For more information on how to unpool the output of a max pooling layer, see
maxUnpooling2dLayer.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default) | 3

Number of outputs of the layer.

If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output
with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the
HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs
that you can connect to a max unpooling layer:

• 'indices' — Indices of the maximum value in each pooled region.
• 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be
nonoverlapping.

For more information on how to unpool the output of a max pooling layer, see
maxUnpooling2dLayer.
Data Types: double

OutputNames — Output names
{'out'} (default) | {'out','indices','size'}
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Output names of the layer.

If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output
with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the
HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs
that you can connect to a max unpooling layer:

• 'indices' — Indices of the maximum value in each pooled region.
• 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be
nonoverlapping.

For more information on how to unpool the output of a max pooling layer, see
maxUnpooling2dLayer.
Data Types: cell

Examples

Create Max Pooling Layer with Nonoverlapping Pooling Regions

Create a max pooling layer with nonoverlapping pooling regions.

layer = maxPooling2dLayer(2,'Stride',2)

layer = 
  MaxPooling2DLayer with properties:

                   Name: ''
    HasUnpoolingOutputs: 0
             NumOutputs: 1
            OutputNames: {'out'}

   Hyperparameters
               PoolSize: [2 2]
                 Stride: [2 2]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0]

The height and the width of the rectangular regions (pool size) are both 2. The pooling regions do not
overlap because the step size for traversing the images vertically and horizontally (stride) is also [2
2].

Include a max pooling layer with nonoverlapping regions in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
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    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Max Pooling Layer with Overlapping Pooling Regions

Create a max pooling layer with overlapping pooling regions.

layer = maxPooling2dLayer([3 2],'Stride',2)

layer = 
  MaxPooling2DLayer with properties:

                   Name: ''
    HasUnpoolingOutputs: 0
             NumOutputs: 1
            OutputNames: {'out'}

   Hyperparameters
               PoolSize: [3 2]
                 Stride: [2 2]
            PaddingMode: 'manual'
            PaddingSize: [0 0 0 0]

This layer creates pooling regions of size [3 2] and takes the maximum of the six elements in each
region. The pooling regions overlap because there are stride dimensions Stride that are less than
the respective pooling dimensions PoolSize.

Include a max pooling layer with overlapping pooling regions in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer([3 2],'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
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     4   ''   2-D Max Pooling         3x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Algorithms
2-D Max Pooling Layer

A 2-D max pooling layer performs downsampling by dividing the input into rectangular pooling
regions, then computing the maximum of each region.

The dimensions that the layer pools over depends on the layer input:

• For 2-D image input (data with four dimensions corresponding to pixels in two spatial dimensions,
the channels, and the observations), the layer pools over the spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
dimensions.

• For 1-D image sequence input (data with four dimensions corresponding to the pixels in one
spatial dimension, the channels, the observations, and the time steps), the layer pools over the
spatial and time dimensions.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of MaxPooling2DLayer objects and the corresponding
output format. If the output of the layer is passed to a custom layer that does not inherit from the
nnet.layer.Formattable class, or a FunctionLayer object with the Formattable option set to
false, then the layer receives an unformatted dlarray object with dimensions ordered
corresponding to the formats outlined in this table.
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Input Format Output Format
"SSCB" (spatial, spatial, channel, batch) "SSCB" (channel, batch)
"SCBT" (spatial, channel, batch, time) "SCB" (channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCBT" (channel, batch, time)

Version History
Introduced in R2016a

References
[1] Nagi, J., F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M.

Gambardella. ''Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture
Recognition''. IEEE International Conference on Signal and Image Processing Applications
(ICSIPA2011), 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If equal max values exists along the off-diagonal in a kernel window, implementation differences for
the maxPooling2dLayer might cause minor numerical mismatch between MATLAB and the
generated code. This issue also causes mismatch in the indices of the maximum value in each pooled
region.

For example, consider the following input to maxPooling2dLayer. The output from MATLAB is
shown.

For the same input, the output from the generated code is shown.
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GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

If equal max values exists along the off-diagonal in a kernel window, implementation differences for
the maxPooling2dLayer might cause minor numerical mismatch between MATLAB and the
generated code. This issue also causes mismatch in the indices of the maximum value in each pooled
region.

For example, consider the following input to maxPooling2dLayer. The output from MATLAB is
shown.

For the same input, the output from the generated code is shown.
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See Also
averagePooling2dLayer | globalAveragePooling2dLayer | convolution2dLayer |
maxUnpooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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maxPooling3dLayer
3-D max pooling layer

Description
A 3-D max pooling layer performs downsampling by dividing three-dimensional input into cuboidal
pooling regions, then computing the maximum of each region.

The dimensions that the layer pools over depends on the layer input:

• For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer pools over the spatial dimensions.

• For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer pools over the
spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
and time dimensions.

Creation
Syntax
layer = maxPooling3dLayer(poolSize)
layer = maxPooling3dLayer(poolSize,Name,Value)

Description

layer = maxPooling3dLayer(poolSize) creates a 3-D max pooling layer and sets the PoolSize
property.

layer = maxPooling3dLayer(poolSize,Name,Value) sets the optional Stride and Name
properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair
argument. For example, maxPooling3dLayer(2,'Stride',3) creates a 3-D max pooling layer
with pool size [2 2 2] and stride [3 3 3]. You can specify multiple name-value pairs. Enclose each
property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: maxPooling3dLayer(2,'Stride',3) creates a 3-D max pooling layer with pool size [2
2 2] and stride [3 3 3].
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Padding — Input edge padding
0 (default) | array of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

• 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of
the input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, to the left and right, and to the front and back, if
possible. If the padding in a given dimension has an odd value, then the software adds the extra
padding to the input as postpadding. In other words, the software adds extra vertical padding to
the bottom, extra horizontal padding to the right, and extra depth padding to the back of the
input.

• Nonnegative integer p — Add padding of size p to all the edges of the input.
• Three-element vector [a b c] of nonnegative integers — Add padding of size a to the top and

bottom, padding of size b to the left and right, and padding of size c to the front and back of the
input.

• 2-by-3 matrix [t l f;b r k] of nonnegative integers — Add padding of size t to the top, b to
the bottom, l to the left, r to the right, f to the front, and k to the back of the input. In other
words, the top row specifies the prepadding and the second row defines the postpadding in the
three dimensions.

Example: 'Padding',1 adds one row of padding to the top and bottom, one column of padding to
the left and right, and one plane of padding to the front and back of the input.
Example: 'Padding','same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Max Pooling

PoolSize — Dimensions of pooling regions
vector of three positive integers

Dimensions of the pooling regions, specified as a vector of three positive integers [h w d], where h
is the height, w is the width, and d is the depth. When creating the layer, you can specify PoolSize
as a scalar to use the same value for all three dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 1 1] specifies pooling regions of height 2, width 1, and depth 1.

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
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depth direction. When creating the layer, you can specify Stride as a scalar to use the same value
for step sizes in all three directions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.

PaddingSize — Size of padding
[0 0 0;0 0 0] (default) | 2-by-3 matrix of nonnegative integers

Size of padding to apply to input borders, specified as 2-by-3 matrix [t l f;b r k] of nonnegative
integers, where t and b are the padding applied to the top and bottom in the vertical direction, l and
r are the padding applied to the left and right in the horizontal direction, and f and k are the padding
applied to the front and back along the depth. In other words, the top row specifies the prepadding
and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 2 4;1 2 4] adds one row of padding to the top and bottom, two columns of padding
to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify
when creating a layer.

• If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual'.

• If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and
stride is the stride in the corresponding dimension. The software adds the same amount of
padding to the top and bottom, to the left and right, and to the front and back, if possible. If the
padding in a given dimension has an odd value, then the software adds the extra padding to the
input as postpadding. In other words, the software adds extra vertical padding to the bottom,
extra horizontal padding to the right, and extra depth padding to the back of the input.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string
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NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Max Pooling 3-D Layer with Nonoverlapping Pooling Regions

Create a max pooling 3-D layer with nonoverlapping pooling regions.

layer = maxPooling3dLayer(2,'Stride',2)

layer = 
  MaxPooling3DLayer with properties:

           Name: ''
     NumOutputs: 1
    OutputNames: {'out'}

   Hyperparameters
       PoolSize: [2 2 2]
         Stride: [2 2 2]
    PaddingMode: 'manual'
    PaddingSize: [2x3 double]
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The height, width, and depth of the cuboidal regions (pool size) are 2. The step size for traversing the
images (stride) is 2 in all dimensions. The pooling regions do not overlap because the stride is greater
than or equal to the corresponding pool size in all dimensions.

Include a max pooling layer with nonoverlapping regions in a Layer array.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    maxPooling3dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input         28x28x28x3 images with 'zerocenter' normalization
     2   ''   3-D Convolution         20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   3-D Max Pooling         2x2x2 max pooling with stride [2  2  2] and padding [0  0  0; 0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Create Max Pooling 3-D Layer with Overlapping Pooling Regions

Create a max pooling 3-D layer with overlapping pooling regions and padding for the top and bottom
of the input.

layer = maxPooling3dLayer([3 2 2],'Stride',2,'Padding',[1 0 0])

layer = 
  MaxPooling3DLayer with properties:

           Name: ''
     NumOutputs: 1
    OutputNames: {'out'}

   Hyperparameters
       PoolSize: [3 2 2]
         Stride: [2 2 2]
    PaddingMode: 'manual'
    PaddingSize: [2x3 double]

This layer creates pooling regions of size 3-by-2-by-2 and takes the maximum of the twelve elements
in each region. The stride is 2 in all dimensions. The pooling regions overlap because there are stride
dimensions Stride that are less than the respective pooling dimensions PoolSize.
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Algorithms
3-D Max Pooling Layer

A 3-D max pooling layer extends the functionality of a max pooling layer to a third dimension, depth.
A max pooling layer performs down-sampling by dividing the input into rectangular or cuboidal
pooling regions, and computing the maximum of each region. To learn more, see the “2-D Max
Pooling Layer” on page 1-1198 section of the maxPooling2dLayer reference page.

The dimensions that the layer pools over depends on the layer input:

• For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer pools over the spatial dimensions.

• For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer pools over the
spatial dimensions.

• For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
and time dimensions.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of MaxPooling3DLayer objects and the corresponding
output format. If the output of the layer is passed to a custom layer that does not inherit from the
nnet.layer.Formattable class, or a FunctionLayer object with the Formattable option set to
false, then the layer receives an unformatted dlarray object with dimensions ordered
corresponding to the formats outlined in this table.

Input Format Output Format
"SSSCB" (spatial, spatial, spatial, channel, batch) "SSSCB" (spatial, spatial, spatial, channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) "SSCBT" (spatial, spatial, channel, batch, time)
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Input Format Output Format
"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

Version History
Introduced in R2019a

See Also
maxPooling2dLayer | globalAveragePooling3dLayer | convolution3dLayer |
averagePooling3dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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maxunpool
Unpool the output of a maximum pooling operation

Syntax
Y = maxunpool(X,indx,outputSize)
Y = maxunpool(X,indx,outputSize,'DataFormat',FMT)

Description
The maximum unpooling operation unpools the output of a maximum pooling operation by
upsampling and padding with zeros.

The maxunpool function applies the maximum unpooling operation to dlarray data. Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note To apply maximum unpooling within a layerGraph object or Layer array, use
maxUnpooling2dLayer.

Y = maxunpool(X,indx,outputSize) upsamples the spatial or time dimensions of input data X to
match the size outputSize. The data is padded with zeros between the locations of maximum values
specified by indx. The input X is a formatted dlarray with dimension labels. The output Y is a
formatted dlarray with the same dimension format as X.

Y = maxunpool(X,indx,outputSize,'DataFormat',FMT) also specifies the dimension format
FMT when X is not a formatted dlarray. The output Y is an unformatted dlarray with the same
dimension order as X.

Examples

Unpool 2-D Maximum Pooled Data

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X,'SSCB');

View the size and format of the input data.

size(dlX)
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ans = 1×4

    28    28     3   128

dims(dlX)

ans = 
'SSCB'

Pool the data to maximum values over pooling regions of size 2 using a stride of 2.

[dlY,indx,dataSize] = maxpool(dlX,2,'Stride',2);

View the size and format of the pooled data.

size(dlY)

ans = 1×4

    14    14     3   128

dims(dlY)

ans = 
'SSCB'

View the data size.

dataSize

dataSize = 1×4

    28    28     3   128

Unpool the data using the indices and data size from the maxpool operation.

dlY = maxunpool(dlY,indx,dataSize);

View the size and format of the unpooled data.

size(dlY)

ans = 1×4

    28    28     3   128

dims(dlY)

ans = 
'SSCB'
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Unpool 1-D Maximum Pooled Data

Create a formatted dlarray object containing a batch of 128 sequences of length 100 with 12
channels. Specify the format 'CBT' (channel, batch, time).

miniBatchSize = 128;
sequenceLength = 100;
numChannels = 12;
X = rand(numChannels,miniBatchSize,sequenceLength);
dlX = dlarray(X,'CBT');

View the size and format of the input data.

size(dlX)

ans = 1×3

    12   128   100

dims(dlX)

ans = 
'CBT'

Apply 1-D maximum pooling with pooling regions of size 2 with a stride of 2 using the maxpool
function by specifying the 'PoolFormat' and 'Stride' options.

poolSize = 2;
[dlY,indx,dataSize] = maxpool(dlX,poolSize,'PoolFormat','T','Stride',2);

View the size and format of the output.

size(dlY)

ans = 1×3

    12   128    50

dims(dlY)

ans = 
'CBT'

Unpool the data using the indices and data size from the maxpool operation.

dlY = maxunpool(dlY,indx,dataSize);

View the size and format of the unpooled data.

size(dlY)

ans = 1×3

    12   128   100

dims(dlY)
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ans = 
'CBT'

Input Arguments
X — Input data
dlarray

Input data, specified as a formatted or unformatted dlarray object.

If X is an unformatted dlarray, then you must specify the format using the 'DataFormat' option.

The function, unpools the 'S' (spatial) and 'T' dimensions of the data to have sizes given by
outputSize.

indx — Indices of maximum values
dlarray

Indices of maximum values in each pooled region, specified as a dlarray.

Use the indices output of the maxpool function as the indx input to maxunpool.

outputSize — Size of output feature map
numeric array

Size of the output feature map, specified as a numeric array.

Use the size output of the maxpool function as the outputSize input to maxunpool.

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string
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Output Arguments
Y — Unpooled data
dlarray

Unpooled data, returned as a dlarray. The output Y has the same underlying data type as the input
X.

If the input data X is a formatted dlarray, then Y has the same dimension format as X. If the input
data is not a formatted dlarray, then Y is an unformatted dlarray with the same dimension order
as the input data.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
maxpool | dlarray | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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maxUnpooling2dLayer
Max unpooling layer

Description
A 2-D max unpooling layer unpools the output of a 2-D max pooling layer.

Creation

Syntax
layer = maxUnpooling2dLayer
layer = maxUnpooling2dLayer('Name',name)

Description

layer = maxUnpooling2dLayer creates a max unpooling layer.

layer = maxUnpooling2dLayer('Name',name) sets the Name property. To create a network
containing a max unpooling layer you must specify a layer name.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
3 (default)

Number of inputs of the layer.

There are three inputs to this layer:

• 'in' — Input feature map to unpool.
• 'indices' — Indices of the maximum value in each pooled region. This is output by the max

pooling layer.
• 'size' — Output size of unpooled feature map. This is output by the max pooling layer.

Use the input names when connecting or disconnecting the max unpooling layer to other layers using
connectLayers or disconnectLayers, respectively.
Data Types: double
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InputNames — Input names
{'in','indices','size'} (default)

Input names of the layer.

There are three inputs to this layer:

• 'in' — Input feature map to unpool.
• 'indices' — Indices of the maximum value in each pooled region. This is output by the max

pooling layer.
• 'size' — Output size of unpooled feature map. This is output by the max pooling layer.

Use the input names when connecting or disconnecting the max unpooling layer to other layers using
connectLayers or disconnectLayers, respectively.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Max Unpooling Layer

Create a max unpooling layer that unpools the output of a max pooling layer.

layer = maxUnpooling2dLayer

layer = 
  MaxUnpooling2DLayer with properties:

          Name: ''
     NumInputs: 3
    InputNames: {'in'  'indices'  'size'}

 maxUnpooling2dLayer
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Unpool Max Pooling Layer

Create a max pooling layer, and set the 'HasUnpoolingOutputs' property as true. This property
gives the max pooling layer two additional outputs,'indices' and 'size', which enables unpooling
the layer. Also create a max unpooling layer.

layers = [
    maxPooling2dLayer(2,'Stride',2,'Name','mpool','HasUnpoolingOutputs',true)
    maxUnpooling2dLayer('Name','unpool');
]

layers = 
  2x1 Layer array with layers:

     1   'mpool'    2-D Max Pooling     2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     2   'unpool'   2-D Max Unpooling   2-D Max Unpooling

Sequentially connect layers by adding them to a layerGraph. This step connects the 'out' output
of the max pooling layer to the 'in' input of the max unpooling layer.

lgraph = layerGraph(layers)

lgraph = 
  LayerGraph with properties:

         Layers: [2x1 nnet.cnn.layer.Layer]
    Connections: [1x2 table]
     InputNames: {1x0 cell}
    OutputNames: {1x0 cell}

Unpool the output of the max pooling layer, by connecting the max pooling layer outputs to the max
unpooling layer inputs.

lgraph = connectLayers(lgraph,'mpool/indices','unpool/indices');
lgraph = connectLayers(lgraph,'mpool/size','unpool/size');

Version History
Introduced in R2017b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If equal max values exists along the off-diagonal in a kernel window, implementation differences for
the maxPooling2dLayer might cause minor numerical mismatch between MATLAB and the
generated code. This issue also causes mismatch in the indices of the maximum value in each pooled
region.

For example, consider the following input to maxPooling2dLayer. The output from MATLAB is
shown.

1 Deep Learning Functions

1-1216



For the same input, the output from the generated code is shown.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

If equal max values exists along the off-diagonal in a kernel window, implementation differences for
the maxPooling2dLayer might cause minor numerical mismatch between MATLAB and the
generated code. This issue also causes mismatch in the indices of the maximum value in each pooled
region.

For example, consider the following input to maxPooling2dLayer. The output from MATLAB is
shown.

 maxUnpooling2dLayer
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For the same input, the output from the generated code is shown.

See Also
maxPooling2dLayer | connectLayers | disconnectLayers | layerGraph | trainNetwork

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
“List of Deep Learning Layers”
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minibatchqueue
Create mini-batches for deep learning

Description
Use a minibatchqueue object to create, preprocess, and manage mini-batches of data for training
using custom training loops.

A minibatchqueue object iterates over a datastore to provide data in a suitable format for training
using custom training loops. The object prepares a queue of mini-batches that are preprocessed on
demand. Use a minibatchqueue object to automatically convert your data to dlarray or
gpuArray, convert data to a different precision, or apply a custom function to preprocess your data.
You can prepare your data in parallel in the background.

During training, you can manage your data using the minibatchqueue object. You can shuffle the
data at the start of each training epoch using the shuffle function and collect data from the queue
for each training iteration using the next function. You can check if any data is left in the queue
using the hasdata function, and reset the queue when it is empty.

Creation

Syntax
mbq = minibatchqueue(ds)
mbq = minibatchqueue(ds,numOutputs)
mbq = minibatchqueue( ___ ,Name,Value)

Description

mbq = minibatchqueue(ds) creates a minibatchqueue object from the input datastore ds. The
mini-batches in mbq have the same number of variables as the results of read on the input datastore.

mbq = minibatchqueue(ds,numOutputs) creates a minibatchqueue object from the input
datastore ds and sets the number of variables in each mini-batch. Use this syntax when you use
MiniBatchFcn to specify a mini-batch preprocessing function that has a different number of outputs
than the number of variables of the input datastore ds.

mbq = minibatchqueue( ___ ,Name,Value) sets one or more properties using name-value
options. For example, minibatchqueue(ds,
"MiniBatchSize",64,"PartialMiniBatches","discard") sets the size of the returned mini-
batches to 64 and discards any mini-batches with fewer than 64 observations.

Input Arguments

ds — Input datastore
datastore | custom datastore

Input datastore, specified as a MATLAB datastore or a custom datastore.

 minibatchqueue
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For more information about datastores for deep learning, see “Datastores for Deep Learning”.

numOutputs — Number of mini-batch variables
positive integer

Number of mini-batch variables, specified as a positive integer. By default, the number of mini-batch
variables is equal to the number of variables of the input datastore.

You can determine the number of variables of the input datastore by examining the output of
read(ds). If your datastore returns a table, the number of variables is the number of variables of the
table. If your datastore returns a cell array, the number of variables is the size of the second
dimension of the cell array.

If you use the MiniBatchFcn name-value argument to specify a mini-batch preprocessing function
that returns a different number of variables than the input datastore, you must set numOutputs to
match the number of outputs of the function.
Example: 2

Properties
MiniBatchSize — Size of mini-batches
128 (default) | positive integer

This property is read-only.

Size of mini-batches returned by the next function, specified as a positive integer. The default value
is 128.
Example: 256

PartialMiniBatch — Return or discard incomplete mini-batches
"return" (default) | "discard"

Return or discard incomplete mini-batches, specified as "return" or "discard".

If the total number of observations is not exactly divisible by MiniBatchSize, the final mini-batch
returned by the next function can have fewer than MiniBatchSize observations. This property
specifies how any partial mini-batches are treated, using the following options:

• "return" — A mini-batch can contain fewer than MiniBatchSize observations. All data is
returned.

"discard" — All mini-batches must contain exactly MiniBatchSize observations. Some data
can be discarded from the queue if there is not enough for a complete mini-batch.

Set PartialMiniBatch to "discard" if you require that all of your mini-batches are the same size.
Example: "discard"
Data Types: char | string

MiniBatchFcn — Mini-batch preprocessing function
"collate" (default) | function handle

This property is read-only.
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Mini-batch preprocessing function, specified as "collate" or a function handle.

The default value of MiniBatchFcn is "collate". This function concatenates the mini-batch
variables into arrays.

Use a function handle to a custom function to preprocess mini-batches for custom training. Doing so
is recommended for one-hot encoding classification labels, padding sequence data, calculating
average images, and so on. You must specify a custom function if your data consists of cell arrays
containing arrays of different sizes.

If you specify a custom mini-batch preprocessing function, the function must concatenate each batch
of output variables into an array after preprocessing and return each variable as a separate function
output. The function must accept at least as many inputs as the number of variables of the underlying
datastore. The inputs are passed to the custom function as N-by-1 cell arrays, where N is the number
of observations in the mini-batch. The function can return as many variables as required. If the
function specified by MiniBatchFcn returns a different number of outputs than inputs, specify
numOutputs as the number of outputs of the function.

The following actions are not recommended inside the custom function. To reproduce the desired
behavior, instead, set the corresponding property when you create the minibatchqueue object.

Action Recommended Property
Cast variable to different data type. OutputCast
Move data to GPU. OutputEnvironment
Convert data to dlarray. OutputAsDlarray
Apply data format to dlarray variable. MiniBatchFormat

Example: @myCustomFunction
Data Types: char | string | function_handle

DispatchInBackground — Preprocess mini-batches in the background in a parallel pool
false or 0 (default) | true or 1

Preprocess mini-batches in the background in a parallel pool, specified as a numeric or logical 1
(true) or 0 (false).

Using this option requires Parallel Computing Toolbox. The input datastore ds must be subsettable or
partitionable. To use this option, custom datastores should implement the
matlab.io.datastore.Subsettable class.

Use this option when your mini-batches require heavy preprocessing. This option uses a parallel pool
to prepare mini-batches in the background while you use mini-batches during training.

Workers in the pool process mini-batches by applying the function specified by MiniBatchFcn.
Further processing, including applying the effects of the OutputCast, OutputEnvironment,
OutputAsDlarray, and MiniBatchFormat, does not occur on the workers.

When DispatchInBackground is set to true, the software opens a local parallel pool using the
current settings, if a local pool is not currently open. Non-local pools are not supported. The pool
opens the first time you call next.
Example: true
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Data Types: logical

OutputCast — Data type of each mini-batch variable
'single' (default) | 'double' | 'int8' | 'int16' | 'int32' | 'int64' | 'uint8' | 'uint16' |
'uint32' | 'uint64' | 'logical' | 'char' | cell array

This property is read-only.

Data type of each mini-batch variable, specified as 'single', 'double', 'int8', 'int16',
'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'logical', or 'char', or a cell
array of these values, or an empty vector.

If you specify OutputCast as an empty vector, the data type of each mini-batch variable is
unchanged. To specify a different data type for each mini-batch variable, specify a cell array
containing an entry for each mini-batch variable. The order of the elements of this cell array must
match the order in which the mini-batch variables are returned. This order is the same order in which
the variables are returned from the function specified by MiniBatchFcn. If you do not specify a
custom function for MiniBatchFcn, it is the same order in which the variables are returned by the
underlying datastore.

You must make sure that the value of OutputCast does not conflict with the values of the
OutputAsDlarray or OutputEnvironment properties. If you specify OutputAsDlarray as true
or 1, check that the data type specified by OutputCast is supported by dlarray. If you specify
OutputEnvironment as "gpu" or "auto" and a supported GPU is available, check that the data
type specified by OutputCast is supported by gpuArray.
Example: {'single','single','logical'}
Data Types: char | string

OutputAsDlarray — Flag to convert mini-batch variable to dlarray
true or 1 (default) | false or 0 | vector of logical values

This property is read-only.

Flag to convert mini-batch variable to dlarray, specified as a numeric or logical 1 (true) or 0
(false) or as a vector of numeric or logical values.

To specify a different value for each output, specify a vector containing an entry for each mini-batch
variable. The order of the elements of this vector must match the order in which the mini-batch
variable are returned. This order is the same order in which the variables are returned from the
function specified by MiniBatchFcn. If you do not specify a custom function for MiniBatchFcn, it is
the same order in which the variables are returned by the underlying datastore.

Variables that are converted to dlarray have the underlying data type specified by the OutputCast
property.
Example: [1,1,0]
Data Types: logical

MiniBatchFormat — Data format of mini-batch variables
'' (default) | character vector | cell array

This property is read-only.
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Data format of mini-batch variables, specified as a character vector or a cell array of character
vectors.

The mini-batch format is applied to dlarray variables only. Non-dlarray mini-batch variables must
have a MiniBatchFormat of ''.

To avoid an error when you have a mix of dlarray and non-dlarray variables, you must specify a
value for each output by providing a cell array containing an entry for each mini-batch variable. The
order of the elements of this cell array must match the order in which the mini-batch variables are
returned. This is the same order in which the variables are returned from the function specified by
MiniBatchFcn. If you do not specify a custom function for MiniBatchFcn, it is the same order in
which the variables are returned by the underlying datastore.
Example: {'SSCB', ''}
Data Types: char | string

OutputEnvironment — Hardware resource for mini-batch variables
'auto' (default) | 'gpu' | 'cpu' | cell array

Hardware resource for mini-batch variables returned using the next function, specified as one of the
following values:

• 'auto' — Return mini-batch variables on the GPU if one is available. Otherwise, return mini-
batch variables on the CPU.

• 'gpu' — Return mini-batch variables on the GPU.
• 'cpu' — Return mini-batch variables on the CPU

To return only specific variables on the GPU, specify OutputEnvironment as a cell array containing
an entry for each mini-batch variable. The order of the elements of this cell array must match the
order the mini-batch variable are returned. This order is the same order as the variables are returned
from the function specified by MiniBatchFcn. If you do not specify a custom MiniBatchFcn, it is
the same order as the variables are returned by the underlying datastore.

Using a GPU requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also
have a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). If you choose the 'gpu' option and Parallel Computing
Toolbox or a suitable GPU is not available, then the software returns an error.
Example: {'gpu','cpu'}
Data Types: char | string

Object Functions
hasdata Determine if minibatchqueue can return mini-batch
next Obtain next mini-batch of data from minibatchqueue
partition Partition minibatchqueue
reset Reset minibatchqueue to start of data
shuffle Shuffle data in minibatchqueue

Examples
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Prepare Mini-Batches for Custom Training Loop

Use a minibatchqueue object to automatically prepare mini-batches of images and classification
labels for training in a custom training loop.

Create a datastore. Calling read on auimds produces a table with two variables: input, containing
the image data, and response, containing the corresponding classification labels.

auimds = augmentedImageDatastore([100 100],digitDatastore);
A = read(auimds);
head(A,2)

ans = 
         input         response
    _______________    ________

    {100×100 uint8}       0    
    {100×100 uint8}       0    

Create a minibatchqueue object from auimds. Set the MiniBatchSize property to 256.

The minibatchqueue object has two output variables: the images and classification labels from the
input and response variables of auimds, respectively. Set the minibatchqueue object to return
the images as a formatted dlarray on the GPU. The images are single-channel black-and-white
images. Add a singleton channel dimension by applying the format 'SSBC' to the batch. Return the
labels as a non-dlarray on the CPU.

mbq = minibatchqueue(auimds,...
    'MiniBatchSize',256,...
    'OutputAsDlarray',[1,0],...
    'MiniBatchFormat',{'SSBC',''},...
    'OutputEnvironment',{'gpu','cpu'})

Use the next function to obtain mini-batches from mbq.

[X,Y] = next(mbq);

Create Mini-Batches Using Custom Preprocessing Function and Background Dispatch

Preprocess data using a minibatchqueue with a custom mini-batch preprocessing function. The
custom function rescales the incoming image data between 0 and 1 and calculates the average image.

Unzip the data and create a datastore.

unzip("MerchData.zip");
imds = imageDatastore("MerchData", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames"); 

Create a minibatchqueue.

• Set the number of outputs to 2, to match the number of outputs of the function.
• Set the mini-batch size.
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• Preprocesses the data using the custom function preprocessMiniBatch defined at the end of
this example. The custom function concatenates the image data into a numeric array, rescales the
image between 0 and 1, and calculates the average of the batch of images. The function returns
the rescaled batch of images and the average image.

• Apply the preprocessing function in the background using a parallel pool by setting the
DispatchInBackground property to true. Setting DispatchInBackground to true requires
Parallel Computing Toolbox™.

• Do not convert the mini-batch output variables to a dlarray.

mbq = minibatchqueue(imds,2,...
    MiniBatchSize=16,...
    MiniBatchFcn=@preprocessMiniBatch,...
    DispatchInBackground=true,...
    OutputAsDlarray=false)

mbq = 
minibatchqueue with 2 outputs and properties:

   Mini-batch creation:
           MiniBatchSize: 16
        PartialMiniBatch: 'return'
            MiniBatchFcn: @preprocessMiniBatch
    DispatchInBackground: 1

   Outputs:
              OutputCast: {'single'  'single'}
         OutputAsDlarray: [0 0]
         MiniBatchFormat: {''  ''}
       OutputEnvironment: {'auto'  'auto'}

If you are using DispatchInBackground and a parallel pool is not already open, a local parallel
pool will automatically open when data is read from the mini-batch queue. If your preprocessing
function is supported for a thread-based enviroment, open a thread-based parallel pool for reduced
memory usage, faster scheduling, and lower data transfer costs. For more information, see “Choose
Between Thread-Based and Process-Based Environments” (Parallel Computing Toolbox).

parpool("Threads");

Starting parallel pool (parpool) using the 'Threads' profile ...
Connected to the parallel pool (number of workers: 20).

Obtain a mini-batch and display the average of the images in the mini-batch. A thread worker applies
the preprocessing function.

[X,averageImage] = next(mbq);
imshow(averageImage)
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function [X,averageImage] = preprocessMiniBatch(XCell)
    X = cat(4,XCell{:});
    
    X = rescale(X,InputMin=0,InputMax=255);
    averageImage = mean(X,4);
end

Use minibatchqueue in Custom Training Loop

Train a network using minibatchqueue to manage the processing of mini-batches.

Load Training Data

Load the digits training data and store the data in a datastore. Create a datastore for the images and
one for the labels using arrayDatastore. Then, combine the datastores to produce a single
datastore to use with minibatchqueue.

[XTrain,YTrain] = digitTrain4DArrayData;
dsX = arrayDatastore(XTrain,IterationDimension=4);
dsY = arrayDatastore(YTrain);

dsTrain = combine(dsX,dsY);

Determine the number of unique classes in the label data.

classes = categories(YTrain);
numClasses = numel(classes);

Define Network

Define the network and specify the average image value using the Mean option in the image input
layer.
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layers = [
    imageInputLayer([28 28 1],Mean=mean(XTrain,4))
    convolution2dLayer(5,20)
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    reluLayer
    convolution2dLayer(3,20,Padding=1)
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];
lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

net = dlnetwork(lgraph);

Define Model Loss Function

Create the helper function modelLoss, listed at the end of the example. The function takes as input a
dlnetwork object net and a mini-batch of input data X with corresponding labels Y, and returns the
loss and the gradients of the loss with respect to the learnable parameters in net.

Specify Training Options

Specify the options to use during training.

numEpochs = 10;
miniBatchSize = 128;

Visualize the training progress in a plot.

plots = "training-progress";

Create the minibatchqueue

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

• Discard partial mini-batches.
• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of

this example) to one-hot encode the class labels.
• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By

default, the minibatchqueue object converts the data to dlarray objects with underlying data
type single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,...
    MiniBatchSize=miniBatchSize,...
    PartialMiniBatch="discard",...
    MiniBatchFcn=@preprocessMiniBatch,...    
    MiniBatchFormat=["SSCB",""]);
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Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches while data is still available in the minibatchqueue. Update the network parameters using
the adamupdate function. At the end of each epoch, display the training progress.

Initialize the average gradients and squared average gradients.

averageGrad = [];
averageSqGrad = [];

Calculate the total number of iterations for the training progress monitor.

numObservationsTrain = numel(YTrain);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

if plots == "training-progress"
    monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");
end

Train the network.

iteration = 0;
epoch = 0;

while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    shuffle (mbq);
        
    while hasdata(mbq)  && ~monitor.Stop
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        [X,Y] = next(mbq);
              
        % Evaluate the model loss and gradients using dlfeval and the
        % modelLoss helper function.
        [loss,grad] = dlfeval(@modelLoss,net,X,Y);

        % Update the network parameters using the Adam optimizer.
        [net,averageGrad,averageSqGrad] = adamupdate(net,grad,averageGrad,averageSqGrad,iteration);

        % Update the training progress monitor.
        if plots == "training-progress"
            recordMetrics(monitor,iteration,Loss=loss);
            updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
            monitor.Progress = 100 * iteration/numIterations;
        end
    end
end
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Model Loss Function

The modelLoss helper function takes as input a dlnetwork object net and a mini-batch of input
data X with corresponding labels Y, and returns the loss and the gradients of the loss with respect to
the learnable parameters in net. To compute the gradients automatically, use the dlgradient
function.

function [loss,gradients] = modelLoss(net,X,Y)
    YPred = forward(net,X);    
    loss = crossentropy(YPred,Y);    
    gradients = dlgradient(loss,net.Learnables);
    
end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:

1 Extract the image data from the incoming cell array and concatenate the data into a numeric
array. Concatenating the image data over the fourth dimension adds a third dimension to each
image, to be used as a singleton channel dimension.

2 Extract the label data from the incoming cell array and concatenate along the second dimension
into a categorical array.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension
produces an encoded array that matches the shape of the network output.

function [X,Y] = preprocessMiniBatch(XCell,YCell)
    % Extract image data from the cell array and concatenate over fourth
    % dimension to add a third singleton dimension, as the channel
    % dimension.
    X = cat(4,XCell{:});
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    % Extract label data from cell and concatenate.
    Y = cat(2,YCell{:});
    
    % One-hot encode labels.
    Y = onehotencode(Y,1);

end

Version History
Introduced in R2020b

See Also
datastore | dlfeval | dlarray | dlnetwork

Topics
“Train Deep Learning Model in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
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mobilenetv2
MobileNet-v2 convolutional neural network

Syntax
net = mobilenetv2
net = mobilenetv2('Weights','imagenet')

lgraph = mobilenetv2('Weights','none')

Description
MobileNet-v2 is a convolutional neural network that is 53 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the MobileNet-v2 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with MobileNet-v2.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load MobileNet-v2 instead of GoogLeNet.

net = mobilenetv2 returns a MobileNet-v2 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for MobileNet-v2 Network support package.
If this support package is not installed, then the function provides a download link.

net = mobilenetv2('Weights','imagenet') returns a MobileNet-v2 network trained on the
ImageNet data set. This syntax is equivalent to net = mobilenetv2.

lgraph = mobilenetv2('Weights','none') returns the untrained MobileNet-v2 network
architecture. The untrained model does not require the support package.

Examples

Download MobileNet-v2 Support Package

Download and install the Deep Learning Toolbox Model for MobileNet-v2 Network support package.

Type mobilenetv2 at the command line.

mobilenetv2

If the Deep Learning Toolbox Model for MobileNet-v2 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing mobilenetv2 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

mobilenetv2

ans = 

  DAGNetwork with properties:

         Layers: [155×1 nnet.cnn.layer.Layer]
    Connections: [164×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(mobilenetv2)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained MobileNet-v2 convolutional neural network
DAGNetwork object

Pretrained MobileNet-v2 convolutional neural network, returned as a DAGNetwork object.
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lgraph — Untrained MobileNet-v2 convolutional neural network architecture
LayerGraph object

Untrained MobileNet-v2 convolutional neural network architecture, returned as a LayerGraph
object.

Version History
Introduced in R2019a

References
[1] ImageNet. http://www.image-net.org

[2] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C. "MobileNetV2: Inverted Residuals
and Linear Bottlenecks." In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 4510-4520). IEEE.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = mobilenetv2 or by
passing the mobilenetv2 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('mobilenetv2')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax mobilenetv2('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = mobilenetv2 or by
passing the mobilenetv2 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('mobilenetv2')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax mobilenetv2('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | trainNetwork | layerGraph |
DAGNetwork | resnet50 | resnet101 | inceptionresnetv2 | squeezenet | densenet201

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
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“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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mse
Half mean squared error

Syntax
loss = mse(Y,targets)
loss = mse(Y,targets,'DataFormat',FMT)

Description
The half mean squared error operation computes the half mean squared error loss between network
predictions and target values for regression tasks.

The loss is calculated using the following formula

loss = 1
2N ∑i = 1

M
(Xi− Ti)2

where Xi is the network prediction, Ti is the target value, M is the total number of responses in X
(across all observations), and N is the total number of observations in X.

Note This function computes the half mean squared error loss between predictions and targets
stored as dlarray data. If you want to calculate the half mean squared error loss within a
layerGraph object or Layer array for use with trainNetwork, use the following layer:

• regressionLayer

loss = mse(Y,targets) computes the half mean squared error loss between the predictions Y and
the target values targets for regression problems. The input Y must be a formatted dlarray. The
output loss is an unformatted dlarray scalar.

loss = mse(Y,targets,'DataFormat',FMT) also specifies the dimension format FMT when Y is
not a formatted dlarray.

Examples

Find Half Mean Squared Error Between Predicted and Target Values

The half mean squared error evaluates how well the network predictions correspond to the target
values.

Create the input predictions as a single observation of random values with a height and width of six
and a single channel.

height = 6;
width = 6;
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channels = 1;
observations = 1;

Y = rand(height,width,channels,observations);
Y = dlarray(Y,'SSCB')

Create the target values as a numeric array with the same dimension order as the input data Y.

targets = ones(height,width,channels,observations);

Compute the half mean squared error between the predictions and the targets.

loss = mse(Y,targets)

loss =

  1x1 dlarray

    5.2061

Input Arguments
Y — Predictions
dlarray | numeric array

Predictions, specified as a formatted dlarray, an unformatted dlarray, or a numeric array. When Y
is not a formatted dlarray, you must specify the dimension format using the DataFormat option.

If Y is a numeric array, targets must be a dlarray.

targets — Target responses
dlarray | numeric array

Target responses, specified as a formatted or unformatted dlarray or a numeric array.

The size of each dimension of targets must match the size of the corresponding dimension of Y.

If targets is a formatted dlarray, then its format must be the same as the format of Y, or the same
as DataFormat if Y is unformatted.

If targets is an unformatted dlarray or a numeric array, then the function applies the format of Y
or the value of DataFormat to targets.

Tip Formatted dlarray objects automatically permute the dimensions of the underlying data to have
order "S" (spatial), "C" (channel), "B" (batch), "T" (time), then "U" (unspecified). To ensure that the
dimensions of Y and targets are consistent, when Y is a formatted dlarray, also specify targets
as a formatted dlarray.

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:
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• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

Output Arguments
loss — Half mean squared error loss
dlarray scalar

Half mean squared error loss, returned as an unformatted dlarray scalar. The output loss has the
same underlying data type as the input Y.

More About
Half Mean Squared Error Loss

The mse function computes the half-mean-squared-error loss for regression problems. For more
information, see the definition of “Regression Output Layer” on page 1-1372 on the
RegressionOutputLayer reference page.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

• Y
• targets

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
dlarray | dlgradient | dlfeval | softmax | sigmoid | crossentropy | huber

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network with Multiple Outputs”
“List of Functions with dlarray Support”

1 Deep Learning Functions

1-1238



multiplicationLayer
Multiplication layer

Description
A multiplication layer multiplies inputs from multiple neural network layers element-wise.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names
'in1','in2',...,'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers, respectively. The size
of the inputs to the multiplication layer must be either same across all dimensions or same across at
least one dimension with other dimensions as singleton dimensions.

Creation

Syntax
layer = multiplicationLayer(numInputs)
layer = multiplicationLayer(numInputs,'Name',name)

Description

layer = multiplicationLayer(numInputs) creates a multiplication layer that multiplies
numInputs inputs element-wise. This function also sets the NumInputs property.

layer = multiplicationLayer(numInputs,'Name',name) also sets the Name property.

Properties
NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer greater than or equal to 2.

The inputs have the names 'in1','in2',...,'inN', where N is NumInputs. For example, if
NumInputs is 3, then the inputs have the names 'in1','in2', and 'in3'. Use the input names
when connecting or disconnecting the layer using the connectLayers or disconnectLayers
functions.

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string
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InputNames — Input Names
{'in1','in2',…,'inN'} (default)

Input names, specified as {'in1','in2',...,'inN'}, where N is the number of inputs of the layer.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create and Connect Multiplication Layer

Create a multiplication layer with two inputs and the name 'mul_1'.

mul = multiplicationLayer(2,'Name','mul_1')

mul = 
  MultiplicationLayer with properties:

          Name: 'mul_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Create two ReLU layers and connect them to the multiplication layer. The multiplication layer
multiplies the outputs from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph();
lgraph = addLayers(lgraph,relu_1);
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lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,mul);

lgraph = connectLayers(lgraph,'relu_1','mul_1/in1');
lgraph = connectLayers(lgraph,'relu_2','mul_1/in2');

plot(lgraph);

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | layerGraph | additionLayer | concatenationLayer
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Topics
“Deep Learning in MATLAB”
“List of Deep Learning Layers”
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nasnetlarge
Pretrained NASNet-Large convolutional neural network

Syntax
net = nasnetlarge

Description
NASNet-Large is a convolutional neural network that is trained on more than a million images from
the ImageNet database [1]. The network can classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has an image input size of 331-by-331. For
more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the NASNet-Large model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with NASNet-Large.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load NASNet-Large instead of GoogLeNet.

net = nasnetlarge returns a pretrained NASNet-Large convolutional neural network.

This function requires the Deep Learning Toolbox Model for NASNet-Large Network support
package. If this support package is not installed, then the function provides a download link.

Examples

Download NASNet-Large Support Package

Download and install the Deep Learning Toolbox Model for NASNet-Large Network support package.

Type nasnetlarge at the command line.

nasnetlarge

If the Deep Learning Toolbox Model for NASNet-Large Network support package is not installed,
then the function provides a link to the required support package in the Add-On Explorer. To install
the support package, click the link, and then click Install. Check that the installation is successful by
typing nasnetlarge at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

nasnetlarge

ans = 

  DAGNetwork with properties:

         Layers: [1244×1 nnet.cnn.layer.Layer]
    Connections: [1463×2 table]
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Visualize the network using Deep Network Designer.

deepNetworkDesigner(nasnetlarge)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Transfer Learning with NASNet-Large

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the NASNet-Large network instead of GoogLeNet.

net = nasnetlarge
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Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained NASNet-Large convolutional neural network
DAGNetwork object

Pretrained NASNet-Large convolutional neural network, returned as a DAGNetwork object.

Version History
Introduced in R2019a

References
[1] ImageNet. http://www.image-net.org

[2] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning Transferable
Architectures for Scalable Image Recognition ." arXiv preprint arXiv:1707.07012 2, no. 6
(2017).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = nasnetlarge or by
passing the nasnetlarge function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetlarge')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = nasnetlarge or by
passing the nasnetlarge function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetlarge')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | trainNetwork | layerGraph |
DAGNetwork | resnet50 | resnet101 | inceptionresnetv2 | squeezenet | densenet201 |
nasnetmobile | shufflenet

Topics
“Transfer Learning with Deep Network Designer”
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“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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nasnetmobile
Pretrained NASNet-Mobile convolutional neural network

Syntax
net = nasnetmobile

Description
NASNet-Mobile is a convolutional neural network that is trained on more than a million images from
the ImageNet database [1]. The network can classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has an image input size of 224-by-224. For
more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the NASNet-Mobile model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with NASNet-Mobile.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load NASNet-Mobile instead of GoogLeNet.

net = nasnetmobile returns a pretrained NASNet-Mobile convolutional neural network.

This function requires the Deep Learning Toolbox Model for NASNet-Mobile Network support
package. If this support package is not installed, then the function provides a download link.

Examples

Download NASNet-Mobile Support Package

Download and install the Deep Learning Toolbox Model for NASNet-Mobile Network support
package.

Type nasnetmobile at the command line.

nasnetmobile

If the Deep Learning Toolbox Model for NASNet-Mobile Network support package is not installed,
then the function provides a link to the required support package in the Add-On Explorer. To install
the support package, click the link, and then click Install. Check that the installation is successful by
typing nasnetmobile at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

nasnetmobile

ans = 

  DAGNetwork with properties:
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         Layers: [914×1 nnet.cnn.layer.Layer]
    Connections: [1073×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(nasnetmobile)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Transfer Learning with NASNet-Mobile

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the NASNet-Mobile network instead of GoogLeNet.

net = nasnetmobile
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Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained NASNet-Mobile convolutional neural network
DAGNetwork object

Pretrained NASNet-Mobile convolutional neural network, returned as a DAGNetwork object.

Version History
Introduced in R2019a

References
[1] ImageNet. http://www.image-net.org

[2] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning Transferable
Architectures for Scalable Image Recognition ." arXiv preprint arXiv:1707.07012 2, no. 6
(2017).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = nasnetmobile or by
passing the nasnetmobile function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetmobile')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = nasnetmobile or by
passing the nasnetmobile function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('nasnetmobile')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | trainNetwork | layerGraph |
DAGNetwork | resnet50 | resnet101 | inceptionresnetv2 | squeezenet | densenet201 |
nasnetlarge | shufflenet

Topics
“Transfer Learning with Deep Network Designer”
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“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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networkDataLayout
Deep learning network data layout for learnable parameter initialization

Description
Network data layout objects represent the data size and dlarray format information of input data
for parameter initialization.

You can use networkDataLayout objects to initialize dlnetwork objects and custom layer
learnable parameters using its size and format information as an alternative to using example data.

Creation

Syntax
layout = networkDataLayout(sz)
layout = networkDataLayout(sz,fmt)

Description

layout = networkDataLayout(sz) creates an unformatted network data layout object and sets
the Size property.

layout = networkDataLayout(sz,fmt) creates a formatted network data layout object and sets
the Size and Format properties.

Properties
Size — Size
row vector

Size, specified as a row vector of two or more nonnegative integers or NaN values, where sz(i)
denotes the size of dimension i and NaN values correspond to unknown dimension sizes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Format — Data format
'' (default) | string scalar | character vector

Data format, specified as a string scalar or a character vector. Each character in the string must be
one of the following dimension labels:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time

 networkDataLayout

1-1251



• "U" — Unspecified

You can specify any number of "S" and "U" labels. You can specify at most one of each of the "C",
"B", and "T" labels.
Data Types: string | char

Object Functions
finddim Find dimensions with specified label

Examples

Create Unformatted Network Data Layout Object

Create an unformatted networkDataLayout object representing data of size [28 28 1].

layout = networkDataLayout([28 28 1])

layout = 
  networkDataLayout with properties:

      Size: [28 28 1]
    Format: ''

Create Formatted Network Data Layout Object

Create a formatted networkDataLayout object representing a batch of 2-D RGB images of size
[227 227], where the batch size is unknown.

layout = networkDataLayout([227 227 3 NaN],"SSCB")

layout = 
  networkDataLayout with properties:

      Size: [227 227 3 NaN]
    Format: 'SSCB'

Initialize Network using Network Data Layout Objects

Create an uninitialized dlnetwork object that has two unconnected inputs.

layers = [
    convolution2dLayer(5,16,Name="conv")
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(50)
    flattenLayer
    concatenationLayer(1,2,Name="cat")
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    fullyConnectedLayer(10)
    softmaxLayer];

net = dlnetwork(layers,Initialize=false);

View the input names of the network.

net.InputNames

ans = 1×2 cell
    {'conv'}    {'cat/in2'}

Create network data layout objects that represent input data for the inputs. For the first input,
specify a batch of 28-by-28 grayscale images. For the second input specify a batch of single-channel
feature data.

layout1 = networkDataLayout([28 28 1 NaN],"SSCB");
layout2 = networkDataLayout([1 NaN],"CB");

Initialize the network using the network data layout objects.

net = initialize(net,layout1,layout2)

net = 
  dlnetwork with properties:

         Layers: [8×1 nnet.cnn.layer.Layer]
    Connections: [7×2 table]
     Learnables: [8×3 table]
          State: [2×3 table]
     InputNames: {'conv'  'cat/in2'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Find Dimensions of Network Data Layout Object

Create a formatted network data layout object representing 2-D image sequences. Specify the format
"SSCBT" (spatial, spatial, channel, batch, time).

layout = networkDataLayout([227 227 3 NaN 100],"SSCBT");

Find the dimensions with the label "S".

dim = finddim(layout,"S")

dim = 1×2

     1     2
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Version History
Introduced in R2022b

See Also
dlarray | dlnetwork | finddim | initialize

Topics
“Deep Learning Network Composition”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Specify Training Options in Custom Training Loop”
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next
Obtain next mini-batch of data from minibatchqueue

Syntax
[x1,...,xN] = next(mbq)

Description
[x1,...,xN] = next(mbq) returns a mini-batch of data prepared using the minibatchqueue
object mbq. The function returns as many variables as the number of outputs of mbq.

Examples

Obtain Mini-Batch

Create a minibatchqueue object and obtain a mini-batch.

Create a minibatchqueue object from a datastore. Set the MiniBatchSize property to 2.

auimds = augmentedImageDatastore([100 100],digitDatastore);
mbq = minibatchqueue(auimds,'MiniBatchSize',2,"MiniBatchFormat",{'SSBC','BC'})

mbq = 
minibatchqueue with 2 outputs and properties:

   Mini-batch creation:
           MiniBatchSize: 2
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'  'single'}
         OutputAsDlarray: [1 1]
         MiniBatchFormat: {'SSBC'  'BC'}
       OutputEnvironment: {'auto'  'auto'}

Use next to obtain a mini-batch. mbq has two outputs.

[X,Y] = next(mbq);

X is a mini-batch containing two images from the datastore. Y contains the classification labels of
those images. Check the size and data format of the mini-batch variables.

size(X)
dims(X)
size(Y)
dims(Y)

ans = 1×4    
   100   100     1     2
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ans = 'SSCB'
ans = 1×2    
     1     2
ans = 'CB'

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

Output Arguments
[x1,...,xN] — Mini-batch
numeric array | cell array

Mini-batch, returned as a numeric array or cell array.

The number and type of variables returned by next depends on the configuration of mbq. The
function returns as many variables as the number of outputs of mbq.

Version History
Introduced in R2020b

See Also
hasdata | reset | minibatchqueue

Topics
“Train Deep Learning Model in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
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occlusionSensitivity
Explain network predictions by occluding the inputs

Syntax
scoreMap = occlusionSensitivity(net,X,label)
activationMap = occlusionSensitivity(net,X,layer,channel)
___  = occlusionSensitivity( ___ ,Name,Value)

Description
scoreMap = occlusionSensitivity(net,X,label) computes a map of the change in
classification score for the classes specified by label when parts of the input data X are occluded
with a mask. The change in classification score is relative to the original data without occlusion. The
occluding mask is moved across the input data, giving a change in classification score for each mask
location. Use an occlusion sensitivity map to identify the parts of your input data that most impact the
classification score. Areas in the map with higher positive values correspond to regions of input data
that contribute positively to the specified classification label. The network must contain a
classificationLayer.

activationMap = occlusionSensitivity(net,X,layer,channel) computes a map of the
change in total activation for the specified layer and channel when parts of the input data X are
occluded with a mask. The change in activation score is relative to the original data without
occlusion. Areas in the map with higher positive values correspond to regions of input data that
contribute positively to the specified channel activation, obtained by summing over all spatial
dimensions for that channel. The total activation fulfills the role of the class score for classification
tasks and generalizes the occlusion sensitivity technique to nonclassification tasks.

Use this syntax to compute the occlusion sensitivity map for nonclassification tasks, such as
regression, or for use with a network containing a custom classification layer.

___  = occlusionSensitivity( ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in previous syntaxes. For example,
'Stride',50 sets the stride of the occluding mask to 50 pixels.

Examples

Visualize Which Parts of an Image Influence Classification Score

Import the pretrained network GoogLeNet.

net = googlenet;

Import the image and resize to match the input size for the network.

X = imread("sherlock.jpg");

inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);
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Display the image.

imshow(X)

Classify the image to get the class label.

label = classify(net,X)

label = categorical
     golden retriever 

Use occlusionSensitivity to determine which parts of the image positively influence the
classification result.

scoreMap = occlusionSensitivity(net,X,label);

Plot the result over the original image with transparency to see which areas of the image affect the
classification score.

figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5);
colormap jet
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The red parts of the map show the areas which have a positive contribution to the specified label. The
dog's left eye and ear strongly influence the network's prediction of golden retriever.

You can get similar results using the gradient class activation mapping (Grad-CAM) technique. Grad-
CAM uses the gradient of the classification score with respect to the last convolutional layer in a
network in order to understand which parts of the image are most important for classification. For an
example, see “Grad-CAM Reveals the Why Behind Deep Learning Decisions”.

Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork object or a DAGNetwork object. You can get a
trained network by importing a pretrained network or by training your own network using the
trainNetwork function. For more information about pretrained networks, see “Pretrained Deep
Neural Networks”.

net must contain a single input layer. The input layer must be an imageInputLayer.

X — Observation to occlude
numeric array

Observation to occlude, specified as a numeric array. You can calculate the occlusion sensitivity map
of one observation at a time. For example, specify a single image to understand which parts of that
image affect classification results.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

label — Class label used to calculate change in classification score
categorical array | character array | string array
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Class label used to calculate change in classification score, specified as a categorical, a character
array, or a string array.

If you specify label as a vector, the software calculates the change in classification score for each
class label independently. In that case, scoreMap(:,:,i) corresponds to the occlusion sensitivity
map for the ith element in label.
Data Types: char | string | categorical

layer — Layer used to calculate change in activation
character vector | string scalar

Layer used to calculate change in activation, specified as a character vector or a string scalar. Specify
layer as the name of the layer in net for which you want to compute the change in activations.
Data Types: char | string

channel — Channel used to calculate change in activation
numeric index | vector of numeric indices

Channel used to calculate change in activation, specified as scalar or vector of channel indices. The
possible choices for channel depend on the selected layer. For example, for convolutional layers, the
NumFilters property specifies the number of output channels. You can use analyzeNetwork to
inspect the network and find out the number of output channels for each layer.

If channel is specified as a vector, the change in total activation for each specified channel is
calculated independently. In that case, activationMap(:,:,i) corresponds to the occlusion
sensitivity map for the ith element in channel.

The function computes the change in total activation due to occlusion. The total activation is
computed by summing over all spatial dimensions of the activation of that channel. The occlusion
sensitivity map corresponds to the difference between the total activation of the original data with no
occlusion and the total activation for the occluded data. Areas in the map with higher positive values
correspond to regions of input data that contribute positively to the specified channel activation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaskSize',75,'OutputUpsampling','nearest' uses an occluding mask with size 75
pixels along each side, and uses nearest-neighbor interpolation to upsample the output to the same
size as the input data

MaskSize — Size of occluding mask
'auto' (default) | vector | scalar

Size of occluding mask, specified as the comma-separated pair consisting of 'MaskSize' and one of
the following.

• 'auto' — Use a mask size of 20% of the input size, rounded to the nearest integer.
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• A vector of the form [h w]— Use a rectangular mask with height h and width w.
• A scalar — Use a square mask with height and width equal to the specified value.

Example: 'MaskSize',[50 60]

Stride — Step size for traversing mask across input data
'auto' (default) | vector | scalar

Step size for traversing the mask across the input data, specified as the comma-separated pair
consisting of 'Stride' and one of the following.

• 'auto' — Use a stride of 10% of the input size, rounded to the nearest integer.
• A vector of the form [a b]— Use a vertical stride of a and a horizontal stride of b.
• A scalar — Use a stride of the specified value in both the vertical and horizontal directions.

Example: 'Stride',30

MaskValue — Replacement value of occluded region
'auto' (default) | scalar | vector

Replacement value of occluded region, specified as the comma-separated pair consisting of
'MaskValue' and one of the following.

• 'auto' — Replace occluded pixels with the channel-wise mean of the input data.
• A scalar — Replace occluded pixels with the specified value.
• A vector — Replace occluded pixels with the value specified for each channel. The vector must

contain the same number of elements as the number of output channels of the layer.

Example: 'MaskValue',0.5

OutputUpsampling — Output upsampling method
'bicubic' (default) | 'nearest' | 'none'

Output upsampling method, specified as the comma-separated pair consisting of
'OutputUpsampling' and one of the following.

• 'bicubic' — Use bicubic interpolation to produce a smooth map the same size as the input data.
• 'nearest' — Use nearest-neighbor interpolation expand the map to the same size as the input

data. The map indicates the resolution of the occlusion computation with respect to the size of the
input data.

• 'none' — Use no upsampling. The map can be smaller than the input data.

If 'OutputUpsampling' is 'bicubic' or 'nearest', the computed map is upsampled to the size
of the input data using the imresize function.
Example: 'OutputUpsampling','nearest'

MaskClipping — Edge handling of the occluding mask
'on' (default) | 'off'

Edge handling of the occluding mask, specified as the comma-separated pair consisting of
'MaskClipping' and one of the following.
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• 'on' — Place the center of the first mask at the top-left corner of the input data. Masks at the
edges of the data are not full size.

• 'off' — Place the top-left corner of the first mask at the top-left corner of the input data. Masks
are always full size. If the values of the MaskSize and Stride options mean that some masks
extend past the boundaries of the data, those masks are excluded.

For non-image input data, you can ensure you always occlude the same amount of input data using
the option 'MaskClipping','off'. For example, for word embeddings data, you can ensure the
same number of words are occluded at each point.
Example: 'MaskClipping','off'

MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use to compute the map of change in classification score, specified as the
comma-separated pair consisting of 'MiniBatchSize' and a positive integer.

A mini-batch is a subset of the set of occluded images as the mask is moved across the input image.
All occluded images are used to calculate the map; the mini-batch determines the number of images
that are passed to the network at once. Larger mini-batch sizes lead to faster computation, at the cost
of more memory.
Example: 'MiniBatchSize',256

ExecutionEnvironment — Hardware resource
'auto' (default) | 'cpu' | 'gpu'

Hardware resource for computing map, specified as the comma-separated pair consisting of
'ExecutionEnvironment' and one of the following.

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.

The GPU option requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also
have a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). If you choose the 'ExecutionEnvironment','gpu'
option and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns
an error.
Example: 'ExecutionEnvironment','gpu'

Output Arguments
scoreMap — Map of change of classification score
numeric matrix | numeric array

Map of change of classification score, returned as a numeric matrix or a numeric array. The change in
classification score is calculated relative to the original input data without occlusion. Areas in the
map with higher positive values correspond to regions of input data that contribute positively to the
specified classification label.
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If label is specified as a vector, the change in classification score for each class label is calculated
independently. In that case, scoreMap(:,:,i) corresponds to the occlusion sensitivity map for the
ith element in label.

activationMap — Map of change of total activation
numeric matrix | numeric array

Map of change of total activation, returned as a numeric matrix or a numeric array.

The function computes the change in total activation due to occlusion. The total activation is
computed by summing over all spatial dimensions of the activation of that channel. The occlusion
sensitivity map corresponds to the difference between the total activation of the original data with no
occlusion and the total activation for the occluded data. Areas in the map with higher positive values
correspond to regions of input data that contribute positively to the specified channel activation.

If channels is specified as a vector, the change in total activation for each specified channel is
calculated independently. In that case, activationMap(:,:,i) corresponds to the occlusion
sensitivity map for the ith element in channel.

Version History
Introduced in R2019b

See Also
activations | classify | imageLIME | gradCAM

Topics
“Understand Network Predictions Using Occlusion”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”
“Understand Network Predictions Using LIME”
“Investigate Network Predictions Using Class Activation Mapping”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”
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onehotdecode
Decode probability vectors into class labels

Syntax
A = onehotdecode(B,classes,featureDim)
A = onehotdecode(B,classes,featureDim,typename)

Description
A = onehotdecode(B,classes,featureDim) decodes each probability vector in B to the most
probable class label from the labels specified by classes. featureDim specifies the dimension
along which the probability vectors are defined. The function decodes the probability vectors into
class labels by matching the position of the highest value in the vector with the class label in the
corresponding position in classes. Each probability vector in A is replaced with the value of
classes that corresponds to the highest value in the probability vector.

A = onehotdecode(B,classes,featureDim,typename) decodes each probability vector in B to
the most probable class label and returns the result with data type typename. Use this syntax to
obtain decoded class labels with a specific data type.

Examples

Encode and Decode Labels

Use the onehotencode and onehotdecode functions to encode a set of labels into probability
vectors and decode them back into labels.

Create a vector of categorical labels.

colorsOriginal = ["red" "blue" "red" "green" "yellow" "blue"];
colorsOriginal = categorical(colorsOriginal)

colorsOriginal = 1x6 categorical
     red      blue      red      green      yellow      blue 

Determine the classes in the categorical vector.

classes = categories(colorsOriginal);

One-hot encode the labels into probability vectors by using the onehotencode function. Encode the
probability vectors into the first dimension.

colorsEncoded = onehotencode(colorsOriginal,1)

colorsEncoded = 4×6

     0     1     0     0     0     1
     0     0     0     1     0     0
     1     0     1     0     0     0
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     0     0     0     0     1     0

Use onehotdecode to decode the probability vectors.

colorsDecoded = onehotdecode(colorsEncoded,classes,1)

colorsDecoded = 1x6 categorical
     red      blue      red      green      yellow      blue 

The decoded labels match the original labels.

Decode Probability Vectors into Most Probable Classes

Use onehotdecode to decode a set of probability vectors into the most probable class for each
observation.

Create a set of 10 random probability vectors. The vectors express the probability that an observation
belongs to one of five classes.

numObs = 10;
numClasses = 5;

prob = rand(numObs,numClasses);

tot = sum(prob,2);
prob = prob./tot;

Define the set of five classes.

classes = ["Red" "Yellow" "Green" "Blue" "Purple"];

Decode the probabilities into the most probable classes. The probability vectors are encoded into the
second dimension, so specify the dimension containing encoded probabilities as 2. Obtain the most
probable classes as a vector of strings.

result = onehotdecode(prob,classes,2,"string")

result = 10x1 string
    "Red"
    "Yellow"
    "Yellow"
    "Green"
    "Yellow"
    "Blue"
    "Green"
    "Yellow"
    "Red"
    "Red"
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Input Arguments
B — Probability vectors
numeric array

Probability vectors to decode, specified as a numeric array.

Values in B must be between 0 and 1. If a probability vector in B contains NaN values, the function
decodes that observation to the class with the largest probability that is not NaN. If an observation
contains only NaN values, the function decodes that observation to the first class label in classes.
Data Types: single | double

classes — Classes
cell array | string vector | numeric vector | character array

Classes, specified as a cell array of character vectors, a string vector, a numeric vector, or a two-
dimensional character array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
string | cell | char

featureDim — Dimension containing probability vectors
positive integer

Dimension containing probability vectors, specified as a positive integer.

Use featureDim to specify the dimension in B that contains the probability vectors. The function
replaces each vector in B along the specified dimension with the element of classes in the same
position as the highest value along the vector.

The dimension of B specified by featureDim must have length equal to the number of classes
specified by classes.

typename — Data type of decoded labels
'categorical' (default) | character vector | string scalar

Data type of decoded labels, specified as a character vector or a string scalar.

Valid values of typename are 'categorical', 'string', and numeric types such as 'single' and
'int64'. If you specify a numeric type, classes must be a numeric vector.
Example: 'double'
Data Types: char | string

Output Arguments
A — Decoded class labels
categorical array (default) | string array | numeric array

Decoded class labels, returned as a categorical array, a string array, or a numeric array.

Version History
Introduced in R2020b
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See Also
onehotencode | categories

Topics
“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
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onehotencode
Encode data labels into one-hot vectors

Syntax
B = onehotencode(A,featureDim)
tblB = onehotencode(tblA)
___  = onehotencode( ___ ,typename)
___  = onehotencode( ___ ,'ClassNames',classes)

Description
B = onehotencode(A,featureDim) encodes data labels in categorical array A into a one-hot
encoded array B. The function replaces each element of A with a numeric vector of length equal to
the number of unique classes in A along the dimension specified by featureDim. The vector contains
a 1 in the position corresponding to the class of the label in A, and a 0 in every other position. Any
<undefined> values are encoded to NaN values.

tblB = onehotencode(tblA) encodes categorical data labels in table tblA into a table of one-hot
encoded numeric values. The function replaces the single variable of tblA with as many variables as
the number of unique classes in tblA. Each row in tblB contains a 1 in the variable corresponding
to the class of the label in tlbA, and a 0 in all other variables.

___  = onehotencode( ___ ,typename) encodes the labels into numeric values of data type
typename. Use this syntax with any of the input and output arguments in previous syntaxes.

___  = onehotencode( ___ ,'ClassNames',classes) also specifies the names of the classes to
use for encoding. Use this syntax when A or tblA does not contain categorical values, when you want
to exclude any class labels from being encoded, or when you want to encode the vector elements in a
specific order. Any label in A or tblA of a class that does not exist in classes is encoded to a vector
of NaN values.

Examples

One-Hot Encode a Vector of Labels

Encode a categorical vector of class labels into one-hot vectors representing the labels.

Create a column vector of labels, where each row of the vector represents a single observation.
Convert the labels to a categorical array.

labels = ["red"; "blue"; "red"; "green"; "yellow"; "blue"];
labels = categorical(labels);

View the order of the categories.

categories(labels)

ans = 4x1 cell
    {'blue'  }
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    {'green' }
    {'red'   }
    {'yellow'}

Encode the labels into one-hot vectors. Expand the labels into vectors in the second dimension to
encode the classes.

labels = onehotencode(labels,2)

labels = 6×4

     0     0     1     0
     1     0     0     0
     0     0     1     0
     0     1     0     0
     0     0     0     1
     1     0     0     0

Each observation in labels is now a row vector with a 1 in the position corresponding to the
category of the class label and 0 in all other positions. The function encodes the labels in the same
order as the categories, such that a 1 in position 1 represents the first category in the list, in this
case, 'blue'.

One-Hot Encode Table

One-hot encode a table of categorical values.

Create a table of categorical data labels. Each row in the table holds a single observation.

color = ["blue"; "red"; "blue"; "green"; "yellow"; "red"];
color = categorical(color);
color = table (color);

One-hot encode the table of class labels.

color = onehotencode(color)

color=6×4 table
    blue    green    red    yellow
    ____    _____    ___    ______

     1        0       0       0   
     0        0       1       0   
     1        0       0       0   
     0        1       0       0   
     0        0       0       1   
     0        0       1       0   

Each column of the table represents a class. The function encodes the data labels with a 1 in the
column of the corresponding class, and 0 everywhere else.
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One-Hot Encode Subset of Classes

If not all classes in the data are relevant, encode the data labels using only a subset of the classes.

Create a row vector of data labels, where each column of the vector represents a single observation

pets = ["dog" "fish" "cat" "dog" "cat" "bird"];

Define the list of classes to encode. These classes are a subset of those present in the observations.

animalClasses = ["bird"; "cat"; "dog"];

One-hot encode the observations into the first dimension. Specify the classes to encode.

encPets = onehotencode(pets,1,"ClassNames",animalClasses)

encPets = 3×6

     0   NaN     0     0     0     1
     0   NaN     1     0     1     0
     1   NaN     0     1     0     0

Observations of a class not present in the list of classes to encode are encoded to a vector of NaN
values.

One-Hot Encode Image for Semantic Segmentation

Use onehotencode to encode a matrix of class labels, such as a semantic segmentation of an image.

Define a simple 15-by-15 pixel segmentation matrix of class labels.

A = "blue";
B = "green";
C = "black";

A = repmat(A,8,15);
B = repmat(B,7,5);
C = repmat(C,7,5);

seg = [A;B C B];

Convert the segmentation matrix into a categorical array.

seg = categorical(seg);

One-hot encode the segmentation matrix into an array of type single. Expand the encoded labels
into the third dimension.

encSeg = onehotencode(seg,3,"single");

Check the size of the encoded segmentation.

size(encSeg)

ans = 1×3
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    15    15     3

The three possible classes of the pixels in the segmentation matrix are encoded as vectors in the third
dimension.

One-Hot Encode Table with Several Variables

If your data is a table that contains several types of class variables, you can encode each variable
separately.

Create a table of observations of several types of categorical data.

color = ["blue"; "red"; "blue"; "green"; "yellow"; "red"];
color = categorical(color);

pets = ["dog"; "fish"; "cat"; "dog"; "cat"; "bird"];
pets = categorical(pets);

location = ["USA"; "CAN"; "CAN"; "USA"; "AUS"; "USA"];
location = categorical(location);

data = table(color,pets,location)

data=6×3 table
    color     pets    location
    ______    ____    ________

    blue      dog       USA   
    red       fish      CAN   
    blue      cat       CAN   
    green     dog       USA   
    yellow    cat       AUS   
    red       bird      USA   

Use a for-loop to one-hot encode each table variable and append it to a new table containing the
encoded data.

encData = table();

for i=1:width(data)
 encData = [encData onehotencode(data(:,i))];
end

encData

encData=6×11 table
    blue    green    red    yellow    bird    cat    dog    fish    AUS    CAN    USA
    ____    _____    ___    ______    ____    ___    ___    ____    ___    ___    ___

     1        0       0       0        0       0      1      0       0      0      1 
     0        0       1       0        0       0      0      1       0      1      0 
     1        0       0       0        0       1      0      0       0      1      0 
     0        1       0       0        0       0      1      0       0      0      1 
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     0        0       0       1        0       1      0      0       1      0      0 
     0        0       1       0        1       0      0      0       0      0      1 

Each row of encData encodes the three different categorical classes for each observation.

Input Arguments
A — Array of data labels
categorical array | numeric array | string array

Array of data labels to encode, specified as a categorical array, a numeric array, or a string array.

• If A is a categorical array, the elements of the one-hot encoded vectors match the same order in
categories(A).

• If A is not a categorical array, you must specify the classes to encode using the 'ClassNames'
name-value argument. The function encodes the vectors in the order that the classes appear in
classes.

• If A contains undefined values or values not present in classes, the function encodes those
values as a vector of NaN values. typename must be 'double' or 'single'.

Data Types: categorical | numeric | string

tblA — Table of data labels
table

Table of data labels to encode, specified as a table. The table must contain a single variable and one
row for each observation. Each entry must contain a categorical scalar, a numeric scalar, or a string
scalar.

• If tblA contains categorical values, the elements of the one-hot encoded vectors match the order
of the categories; for example, the same order as categories(tbl(1,n)).

• If tblA does not contain categorical values, you must specify the classes to encode using the
'ClassNames' name-value argument. The function encodes the vectors in the order that the
classes appear in classes.

• If tblA contains undefined values or values not present in classes, the function encodes those
values as NaN values. typename must be 'double' or 'single'.

Data Types: table

featureDim — Dimension to expand
positive integer

Dimension to expand to encode the labels, specified as a positive integer.

featureDim must specify a singleton dimension of A, or be larger than n where n is the number of
dimensions of A.

typename — Data type of encoded labels
'double' (default) | character vector | string scalar

Data type of the encoded labels, specified as a character vector or a string scalar.
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• If the classification label input is a categorical array, a numeric array, or a string array, then the
encoded labels are returned as an array of data type typename.

• If the classification label input is a table, then the encoded labels are returned as a table where
each entry has data type typename.

Valid values of typename are floating point, signed and unsigned integer, and logical types.
Example: 'int64'
Data Types: char | string

classes — Classes to encode
cell array | string vector | numeric vector | character array

Classes to encode, specified as a cell array of character vectors, a string vector, a numeric vector, or a
two-dimensional character array.

• If the input A or tblA does not contain categorical values, then you must specify classes. You
can also use the classes argument to exclude any class labels from being encoded, or to encode
the vector elements in a specific order.

• If A or tblA contains undefined values or values not present in classes, the function encodes
those values to a vector of NaN values. typename must be 'double' or 'single'.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
string | cell

Output Arguments
B — Encoded labels
numeric array

Encoded labels, returned as a numeric array.

tblB — Encoded labels
table

Encoded labels, returned as a table.

Each row of tblB contains the one-hot encoded label for a single observation, in the same order as in
tblA. Each row contains a 1 in the variable corresponding to the class of the label in tlbA, and a 0 in
all other variables.

Version History
Introduced in R2020b

See Also
categorical | onehotdecode | minibatchqueue

Topics
“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
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padsequences
Pad or truncate sequence data to same length

Syntax
XPad = padsequences(X,paddingDim)
[XPad,mask] = padsequences(X,paddingDim)
[ ___ ] = padsequences(X,paddingDim,Name,Value)

Description
XPad = padsequences(X,paddingDim) pads the sequences in the cell array X along the
dimension specified by paddingDim. The function adds padding at the end of each sequence to
match the size of the longest sequence in X. The padded sequences are concatenated and the function
returns XPad as an array.

[XPad,mask] = padsequences(X,paddingDim) additionally returns a logical array representing
the positions of original sequence data in XPad, . The position of values of true or 1 in mask
correspond to the positions of original sequence data in XPad; values of false or 0 correspond to
padded values.

[ ___ ] = padsequences(X,paddingDim,Name,Value) specifies options using one or more
name-value arguments in addition to the input and output arguments in previous syntaxes. For
example, 'PaddingValue','left' adds padding to the beginning of the original sequence.

Examples

Pad Sequence Data to Same Length

Pad sequence data ready for training.

Load the sequence data.

s = japaneseVowelsTrainData;

The preprocessed data contains 270 observations each with 12 sequence features. The length of the
observations varies between 7 and 26 time steps.

Pad the data with zeros to the same length as the longest sequence. The function applies on the right
side of the data. Specify the dimension containing the time steps as the padding dimension. For this
example, the dimension is 2.

sPad = padsequences(s,2);

Examine the size of the padded sequences.

size(sPad)

ans = 1×3
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    12    26   270

Pad or Truncate Both Sides of Sequence Data

Use padsequences to extend or cut each sequence to a fixed length by adding or removing data at
both ends of the sequence, depending on the length of the original sequence.

Load the sequence data.

s = japaneseVowelsTrainData;

The preprocessed data contains 270 observations each with 12 sequence features. The length of the
observations varies between 7 and 26 time steps.

Process the data so that each sequence is exactly 14 time steps. For shorter sequences, padding is
required, while longer sequences need to be truncated. Pad or truncate at both sides of the data. For
the padded sequences, apply symmetric padding so that the padded values are mirror reflections of
the original sequence values.

[sPad,mask] = padsequences(s,2,'Length',14,'Direction','both','PaddingValue','symmetric');

Compare some of the padded sequences with the original sequence. Each observation contains 12
features so extract a single feature to compare.

Extract the first feature of the 74th observation. This sequence is shorter than 14 time steps.

s{74}(1,:)

ans = 1×9

    0.6691    0.5291    0.3820    0.3107    0.2546    0.1942    0.0931   -0.0179   -0.1081

sPad(1,:,74)

ans = 1×14

    0.5291    0.6691    0.6691    0.5291    0.3820    0.3107    0.2546    0.1942    0.0931   -0.0179   -0.1081   -0.1081   -0.0179    0.0931

mask(1,:,74)

ans = 1×14 logical array

   0   0   1   1   1   1   1   1   1   1   1   0   0   0

The function centers the sequence and pads at both ends by reflecting the values at the ends of the
sequence. The mask shows the location of the original sequence values.

Extract the first feature of the 28th observation. This sequence is longer than 14 time steps.

s{28}(1,:)

ans = 1×16
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    1.1178    1.0772    1.2365    1.4858    1.6191    1.4893    1.2791    1.4692    1.5592    1.5112    1.5144    1.5871    1.4848    1.2978    1.1336    1.0280

sPad(1,:,28)

ans = 1×14

    1.0772    1.2365    1.4858    1.6191    1.4893    1.2791    1.4692    1.5592    1.5112    1.5144    1.5871    1.4848    1.2978    1.1336

mask(1,:,28)

ans = 1×14 logical array

   1   1   1   1   1   1   1   1   1   1   1   1   1   1

The function centers the sequence and truncates at both ends. The mask shows that all data in the
resulting sequence is part of the original sequence.

Pad Mini-Batches of Sequences for Custom Training Loop

Use the padsequences function in conjunction with minibatchqueue to prepare and preprocess
sequence data ready for training using a custom training loop.

The example uses the human activity recognition training data. The data contains six time series of
sensor data obtained from a smartphone worn on the body. Each sequence has three features and
varies in length. The three features correspond to the accelerometer readings in three different
directions.

Load the training data. Combine the data and labels into a single datastore.

s = load("HumanActivityTrain.mat");

dsXTrain = arrayDatastore(s.XTrain,'OutputType','same');
dsYTrain = arrayDatastore(s.YTrain,'OutputType','same');

dsTrain = combine(dsXTrain,dsYTrain);

Use minibatchqueue to process the mini-batches of sequence data. Define a custom mini-batch
preprocessing function preprocessMiniBatch (defined at the end of this example) to pad the
sequence data and labels, and one-hot encode the label sequences. To also return the mask of the
padded data, specify three output variables for the minibatchqueue object.

miniBatchSize = 2;
mbq = minibatchqueue(dsTrain,3,...
    'MiniBatchSize',miniBatchSize,...
    'MiniBatchFcn', @preprocessMiniBatch);

Check the size of the mini-batches.

[X,Y,mask] = next(mbq);
size(X)

ans = 1×3
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           3       64480           2

size(mask)

ans = 1×3

           3       64480           2

Each mini-batch has two observations. The function pads the sequences to the same size as the
longest sequence in the mini-batch. The mask is the same size as the padded sequences, and shows
the location of the original data values in the padded sequence data.

size(Y)

ans = 1×3

           5       64480           2

The padded labels are one-hot encoded into numeric data ready for training.

function [xPad,yPad,mask] = preprocessMiniBatch(X,Y)
    [xPad,mask] = padsequences(X,2);
    yPad = padsequences(Y,2);
    yPad = onehotencode(yPad,1);
end

Input Arguments
X — Sequences to pad
cell vector

Sequences to pad, specified as a cell vector of numeric or categorical arrays.
Data Types: cell

paddingDim — Dimension along which to pad
positive integer

Dimension along which to pad input sequence data, specified as a positive integer.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: padsequences(X,'Length','shortest','Direction','both') truncates the
sequences at each end, to match the length of the shortest input sequence.
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Length — Length of padded sequences
'longest' (default) | 'shortest' | positive integer

Length of padded sequences, specified as one of the following:

• 'longest' — Pad each input sequence to the same length as the longest input sequence.
• 'shortest' — Truncate each input sequence to the same length as the shortest input sequence.
• Positive integer — Pad or truncate each input sequence to the specified length.

Example: padsequences(X,'Length','shortest')
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Direction — Direction of padding or truncation
'right' (default) | 'left' | 'both'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate at the end of each original sequence.
• 'left' — Pad or truncate at the beginning of each original sequence.
• 'both' — Pad or truncate at the beginning and end of each original sequence. Half the required

padding or truncation is applied to each end of the sequence.

Example: padsequences(X,'Direction','both')
Data Types: char | string

PaddingValue — Value used to pad input
'auto' (default) | 'symmetric' | numeric scalar | categorical scalar

Value used to pad input, specified as one of the following:

• 'auto' — Determine the [adding value automatically depending on the data type of the input
sequences. Numeric sequences are padded with 0. Categorical sequences are padded with
<undefined>.

• 'symmetric' — Pad each sequence with a mirror reflection of itself.
• Numeric scalar — Pad each sequence with the specified numeric value.
• Categorical scalar — Pad each sequence with the specified categorical value.

Example: padsequences(X,'PaddingValue','symmetric')
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
categorical

UniformOutput — Flag to return padded data as uniform array
true or 1 (default) | false or 0

Flag to return padded data as a uniform array, specified as a numeric or logical 1 (true) or 0
(false). When you set the value to 0, XPad is returned as a cell vector with the same size and
underlying data type as the input X.
Example: padsequences(X,'UniformOutput',0)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical
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Output Arguments
XPad — Padded sequence data
numeric array | categorical array | cell vector

Padded sequence data, returned as a numeric array, categorical array, or a cell vector of numeric or
categorical arrays.

If you set the UniformOutput name-value option to true or 1, the function concatenates the padded
sequences over the last dimension. The last dimension of XPad has the same size as the number of
sequences in input X. XPad is an array with N + 1 dimensions, where N is the number of dimensions
of the sequence arrays in X. XPad has the same data type as the arrays in input X.

If you set the UniformOutput name-value option to false or 0, the function returns the padded
sequences as a cell vector with the same size and underlying data type as the input X.

mask — Position of original sequence data
logical array | cell vector

Position of original sequence data in the padded sequences, returned as a logical array or as a cell
vector of logical arrays.

mask has the same size and data type as XPad. Values of 1 in mask correspond to positions of original
sequence values in XPad. Values of 0 correspond to padded values.

Use mask to excluded padded values from loss calculations using the "Mask" name-value option in
the crossentropy function.

Version History
Introduced in R2021a

See Also
crossentropy | onehotencode | minibatchqueue

Topics
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Long Short-Term Memory Networks”
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partition
Partition minibatchqueue

Syntax
submbq = partition(mbq,numParts,indx)

Description
submbq = partition(mbq,numParts,indx) partitions the minibatchqueue object mbq into
numParts parts and returns the partition corresponding to the index indx. The properties of submbq
are the same as the properties of mbq.

The output minibatchqueue object has access only to the partition of data it is given when it is
created. Using reset with submbq resets the minibatchqueue object to the start of the data
partition. Using shuffle with submbq shuffles only the partitioned data. If you want to shuffle the
data across multiple partitions, you must shuffle the original minibatchqueue object and then re-
partition.

Examples

Partition minibatchqueue

Use the partition function to divide a minibatchqueue object into three parts.

Create a minibatchqueue object from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 128
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

Partition the minibatchqueue object into three parts and return the first partition.

sub1 = partition(mbq,3,1)

sub1 = 
minibatchqueue with 1 output and properties:
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   Mini-batch creation:
           MiniBatchSize: 128
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

sub1 contains approximately the first third of the data in mbq.

Partition minibatchqueue in Parallel

Use the partition function to divide a minibatchqueue object into three parts.

Create a minibatchqueue object from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 128
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

Partition the minibatchqueue object into three parts on three workers in a parallel pool. Iterate
over the data on each worker.

numWorkers = 3;
p = parpool("Processes",numWorkers);
parfor i=1:3
    submbq = partition(mbq,3,i);
    while hasdata(submbq)
        data = next(submbq);
    end
end
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Each worker has access to a subset of the data in the original minibatchqueue object.

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

numParts — Number of partitions
numeric scalar

Number of partitions, specified as a numeric scalar.

indx — Partition index
numeric scalar

Partition index, specified as a numeric scalar.

Output Arguments
submbq — Output minibatchqueue
minibatchqueue

Output minibatchqueue, specified as a minibatchqueue object. submbq contains a subset of the
data in mbq. The properties of submbq are the same as the properties of mbq.

Version History
Introduced in R2020b

See Also
shuffle | reset | minibatchqueue | next

Topics
“Train Deep Learning Model in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
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ONNXParameters
Parameters of imported ONNX network for deep learning

Description
ONNXParameters contains the parameters (such as weights and bias) of an imported ONNX (Open
Neural Network Exchange) network. Use ONNXParameters to perform tasks such as transfer
learning.

Creation
Create an ONNXParameters object by using importONNXFunction.

Properties
Learnables — Parameters updated during network training
structure

Parameters updated during network training, specified as a structure. For example, the weights of
convolution and fully connected layers are parameters that the network learns during training. To
prevent Learnables parameters from being updated during training, convert them to
Nonlearnables by using freezeParameters. Convert frozen parameters back to Learnables by
using unfreezeParameters.

Add a new parameter to params.Learnables by using addParameter. Remove a parameter from
params.Learnables by using removeParameter.

Access the fields of the structure Learnables by using dot notation. For example,
params.Learnables.conv1_W could display the weights of the first convolution layer. Initialize the
weights for transfer learning by entering params.Learnables.conv1_W = rand([1000,4096]).
For more details about assigning a new value and parameter naming, see “Tips” on page 1-1291.

Nonlearnables — Parameters unchanged during network training
structure

Parameters unchanged during network training, specified as a structure. For example, padding and
stride are parameters that stay constant during training.

Add a new parameter to params.Nonlearnables by using addParameter. Remove a parameter
from params.Nonlearnables by using removeParameter.

Access the fields of the structure Nonlearnables by using dot notation. For example,
params.Nonlearnables.conv1_Padding could display the padding of the first convolution layer.
For more details about parameter naming, see “Tips” on page 1-1291.

State — Network state
structure
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Network state, specified as a structure. The network State contains information remembered by the
network between iterations and updated across multiple training batches. For example, the states of
LSTM and batch normalization layers are State parameters.

Add a new parameter to params.State by using addParameter. Remove a parameter from
params.State by using removeParameter.

Access the fields of the structure State by using dot notation. For example,
params.State.bn1_var could display the variance of the first batch normalization layer. For more
details about parameter naming, see “Tips” on page 1-1291.

NumDimensions — Number of dimensions for every parameter
structure

This property is read-only.

Number of dimensions for every parameter, specified as a structure. NumDimensions includes
trailing singleton dimensions.

Access the fields of the structure NumDimensions by using dot notation. For example,
params.NumDimensions.conv1_W could display the number of dimensions for the weights
parameter of the first convolution layer.

NetworkFunctionName — Name of model function
character vector | string scalar

This property is read-only.

Name of the model function, specified as a character vector or string scalar. The property
NetworkFunctionName contains the name of the function NetworkFunctionName, which you
specify in importONNXFunction. The function NetworkFunctionName contains the architecture of
the imported ONNX network.
Example: 'shufflenetFcn'

Object Functions
addParameter Add parameter to ONNXParameters object
freezeParameters Convert learnable network parameters in ONNXParameters to nonlearnable
removeParameter Remove parameter from ONNXParameters object
unfreezeParameters Convert nonlearnable network parameters in ONNXParameters to learnable

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the squeezenet convolution neural network as a function and fine-tune the pretrained
network with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper
Functions on page 1-1289.

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
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datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network. Specify the mini-
batch size.

unzip("MerchData.zip");
miniBatchSize = 8;
imds = imageDatastore("MerchData", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames", ...
    ReadSize=miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end

Extract the training set and one-hot encode the categorical classification labels.
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XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';

Determine the number of classes in the data.

classes = categories(YTrain_categ);
numClasses = numel(classes)

numClasses = 5

squeezenet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

Import the pretrained squeezenet network as a function.

squeezenetONNX()
params = importONNXFunction("squeezenet.onnx","squeezenetFcn")

Function containing the imported ONNX network architecture was saved to the file squeezenetFcn.m.
To learn how to use this function, type: help squeezenetFcn.

params = 
  ONNXParameters with properties:

             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'squeezenetFcn'

params is an ONNXParameters object that contains the network parameters. squeezenetFcn is a
model function that contains the network architecture. importONNXFunction saves
squeezenetFcn in the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf("%.2f accuracy before transfer learning\n",accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network by typing params.Learnables. These parameters,
such as the weights (W) and bias (B) of convolution and fully connected layers, are updated by the
network during training. Nonlearnable parameters remain constant during training.

The last two learnable parameters of the pretrained network are configured for 1000 classes.

conv10_W: [1×1×512×1000 dlarray]

conv10_B: [1000×1 dlarray]
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The parameters conv10_W and conv10_B must be fine-tuned for the new classification problem.
Transfer the parameters to classify five classes by initializing the parameters.

params.Learnables.conv10_W = rand(1,1,512,5);
params.Learnables.conv10_B = rand(5,1);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you
do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers
can significantly speed up network training.

params = freezeParameters(params,"all");

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,"conv10_W");
params = unfreezeParameters(params,"conv10_B");

The network is ready for training. Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Calculate the total number of iterations for the training progress monitor.

numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
numIterations = numEpochs*numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object immediately after the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the network.

epoch = 0;
iteration = 0;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop

    epoch = epoch + 1;
    
    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(:,idx);
    
    % Loop over mini-batches.
    i = 0;
    while i < numIterationsPerEpoch && ~monitor.Stop
        i = i + 1;
        iteration = iteration + 1;
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        % Read mini-batch of data.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);        
        Y = YTrain(:,idx);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            X = gpuArray(X);         
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
        params.State = state;
        
        % Determine the learning rate for the time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);
        
        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Calculate the classification accuracy of the network after fine-tuning.
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accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf("%.2f accuracy after transfer learning\n",accuracyAfterTraining);

1.00 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.

The getNetworkAccuracy function evaluates the network performance by calculating the
classification accuracy.

function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = squeezenetFcn(X,onnxParams,Training=false);

[~,YIdx] = max(Y,[],1);
[~,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;

end

The modelGradients function calculates the loss and gradients.

function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = squeezenetFcn(X,onnxParams,Training=true);
loss = crossentropy(y,Y,DataFormat="CB");
grad = dlgradient(loss,onnxParams.Learnables);

end

The squeezenetONNX function generates an ONNX model of the squeezenet network.

function squeezenetONNX()
    
exportONNXNetwork(squeezenet,"squeezenet.onnx");

end

Move Parameters Mislabeled by ONNX Functional Importer

Import a network saved in the ONNX format as a function, and move the mislabeled parameters by
using freeze or unfreeze.

Import the pretrained simplenet.onnx network as a function. simplenet is a simple convolutional
neural network trained on digit image data. For more information on how to create simplenet, see
“Create Simple Image Classification Network”.

Import simplenet.onnx using importONNXFunction, which returns an ONNXParameters object
that contains the network parameters. The function also creates a new model function in the current
folder that contains the network architecture. Specify the name of the model function as
simplenetFcn.
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params = importONNXFunction('simplenet.onnx','simplenetFcn');

A function containing the imported ONNX network has been saved to the file simplenetFcn.m.
To learn how to use this function, type: help simplenetFcn.

importONNXFunction labels the parameters of the imported network as Learnables (parameters
that are updated during training) or Nonlearnables (parameters that remain unchanged during
training). The labeling is not always accurate. A recommended practice is to check if the parameters
are assigned to the correct structure params.Learnables or params.Nonlearnables. Display the
learnable and nonlearnable parameters of the imported network.

params.Learnables

ans = struct with fields:
    imageinput_Mean: [1×1 dlarray]
             conv_W: [5×5×1×20 dlarray]
             conv_B: [20×1 dlarray]
    batchnorm_scale: [20×1 dlarray]
        batchnorm_B: [20×1 dlarray]
               fc_W: [24×24×20×10 dlarray]
               fc_B: [10×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            ConvStride1004: [2×1 dlarray]
    ConvDilationFactor1005: [2×1 dlarray]
           ConvPadding1006: [4×1 dlarray]
            ConvStride1007: [2×1 dlarray]
    ConvDilationFactor1008: [2×1 dlarray]
           ConvPadding1009: [4×1 dlarray]

Note that params.Learnables contains the parameter imageinput_Mean, which should remain
unchanged during training (see the Mean property of imageInputLayer). Convert
imageinput_Mean to a nonlearnable parameter. The freezeParameters function removes the
parameter imageinput_Mean from param.Learnables and adds it to params.Nonlearnables
sequentially.

params = freezeParameters(params,'imageinput_Mean');

Display the updated learnable and nonlearnable parameters.

params.Learnables

ans = struct with fields:
             conv_W: [5×5×1×20 dlarray]
             conv_B: [20×1 dlarray]
    batchnorm_scale: [20×1 dlarray]
        batchnorm_B: [20×1 dlarray]
               fc_W: [24×24×20×10 dlarray]
               fc_B: [10×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            ConvStride1004: [2×1 dlarray]
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    ConvDilationFactor1005: [2×1 dlarray]
           ConvPadding1006: [4×1 dlarray]
            ConvStride1007: [2×1 dlarray]
    ConvDilationFactor1008: [2×1 dlarray]
           ConvPadding1009: [4×1 dlarray]
           imageinput_Mean: [1×1 dlarray]

Tips
• The following rules apply when you assign a new value to a params.Learnables parameter:

• The software automatically converts the new value to a dlarray.
• The new value must be compatible with the existing value of params.NumDimensions.

• importONNXFunction derives the field names of the structures Learnables, Nonlearnables,
and State from the names in the imported ONNX model file. The field names might differ
between imported networks.

Version History
Introduced in R2020b

See Also
importONNXFunction

Topics
“Make Predictions Using Model Function”
“Train Network Using Custom Training Loop”
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partitionByIndex
Partition augmentedImageDatastore according to indices

Syntax
auimds2 = partitionByIndex(auimds,ind)

Description
auimds2 = partitionByIndex(auimds,ind) partitions a subset of observations in an
augmented image datastore, auimds, into a new datastore, auimds2. The desired observations are
specified by indices, ind.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
auimds2 — Output datastore
augmentedImageDatastore object

Output datastore, returned as an augmentedImageDatastore object containing a subset of files
from auimds.

Version History
Introduced in R2018a

See Also
read | readall | readByIndex
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PlaceholderLayer
Layer replacing an unsupported Keras or ONNX layer, or unsupported functionality from
functionToLayerGraph

Description
PlaceholderLayer is a layer that importKerasLayers and importONNXLayers insert into a
layer array or layer graph in place of an unsupported Keras or ONNX layer. It can also represent
unsupported functionality from functionToLayerGraph.

Creation
Importing layers from a Keras or ONNX network that has layers that are not supported by Deep
Learning Toolbox creates PlaceholderLayer objects. Also, when you create a layer graph using
functionToLayerGraph, unsupported functionality leads to PlaceholderLayer objects.

Properties
Name — Layer name
character vector | string scalar

Layer name, specified as a character vector or a string scalar.
Data Types: char | string

Description — Layer description
character vector | string scalar

Layer description, specified as a character vector or a string scalar.
Data Types: char | string

Type — Layer type
character vector | string scalar

Layer type, specified as a character vector or a string scalar.
Data Types: char | string

KerasConfiguration — Keras configuration of layer
structure

Keras configuration of a layer, specified as a structure. The fields of the structure depend on the layer
type.

Note This property only exists if the layer was created when importing a Keras network.

Data Types: struct
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ONNXNode — ONNX configuration of layer
structure

ONNX configuration of a layer, specified as a structure. The fields of the structure depend on the
layer type.

Note This property only exists if the layer was created when importing an ONNX network.

Data Types: struct

Weights — Imported weights
structure

Imported weights, specified as a structure.
Data Types: struct

Examples

Find and Explore Placeholder Layers

Specify the Keras network file to import layers from.

modelfile = 'digitsDAGnetwithnoise.h5';

Import the network architecture. The network includes some layer types that are not supported by
Deep Learning Toolbox. The importKerasLayers function replaces each unsupported layer with a
placeholder layer and returns a warning message.

lgraph = importKerasLayers(modelfile)

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

lgraph = 
  LayerGraph with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Display the imported layers of the network. Two placeholder layers replace the Gaussian noise layers
in the Keras network.

lgraph.Layers

ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3 convolutions with stride [1  1] and padding 'same'
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     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'gaussian_noise_1'                   PLACEHOLDER LAYER       Placeholder for 'GaussianNoise' Keras layer
     7   'gaussian_noise_2'                   PLACEHOLDER LAYER       Placeholder for 'GaussianNoise' Keras layer
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

Find the placeholder layers using findPlaceholderLayers. The output argument contains the two
placeholder layers that importKerasLayers inserted in place of the Gaussian noise layers of the
Keras network.

placeholders = findPlaceholderLayers(lgraph)

placeholders = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Specify a name for each placeholder layer.

gaussian1 = placeholders(1);
gaussian2 = placeholders(2);

Display the configuration of each placeholder layer.

gaussian1.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

gaussian2.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.
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filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
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Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000

Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m in
the current folder. Then, create two Gaussian noise layers with the same configurations as the
imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")
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Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex
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The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
    ClassWeights: 'none'
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Version History
Introduced in R2017b
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See Also
importKerasLayers | importONNXLayers | findPlaceholderLayers | assembleNetwork |
functionToLayerGraph | functionLayer

Topics
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”
“Assemble Network from Pretrained Keras Layers”
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plot
Plot neural network architecture

Syntax
plot(lgraph)
plot(net)

Description
plot(lgraph) plots a diagram of the layer graph lgraph. The plot function labels each layer by its
name and displays all layer connections.

Tip To create an interactive network visualization and analyze the network architecture, use
deepNetworkDesigner(lgraph). For more information, see Deep Network Designer.

plot(net) plots a diagram of the network net.

Examples

Plot Layer Graph

Create a layer graph from an array of layers. Connect the 'relu_1' layer to the 'add' layer.

layers = [
    imageInputLayer([32 32 3],'Name','input')   
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,16,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2') 
    additionLayer(2,'Name','add')];

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'relu_1','add/in2');

Plot the layer graph.

figure
plot(lgraph);
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Plot DAG Network

Load a pretrained GoogLeNet convolutional neural network as a DAGNetwork object. If the Deep
Learning Toolbox™ Model for GoogLeNet Network support package is not installed, then the
software provides a download link.

net = googlenet

net = 
  DAGNetwork with properties:

         Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]

Plot the network.

figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
plot(net)
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Plot Series Network

Load a pretrained AlexNet convolutional neural network as a SeriesNetwork object. If the Deep
Learning Toolbox™ Model for AlexNet Network support package is not installed, then the software
provides a download link.

net = alexnet

net = 
  SeriesNetwork with properties:

         Layers: [25x1 nnet.cnn.layer.Layer]
     InputNames: {'data'}
    OutputNames: {'output'}

Plot the network.

plot(net)
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

net — Deep learning network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Deep learning network, specified as a SeriesNetwork, DAGNetwork, or dlnetwork object.

Version History
Introduced in R2017b

See Also
Deep Network Designer | layerGraph | addLayers | removeLayers | replaceLayer |
connectLayers | disconnectLayers | analyzeNetwork | dlnetwork | summary

Topics
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”
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plot
Plot receiver operating characteristic (ROC) curves and other performance curves

Syntax
plot(rocObj)
plot(ax,rocObj)
plot( ___ ,Name=Value)
curveObj = plot( ___ )
[curveObj,graphicsObjs] = plot( ___ )

Description
plot(rocObj) creates a receiver operating characteristic (ROC) curve on page 1-1316, which is a
plot of the true positive rate (TPR) versus the false positive rate (FPR), for each class in the
ClassNames property of the rocmetrics object rocObj. The function marks the model operating
point on page 1-1482 for each curve, and displays the value of the area under the ROC curve (AUC on
page 1-1316) and the class name for the curve in the legend.

plot(ax,rocObj) creates the plot on the axes specified by ax instead of the current axes.

plot( ___ ,Name=Value) specifies additional options using one or more name-value arguments in
addition to any of the input argument combinations in the previous syntaxes. For example,
AverageROCType="macro",ClassNames=[] computes the average performance metrics using the
macro-averaging method and plots the average ROC curve only.

curveObj = plot( ___ ) returns a ROCCurve object for each performance curve.

[curveObj,graphicsObjs] = plot( ___ ) also returns graphics objects for the model operating
points and diagonal line.

Examples

Plot ROC Curve

Load a sample of predicted classification scores and true labels for a classification problem.

load('flowersDataResponses.mat')

trueLabels is the true labels for an image classification problem and scores is the softmax
prediction scores. scores is an N-by-K array where N is the number of observations and K is the
number of classes.

trueLabels = flowersData.trueLabels;
scores = flowersData.scores;

Load the class names. The column order of scores follows the class order stored in classNames.

classNames = flowersData.classNames;
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Create a rocmetrics object by using the true labels in trueLabels and the classification scores in
scores. Specify the column order of scores using classNames.

rocObj = rocmetrics(trueLabels,scores,classNames);

rocObj is a rocmetrics object that stores the AUC values and performance metrics for each class
in the AUC and Metrics properties. Display the AUC property.

rocObj.AUC

ans = 1x5 single row vector

    0.9781    0.9889    0.9728    0.9809    0.9732

Plot the ROC curve for each class.

plot(rocObj)

The filled circle markers indicate the model operating points. The legend displays the class name and
AUC value for each curve.

Plot the macro average ROC curve.

plot(rocObj,AverageROCType=["macro"],ClassNames=[])
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Plot Precision-Recall Curve and Detection Error Tradeoff (DET) Graph

Create a rocmetrics object and plot performance curves by using the plot function. Specify the
XAxisMetric and YAxisMetric name-value arguments of the plot function to plot different types
of performance curves other than the ROC curve. If you specify new metrics when you call the plot
function, the function computes the new metrics and then uses them to plot the curve.

Load a sample of true labels and the prediction scores for a classification problem. For this example,
there are five classes: daisy, dandelion, roses, sunflowers, and tulips. The class names are stored in
classNames. The scores are the softmax prediction scores generated using the predict function.
scores is an N-by-K array where N is the number of observations and K is the number of classes.
The column order of scores follows the class order stored in classNames.

load('flowersDataResponses.mat')

scores = flowersData.scores;
trueLabels = flowersData.trueLabels;

classNames = flowersData.classNames;

Create a rocmetrics object. The rocmetrics function computes the FPR and TPR at different
thresholds.

rocObj = rocmetrics(trueLabels,scores,classNames);
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Plot the precision-recall curve for the first class. Specify the y-axis metric as precision (or positive
predictive value) and the x-axis metric as recall (or true positive rate). The plot function computes
the new metric values and plots the curve. Compute the area under the precision-recall curve using
the trapezoidal method of the trapz function, and display the value in the legend.

curveObj = plot(rocObj,ClassNames=classNames(1), ...
    YAxisMetric="PositivePredictiveValue",XAxisMetric="TruePositiveRate");
xyData = rmmissing([curveObj.XData curveObj.YData]);
auc = trapz(xyData(:,1),xyData(:,2));
legend(join([string(classNames(1)) " (AUC = " string(auc) ")"],""), ...
    Location="southwest")
title("Precision-Recall Curve")

Plot the detection error tradeoff (DET) graph for the first class. Specify the y-axis metric as the false
negative rate and the x-axis metric as the false positive rate. Use a log scale for the x-axis and y-axis.

f = figure;
plot(rocObj,ClassNames=classNames(1), ...
    YAxisMetric="FalseNegativeRate",XAxisMetric="FalsePositiveRate")
f.CurrentAxes.XScale = "log";
f.CurrentAxes.YScale = "log";
title("DET Graph")
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Plot Confidence Intervals

Compute the confidence intervals for FPR and TPR for fixed threshold values by using bootstrap
samples, and plot the confidence intervals for TPR on the ROC curve by using the plot function. This
examples requires Statistics and Machine Learning Toolbox™.

Load a sample of true labels and the prediction scores for a classification problem. For this example,
there are five classes: daisy, dandelion, roses, sunflowers, and tulips. The class names are stored in
classNames. The scores are the softmax prediction scores generated using the predict function.
scores is an N-by-K array where N is the number of observations and K is the number of classes.
The column order of scores follows the class order stored in classNames.

load('flowersDataResponses.mat')

scores = flowersData.scores;
trueLabels = flowersData.trueLabels;

classNames = flowersData.classNames;

Create a rocmetrics object by using the true labels in trueLabels and the classification scores in
scores. Specify the column order of scores using classNames. Specify NumBootstraps as 100 to
use 100 bootstrap samples to compute the confidence intervals.

rocObj = rocmetrics(trueLabels,scores,classNames,NumBootstraps=100);

Plot the ROC curve and the confidence intervals for TPR. Specify
ShowConfidenceIntervals=true to show the confidence intervals.

plot(rocObj,ShowConfidenceIntervals=true)
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The shaded area around each curve indicates the confidence intervals. rocmetrics computes the
ROC curves using the scores. The confidence intervals represent the estimates of uncertainty for the
curve.

Specify one class to plot by using the ClassNames name-value argument.

plot(rocObj,ShowConfidenceIntervals=true,ClassNames="daisy")
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Input Arguments
rocObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, specified as a rocmetrics object.

ax — Target axes
Axes object

Target axes, specified as an Axes object.

If you do not specify the axes and the current axes are Cartesian, then plot uses the current axes
(gca). For more information on creating an Axes object, see axes and gca.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: YAxisMetric="PositivePredictiveValue",XAxisMetric="TruePositiveRate"
plots the precision (positive predictive value) versus the recall (true positive rate), which represents a
precision-recall curve.
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AverageROCType — Method for averaging ROC curves
"none" (default) | "micro" | "macro" | "weighted" | string array | cell array of character vectors

Method for averaging ROC curves, specified as "none", "micro", "macro", "weighted", a string
array of method names, or a cell array of method names.

• If you specify "none" (default), the plot function does not create the average ROC curve. The
AverageROCType value must be "none" if plot creates performance curves other than a ROC
curve.

• If you specify multiple methods as a string array or a cell array of character vectors, then the
plot function plots multiple average ROC curves using the specified methods.

• If you specify one or more averaging methods and specify ClassNames=[], then the plot
function plots only the average ROC curves.

plot computes the averages of performance metrics for a multiclass classification problem, and plots
the average ROC curves using these methods:

• "micro" (micro-averaging) — plot finds the average performance metrics by treating all one-
versus-all on page 1-1316 binary classification problems as one binary classification problem. The
function computes the confusion matrix components for the combined binary classification
problem, and then computes the average FPR and TPR using the values of the confusion matrix.

• "macro" (macro-averaging) — plot computes the average values for FPR and TPR by averaging
the values of all one-versus-all binary classification problems.

• "weighted" (weighted macro-averaging) — plot computes the weighted average values for FPR
and TPR using the macro-averaging method and using the prior class probabilities (the Prior
property of rocObj) as weights.

The algorithm type determines the length of the vectors in the XData, YData, and Thresholds
properties of a ROCCurve object, returned by plot, for the average ROC curve. For more details, see
“Average of Performance Metrics”.
Example: AverageROCType="macro"
Example: AverageROCType=["micro","macro"]
Data Types: char | string

ClassNames — Class labels to plot
rocObj.ClassNames (default) | categorical array | character array | string array | logical vector |
numeric vector | cell array of character vectors

Class labels to plot, specified as a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. The values and data types in ClassNames must match those of the
class names in the ClassNames property of rocObj. (The software treats character or string arrays
as cell arrays of character vectors.)

• If you specify multiple class labels, the plot function plots a ROC curve for each class.
• If you specify ClassNames=[] and specify one or more averaging methods using

AverageROCType, then the plot function plots only the average ROC curves.

Example: ClassNames=["red","blue"]
Data Types: single | double | logical | char | string | cell | categorical
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ShowConfidenceIntervals — Flag to show confidence intervals of y-axis metric
false or 0 (default) | true or 1

Flag to show the confidence intervals of the y-axis metric (YAxisMetric), specified as logical 0
(false) or 1 (true).

The ShowConfidenceIntervals value can be true only if the Metrics property of rocObj
contains the confidence intervals for the y-axis metric.
Example: ShowConfidenceIntervals=true

Using confidence intervals requires Statistics and Machine Learning Toolbox.
Data Types: logical

ShowDiagonalLine — Flag to show diagonal line
true or 1 | false or 0

Flag to show the diagonal line that extends from [0,0] to [1,1], specified as logical 1 (true) or 0
(false).

The default value is true if you plot a ROC curve or an average ROC curve, and false otherwise.

In the ROC curve plot, the diagonal line represents a random classifier, and the line passing through
[0,0], [0,1], and [1,1] represents a perfect classifier.
Example: ShowDiagonalLine=false
Data Types: logical

ShowModelOperatingPoint — Flag to show model operating point
true or 1 | false or 0

Flag to show the model operating point on page 1-1482, specified as logical 1 (true) or 0 (false).

The default value is true for a ROC curve, and false for an average ROC curve. The
ShowModelOperatingPoint value must be false for performance curves other than ROC.
Example: ShowModelOperatingPoint=false
Data Types: logical

XAxisMetric — Metric for x-axis
"FalsePositiveRate" (default) | name of performance metric | function handle

Metric for the x-axis, specified as a character vector or string scalar of the built-in metric name or a
custom metric name, or a function handle (@metricName).

• Built-in metrics — Specify one of the following built-in metric names by using a character vector
or string scalar.

Name Description
"TruePositives" or "tp" Number of true positives (TP)
"FalseNegatives" or "fn" Number of false negatives (FN)
"FalsePositives" or "fp" Number of false positives (FP)
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Name Description
"TrueNegatives" or "tn" Number of true negatives (TN)
"SumOfTrueAndFalsePosit
ives" or "tp+fp"

Sum of TP and FP

"RateOfPositivePredicti
ons" or "rpp"

Rate of positive predictions (RPP), (TP+FP)/(TP+FN+FP+TN)

"RateOfNegativePredicti
ons" or "rnp"

Rate of negative predictions (RNP), (TN+FN)/(TP+FN+FP
+TN)

"Accuracy" or "accu" Accuracy, (TP+TN)/(TP+FN+FP+TN)
"TruePositiveRate" or
"tpr"

True positive rate (TPR), also known as recall or sensitivity,
TP/(TP+FN)

"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or miss rate, FN/(TP+FN)

"FalsePositiveRate" or
"fpr"

False positive rate (FPR), also known as fallout or 1-specificity,
FP/(TN+FP)

"TrueNegativeRate",
"tnr", or "spec"

True negative rate (TNR), or specificity, TN/(TN+FP)

"PositivePredictiveValu
e", "ppv", or "prec"

Positive predictive value (PPV), or precision, TP/(TP+FP)

"NegativePredictiveValu
e" or "npv"

Negative predictive value (NPV), TN/(TN+FN)

"ExpectedCost" or
"ecost"

Expected cost, (TP*cost(P|P)+FN*cost(N|P)
+FP*cost(P|N)+TN*cost(N|N))/(TP+FN+FP+TN), where
cost is a 2-by-2 misclassification cost matrix containing
[0,cost(N|P);cost(P|N),0]. cost(N|P) is the cost of
misclassifying a positive class (P) as a negative class (N), and
cost(P|N) is the cost of misclassifying a negative class as a
positive class.

The software converts the K-by-K matrix specified by the Cost
name-value argument of rocmetrics to a 2-by-2 matrix for
each one-versus-all binary problem. For details, see
“Misclassification Cost Matrix”.

The software computes the scale vector using the prior class probabilities (Prior) and the
number of classes in Labels, and then scales the performance metrics according to this scale
vector. For details, see “Performance Metrics”.

• Custom metric stored in the Metrics property — Specify the name of a custom metric stored in
the Metrics property of the input object rocObj. The rocmetrics function names a custom
metric "CustomMetricN", where N is the number that refers to the custom metric. For example,
specify XAxisMetric="CustomMetric1" to use the first custom metric in Metrics as a metric
for the x-axis.

• Custom metric — Specify a new custom metric by using a function handle. A custom function that
returns a performance metric must have this form:

metric = customMetric(C,scale,cost)
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• The output argument metric is a scalar value.
• A custom metric is a function of the confusion matrix (C), scale vector (scale), and cost matrix

(cost). The software finds these input values for each one-versus-all binary problem. For
details, see “Performance Metrics”.

• C is a 2-by-2 confusion matrix consisting of [TP,FN;FP,TN].
• scale is a 2-by-1 scale vector.
• cost is a 2-by-2 misclassification cost matrix.

The plot function names a custom metric "Custom Metric" for the axis label.

The software does not support cross-validation for a custom metric. Instead, you can specify to use
bootstrap when you create a rocmetrics object.

If you specify a new metric instead of one in the Metrics property of the input object rocObj, the
plot function computes and plots the metric values. If you compute confidence intervals when you
create rocObj, the plot function also computes confidence intervals for the new metric.

The plot function ignores NaNs in the performance metric values. Note that the positive predictive
value (PPV) is NaN for the reject-all threshold for which TP = FP = 0, and the negative predictive
value (NPV) is NaN for the accept-all threshold for which TN = FN = 0. For more details, see
“Thresholds, Fixed Metric, and Fixed Metric Values”.
Example: XAxisMetric="FalseNegativeRate"
Data Types: char | string | function_handle

YAxisMetric — Metric for y-axis
"TruePositiveRate" (default) | name of performance metric | function handle

Metric for the y-axis, specified as a character vector or string scalar of the built-in metric name or
custom metric name, or a function handle (@metricName). For details, see XAxisMetric.
Example: YAxisMetric="FalseNegativeRate"
Data Types: char | string | function_handle

Output Arguments
curveObj — Object for performance curve
ROCCurve object | array of ROCCurve objects

Object for the performance curve, returned as a ROCCurve object or an array of ROCCurve objects.
plot returns a ROCCurve object for each performance curve.

Use curveObj to query and modify properties of the plot after creating it. For a list of properties, see
ROCCurve Properties.

graphicsObjs — Graphics objects
graphics array

Graphics objects for the model operating points and diagonal line, returned as a graphics array
containing Scatter and Line objects.

graphicsObjs contains a Scatter object for each model operating point (if
ShowModelOperatingPoint=true) and a Line object for the diagonal line (if
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ShowDiagonalLine=true). Use graphicsObjs to query and modify properties of the model
operating points and diagonal line after creating the plot. For a list of properties, see Scatter
Properties and Line Properties.

More About
Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate versus the false positive rate for different thresholds of
classification scores.

The true positive rate and the false positive rate are defined as follows:

• True positive rate (TPR), also known as recall or sensitivity — TP/(TP+FN), where TP is the
number of true positives and FN is the number of false negatives

• False positive rate (FPR), also known as fallout or 1-specificity — FP/(TN+FP), where FP is the
number of false positives and TN is the number of true negatives

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs. For each class, rocmetrics uses all distinct adjusted score on
page 1-1317 values as threshold values to create a ROC curve.

For a multiclass classification problem, rocmetrics formulates a set of one-versus-all on page 1-
1316 binary classification problems to have one binary problem for each class, and finds a ROC curve
for each class using the corresponding binary problem. Each binary problem assumes one class as
positive and the rest as negative.

For a binary classification problem, if you specify the classification scores as a matrix, rocmetrics
formulates two one-versus-all binary classification problems. Each of these problems treats one class
as a positive class and the other class as a negative class, and rocmetrics finds two ROC curves.
Use one of the curves to evaluate the binary classification problem.

For more details, see “ROC Curve and Performance Metrics”.

Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
classification and evaluates the performance on each class by using the binary classification that the
class is positive.

For example, the OVA coding design for three classes formulates three binary classifications:
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Binary 1 Binary 2 Binary 3
Class 1 1 −1 −1
Class 2 −1 1 −1
Class 3 −1 −1 1

Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

Algorithms
Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s1,s2,s3] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s1-max(s2,s3),s2-max(s1,s3),s3-max(s1,s2)].

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.

Version History
Introduced in R2022b

References
[1] Sebastiani, Fabrizio. "Machine Learning in Automated Text Categorization." ACM Computing

Surveys 34, no. 1 (March 2002): 1–47.

See Also
rocmetrics | ROCCurve Properties | addMetrics | average

Topics
“ROC Curve and Performance Metrics”
“Compare Deep Learning Models Using ROC Curves”
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predict
Predict responses using trained deep learning neural network

Syntax
Y = predict(net,images)
Y = predict(net,sequences)
Y = predict(net,features)

Y = predict(net,X1,...,XN)
Y = predict(net,mixed)

[Y1,...,YM] = predict( ___ )

___  = predict( ___ ,Name=Value)

Description
You can make predictions using a trained neural network for deep learning on either a CPU or GPU.
Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Specify the
hardware requirements using the ExecutionEnvironment name-value argument.

Use this function to predict responses using a trained SeriesNetwork or DAGNetwork object. For
information on predicting responses using a dlnetwork object, see predict.

Y = predict(net,images) predicts the responses of the specified images using the trained
network net.

Y = predict(net,sequences) predicts the responses of the specified sequences using the trained
network net.

Y = predict(net,features) predicts the responses of the specified feature data using the
trained network net.

Y = predict(net,X1,...,XN) predicts the responses for the data in the numeric or cell arrays
X1, …, XN for the multi-input network net. The input Xi corresponds to the network input
net.InputNames(i).

Y = predict(net,mixed) predicts the responses using the trained network net with multiple
inputs of mixed data types.

[Y1,...,YM] = predict( ___ ) predicts responses for the M outputs of a multi-output network
using any of the previous input arguments. The output Yj corresponds to the network output
net.OutputNames(j). To return categorical outputs for the classification output layers, set the
ReturnCategorical option to 1 (true).

___  = predict( ___ ,Name=Value) predicts the responses with additional options specified by
one or more name-value arguments.
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Tip

• Use the predict function to predict responses using a regression network or to classify data
using a multi-output network. To classify data using a single-output classification network, use the
classify function.

• When you make predictions with sequences of different lengths, the mini-batch size can impact
the amount of padding added to the input data, which can result in different predicted values. Try
using different values to see which works best with your network. To specify mini-batch size and
padding options, use the MiniBatchSize and SequenceLength options, respectively.

• For predicting responses using dlnetwork objects, see predict.

Examples

Predict Numeric Responses Using Trained Convolutional Neural Network

Load the pretrained network digitsRegressionNet. This network is a regression convolutional
neural network that predicts the angle of rotation of handwritten digits.

load digitsRegressionNet

View the network layers. The output layer of the network is a regression layer.

layers = net.Layers

layers = 
  18x1 Layer array with layers:

     1   'imageinput'         Image Input           28x28x1 images with 'zerocenter' normalization
     2   'conv_1'             2-D Convolution       8 3x3x1 convolutions with stride [1  1] and padding 'same'
     3   'batchnorm_1'        Batch Normalization   Batch normalization with 8 channels
     4   'relu_1'             ReLU                  ReLU
     5   'avgpool2d_1'        2-D Average Pooling   2x2 average pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv_2'             2-D Convolution       16 3x3x8 convolutions with stride [1  1] and padding 'same'
     7   'batchnorm_2'        Batch Normalization   Batch normalization with 16 channels
     8   'relu_2'             ReLU                  ReLU
     9   'avgpool2d_2'        2-D Average Pooling   2x2 average pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv_3'             2-D Convolution       32 3x3x16 convolutions with stride [1  1] and padding 'same'
    11   'batchnorm_3'        Batch Normalization   Batch normalization with 32 channels
    12   'relu_3'             ReLU                  ReLU
    13   'conv_4'             2-D Convolution       32 3x3x32 convolutions with stride [1  1] and padding 'same'
    14   'batchnorm_4'        Batch Normalization   Batch normalization with 32 channels
    15   'relu_4'             ReLU                  ReLU
    16   'dropout'            Dropout               20% dropout
    17   'fc'                 Fully Connected       1 fully connected layer
    18   'regressionoutput'   Regression Output     mean-squared-error with response 'Response'

Load the test images.

XTest = digitTest4DArrayData;

Predict the responses of the input data using the predict function.

YTest = predict(net,XTest);
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View some of the test images at random with their predictions.

numPlots = 9;
idx = randperm(size(XTest,4),numPlots);

sz = size(XTest,1);
offset = sz/2;

figure
tiledlayout("flow")

for i = 1:numPlots
    nexttile
    imshow(XTest(:,:,:,idx(i)))
    title("Observation " + idx(i))

    hold on
    plot(offset*[1-tand(YTest(idx(i))) 1+tand(YTest(idx(i)))],[sz 0],"r--")
    hold off
end

Predict Numeric Responses of Sequences Using Trained LSTM Network

Load the pretrained network freqNet. This network is an LSTM regression neural network that
predicts the frequency of waveforms.
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load freqNet

View the network layers. The output layer of the network is a regression layer.

net.Layers

ans = 
  4x1 Layer array with layers:

     1   'sequenceinput'      Sequence Input      Sequence input with 3 dimensions
     2   'lstm'               LSTM                LSTM with 100 hidden units
     3   'fc'                 Fully Connected     1 fully connected layer
     4   'regressionoutput'   Regression Output   mean-squared-error with response 'Response'

Load the test sequences.

load WaveformData
X = data;

Predict the responses of the input data using the predict function. Because the network was trained
using sequences truncated to the shortest sequence length of each mini-batch, also truncate the test
sequences by setting the SequenceLength option to "shortest".

Y = predict(net,X,SequenceLength="shortest");

Visualize the first few predictions in a plot.

figure
tiledlayout(2,2)
for i = 1:4
    nexttile
    stackedplot(X{i}',DisplayLabels="Channel " + (1:3))

    xlabel("Time Step")
    title("Predicted Frequency: " + string(Y(i)))
end
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Input Arguments
net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

For information on predicting responses using dlnetwork objects, see predict.

images — Image data
datastore | numeric array | table

Image data, specified as one of the following.
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Data Type Description Example Usage
Datastore ImageDatastore Datastore of images

saved on disk
Make predictions with
images saved on disk,
where the images are
the same size.

When the images are
different sizes, use an
AugmentedImageData
store object.

AugmentedImageData
store

Datastore that applies
random affine
geometric
transformations,
including resizing,
rotation, reflection,
shear, and translation

Make predictions with
images saved on disk,
where the images are
different sizes.

TransformedDatasto
re

Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
predict.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric array Images specified as a
numeric array

Make predictions using
data that fits in memory
and does not require
additional processing
like resizing.

Table Images specified as a
table

Make predictions using
data stored in a table.

When you use a datastore with networks with multiple inputs, the datastore must be a
TransformedDatastore or CombinedDatastore object.
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Tip For sequences of images, for example, video data, use the sequences input argument.

Datastore

Datastores read mini-batches of images and responses. Use datastores when you have data that does
not fit in memory or when you want to resize the input data.

These datastores are directly compatible with predict for image data.:

• ImageDatastore
• AugmentedImageDatastore
• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

Note that ImageDatastore objects allow for batch reading of JPG or PNG image files using
prefetching. If you use a custom function for reading the images, then ImageDatastore objects do
not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.

Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the format required by
classify.

The required format of the datastore output depends on the network architecture.

Network Architecture Datastore Output Example Output
Single input Table or cell array, where the

first column specifies the
predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom datastores must output
tables.

data = read(ds)

data =

  4×1 table

        Predictors    
    __________________

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
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Network Architecture Datastore Output Example Output
data = read(ds)

data =

  4×1 cell array

    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}
    {224×224×3 double}

Multiple input Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}
    {224×224×3 double}    {128×128×3 double}

The format of the predictors depends on the type of data.

Data Format
2-D images h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
images, respectively

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the images, respectively

For more information, see “Datastores for Deep Learning”.

Numeric Array

For data that fits in memory and does not require additional processing like augmentation, you can
specify a data set of images as a numeric array.

The size and shape of the numeric array depends on the type of image data.

Data Format
2-D images h-by-w-by-c-by-N numeric array, where h, w, and

c are the height, width, and number of channels
of the images, respectively, and N is the number
of images
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Data Format
3-D images h-by-w-by-d-by-c-by-N numeric array, where h, w,

d, and c are the height, width, depth, and number
of channels of the images, respectively, and N is
the number of images

Table

As an alternative to datastores or numeric arrays, you can also specify images in a table.

When you specify images in a table, each row in the table corresponds to an observation.

For image input, the predictors must be in the first column of the table, specified as one of the
following:

• Absolute or relative file path to an image, specified as a character vector
• 1-by-1 cell array containing a h-by-w-by-c numeric array representing a 2-D image, where h, w,

and c correspond to the height, width, and number of channels of the image, respectively

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
table
Complex Number Support: Yes

sequences — Sequence or time series data
datastore | cell array of numeric arrays | numeric array

Sequence or time series data, specified as one of the following.

Data Type Description Example Usage
Datastore TransformedDatasto

re
Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
predict.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.
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Data Type Description Example Usage
Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric or cell array A single sequence
specified as a numeric
array or a data set of
sequences specified as
cell array of numeric
arrays

Make predictions using
data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of sequences and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with predict for sequence data:

• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by predict. For example, you can transform and combine data read from in-memory arrays
and CSV files using an ArrayDatastore and an TabularTextDatastore object, respectively.

The datastore must return data in a table or cell array. Custom mini-batch datastores must output
tables.

Datastore Output Example Output
Table data = read(ds)

data =

  4×2 table

        Predictors    
    __________________

    {12×50 double}
    {12×50 double}
    {12×50 double}
    {12×50 double}
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Datastore Output Example Output
Cell array data = read(ds)

data =

  4×2 cell array

    {12×50 double}
    {12×50 double}
    {12×50 double}
    {12×50 double}

The format of the predictors depends on the type of data.

Data Format of Predictors
Vector sequence c-by-s matrix, where c is the number of features

of the sequence and s is the sequence length
1-D image sequence h-by-c-by-s array, where h and c correspond to

the height and number of channels of the image,
respectively, and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

2-D image sequence h-by-w-by-c-by-s array, where h, w, and c
correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,
or a 1-by-1 cell array containing a numeric array.

For more information, see “Datastores for Deep Learning”.

Numeric or Cell Array

For data that fits in memory and does not require additional processing like custom transformations,
you can specify a single sequence as a numeric array or a data set of sequences as a cell array of
numeric arrays.

For cell array input, the cell array must be an N-by-1 cell array of numeric arrays, where N is the
number of observations. The size and shape of the numeric array representing a sequence depends
on the type of sequence data.
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Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length

1-D image sequences h-by-c-by-s arrays, where h and c correspond to
the height and number of channels of the images,
respectively, and s is the sequence length

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

features — Feature data
datastore | numeric array | table

Feature data, specified as one of the following.

Data Type Description Example Usage
Datastore TransformedDatasto

re
Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function

• Transform
datastores with
outputs not
supported by
predict.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores

• Make predictions
using networks with
multiple inputs.

• Combine predictors
from different data
sources.
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Data Type Description Example Usage
Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Table Feature data specified
as a table

Make predictions using
data stored in a table.

Numeric array Feature data specified
as numeric array

Make predictions using
data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of feature data and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with predict for feature data:

• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by predict. For more information, see “Datastores for Deep Learning”.

For networks with multiple inputs, the datastore must be a TransformedDatastore or
CombinedDatastore object.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Network Architecture Datastore Output Example Output
Single input layer Table or cell array with at least

one column, where the first
column specifies the predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

Table for network with one
input:

data = read(ds)

data =

  4×2 table

        Predictors    
    __________________

    {24×1 double}
    {24×1 double}
    {24×1 double}
    {24×1 double}

Cell array for network with one
input:

data = read(ds)

data =

  4×1 cell array

    {24×1 double}
    {24×1 double}
    {24×1 double}
    {24×1 double}

Multiple input layers Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

Cell array for network with two
inputs:

data = read(ds)

data =

  4×3 cell array

    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}

The predictors must be c-by-1 column vectors, where c is the number of features.

For more information, see “Datastores for Deep Learning”.

Table

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data and responses as a table.

Each row in the table corresponds to an observation. The arrangement of predictors in the table
columns depends on the type of task.
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Task Predictors
Feature classification Features specified in one or more columns as

scalars.

Numeric Array

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data as a numeric array.

The numeric array must be an N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input data.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
table
Complex Number Support: Yes

X1,...,XN — Numeric or cell arrays for networks with multiple inputs
numeric array | cell array

Numeric or cell arrays for networks with multiple inputs.

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

mixed — Mixed data
TransformedDatastore | CombinedDatastore | custom mini-batch datastore

Mixed data, specified as one of the following.
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Data Type Description Example Usage
TransformedDatastore Datastore that transforms

batches of data read from an
underlying datastore using a
custom transformation function

• Make predictions using
networks with multiple
inputs.

• Transform outputs of
datastores not supported by
predict so they have the
required format.

• Apply custom
transformations to datastore
output.

CombinedDatastore Datastore that reads from two
or more underlying datastores

• Make predictions using
networks with multiple
inputs.

• Combine predictors from
different data sources.

Custom mini-batch datastore Custom datastore that returns
mini-batches of data

Make predictions using data in
a format that other datastores
do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by predict. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.

Datastore Output Example Output
Cell array with numInputs columns, where
numInputs is the number of network inputs.

The order of inputs is given by the InputNames
property of the network.

data = read(ds)

data =

  4×3 cell array

    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}
    {24×1 double}    {28×1 double}

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

Tip To convert a numeric array to a datastore, use arrayDatastore.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MiniBatchSize=256 specifies the mini-batch size as 256.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

When you make predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data, which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the MiniBatchSize and SequenceLength options, respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Acceleration — Performance optimization
"auto" (default) | "mex" | "none"

Performance optimization, specified as one of the following:

• "auto" — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

• "mex" — Compile and execute a MEX function. This option is available only when you use a GPU.
Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If Parallel
Computing Toolbox or a suitable GPU is not available, then the software returns an error.

• "none" — Disable all acceleration.

If Acceleration is "auto", then MATLAB applies a number of compatible optimizations and does
not generate a MEX function.

The "auto" and "mex" options can offer performance benefits at the expense of an increased initial
run time. Subsequent calls with compatible parameters are faster. Use performance optimization
when you plan to call the function multiple times using new input data.

The "mex" option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The "mex" option is available when you use a single GPU.

To use the "mex" option, you must have a C/C++ compiler installed and the GPU Coder Interface for
Deep Learning Libraries support package. Install the support package using the Add-On Explorer in
MATLAB. For setup instructions, see “MEX Setup” (GPU Coder). GPU Coder is not required.

The "mex" option supports networks that contain the layers listed on the “Supported Layers” (GPU
Coder) page, except for the sequenceInputLayer and featureInputLayer objects.
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MATLAB Compiler does not support deploying networks when you use the "mex" option.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu" | "multi-gpu" | "parallel"

Hardware resource, specified as one of the following:

• "auto" — Use a GPU if one is available; otherwise, use the CPU.
• "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU

device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

• "cpu" — Use the CPU.
• "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform computation. If the pool does not
have GPUs, then computation takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

The "gpu", "multi-gpu", and "parallel" options require Parallel Computing Toolbox. To use a
GPU for deep learning, you must also have a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of
these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software
returns an error.

To make predictions in parallel with networks with recurrent layers (by setting
ExecutionEnvironment to either "multi-gpu" or "parallel"), the SequenceLength option
must be "shortest" or "longest".

Networks with custom layers that contain State parameters do not support making predictions in
parallel.

ReturnCategorical — Option to return categorical labels
0 (false) (default) | 1 (true)

Option to return categorical labels, specified as 0 (false) or 1 (true).

If ReturnCategorical is 1 (true), then the function returns categorical labels for classification
output layers. Otherwise, the function returns the prediction scores for classification output layers.

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.
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• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
Y — Predicted responses
numeric array | categorical array | cell array
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Predicted responses, returned as a numeric array, a categorical array, or a cell array. The format of Y
depends on the type of problem.

The following table describes the format for regression problems.

Task Format
2-D image regression • N-by-R matrix, where N is the number of

images and R is the number of responses
• h-by-w-by-c-by-N numeric array, where h, w,

and c are the height, width, and number of
channels of the images, respectively, and N is
the number of images

3-D image regression • N-by-R matrix, where N is the number of
images and R is the number of responses

• h-by-w-by-d-by-c-by-N numeric array, where h,
w, d, and c are the height, width, depth, and
number of channels of the images,
respectively, and N is the number of images

Sequence-to-one regression N-by-R matrix, where N is the number of
sequences and R is the number of responses

Sequence-to-sequence regression N-by-1 cell array of numeric sequences, where N
is the number of sequences. The sequences are
matrices with R rows, where R is the number of
responses. Each sequence has the same number
of time steps as the corresponding input
sequence after the SequenceLength option is
applied to each mini-batch independently.

For sequence-to-sequence regression tasks with
one observation, sequences can be a matrix. In
this case, Y is a matrix of responses.

Feature regression N-by-R matrix, where N is the number of
observations and R is the number of responses

For sequence-to-sequence regression problems with one observation, sequences can be a matrix. In
this case, Y is a matrix of responses.

If ReturnCategorical is 0 (false) and the output layer of the network is a classification layer, then
Y is the predicted classification scores. This table describes the format of the scores for classification
tasks.

Task Format
Image classification N-by-K matrix, where N is the number of

observations and K is the number of classesSequence-to-label classification
Feature classification
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Task Format
Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the

number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after the SequenceLength option is applied to
each mini-batch independently.

If ReturnCategorical is 1 (true), and the output layer of the network is a classification layer, then
Y is a categorical vector or a cell array of categorical vectors. This table describes the format of the
labels for classification tasks.

Task Format
Image or feature classification N-by-1 categorical vector of labels, where N is

the number of observationsSequence-to-label classification
Sequence-to-sequence classification N-by-1 cell array of categorical sequences of

labels, where N is the number of observations.
Each sequence has the same number of time
steps as the corresponding input sequence after
the SequenceLength option is applied to each
mini-batch independently.

For sequence-to-sequence classification tasks
with one observation, sequences can be a
matrix. In this case, Y is a categorical sequence of
labels.

Y1,...,YM — Predicted scores or responses of networks with multiple outputs
numeric array | categorical array | cell array

Predicted scores or responses of networks with multiple outputs, returned as numeric arrays,
categorical arrays, or cell arrays.

Each output Yj corresponds to the network output net.OutputNames(j) and has format as
described in the Y output argument.

Algorithms
When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Alternatives
For networks with a single classification layer only, you can compute the predicted classes and the
predicted scores from a trained network using the classify function.

To compute the activations from a network layer, use the activations function.
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For recurrent networks such as LSTM networks, you can make predictions and update the network
state using classifyAndUpdateState and predictAndUpdateState.

Version History
Introduced in R2016a

Prediction functions pad mini-batches to length of longest sequence before splitting when
you specify SequenceLength option as an integer

Starting in R2022b, when you make predictions with sequence data using the predict, classify,
predictAndUpdateState, classifyAndUpdateState, and activations functions and the
SequenceLength option is an integer, the software pads sequences to the length of the longest
sequence in each mini-batch and then splits the sequences into mini-batches with the specified
sequence length. If SequenceLength does not evenly divide the sequence length of the mini-batch,
then the last split mini-batch has a length shorter than SequenceLength. This behavior prevents
time steps that contain only padding values from influencing predictions.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, manually pad the input data such that the mini-batches
have the length of the appropriate multiple of SequenceLength. For sequence-to-sequence
workflows, you may also need to manually remove time steps of the output that correspond to
padding values.

References
[1] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using

Passing-through Regions.” Pattern Recognition Letters 20, no. 11–13 (November 1999): 1103–
11. https://doi.org/10.1016/S0167-8655(99)00077-X.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• C++ code generation supports the following syntaxes:

• Y = predict(net,images), where images is a numeric array
• Y = predict(net,sequences), where sequences is a cell array
• Y = predict(net,features), where features is a numeric array
• [Y1,...,YM] = predict(__) using any of the previous syntaxes
• __ = predict(__,Name=Value) using any of the previous syntaxes

• For numeric inputs, the input must not have a variable size. The size must be fixed at code
generation time.
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• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• Only the MiniBatchSize, ReturnCategorical, SequenceLength,
SequencePaddingDirection, and SequencePaddingValue name-value pair arguments are
supported for code generation. All name-value pairs must be compile-time constants.

• Only the "longest" and "shortest" options of the SequenceLength name-value pair is
supported for code generation.

• If ReturnCategorical is 1 (true) and you use a GCC C/C++ compiler version 8.2 or above, you
might get a -Wstringop-overflow warning.

• Code generation for Intel MKL-DNN target does not support the combination of
SequenceLength="longest", SequencePaddingDirection="left", and
SequencePaddingValue=0 name-value arguments.

For more information about generating code for deep learning neural networks, see “Workflow for
Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• Y = predict(net,images), where images is a numeric array
• Y = predict(net,sequences), where sequences is a cell array or numeric array
• Y = predict(net,features), where features is a numeric array
• [Y1,...,YM] = predict(__) using any of the previous syntaxes
• __ = predict(__,Name=Value) using any of the previous syntaxes

• For numeric inputs, the input must not have variable size. The size must be fixed at code
generation time.

• GPU code generation does not support gpuArray inputs to the predict function.
• The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only

vector input sequences. The ARM Compute Library for GPU does not support recurrent
networks.

• For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• Only the MiniBatchSize, ReturnCategorical, SequenceLength,
SequencePaddingDirection, and SequencePaddingValue name-value pair arguments are
supported for code generation. All name-value pairs must be compile-time constants.

• Only the "longest" and "shortest" option of the SequenceLength name-value pair is
supported for code generation.

• GPU code generation for the predict function supports inputs that are defined as half-precision
floating point data types. For more information, see half.
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• If ReturnCategorical is set to 1 (true) and you use a GCC C/C++ compiler version 8.2 or
above, you might get a -Wstringop-overflow warning.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run computations in parallel, set the ExecutionEnvironment option to "multi-gpu" or
"parallel".

For details, see “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

• The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

• A gpuArray
• A cell array containing gpuArray objects
• A table containing gpuArray objects
• A datastore that outputs cell arrays containing gpuArray objects
• A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
activations | classify | classifyAndUpdateState | predictAndUpdateState

Topics
“Train Convolutional Neural Network for Regression”
“Sequence-to-Sequence Regression Using Deep Learning”
“Sequence-to-One Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Convert Classification Network into Regression Network”
“Deep Learning in MATLAB”
“Deep Learning Tips and Tricks”
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predictAndUpdateState
Predict responses using a trained recurrent neural network and update the network state

Syntax
[updatedNet,Y] = predictAndUpdateState(recNet,sequences)
[updatedNet,Y] = predictAndUpdateState(recNet,X1,...,XN)
[updatedNet,Y] = predictAndUpdateState(recNet,mixed)
[updatedNet,Y1,...,YM] = predictAndUpdateState( ___ )
[ ___ ] = predictAndUpdateState( ___ ,Name=Value)

Description
You can make predictions using a trained deep learning network on either a CPU or GPU. Using a
GPU requires Parallel Computing Toolbox and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Specify the hardware
requirements using the ExecutionEnvironment name-value argument.

[updatedNet,Y] = predictAndUpdateState(recNet,sequences) predicts responses for data
in sequences using the trained recurrent neural network recNet and updates the network state.

This function supports recurrent neural networks only. The input recNet must have at least one
recurrent layer such as an LSTM layer or a custom layer with state parameters.

[updatedNet,Y] = predictAndUpdateState(recNet,X1,...,XN) predicts the responses for
the data in the numeric or cell arrays X1, …, XN for the multi-input network recNet. The input Xi
corresponds to the network input recNet.InputNames(i).

[updatedNet,Y] = predictAndUpdateState(recNet,mixed) makes predictions using the
multi-input network recNet with data of mixed data types.

[updatedNet,Y1,...,YM] = predictAndUpdateState( ___ ) predicts responses for the M
outputs of a multi-output network using any of the previous input arguments. The output Yj
corresponds to the network output recNet.OutputNames(j). To return categorical outputs for the
classification output layers, set the ReturnCategorical option to 1 (true).

[ ___ ] = predictAndUpdateState( ___ ,Name=Value) makes predictions with additional
options specified by one or more name-value arguments using any of the previous syntaxes. For
example, MiniBatchSize=27 makes predictions using mini-batches of size 27.

Tip When you make predictions with sequences of different lengths, the mini-batch size can impact
the amount of padding added to the input data, which can result in different predicted values. Try
using different values to see which works best with your network. To specify mini-batch size and
padding options, use the MiniBatchSize and SequenceLength options, respectively.

Examples
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Predict and Update Network State

Predict responses using a trained recurrent neural network and update the network state.

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,TTest] = japaneseVowelsTestData;

Loop over the time steps in a sequence. Predict the scores of each time step and update the network
state.

X = XTest{94};
numTimeSteps = size(X,2);
for i = 1:numTimeSteps
    v = X(:,i);
    [net,score] = predictAndUpdateState(net,v);
    scores(:,i) = score;
end

Plot the prediction scores. The plot shows how the prediction scores change between time steps.

classNames = string(net.Layers(end).Classes);
figure
lines = plot(scores');
xlim([1 numTimeSteps])
legend("Class " + classNames,Location="northwest")
xlabel("Time Step")
ylabel("Score")
title("Prediction Scores Over Time Steps")

Highlight the prediction scores over time steps for the correct class.

trueLabel = TTest(94)

trueLabel = categorical
     3 

lines(trueLabel).LineWidth = 3;
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Display the final time step prediction in a bar chart.

figure
bar(score)
title("Final Prediction Scores")
xlabel("Class")
ylabel("Score")
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Input Arguments
recNet — Trained recurrent neural network
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a SeriesNetwork or a DAGNetwork object. You can
get a trained network by importing a pretrained network or by training your own network using the
trainNetwork function.

recNet is a recurrent neural network. It must have at least one recurrent layer (for example, an
LSTM network).

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.

 predictAndUpdateState

1-1345



Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

1-D image sequences h-by-c-by-s arrays, where h and c correspond to
the height and number of channels of the images,
respectively, and s is the sequence length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first
column contains sequences. The dimensions of the sequence data must correspond to the table
above.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

X1,...,XN — Numeric or cell arrays for networks with multiple inputs
numeric array | cell array

Numeric or cell arrays for networks with multiple inputs.

For sequence predictor input, the input must be a numeric array representing a single sequence or a
cell array of sequences, where the format of the predictors match the formats described in the
sequences argument description. For image and feature predictor input, the input must be a
numeric array and the format of the predictors must match the one of the following:

Data Format
2-D images h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
images, respectively.

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the images, respectively.

Feature data c-by-1 column vectors, where c is the number of
features.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.
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Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

mixed — Mixed data
TransformedDatastore | CombinedDatastore | custom mini-batch datastore

Mixed data, specified as one of the following.

Data Type Description Example Usage
TransformedDatastore Datastore that transforms

batches of data read from an
underlying datastore using a
custom transformation function

• Make predictions using
networks with multiple
inputs.

• Transform outputs of
datastores not supported by
predictAndUpdateState
so they have the required
format.

• Apply custom
transformations to datastore
output.

CombinedDatastore Datastore that reads from two
or more underlying datastores

• Make predictions using
networks with multiple
inputs.

• Combine predictors from
different data sources.

Custom mini-batch datastore Custom datastore that returns
mini-batches of data

Make predictions using data in
a format that other datastores
do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by predictAndUpdateState. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Datastore Output Example Output
Cell array with numInputs columns, where
numInputs is the number of network inputs.

The order of inputs is given by the InputNames
property of the network.

data = read(ds)

data =

  4×3 cell array

    {12×50 double}    {28×1 double}
    {12×50 double}    {28×1 double}
    {12×50 double}    {28×1 double}
    {12×50 double}    {28×1 double}

For sequence predictor input, the input must be a numeric array representing a single sequence or a
cell array of sequences, where the format of the predictors match the formats described in the
sequences argument description. For image and feature predictor input, the input must be a
numeric array and the format of the predictors must match the one of the following:

Data Format
2-D images h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
images, respectively.

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the images, respectively.

Feature data c-by-1 column vectors, where c is the number of
features.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

Tip To convert a numeric array to a datastore, use ArrayDatastore.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [updatedNet,Y] = predictAndUpdateState(recNet,C,MiniBatchSize=27)
makes predictions using mini-batches of size 27.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

When you make predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data, which can result in different predicted values. Try using
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different values to see which works best with your network. To specify mini-batch size and padding
options, use the MiniBatchSize and SequenceLength options, respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Acceleration — Performance optimization
"auto" (default) | "none"

Performance optimization, specified as one of the following:

• "auto" — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

• "none" — Disable all acceleration.

Using the Acceleration option "auto" can offer performance benefits, but at the expense of an
increased initial run time. Subsequent calls with compatible parameters are faster. Use performance
optimization when you plan to call the function multiple times using new input data.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource, specified as one of the following:

• "auto" — Use a GPU if one is available; otherwise, use the CPU.
• "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU

device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

• "cpu" — Use the CPU.

ReturnCategorical — Option to return categorical labels
0 (false) (default) | 1 (true)

Option to return categorical labels, specified as 0 (false) or 1 (true).

If ReturnCategorical is 1 (true), then the function returns categorical labels for classification
output layers. Otherwise, the function returns the prediction scores for classification output layers.

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.
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To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
updatedNet — Updated network
SeriesNetwork object | DAGNetwork object

Updated network. updatedNet is the same type of network as the input network.

Y — Predicted scores or responses
numeric array | categorical array | cell array

Predicted scores or responses, returned as a numeric array, categorical array, or a cell array. The
format of Y depends on the type of problem.

The following table describes the format for classification tasks.

1 Deep Learning Functions

1-1350



Task ReturnCategorical Format
Sequence-to-label classification 0 (false) N-by-K matrix, where N is the

number of observations, and K
is the number of classes

1 (true) N-by-1 categorical vector, where
N is the number of observations

Sequence-to-sequence
classification

0 (false) N-by-1 cell array of matrices,
where N is the number of
observations. The sequences are
matrices with K rows, where K
is the number of classes. Each
sequence has the same number
of time steps as the
corresponding input sequence
after the SequenceLength
option is applied to each mini-
batch independently.

1 (true) N-by-1 cell array of categorical
sequences, where N is the
number of observations. The
categorical sequences are
categorical vectors with the
same number of time steps as
the corresponding input
sequence after the
SequenceLength option is
applied to each mini-batch
independently.

For sequence-to-sequence classification tasks with one observation, sequences can be a matrix. In
this case, the format of Y depends on the ReturnCategorical option:

• If ReturnCategoical is 0 (false), then Y is a K-by-S matrix scores, where K is the number of
classes, and S is the total number of time steps in the corresponding input sequence.

• If ReturnCategoical is 1 (true), then Y is a 1-by-S categorical vector, where S is the total
number of time steps in the corresponding input sequence.

The following table describes the format for regression tasks.

Task Format
Sequence-to-one regression N-by-R matrix, where N is the number of

observations and R is the number of responses.

 predictAndUpdateState

1-1351



Task Format
Sequence-to-sequence regression N-by-1 cell array of numeric sequences, where N

is the number of observations. The sequences are
matrices with R rows, where R is the number of
responses. Each sequence has the same number
of time steps as the corresponding input
sequence after applying the SequenceLength
option to each mini-batch independently.

For sequence-to-sequence problems with one
observation, sequences can be a matrix. In this
case, Y is a matrix of responses.

Y1,...,YM — Predicted scores or responses of networks with multiple outputs
numeric array | categorical array | cell array

Predicted scores or responses of networks with multiple outputs, returned as numeric arrays,
categorical arrays, or cell arrays.

Each output Yj corresponds to the network output recNet.OutputNames(j) and has format as
described in the Y output argument.

Algorithms
When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Version History
Introduced in R2017b

Prediction functions pad mini-batches to length of longest sequence before splitting when
you specify SequenceLength option as an integer

Starting in R2022b, when you make predictions with sequence data using the predict, classify,
predictAndUpdateState, classifyAndUpdateState, and activations functions and the
SequenceLength option is an integer, the software pads sequences to the length of the longest
sequence in each mini-batch and then splits the sequences into mini-batches with the specified
sequence length. If SequenceLength does not evenly divide the sequence length of the mini-batch,
then the last split mini-batch has a length shorter than SequenceLength. This behavior prevents
time steps that contain only padding values from influencing predictions.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, manually pad the input data such that the mini-batches
have the length of the appropriate multiple of SequenceLength. For sequence-to-sequence
workflows, you may also need to manually remove time steps of the output that correspond to
padding values.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• C++ code generation supports the following syntaxes:

• [updatedNet,Y] = predictAndUpdateState(recNet,sequences), where sequences
is cell array.

• [updatedNet,Y] = predictAndUpdateState(recNet,sequences,Name=Value)
• For vector sequence inputs, the number of features must be a constant during code generation.

The sequence length can be variable sized.
• For image sequence inputs, the height, width, and the number of channels must be a constant

during code generation.
• Only the MiniBatchSize, SequenceLength, SequencePaddingDirection, and

SequencePaddingValue name-value arguments are supported for code generation. All name-
value arguments must be compile-time constants.

• Only the "longest" and "shortest" options of the SequenceLength name-value argument is
supported for code generation.

• Code generation for Intel MKL-DNN target does not support the combination of
SequenceLength="longest", SequencePaddingDirection="left", and
SequencePaddingValue=0 name-value arguments.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation supports the following syntaxes:

• [updatedNet,Y] = predictAndUpdateState(recNet,sequences), where sequences
is cell array or numeric array.

• [updatedNet,Y] = predictAndUpdateState(recNet,sequences,Name=Value)
• GPU code generation for the predictAndUpdateState function is only supported for recurrent

neural networks targeting cuDNN and TensorRT libraries.
• GPU code generation does not support gpuArray inputs to the predictAndUpdateState

function.
• For vector sequence inputs, the number of features must be a constant during code generation.

The sequence length can be variable sized.
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• For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

• Only the MiniBatchSize, SequenceLength, SequencePaddingDirection, and
SequencePaddingValue name-value arguments are supported for code generation. All name-
value pairs must be compile-time constants.

• Only the "longest" and "shortest" options of the SequenceLength name-value argument is
supported for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

• The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

• A gpuArray
• A cell array containing gpuArray objects
• A table containing gpuArray objects
• A datastore that outputs cell arrays containing gpuArray objects
• A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
sequenceInputLayer | lstmLayer | bilstmLayer | gruLayer | classifyAndUpdateState |
resetState | classify | predict

Topics
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Deep Learning in MATLAB”
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read
Read data from augmentedImageDatastore

Syntax
data = read(auimds)
[data,info] = read(auimds)

Description
data = read(auimds) returns a batch of data from an augmented image datastore, auimds.
Subsequent calls to the read function continue reading from the endpoint of the previous call.

[data,info] = read(auimds) also returns information about the extracted data, including
metadata, in info.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object. The datastore
specifies a MiniBatchSize number of observations in each batch, and a numObservations total
number of observations.

Output Arguments
data — Output data
table

Output data, returned as a table. When the datastore auimds reads a full batch of data, the table has
MiniBatchSize rows. For the last batch of data in the datastore, if numObservations is not cleanly
divisible by MiniBatchSize, then read returns a partial batch containing all of the remaining
observations.

The first column of the table, "input", returns the data for each image. The table has a second
column, "response", when auimds reads data of these types:

• Image files containing labeled image data, when the file names are specified by an image
datastore

• A numeric array containing categorical labels or numeric responses
• A table that includes one or more responses

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain these
fields.
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Field Name Description
Filename Cell array of character vectors. Each element is a fully resolved

path containing the path string, name of the file, and file extension
for the corresponding image. This field is present when auimds
reads data from files specified by an image datastore.

FileSize Numeric vector. Each element is the total file size, in bytes, of the
corresponding image. For MAT-files, FileSize is the total number
of key-value pairs in the file. This field is present when auimds
reads data from files specified by an image datastore.

Label Categorical vector. Each element is the category label of the
corresponding image. This field is present when auimds reads
labeled data from files specified by an image datastore.

MiniBatchIndices Numeric vector. Each element is the index of the input image in
the array. This field is present when auimds reads data from
numeric arrays.

Version History
Introduced in R2018a

See Also
read (Datastore) | readByIndex | readall
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readByIndex
Read data specified by index from augmentedImageDatastore

Syntax
data = readByIndex(auimds,ind)
[data,info] = readByIndex(auimds,ind)

Description
data = readByIndex(auimds,ind) returns a subset of observations from an augmented image
datastore, auimds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(auimds,ind) also returns information about the observations,
including metadata, in info.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.

info — Information about read data
structure array

Information about read data, returned as a structure array with the following fields.

Field Name Description
MiniBatchIndices Numeric vector of indices.

Version History
Introduced in R2018a
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See Also
read | readall | partitionByIndex
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recordMetrics
Package: experiments

Record metric values in experiment results table and training plot

Syntax
recordMetrics(monitor,step,metricName=metricValue)
recordMetrics(monitor,
step,metricName1=metricValue1,...,metricNameN=metricValueN)
recordMetrics(monitor,step,metricStructure)

Description
recordMetrics(monitor,step,metricName=metricValue) records the specified metric value
for a trial in the Experiment Manager results table and training plot.

recordMetrics(monitor,
step,metricName1=metricValue1,...,metricNameN=metricValueN) records multiple metric
values for a trial.

recordMetrics(monitor,step,metricStructure) records the metric values specified by the
structure metricStructure.

Examples

Track Progress, Display Information and Record Metric Values, and Produce Training Plots

Use an experiments.Monitor object to track the progress of the training, display information and
metric values in the experiment results table, and produce training plots for custom training
experiments.

Before starting the training, specify the names of the information and metric columns of the
Experiment Manager results table.

monitor.Info = ["GradientDecayFactor","SquaredGradientDecayFactor"];
monitor.Metrics = ["TrainingLoss","ValidationLoss"];

Specify the horizontal axis label for the training plot. Group the training and validation loss in the
same subplot.

monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);

Update the values of the gradient decay factor and the squared gradient decay factor for the trial in
the results table.

updateInfo(monitor, ...
    GradientDecayFactor=gradientDecayFactor, ...
    SquaredGradientDecayFactor=squaredGradientDecayFactor);
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After each iteration of the custom training loop, record the value of training and validation loss for
the trial in the results table and the training plot.

recordMetrics(monitor,iteration, ...
    TrainingLoss=trainingLoss, ...
    ValidationLoss=validationLoss);

Update the training progress for the trial based on the fraction of iterations completed.

monitor.Progress = 100 * (iteration/numIterations);

Specify Metric Values by Using Structure

Use a structure to record metric values in the results table and the training plot.

structure.TrainingLoss = trainingLoss;
structure.ValidationLoss = validationLoss;
recordMetrics(monitor,iteration,structure);

Input Arguments
monitor — Experiment monitor
experiments.Monitor object

Experiment monitor for the trial, specified as an experiments.Monitor object. When you run a
custom training experiment, Experiment Manager passes this object as the second input argument of
the training function.

step — Custom training loop step
numeric scalar | dlarray

Custom training loop step, such as the iteration or epoch number, specified as a numeric scalar or
dlarray object. Experiment Manager uses this value as the x-coordinate in the training plot.

metricName — Metric name
string | character vector

Metric name, specified as a string or character vector. This name must be an element of the Metrics
property of the experiments.Monitor object monitor.
Data Types: char | string

metricValue — Metric value
numeric scalar | dlarray

Metric value, specified as a numeric scalar or dlarray object. Experiment Manager uses this value
as the y-coordinate in the training plot.

metricStructure — Metric names and values
structure

Metric names and values, specified as a structure. Names must be elements of the Metrics property
of the experiments.Monitor object monitor and can appear in any order in the structure.
Example: struct(TrainingLoss=trainingLoss,ValidationLoss=validationLoss)
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Data Types: struct

Tips
• Both information and metric columns display values in the results table for your experiment.

Additionally, the training plot shows a record of the metric values. Use information columns for
text and for numerical values that you want to display in the results table but not in the training
plot.

• Use the groupSubPlot function to define your training subplots before calling the function
recordMetrics.

Version History
Introduced in R2021a

See Also
Apps
Experiment Manager

Objects
experiments.Monitor

Functions
groupSubPlot | struct | updateInfo

Topics
“Use Bayesian Optimization in Custom Training Experiments”
“Run a Custom Training Experiment for Image Comparison”
“Use Experiment Manager to Train Generative Adversarial Networks (GANs)”
“Custom Training with Multiple GPUs in Experiment Manager”
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recordMetrics
Package: deep

Record metric values for custom training loops

Syntax
recordMetrics(monitor,step,metricName=metricValue)
recordMetrics(monitor,
step,metricName1=metricValue1,...,metricNameN=metricValueN)
recordMetrics(monitor,step,metricStructure)

Description
recordMetrics(monitor,step,metricName=metricValue) records the specified metric value
in the training plot and the MetricData property of the TrainingProgressMonitor object
monitor.

recordMetrics(monitor,
step,metricName1=metricValue1,...,metricNameN=metricValueN) records multiple metric
values.

recordMetrics(monitor,step,metricStructure) records the metric values specified by the
structure metricStructure.

Examples

Track Progress and Produce Training Plots

Use a TrainingProgressMonitor object to track training progress and produce training plots for
custom training loops.

Create a TrainingProgressMonitor object. The monitor automatically tracks the start time and
the elapsed time. The timer starts when you create the object.

Tip To ensure that the elapsed time accurately reflects the training time, make sure you create the
TrainingProgressMonitor object close to the start of your custom training loop.

monitor = trainingProgressMonitor;

Before you start the training, specify names for the information and metric values.

monitor.Info = ["LearningRate","Epoch","Iteration"];
monitor.Metrics = ["TrainingLoss","ValidationLoss","TrainingAccuracy","ValidationAccuracy"];

Specify the horizontal axis label for the training plot. Group the training and validation loss in the
same subplot, and group the training and validation accuracy in the same plot.
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monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);
groupSubPlot(monitor,"Accuracy",["TrainingAccuracy","ValidationAccuracy"]);

During training:

• Evaluate the Stop property at the start of each step in your custom training loop. When you click
the Stop button in the Training Progress window, the Stop property changes to 1. Training stops
if your training loop exits when the Stop property is 1.

• Update the information values. The updated values appear in the Training Progress window.
• Record the metric values. The recorded values appear in the training plot.
• Update the training progress percentage based on the fraction of iterations completed.

Note The following example code is a template. You must edit this training loop to compute your
metric and information values. For a complete example that you can run in MATLAB, see “Monitor
Custom Training Loop Progress During Training”.

epoch = 0;
iteration = 0;

monitor.Status = "Running";

while epoch < maxEpochs && ~monitor.Stop
    epoch = epoch + 1;

    while hasData(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Add code to calculate metric and information values.
        % lossTrain = ...

       updateInfo(monitor, ...
            LearningRate=learnRate, ...
            Epoch=string(epoch) + " of " + string(maxEpochs), ...
            Iteration=string(iteration) + " of " + string(numIterations));

       recordMetrics(monitor,iteration, ...
            TrainingLoss=lossTrain, ...
            TrainingAccuracy=accuracyTrain, ...
            ValidationLoss=lossValidation, ...
            ValidationAccuracy=accuracyValidation);

        monitor.Progress = 100*iteration/numIterations;
    end
end

The Training Progress window shows animated plots of the metrics, and the information values,
training progress bar, and elapsed time.

• The training plots update each time you call recordMetrics.
• The values under Information update each time you call updateInfo.
• The elapsed time updates each time you call recordMetrics or updateInfo, and when you

update the property.
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Specify Metric Values by Using Structure

Use a structure to record metric values.

structure.TrainingLoss = trainingLoss;
structure.ValidationLoss = validationLoss;
recordMetrics(monitor,iteration,structure);

Input Arguments
monitor — Training progress monitor
TrainingProgressMonitor object

Training progress monitor, specified as a TrainingProgressMonitor object.

step — Custom training loop step
numeric scalar | dlarray object

Custom training loop step, such as the iteration or epoch number, specified as a numeric scalar or
dlarray object. The software uses this value as the x-coordinate in the training plot.

metricName — Metric name
string scalar | character vector

Metric name, specified as a string scalar or character vector. This input must be an element of the
Metrics property of monitor.
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Data Types: char | string | cell

metricValue — Metric value
numeric scalar | dlarray object

Metric value, specified as a numeric scalar or dlarray object. The software uses this value as the y-
coordinate in the training plot.

metricStructure — Metric names and values
structure

Metric names and values, specified as a structure. Names must be elements of the Metrics property
of monitor and can appear in any order in the structure.
Example: struct(TrainingLoss=trainingLoss,ValidationLoss=validationLoss)
Data Types: struct

Tips
• The information values appear in the Training Progress window and the training plot shows a

record of the metric values. Use information values for text and for numerical values that you
want to display in the training window but not in the training plot.

• Use the groupSubPlot function to group multiple metrics in a single training subplot.

Version History
Introduced in R2022b

See Also
trainingProgressMonitor | updateInfo | groupSubPlot

Topics
“Monitor Custom Training Loop Progress”
“Train Network Using Custom Training Loop”
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regressionLayer
Regression output layer

Syntax
layer = regressionLayer
layer = regressionLayer(Name,Value)

Description
A regression layer computes the half-mean-squared-error loss for regression tasks.

layer = regressionLayer returns a regression output layer for a neural network as a
RegressionOutputLayer object.

Predict responses of a trained regression network using predict. Normalizing the responses often
helps stabilizing and speeding up training of neural networks for regression. For more information,
see “Train Convolutional Neural Network for Regression”.

layer = regressionLayer(Name,Value) sets the optional Name and ResponseNames properties
using name-value pairs. For example, regressionLayer('Name','output') creates a regression
layer with the name 'output'. Enclose each property name in single quotes.

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

layer = regressionLayer('Name','routput')

layer = 
  RegressionOutputLayer with properties:

             Name: 'routput'
    ResponseNames: {}

   Hyperparameters
     LossFunction: 'mean-squared-error'

The default loss function for regression is mean-squared-error.

Include a regression output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer]
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layers = 
  5x1 Layer array with layers:

     1   ''   Image Input         28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution     25 12x12 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                ReLU
     4   ''   Fully Connected     1 fully connected layer
     5   ''   Regression Output   mean-squared-error

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: regressionLayer('Name','output') creates a regression layer with the name
'output'

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

ResponseNames — Names of responses
{} (default) | cell array of character vectors | string array

Names of the responses, specified a cell array of character vectors or a string array. At training time,
the software automatically sets the response names according to the training data. The default is {}.
Data Types: cell

Output Arguments
layer — Regression output layer
RegressionOutputLayer object

Regression output layer, returned as a RegressionOutputLayer object.

More About
Regression Output Layer

A regression layer computes the half-mean-squared-error loss for regression tasks. For typical
regression problems, a regression layer must follow the final fully connected layer.

For a single observation, the mean-squared-error is given by:
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MSE =∑
i = 1

R
(ti− yi)

2

R ,

where R is the number of responses, ti is the target output, and yi is the network’s prediction for
response i.

For image and sequence-to-one regression networks, the loss function of the regression layer is the
half-mean-squared-error of the predicted responses, not normalized by R:

loss = 1
2∑

i = 1

R

(ti− yi)
2 .

For image-to-image regression networks, the loss function of the regression layer is the half-mean-
squared-error of the predicted responses for each pixel, not normalized by R:

loss = 1
2∑

p = 1

HWC

(tp− yp)2,

where H, W, and C denote the height, width, and number of channels of the output respectively, and p
indexes into each element (pixel) of t and y linearly.

For sequence-to-sequence regression networks, the loss function of the regression layer is the half-
mean-squared-error of the predicted responses for each time step, not normalized by R:

loss = 1
2S∑

i = 1

S

∑
j = 1

R

(ti j− yi j)2,

where S is the sequence length.

When training, the software calculates the mean loss over the observations in the mini-batch.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
RegressionOutputLayer | fullyConnectedLayer | classificationLayer
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Topics
“Deep Learning in MATLAB”
“Train Convolutional Neural Network for Regression”
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RegressionOutputLayer
Regression output layer

Description
A regression layer computes the half-mean-squared-error loss for regression tasks.

Creation
Create a regression output layer using regressionLayer.

Properties
Regression Output

ResponseNames — Names of responses
{} (default) | cell array of character vectors | string array

Names of the responses, specified a cell array of character vectors or a string array. At training time,
the software automatically sets the response names according to the training data. The default is {}.
Data Types: cell

LossFunction — Loss function for training
'mean-squared-error'

Loss function the software uses for training, specified as 'mean-squared-error'.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)
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This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
0 (default)

Number of outputs of the layer. The layer has no outputs.
Data Types: double

OutputNames — Output names
{} (default)

Output names of the layer. The layer has no outputs.
Data Types: cell

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

layer = regressionLayer('Name','routput')

layer = 
  RegressionOutputLayer with properties:

             Name: 'routput'
    ResponseNames: {}

   Hyperparameters
     LossFunction: 'mean-squared-error'

The default loss function for regression is mean-squared-error.

Include a regression output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Image Input         28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution     25 12x12 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                ReLU
     4   ''   Fully Connected     1 fully connected layer
     5   ''   Regression Output   mean-squared-error
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More About
Regression Output Layer

A regression layer computes the half-mean-squared-error loss for regression tasks. For typical
regression problems, a regression layer must follow the final fully connected layer.

For a single observation, the mean-squared-error is given by:

MSE =∑
i = 1

R
(ti− yi)

2

R ,

where R is the number of responses, ti is the target output, and yi is the network’s prediction for
response i.

For image and sequence-to-one regression networks, the loss function of the regression layer is the
half-mean-squared-error of the predicted responses, not normalized by R:

loss = 1
2∑

i = 1

R

(ti− yi)
2 .

For image-to-image regression networks, the loss function of the regression layer is the half-mean-
squared-error of the predicted responses for each pixel, not normalized by R:

loss = 1
2∑

p = 1

HWC

(tp− yp)2,

where H, W, and C denote the height, width, and number of channels of the output respectively, and p
indexes into each element (pixel) of t and y linearly.

For sequence-to-sequence regression networks, the loss function of the regression layer is the half-
mean-squared-error of the predicted responses for each time step, not normalized by R:

loss = 1
2S∑

i = 1

S

∑
j = 1

R

(ti j− yi j)2,

where S is the sequence length.

When training, the software calculates the mean loss over the observations in the mini-batch.

Version History
Introduced in R2017a

See Also
trainNetwork | regressionLayer | classificationLayer | fullyConnectedLayer
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Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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reset
Reset minibatchqueue to start of data

Syntax
reset(mbq)

Description
reset(mbq) resets mbq back to the start of the underlying datastore.

Examples

Reset minibatchqueue and Obtain More Mini-Batches

You can call next on a minibatchqueue object until all data is returned. When you reach the end of
the data, use reset to reset the minibatchqueue object and continue obtaining mini-batches with
next.

Create a minibatchqueue object from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds,'MinibatchSize',256)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 256
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

Iterate over all data in the minibatchqueue object. Use hasdata to check if data is still available.

while hasdata(mbq)
    [~] = next(mbq);
end

When hasdata returns 0 (false), you cannot collect a mini-batch using next.

hasdata(mbq)

ans = 
   0
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X = next(mbq);

Error using minibatchqueue/next (line 353)
Unable to provide a mini-batch because end of data reached. Use reset or shuffle to continue generating mini-batches from the data set.

Reset the minibatchqueue object. Now, hasdata returns 1 (true), and you can continue to obtain
data using next.

reset(mbq);
hasdata(mbq)

ans = 
   1

X = next(mbq);

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

Version History
Introduced in R2020b

See Also
hasdata | next | shuffle | minibatchqueue

Topics
“Train Deep Learning Model in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
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quantizationDetails
Display quantization details for a neural network

Syntax
qDetails = quantizationDetails(net)

Description
qDetails = quantizationDetails(net) returns a 1-by-1 structure array containing the
quantization details for your neural network. The data is returned as a structure with the fields:

• IsQuantized — Returns 1 (true) if the network is quantized; otherwise, returns 0 (false)
• TargetLibrary — Target library for code generation
• QuantizedLayerNames — List of quantized layers
• QuantizedLearnables — Quantized network learnable parameters

Examples

Show Quantization Details

This example shows how to display the quantization details for a neural network.

Load the pretrained network. net is a SqueezeNet convolutional neural network that has been
retrained using transfer learning to classify images in the MerchData data set.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Use the quantizationDetails function to see that the network is not quantized.

qDetails_original = quantizationDetails(net)

qDetails_original = struct with fields:
            IsQuantized: 0
          TargetLibrary: ""
    QuantizedLayerNames: [0×0 string]
    QuantizedLearnables: [0×3 table]
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The IsQuantized field returns 0 (false) because the original network uses the single-precision
floating-point data type.

Unzip and load the MerchData images as an image datastore. Define an augmentedImageDatastore
object to resize the data for the network, and split the data into calibration and validation data sets to
use for quantization.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize. Set the execution environment to
MATLAB.

quantObj = dlquantizer(net,'ExecutionEnvironment','MATLAB');

Use the calibrate function to exercise the network with sample inputs and collect range information.

calResults = calibrate(quantObj,aug_calData);

Use the quantize method to quantize the network object and return a simulatable quantized
network.

qNet = quantize(quantObj)

qNet = 
Quantized DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Use the quantizationDetails method to extract quantization details.

Use the quantizationDetails method to extract the quantization details.

qDetails = quantizationDetails(qNet)

qDetails = struct with fields:
            IsQuantized: 1
          TargetLibrary: "none"
    QuantizedLayerNames: [26×1 string]
    QuantizedLearnables: [52×3 table]

Inspect the QuantizedLayerNames field to see a list of the quantized layers.

qDetails.QuantizedLayerNames

ans = 26×1 string
    "conv1"
    "fire2-squeeze1x1"
    "fire2-expand1x1"
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    "fire2-expand3x3"
    "fire3-squeeze1x1"
    "fire3-expand1x1"
    "fire3-expand3x3"
    "fire4-squeeze1x1"
    "fire4-expand1x1"
    "fire4-expand3x3"
    "fire5-squeeze1x1"
    "fire5-expand1x1"
    "fire5-expand3x3"
    "fire6-squeeze1x1"
    "fire6-expand1x1"
    "fire6-expand3x3"
    "fire7-squeeze1x1"
    "fire7-expand1x1"
    "fire7-expand3x3"
    "fire8-squeeze1x1"
    "fire8-expand1x1"
    "fire8-expand3x3"
    "fire9-squeeze1x1"
    "fire9-expand1x1"
    "fire9-expand3x3"
    "new_conv"

Inspect the QuantizedLearnables field to see the quantized values for learnable parameters in the
network.

qDetails.QuantizedLearnables

ans=52×3 table
          Layer           Parameter          Value       
    __________________    _________    __________________

    "conv1"               "Weights"    {3×3×3×64   int8 }
    "conv1"               "Bias"       {1×1×64     int32}
    "fire2-squeeze1x1"    "Weights"    {1×1×64×16  int8 }
    "fire2-squeeze1x1"    "Bias"       {1×1×16     int32}
    "fire2-expand1x1"     "Weights"    {1×1×16×64  int8 }
    "fire2-expand1x1"     "Bias"       {1×1×64     int32}
    "fire2-expand3x3"     "Weights"    {3×3×16×64  int8 }
    "fire2-expand3x3"     "Bias"       {1×1×64     int32}
    "fire3-squeeze1x1"    "Weights"    {1×1×128×16 int8 }
    "fire3-squeeze1x1"    "Bias"       {1×1×16     int32}
    "fire3-expand1x1"     "Weights"    {1×1×16×64  int8 }
    "fire3-expand1x1"     "Bias"       {1×1×64     int32}
    "fire3-expand3x3"     "Weights"    {3×3×16×64  int8 }
    "fire3-expand3x3"     "Bias"       {1×1×64     int32}
    "fire4-squeeze1x1"    "Weights"    {1×1×128×32 int8 }
    "fire4-squeeze1x1"    "Bias"       {1×1×32     int32}
      ⋮

Input Arguments
net — Neural network
DAGNetwork object | SeriesNetwork object | dlnetwork object
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Quantized neural network specified as a DAGNetwork, SeriesNetwork, or a dlnetwork object.

Version History
Introduced in R2022a

See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | dlquantizationOptions | calibrate | quantize | validate |
estimateNetworkMetrics

Topics
“Quantization of Deep Neural Networks”
“Quantize Layers in Object Detectors and Generate CUDA Code”
“Classify Images on an FPGA Using a Quantized DAG Network” (Deep Learning HDL Toolbox)
“Generate INT8 Code for Deep Learning Network on Raspberry Pi” (MATLAB Coder)
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resetState
Reset state parameters of neural network

Syntax
netUpdated = resetState(net)

Description
netUpdated = resetState(net) resets the state parameters of a neural network. Use this
function to reset the state of a recurrent neural network such as an LSTM network.

Examples

Reset Network State

Reset the network state between sequence predictions.

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans = 
  5x1 Layer array with layers:

     1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
     2   'lstm'            LSTM                    LSTM with 100 hidden units
     3   'fc'              Fully Connected         9 fully connected layer
     4   'softmax'         Softmax                 softmax
     5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Classify a sequence and update the network state. For reproducibility, set rng to 'shuffle'.

rng('shuffle')
X = XTest{94};
[net,label] = classifyAndUpdateState(net,X);
label

label = categorical
     3 
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Classify another sequence using the updated network.

X = XTest{1};
label = classify(net,X)

label = categorical
     7 

Compare the final prediction with the true label.

trueLabel = YTest(1)

trueLabel = categorical
     1 

The updated state of the network may have negatively influenced the classification. Reset the
network state and predict on the sequence again.

net = resetState(net);
label = classify(net,XTest{1})

label = categorical
     1 

Input Arguments
net — Neural network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Neural network, specified as a SeriesNetwork, DAGNetwork, or dlnetwork object.

The resetState function only has an effect if net has state parameters (for example, a network
with at least one recurrent layer such as an LSTM layer). If the input network does not have state
parameters, then the function has no effect and returns the input network.

Output Arguments
netUpdated — Updated network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Updated network, returned as a network of the same type as the input network.

The resetState function only has an effect if net has state parameters (for example, a network
with at least one recurrent layer such as an LSTM layer). If the input network does not have state
parameters, then the function has no effect and returns the input network.

Version History
Introduced in R2017b
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References
[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pages 1103–1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation for Intel MKL-DNN target does not support the combination of
'SequenceLength','longest', 'SequencePaddingDirection','left', and
'SequencePaddingValue',0 name-value arguments.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation for the resetState function is only supported for recurrent neural
networks targeting cuDNN and TensorRT libraries.

See Also
sequenceInputLayer | lstmLayer | bilstmLayer | gruLayer | classifyAndUpdateState |
predictAndUpdateState

Topics
“Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
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rmspropupdate
Update parameters using root mean squared propagation (RMSProp)

Syntax
[netUpdated,averageSqGrad] = rmspropupdate(net,grad,averageSqGrad)
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad)
[ ___ ] = rmspropupdate( ___ learnRate,sqGradDecay,epsilon)

Description
Update the network learnable parameters in a custom training loop using the root mean squared
propagation (RMSProp) algorithm.

Note This function applies the RMSProp optimization algorithm to update network parameters in
custom training loops that use networks defined as dlnetwork objects or model functions. If you
want to train a network defined as a Layer array or as a LayerGraph, use the following functions:

• Create a TrainingOptionsRMSProp object using the trainingOptions function.
• Use the TrainingOptionsRMSProp object with the trainNetwork function.

[netUpdated,averageSqGrad] = rmspropupdate(net,grad,averageSqGrad) updates the
learnable parameters of the network net using the RMSProp algorithm. Use this syntax in a training
loop to iteratively update a network defined as a dlnetwork object.

[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad) updates the
learnable parameters in params using the RMSProp algorithm. Use this syntax in a training loop to
iteratively update the learnable parameters of a network defined using functions.

[ ___ ] = rmspropupdate( ___ learnRate,sqGradDecay,epsilon) also specifies values to use
for the global learning rate, square gradient decay, and small constant epsilon, in addition to the
input arguments in previous syntaxes.

Examples

Update Learnable Parameters Using rmspropupdate

Perform a single root mean squared propagation update step with a global learning rate of 0.05 and
squared gradient decay factor of 0.95.

Create the parameters and parameter gradients as numeric arrays.

params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the average squared gradient for the first iteration.
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averageSqGrad = [];

Specify custom values for the global learning rate and squared gradient decay factor.

learnRate = 0.05;
sqGradDecay = 0.95;

Update the learnable parameters using rmspropupdate.
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad,learnRate,sqGradDecay);

Train a Network Using rmspropupdate

Use rmspropupdate to train a network using the root mean squared propagation (RMSProp)
algorithm.

Load Training Data

Load the digits training data.

[XTrain,TTrain] = digitTrain4DArrayData;
classes = categories(TTrain);
numClasses = numel(classes);

Define the Network

Define the network architecture and specify the average image value using the Mean option in the
image input layer.

layers = [
    imageInputLayer([28 28 1],'Mean',mean(XTrain,4))
    convolution2dLayer(5,20)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers);

Define Model Loss Function

Create the helper function modelLoss, listed at the end of the example. The function takes a
dlnetwork object and a mini-batch of input data with corresponding labels, and returns the loss and
the gradients of the loss with respect to the learnable parameters.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;
numEpochs = 20;
numObservations = numel(TTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
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Train Network

Initialize the squared average gradients.

averageSqGrad = [];

Calculate the total number of iterations for the training progress monitor.

numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters using the rmspropupdate function. At the end of
each iteration, display the training progress.

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

Train the network.

iteration = 0;
epoch = 0;

while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    idx = randperm(numel(TTrain));
    XTrain = XTrain(:,:,:,idx);
    TTrain = TTrain(idx);

    i = 0;
    while i < numIterationsPerEpoch && ~monitor.Stop
        i = i + 1;
        iteration = iteration + 1;

        % Read mini-batch of data and convert the labels to dummy
        % variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);

        T = zeros(numClasses,miniBatchSize,"single");
        for c = 1:numClasses
            T(c,TTrain(idx)==classes(c)) = 1;
        end
        
        % Convert mini-batch of data to a dlarray.
        X = dlarray(single(X),"SSCB");
        
        % If training on a GPU, then convert data to a gpuArray.
        if  canUseGPU
            X = gpuArray(X);
        end
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        % Evaluate the model loss and gradients using dlfeval and the
        % modelLoss function.
        [loss,gradients] = dlfeval(@modelLoss,net,X,T);
        
        % Update the network parameters using the RMSProp optimizer.
        [net,averageSqGrad] = rmspropupdate(net,gradients,averageSqGrad);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Test the Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.

[XTest,TTest] = digitTest4DArrayData;

Convert the data to a dlarray with dimension format "SSCB". For GPU prediction, also convert the
data to a gpuArray.

XTest = dlarray(XTest,"SSCB");
if canUseGPU
    XTest = gpuArray(XTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.
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YTest = predict(net,XTest);
[~,idx] = max(extractdata(YTest),[],1);
YTest = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YTest==TTest)

accuracy = 0.9902

Model Loss Function

The helper function modelLoss takes a dlnetwork object net and a mini-batch of input data X with
corresponding labels T, and returns the loss and the gradients of the loss with respect to the
learnable parameters in net. To compute the gradients automatically, use the dlgradient function.

function [loss,gradients] = modelLoss(net,X,T)

Y = forward(net,X);

loss = crossentropy(Y,T);

gradients = dlgradient(loss,net.Learnables);

end

Input Arguments
net — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the Learnables property of the dlnetwork object. net.Learnables is a
table with three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as net.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a
table.

If you specify params as a table, it must contain the following three variables.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.
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You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for
structures) or variables (for tables) as params.
Data Types: single | double | struct | table | cell

grad — Gradients of loss
dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of grad depends on the input network or learnable parameters. The following table
shows the required format for grad for possible inputs to rmspropupdate.

Input Learnable Parameters Gradients
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables. grad must
have a Value variable
consisting of cell arrays that
contain the gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. grad must have a
Value variable consisting of cell
arrays that contain the gradient
of each learnable parameter.

You can obtain grad from a call to dlfeval that evaluates a function that contains a call to
dlgradient. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

averageSqGrad — Moving average of squared parameter gradients
[] | dlarray | numeric array | cell array | structure | table

Moving average of squared parameter gradients, specified as an empty array, a dlarray, a numeric
array, a cell array, a structure, or a table.
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The exact form of averageSqGrad depends on the input network or learnable parameters. The
following table shows the required format for averageSqGrad for possible inputs to
rmspropupdate.

Input Learnable Parameters Average Squared Gradients
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables.
averageSqGrad must have a
Value variable consisting of cell
arrays that contain the average
squared gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. averageSqGrad must
have a Value variable
consisting of cell arrays that
contain the average squared
gradient of each learnable
parameter.

If you specify averageSqGrad as an empty array, the function assumes no previous gradients and
runs in the same way as for the first update in a series of iterations. To update the learnable
parameters iteratively, use the averageSqGrad output of a previous call to rmspropupdate as the
averageSqGrad input.

learnRate — Global learning rate
0.001 (default) | positive scalar

Global learning rate, specified as a positive scalar. The default value of learnRate is 0.001.

If you specify the network parameters as a dlnetwork, the learning rate for each parameter is the
global learning rate multiplied by the corresponding learning rate factor property defined in the
network layers.

sqGradDecay — Squared gradient decay factor
0.9 (default) | positive scalar between 0 and 1.
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Squared gradient decay factor, specified as a positive scalar between 0 and 1. The default value of
sqGradDecay is 0.9.

epsilon — Small constant
1e-8 (default) | positive scalar

Small constant for preventing divide-by-zero errors, specified as a positive scalar. The default value of
epsilon is 1e-8.

Output Arguments
netUpdated — Updated network
dlnetwork object

Network, returned as a dlnetwork object.

The function updates the Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

averageSqGrad — Updated moving average of squared parameter gradients
dlarray | numeric array | cell array | structure | table

Updated moving average of squared parameter gradients, returned as a dlarray, a numeric array, a
cell array, a structure, or a table.

More About
RMSProp

The function uses the root mean squared propagation algorithm to update the learnable parameters.
For more information, see the definition of the RMSProp algorithm under “Stochastic Gradient
Descent” on page 1-1628 on the trainingOptions reference page.

Version History
Introduced in R2019b

rmspropupdate squared gradient decay factor default is 0.9
Behavior changed in R2020a

Starting in R2020a, the default value of the squared gradient decay factor in rmspropupdate is 0.9.
In previous versions, the default value was 0.999. To reproduce the previous default behavior, use
one of the following syntaxes:

[net,averageSqGrad] = rmspropupdate(net,grad,averageSqGrad,0.001,0.999)
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad,0.001,0.999)
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• grad
• averageSqGrad
• params

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlnetwork | dlarray | dlupdate | adamupdate | sgdmupdate | forward | dlgradient |
dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”
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relu
Apply rectified linear unit activation

Syntax
Y = relu(X)

Description
The rectified linear unit (ReLU) activation operation performs a nonlinear threshold operation, where
any input value less than zero is set to zero.

This operation is equivalent to

f (x) =
x, x > 0
0, x ≤ 0.

Note This function applies the ReLU operation to dlarray data. If you want to apply the ReLU
activation within a layerGraph object or Layer array, use the following layer:

• reluLayer

Y = relu(X) computes the ReLU activation of the input X by applying a threshold operation. All
values in X that are less than zero are set to zero.

Examples

Apply ReLU Operation

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;
inputSize = [28 28];
numChannels = 3;
X = rand(inputSize(1),inputSize(2),numChannels,miniBatchSize);
X = dlarray(X,"SSCB");

View the size and format of the input data.

size(X)

ans = 1×4

    28    28     3   128

dims(X)
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ans = 
'SSCB'

Apply the ReLU operation using the relu function.

Y = relu(X);

View the size and format of the output.

size(Y)

ans = 1×4

    28    28     3   128

dims(Y)

ans = 
'SSCB'

Input Arguments
X — Input data
dlarray object

Input data, specified as a formatted or unformatted dlarray object.

Output Arguments
Y — ReLU activations
dlarray

ReLU activations, returned as a dlarray. The output Y has the same underlying data type as the
input X.

If the input data X is a formatted dlarray, Y has the same dimension format as X. If the input data is
not a formatted dlarray, Y is an unformatted dlarray with the same dimension order as the input
data.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.
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For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlconv | batchnorm | leakyrelu | gelu | dlgradient | dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“List of Functions with dlarray Support”
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reluLayer
Rectified Linear Unit (ReLU) layer

Description
A ReLU layer performs a threshold operation to each element of the input, where any value less than
zero is set to zero.

This operation is equivalent to

f x =
x, x ≥ 0
0, x < 0

.

Creation

Syntax
layer = reluLayer
layer = reluLayer('Name',Name)

Description

layer = reluLayer creates a ReLU layer.

layer = reluLayer('Name',Name) creates a ReLU layer and sets the optional Name property
using a name-value pair. For example, reluLayer('Name','relu1') creates a ReLU layer with the
name 'relu1'.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double
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InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create ReLU Layer

Create a ReLU layer with the name 'relu1'.

layer = reluLayer('Name','relu1')

layer = 
  ReLULayer with properties:

    Name: 'relu1'

Include a ReLU layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
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     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

More About
ReLU Layer

A ReLU layer performs a threshold operation to each element of the input, where any value less than
zero is set to zero.

Convolutional and batch normalization layers are usually followed by a nonlinear activation function
such as a rectified linear unit (ReLU), specified by a ReLU layer. A ReLU layer performs a threshold
operation to each element, where any input value less than zero is set to zero, that is,

f x =
x, x ≥ 0
0, x < 0

.

The ReLU layer does not change the size of its input.

There are other nonlinear activation layers that perform different operations and can improve the
network accuracy for some applications. For a list of activation layers, see “Activation Layers”.

Version History
Introduced in R2016a

References
[1] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann

machines." In Proceedings of the 27th international conference on machine learning
(ICML-10), pp. 807-814. 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | batchNormalizationLayer | leakyReluLayer | clippedReluLayer |
swishLayer | Deep Network Designer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
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“Specify Layers of Convolutional Neural Network”
“Compare Activation Layers”
“List of Deep Learning Layers”
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removeLayers
Package: nnet.cnn

Remove layers from layer graph or network

Syntax
lgraphUpdated = removeLayers(lgraph,layerNames)
netUpdated = removeLayers(net,layerNames)

Description
lgraphUpdated = removeLayers(lgraph,layerNames) removes the layers specified by
layerNames from the layer graph lgraph. The function also removes any connections to the
removed layers.

netUpdated = removeLayers(net,layerNames) removes the layers specified by layerNames
from the dlnetwork object net. The function also removes any connections to the removed layers.

Examples

Remove Layer from Layer Graph

Create a layer graph from an array of layers.

layers = [
    imageInputLayer([28 28 1],'Name','input')  
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')];

lgraph = layerGraph(layers);
figure
plot(lgraph)
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Remove the 'BN_1' layer and its connections.

lgraph = removeLayers(lgraph,'BN_1');
figure
plot(lgraph)
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Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layerNames — Names of layers to remove
character vector | cell array of character vectors | string array

Names of layers to remove, specified as a character vector, a cell array of character vectors, or a
string array.

To remove a single layer from the layer graph, specify the name of the layer.

To remove multiple layers, specify the layer names in an array, where each element of the array is a
layer name.
Example: 'conv1'
Example: {'conv1','add1'}
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Output Arguments
lgraphUpdated — Updated layer graph
LayerGraph object

Updated layer graph, returned as a LayerGraph object.

netUpdated — Updated network
dlnetwork object

Updated network, returned as an uninitialized dlnetwork object.

To initialize the learnable parameters of a dlnetwork object, use the initialize function.

Version History
Introduced in R2017b

See Also
layerGraph | addLayers | replaceLayer | connectLayers | disconnectLayers | plot |
assembleNetwork | dlnetwork

Topics
“Train Deep Learning Network to Classify New Images”
“Classify Videos Using Deep Learning”
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removeParameter
Remove parameter from ONNXParameters object

Syntax
params = removeParameter(params,name)

Description
params = removeParameter(params,name) removes the parameter specified by name from the
ONNXParameters object params.

Examples

Remove Parameters from Imported ONNX Model Function

Import a network saved in the ONNX format as a function and modify the network parameters.

Import the pretrained simplenet3fc.onnx network as a function. simplenet3fc is a simple
convolutional neural network trained on digit image data. For more information on how to create a
network similar to simplenet3fc, see “Create Simple Image Classification Network”.

Import simplenet3fc.onnx using importONNXFunction, which returns an ONNXParameters
object that contains the network parameters. The function also creates a new model function in the
current folder that contains the network architecture. Specify the name of the model function as
simplenetFcn.

params = importONNXFunction('simplenet3fc.onnx','simplenetFcn');

A function containing the imported ONNX network has been saved to the file simplenetFcn.m.
To learn how to use this function, type: help simplenetFcn.

Display the parameters that are updated during training (params.Learnables) and the parameters
that remain unchanged during training (params.Nonlearnables).

params.Learnables

ans = struct with fields:
    imageinput_Mean: [1×1 dlarray]
             conv_W: [5×5×1×20 dlarray]
             conv_B: [20×1 dlarray]
    batchnorm_scale: [20×1 dlarray]
        batchnorm_B: [20×1 dlarray]
             fc_1_W: [24×24×20×20 dlarray]
             fc_1_B: [20×1 dlarray]
             fc_2_W: [1×1×20×20 dlarray]
             fc_2_B: [20×1 dlarray]
             fc_3_W: [1×1×20×10 dlarray]
             fc_3_B: [10×1 dlarray]
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params.Nonlearnables

ans = struct with fields:
            ConvStride1004: [2×1 dlarray]
    ConvDilationFactor1005: [2×1 dlarray]
           ConvPadding1006: [4×1 dlarray]
            ConvStride1007: [2×1 dlarray]
    ConvDilationFactor1008: [2×1 dlarray]
           ConvPadding1009: [4×1 dlarray]
            ConvStride1010: [2×1 dlarray]
    ConvDilationFactor1011: [2×1 dlarray]
           ConvPadding1012: [4×1 dlarray]
            ConvStride1013: [2×1 dlarray]
    ConvDilationFactor1014: [2×1 dlarray]
           ConvPadding1015: [4×1 dlarray]

The network has parameters that represent three fully connected layers. To see the parameters of the
convolutional layers fc_1, fc_2, and fc_3, open the model function simplenetFcn.

open simplenetFcn

Scroll down to the layer definitions in the function simplenetFcn. The code below shows the
definitions for layers fc_1, fc_2, and fc_3.

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_1] = prepareConvArgs(Vars.fc_1_W, Vars.fc_1_B, Vars.ConvStride1007, Vars.ConvDilationFactor1008, Vars.ConvPadding1009, 1, NumDims.relu1001, NumDims.fc_1_W);
Vars.fc_1 = dlconv(Vars.relu1001, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_2] = prepareConvArgs(Vars.fc_2_W, Vars.fc_2_B, Vars.ConvStride1010, Vars.ConvDilationFactor1011, Vars.ConvPadding1012, 1, NumDims.fc_1, NumDims.fc_2_W);
Vars.fc_2 = dlconv(Vars.fc_1, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_3] = prepareConvArgs(Vars.fc_3_W, Vars.fc_3_B, Vars.ConvStride1013, Vars.ConvDilationFactor1014, Vars.ConvPadding1015, 1, NumDims.fc_2, NumDims.fc_3_W);
Vars.fc_3 = dlconv(Vars.fc_2, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

You can remove the parameters of the fully connected layer fc_2 to reduce computational
complexity. Check the output dimensions of the previous layer and the input dimensions of the
subsequent layer before removing a middle layer from params. In this case, the output size of the
previous layer fc_1 is 20, and the input size of the subsequent layer fc_3 is also 20.

Remove the parameters of layer fc_2 by using removeParameter.

params = removeParameter(params,'fc_2_B');
params = removeParameter(params,'fc_2_W');
params = removeParameter(params,'ConvStride1010');
params = removeParameter(params,'ConvDilationFactor1011');
params = removeParameter(params,'ConvPadding1012');

Display the updated learnable and nonlearnable parameters.

params.Learnables

ans = struct with fields:
    imageinput_Mean: [1×1 dlarray]
             conv_W: [5×5×1×20 dlarray]
             conv_B: [20×1 dlarray]
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    batchnorm_scale: [20×1 dlarray]
        batchnorm_B: [20×1 dlarray]
             fc_1_W: [24×24×20×20 dlarray]
             fc_1_B: [20×1 dlarray]
             fc_3_W: [1×1×20×10 dlarray]
             fc_3_B: [10×1 dlarray]

params.Nonlearnables

ans = struct with fields:
            ConvStride1004: [2×1 dlarray]
    ConvDilationFactor1005: [2×1 dlarray]
           ConvPadding1006: [4×1 dlarray]
            ConvStride1007: [2×1 dlarray]
    ConvDilationFactor1008: [2×1 dlarray]
           ConvPadding1009: [4×1 dlarray]
            ConvStride1013: [2×1 dlarray]
    ConvDilationFactor1014: [2×1 dlarray]
           ConvPadding1015: [4×1 dlarray]

Modify the architecture of the model function to reflect the changes in params so you can use the
network for prediction with the new parameters or retrain the network. Open the model function
simplenetFcn. Then, remove the fully connected layer fc_2, and change the input data of the
convolution operation dlconv for layer fc_3 to Vars.fc_1.

open simplenetFcn

The code below shows layers fc_1 and fc_3.

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_1] = prepareConvArgs(Vars.fc_1_W, Vars.fc_1_B, Vars.ConvStride1007, Vars.ConvDilationFactor1008, Vars.ConvPadding1009, 1, NumDims.relu1001, NumDims.fc_1_W);
Vars.fc_1 = dlconv(Vars.relu1001, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc_3] = prepareConvArgs(Vars.fc_3_W, Vars.fc_3_B, Vars.ConvStride1013, Vars.ConvDilationFactor1014, Vars.ConvPadding1015, 1, NumDims.fc_2, NumDims.fc_3_W);
Vars.fc_3 = dlconv(Vars.fc_1, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor, 'Padding', padding, 'DataFormat', dataFormat);

Input Arguments
params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX model.

name — Name of parameter
character vector | string scalar

Name of the parameter, specified as a character vector or string scalar.
Example: 'conv2_W'
Example: 'conv2_Padding'
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Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by removeParameter.

Version History
Introduced in R2020b

See Also
importONNXFunction | ONNXParameters | addParameter
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replaceLayer
Package: nnet.cnn

Replace layer in layer graph or network

Syntax
lgraphUpdated = replaceLayer(lgraph,layerName,larray)
netUpdated = replaceLayer(net,layerName,larray)
___  = replaceLayer( ___ ,'ReconnectBy',mode)

Description
lgraphUpdated = replaceLayer(lgraph,layerName,larray) replaces the layer layerName
in the layer graph lgraph with the layers in larray.

replaceLayer connects the layers in larray sequentially and connects larray into the layer
graph.

netUpdated = replaceLayer(net,layerName,larray) replaces the layer layerName in the
dlnetwork object net with the layers in larray.

replaceLayer connects the layers in larray sequentially and connects larray into the network.

___  = replaceLayer( ___ ,'ReconnectBy',mode) additionally specifies the method of
reconnecting layers.

Examples

Replace Layer in Layer Graph

Define a simple network architecture and plot it.

layers = [
    imageInputLayer([28 28 1],'Name','input')    
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    reluLayer('Name','relu_1')    
    additionLayer(2,'Name','add')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classoutput')];

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'input','add/in2');

figure
plot(lgraph)
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Replace the ReLU layer in the network with a batch normalization layer followed by a leaky ReLU
layer.

larray = [batchNormalizationLayer('Name','BN1')
          leakyReluLayer('Name','leakyRelu_1','Scale',0.1)];
lgraph = replaceLayer(lgraph,'relu_1',larray);

plot(lgraph)
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Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the
unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")
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Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers.

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers = 
  2x1 PlaceholderLayer array with layers:

     1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
     2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer

Display the Keras configurations of these layers.

placeholderLayers.KerasConfiguration

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_1'
       stddev: 1.5000

ans = struct with fields:
    trainable: 1
         name: 'gaussian_noise_2'
       stddev: 0.7000
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Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m in
the current folder. Then, create two Gaussian noise layers with the same configurations as the
imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using replaceLayer.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using plot.

figure
plot(lgraph)
title("Network with Replaced Layers")

Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before
prediction. If you do not specify the classes, then the software automatically sets the classes to 1,
2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers
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ans = 
  15x1 Layer array with layers:

     1   'input_1'                            Image Input             28x28x1 images
     2   'conv2d_1'                           2-D Convolution         20 7x7x1 convolutions with stride [1  1] and padding 'same'
     3   'conv2d_1_relu'                      ReLU                    ReLU
     4   'conv2d_2'                           2-D Convolution         20 3x3x1 convolutions with stride [1  1] and padding 'same'
     5   'conv2d_2_relu'                      ReLU                    ReLU
     6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
     7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
     8   'max_pooling2d_1'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
     9   'max_pooling2d_2'                    2-D Max Pooling         2x2 max pooling with stride [2  2] and padding 'same'
    10   'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    11   'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
    12   'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
    13   'dense_1'                            Fully Connected         10 fully connected layer
    14   'activation_1'                       Softmax                 softmax
    15   'ClassificationLayer_activation_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the
classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: 'auto'
    ClassWeights: 'none'
      OutputSize: 'auto'

   Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the
classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = 
  ClassificationOutputLayer with properties:

            Name: 'ClassificationLayer_activation_1'
         Classes: [0    1    2    3    4    5    6    7    8    9]
    ClassWeights: 'none'
      OutputSize: 10

   Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.
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net = assembleNetwork(lgraph)

net = 
  DAGNetwork with properties:

         Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
     InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Input Arguments
lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layerName — Name of layer to replace
string scalar | character vector

Name of the layer to replace, specified as a string scalar or a character vector.

larray — Network layers
Layer array

Network layers, specified as a Layer array.

For a list of built-in layers, see “List of Deep Learning Layers”.

mode — Method to reconnect layers
'name' (default) | 'order'

Method to reconnect layers specified as one of the following:

• 'name' – Reconnect larray using the input and output names of the replaced layer. For each
layer connected to an input of the replaced layer, reconnect the layer to the input of the same
input name of larray(1). For each layer connected to an output of the replaced layer, reconnect
the layer to the output of the same output name of larray(end).

• 'order' – Reconnect larray using the order of the input names of larray(1) and the output
names of larray(end). Reconnect the layer connected to the ith input of the replaced layer to
the ith input of larray(1). Reconnect the layer connected to the jth output of the replaced
layer to the jth output of larray(end).

Data Types: char | string

Output Arguments
lgraphUpdated — Updated layer graph
LayerGraph object

 replaceLayer

1-1413



Updated layer graph, returned as a LayerGraph object.

netUpdated — Updated network
dlnetwork object

Updated network, returned as an uninitialized dlnetwork object.

To initialize the learnable parameters of a dlnetwork object, use the initialize function.

Version History
Introduced in R2018b

See Also
layerGraph | findPlaceholderLayers | PlaceholderLayer | connectLayers |
disconnectLayers | addLayers | removeLayers | assembleNetwork | functionLayer |
dlnetwork

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Train Deep Learning Network to Classify New Images”
“Transfer Learning Using Pretrained Network”
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resnet18
ResNet-18 convolutional neural network

Syntax
net = resnet18
net = resnet18('Weights','imagenet')

lgraph = resnet18('Weights','none')

Description
ResNet-18 is a convolutional neural network that is 18 layers deep. You can load a pretrained version
of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ResNet-18 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with ResNet-18.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load ResNet-18 instead of GoogLeNet.

Tip To create an untrained residual network suitable for image classification tasks, use
resnetLayers.

net = resnet18 returns a ResNet-18 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for ResNet-18 Network support package. If
this support package is not installed, then the function provides a download link.

net = resnet18('Weights','imagenet') returns a ResNet-18 network trained on the
ImageNet data set. This syntax is equivalent to net = resnet18.

lgraph = resnet18('Weights','none') returns the untrained ResNet-18 network architecture.
The untrained model does not require the support package.

Examples

Download ResNet-18 Support Package

Download and install the Deep Learning Toolbox Model for ResNet-18 Network support package.

Type resnet18 at the command line.

resnet18
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If the Deep Learning Toolbox Model for ResNet-18 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing resnet18 at the command line. If the required support package is installed, then the function
returns a DAGNetwork object.

resnet18

ans = 

  DAGNetwork with properties:

         Layers: [72×1 nnet.cnn.layer.Layer]
    Connections: [79×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(resnet18)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained ResNet-18 convolutional neural network
DAGNetwork object
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Pretrained ResNet-18 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained ResNet-18 convolutional neural network architecture
LayerGraph object

Untrained ResNet-18 convolutional neural network architecture, returned as a LayerGraph object.

Version History
Introduced in R2018a

References
[1] ImageNet. http://www.image-net.org

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778. 2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = resnet18 or by passing
the resnet18 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet18')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax resnet18('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = resnet18 or by
passing the resnet18 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet18')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax resnet18('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | resnetLayers | vgg16 | vgg19 | googlenet | trainNetwork |
layerGraph | DAGNetwork | resnet50 | resnet101 | inceptionresnetv2 | squeezenet |
densenet201

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
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“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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resnet50
ResNet-50 convolutional neural network

Syntax
net = resnet50
net = resnet50('Weights','imagenet')

lgraph = resnet50('Weights','none')

Description
ResNet-50 is a convolutional neural network that is 50 layers deep. You can load a pretrained version
of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ResNet-50 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with ResNet-50.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load ResNet-50 instead of GoogLeNet.

Tip To create an untrained residual network suitable for image classification tasks, use
resnetLayers.

net = resnet50 returns a ResNet-50 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for ResNet-50 Network support package. If
this support package is not installed, then the function provides a download link.

net = resnet50('Weights','imagenet') returns a ResNet-50 network trained on the
ImageNet data set. This syntax is equivalent to net = resnet50.

lgraph = resnet50('Weights','none') returns the untrained ResNet-50 network architecture.
The untrained model does not require the support package.

Examples

Download ResNet-50 Support Package

Download and install the Deep Learning Toolbox Model for ResNet-50 Network support package.

Type resnet50 at the command line.

resnet50
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If the Deep Learning Toolbox Model for ResNet-50 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing resnet50 at the command line. If the required support package is installed, then the function
returns a DAGNetwork object.

resnet50

ans = 

  DAGNetwork with properties:

         Layers: [177×1 nnet.cnn.layer.Layer]
    Connections: [192×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(resnet50)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained ResNet-50 convolutional neural network
DAGNetwork object
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Pretrained ResNet-50 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained ResNet-50 convolutional neural network architecture
LayerGraph object

Untrained ResNet-50 convolutional neural network architecture, returned as a LayerGraph object.

Version History
Introduced in R2017b

References
[1] ImageNet. http://www.image-net.org

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778. 2016.

[3] https://keras.io/api/applications/resnet/#resnet50-function

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = resnet50 or by passing
the resnet50 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet50')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax resnet50('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = resnet50 or by
passing the resnet50 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet50')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax resnet50('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | resnetLayers | vgg16 | vgg19 | googlenet | trainNetwork |
layerGraph | DAGNetwork | resnet18 | resnet101 | densenet201 | inceptionresnetv2 |
squeezenet
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Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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resnet101
ResNet-101 convolutional neural network

Syntax
net = resnet101
net = resnet101('Weights','imagenet')

lgraph = resnet101('Weights','none')

Description
ResNet-101 is a convolutional neural network that is 101 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. The network has an image input size of 224-by-224. For more pretrained networks in
MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ResNet-101 model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with ResNet-101.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load ResNet-101 instead of GoogLeNet.

Tip To create an untrained residual network suitable for image classification tasks, use
resnetLayers.

net = resnet101 returns a ResNet-101 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for ResNet-101 Network support package. If
this support package is not installed, then the function provides a download link.

net = resnet101('Weights','imagenet') returns a ResNet-101 network trained on the
ImageNet data set. This syntax is equivalent to net = resnet101.

lgraph = resnet101('Weights','none') returns the untrained ResNet-101 network
architecture. The untrained model does not require the support package.

Examples

Download ResNet-101 Support Package

Download and install the Deep Learning Toolbox Model for ResNet-101 Network support package.

Type resnet101 at the command line.

resnet101
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If the Deep Learning Toolbox Model for ResNet-101 Network support package is not installed, then
the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing resnet101 at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

resnet101

ans = 

  DAGNetwork with properties:

         Layers: [347×1 nnet.cnn.layer.Layer]
    Connections: [379×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(resnet101)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained ResNet-101 convolutional neural network
DAGNetwork object
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Pretrained ResNet-101 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained ResNet-101 convolutional neural network architecture
LayerGraph object

Untrained ResNet-101 convolutional neural network architecture, returned as a LayerGraph object.

Version History
Introduced in R2017b

References
[1] ImageNet. http://www.image-net.org

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778. 2016.

[3] https://github.com/KaimingHe/deep-residual-networks

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = resnet101 or by passing
the resnet101 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet101')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax resnet101('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = resnet101 or by
passing the resnet101 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('resnet101')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax resnet101('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | resnetLayers | vgg16 | vgg19 | resnet18 | resnet50 | googlenet |
inceptionv3 | inceptionresnetv2 | densenet201 | squeezenet | trainNetwork |
layerGraph | DAGNetwork
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Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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resnetLayers
Create 2-D residual network

Syntax
lgraph = resnetLayers(inputSize,numClasses)
lgraph = resnetLayers( ___ ,Name=Value)

Description
lgraph = resnetLayers(inputSize,numClasses) creates a 2-D residual network with an
image input size specified by inputSize and a number of classes specified by numClasses. A
residual network consists of stacks of blocks. Each block contains deep learning layers. The network
includes an image classification layer, suitable for predicting the categorical label of an input image.

To create a 3-D residual network, use resnet3dLayers.

lgraph = resnetLayers( ___ ,Name=Value) creates a residual network using one or more
name-value arguments using any of the input arguments in the previous syntax. For example,
InitialNumFilters=32 specifies 32 filters in the initial convolutional layer.

Examples

Residual Network with Bottleneck

Create a residual network with a bottleneck architecture.

imageSize = [224 224 3];
numClasses = 10;

lgraph = resnetLayers(imageSize,numClasses)

lgraph = 
  LayerGraph with properties:

         Layers: [177x1 nnet.cnn.layer.Layer]
    Connections: [192x2 table]
     InputNames: {'input'}
    OutputNames: {'output'}

Analyze the network.

analyzeNetwork(lgraph)

This network is equivalent to a ResNet-50 residual network.
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Residual Network with Custom Stack Depth

Create a ResNet-101 network using a custom stack depth.

imageSize = [224 224 3];
numClasses = 10;

stackDepth = [3 4 23 3];
numFilters = [64 128 256 512];

lgraph = resnetLayers(imageSize,numClasses, ...
    StackDepth=stackDepth, ...
    NumFilters=numFilters)

lgraph = 
  LayerGraph with properties:

         Layers: [347x1 nnet.cnn.layer.Layer]
    Connections: [379x2 table]
     InputNames: {'input'}
    OutputNames: {'output'}

Analyze the network.

analyzeNetwork(lgraph)

Train Residual Network

Create and train a residual network to classify images.

Load the digits data as in-memory numeric arrays using the digitTrain4DArrayData and
digitTest4DArrayData functions.

[XTrain,YTrain] = digitTrain4DArrayData;
[XTest,YTest] = digitTest4DArrayData;

Define the residual network. The digits data contains 28-by-28 pixel images, therefore, construct a
residual network with smaller filters.

imageSize = [28 28 1];
numClasses = 10;

lgraph = resnetLayers(imageSize,numClasses, ...
    InitialStride=1, ...
    InitialFilterSize=3, ...
    InitialNumFilters=16, ...
    StackDepth=[4 3 2], ...
    NumFilters=[16 32 64]);

Set the options to the default settings for the stochastic gradient descent with momentum. Set the
maximum number of epochs at 5, and start the training with an initial learning rate of 0.1.

options = trainingOptions("sgdm", ...
    MaxEpochs=5, ...
    InitialLearnRate=0.1, ...

1 Deep Learning Functions

1-1428



    Verbose=false, ...
    Plots="training-progress");

Train the network.

net = trainNetwork(XTrain,YTrain,lgraph,options);

Test the performance of the network by evaluating the prediction accuracy of the test data. Use the
classify function to predict the class label of each test image.

YPred = classify(net,XTest);

Calculate the accuracy. The accuracy is the fraction of labels that the network predicts correctly.

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9956

Convert Residual Network to dlnetwork Object

To train a residual network using a custom training loop, first convert it to a dlnetwork object.

Create a residual network.

lgraph = resnetLayers([224 224 3],5);

Remove the classification layer.

lgraph = removeLayers(lgraph,"output");
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Replace the input layer with a new input layer that has Normalization set to "none". To use an
input layer with zero-center or z-score normalization, you must specify an imageInputLayer with
nonempty value for the Mean property. For example, Mean=sum(XTrain,4), where XTrain is a 4-D
array containing your input data.

newInputLayer = imageInputLayer([224 224 3],Normalization="none");
lgraph = replaceLayer(lgraph,"input",newInputLayer);

Convert to a dlnetwork.

dlnet = dlnetwork(lgraph)

dlnet = 
  dlnetwork with properties:

         Layers: [176x1 nnet.cnn.layer.Layer]
    Connections: [191x2 table]
     Learnables: [214x3 table]
          State: [106x3 table]
     InputNames: {'imageinput'}
    OutputNames: {'softmax'}
    Initialized: 1

  View summary with summary.

Input Arguments
inputSize — Network input image size
2-element vector | 3-element vector

Network input image size, specified as one of the following:

• 2-element vector in the form [height, width].
• 3-element vector in the form [height, width, depth], where depth is the number of channels. Set

depth to 3 for RGB images and to 1 for grayscale images. For multispectral and hyperspectral
images, set depth to the number of channels.

The height and width values must be greater than or equal to initialStride * poolingStride * 2D, where
D is the number of downsampling blocks. Set the initial stride using the InitialStride argument.
The pooling stride is 1 when the InitialPoolingLayer is set to "none", and 2 otherwise.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numClasses — Number of classes
integer greater than 1

Number of classes in the image classification network, specified as an integer greater than 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Example: InitialFilterSize=[5,5],InitialNumFilters=32,BottleneckType="none"
specifies an initial filter size of 5-by-5 pixels, 32 initial filters, and a network architecture without
bottleneck components.

Initial Layers

InitialFilterSize — Filter size in first convolutional layer
7 (default) | positive integer | 2-element vector of positive integers

Filter size in the first convolutional layer, specified as one of the following:

• Positive integer. The filter has equal height and width. For example, specifying 5 yields a filter of
height 5 and width 5.

• 2-element vector in the form [height, width]. For example, specifying an initial filter size of [1 5]
yields a filter of height 1 and width 5.

Example: InitialFilterSize=[5,5]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialNumFilters — Number of filters in first convolutional layer
64 (default) | positive integer

Number of filters in the first convolutional layer, specified as a positive integer. The number of initial
filters determines the number of channels (feature maps) in the output of the first convolutional layer
in the residual network.
Example: InitialNumFilters=32
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialStride — Stride in first convolutional layer
2 (default) | positive integer | 2-element vector of positive integers

Stride in the first convolutional layer, specified as a:

• Positive integer. The stride has equal height and width. For example, specifying 3 yields a stride of
height 3 and width 3.

• 2-element vector in the form [height, width]. For example, specifying an initial stride of [1 2]
yields a stride of height 1 and width 2.

The stride defines the step size for traversing the input vertically and horizontally.
Example: InitialStride=[3,3]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialPoolingLayer — First pooling layer
"max" (default) | "average" | "none"

First pooling layer before the initial residual block, specified as one of the following:

• "max" — Use a max pooling layer before the initial residual block. For more information, see
maxPooling2dLayer.

• "average" — Use an average pooling layer before the initial residual block. For more
information, see averagePooling2dLayer.
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• "none"— Do not use a pooling layer before the initial residual block.

Example: InitialPoolingLayer="average"
Data Types: char | string

Network Architecture

ResidualBlockType — Residual block type
"batchnorm-before-add" (default) | "batchnorm-after-add"

Residual block type, specified as one of the following:

• "batchnorm-before-add" — Add the batch normalization layer before the addition layer in the
residual blocks [1].

• "batchnorm-after-add" — Add the batch normalization layer after the addition layer in the
residual blocks [2].

The ResidualBlockType argument specifies the location of the batch normalization layer in the
standard and downsampling residual blocks. For more information, see “More About” on page 1-
1434.
Example: ResidualBlockType="batchnorm-after-add"
Data Types: char | string

BottleneckType — Block bottleneck type
"downsample-first-conv" (default) | "none"

Block bottleneck type, specified as one of the following:

• "downsample-first-conv" — Use bottleneck residual blocks that perform downsampling in the
first convolutional layer of the downsampling residual blocks, using a stride of 2. A bottleneck
residual block consists of three convolutional layers: a 1-by-1 layer for downsampling the channel
dimension, a 3-by-3 convolutional layer, and a 1-by-1 layer for upsampling the channel dimension.

The number of filters in the final convolutional layer is four times that in the first two
convolutional layers. For more information, see “NumFilters” on page 1-0 .

• "none" — Do not use bottleneck residual blocks. The residual blocks consist of two 3-by-3
convolutional layers.

A bottleneck block performs a 1-by-1 convolution before the 3-by-3 convolution to reduce the number
of channels by a factor of four. Networks with and without bottleneck blocks will have a similar level
of computational complexity, but the total number of features propagating in the residual connections
is four times larger when you use bottleneck units. Therefore, using a bottleneck increases the
efficiency of the network [1]. For more information on the layers in each residual block, see “More
About” on page 1-1434.
Example: BottleneckType="none"
Data Types: char | string

StackDepth — Number of residual blocks in each stack
[3 4 6 3] (default) | vector of positive integers
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Number of residual blocks in each stack, specified as a vector of positive integers. For example, if the
stack depth is [3 4 6 3], the network has four stacks, with three blocks, four blocks, six blocks, and
three blocks.

Specify the number of filters in the convolutional layers of each stack using the NumFilters
argument. The StackDepth value must have the same number of elements as the NumFilters
value.
Example: StackDepth=[9 12 69 9]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFilters — Number of filters in convolutional layers of each stack
[64 128 256 512] (default) | vector of positive integers

Number of filters in the convolutional layers of each stack, specified as a vector of positive integers.

• When you set BottleneckType to "downsample-first-conv", the first two convolutional
layers in each block of each stack have the same number of filters, set by the NumFilters value.
The final convolutional layer has four times the number of filters in the first two convolutional
layers.

For example, suppose you set NumFilters to [4 5] and BottleneckType to "downsample-
first-conv". In the first stack, the first two convolutional layers in each block have 4 filters and
the final convolutional layer in each block has 16 filters. In the second stack, the first two
convolutional layers in each block have 5 filters and the final convolutional layer has 20 filters.

• When you set BottleneckType to "none", the convolutional layers in each stack have the same
number of filters, set by the NumFilters value.

The NumFilters value must have the same number of elements as the StackDepth value.

The NumFilters value determines the layers on the residual connection in the initial residual block.
There is a convolutional layer on the residual connection if one of the following conditions is met:

• BottleneckType="downsample-first-conv"(default) and InitialNumFilters is not equal
to four times the first element of NumFilters.

• BottleneckType="none" and InitialNumFilters is not equal to the first element of
NumFilters.

For more information about the layers in each residual block, see “More About” on page 1-1434.
Example: NumFilters=[32 64 126 256]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Normalization — Data normalization
"zerocenter" (default) | "zscore"

Data normalization to apply every time data is forward-propagated through the input layer, specified
as one of the following:

• "zerocenter" — Subtract the mean. The mean is calculated at training time.
• "zscore" — Subtract the mean and divide by the standard deviation. The mean and standard

deviation are calculated at training time.

Example: Normalization="zscore"
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Data Types: char | string

Output Arguments
lgraph — Residual network
layerGraph object

Residual network, returned as a layerGraph object.

More About
Residual Network

Residual networks (ResNets) are a type of deep network consisting of building blocks that have
residual connections (also known as skip or shortcut connections). These connections allow the input
to skip the convolutional units of the main branch, thus providing a simpler path through the
network. By allowing the parameter gradients to flow more easily from the output layer to the earlier
layers of the network, residual connections help mitigate the problem of vanishing gradients during
early training.

The structure of a residual network is flexible. The key component is the inclusion of the residual
connections within residual blocks. A group of residual blocks is called a stack. A ResNet architecture
consists of initial layers, followed by stacks containing residual blocks, and then the final layers. A
network has three types of residual blocks:

• Initial residual block — This block occurs at the start of the first stack. The layers in the residual
connection of the initial residual block determine if the block preserves the activation sizes or
performs downsampling.

• Standard residual block — This block occurs multiple times in each stack, after the first
downsampling residual block. The standard residual block preserves the activation sizes.

• Downsampling residual block — This block occurs once, at the start of each stack. The first
convolutional unit in the downsampling block downsamples the spatial dimensions by a factor of
two.

A typical stack has a downsampling residual block, followed by m standard residual blocks, where m is
greater than or equal to one. The first stack is the only stack that begins with an initial residual block.
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The initial, standard, and downsampling residual blocks can be bottleneck or nonbottleneck blocks.
Bottleneck blocks perform a 1-by-1 convolution before the 3-by-3 convolution, to reduce the number
of channels by a factor of four. Networks with and without bottleneck blocks have a similar level of
computational complexity, but the total number of features propagating in the residual connections is
four times larger when you use the bottleneck units. Therefore, using bottleneck blocks increases the
efficiency of the network.

The layers inside each block are determined by the type of block and the options you set.
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the
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the following
conditions is
met:

• Bottleneck
Type="down
sample-
first-
conv"(defaul
t) and
InitialNum
Filters is
not equal to
four times the
first element
of
NumFilters.

• Bottleneck
Type="none
" and
InitialNum
Filters is
not equal to
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• reluLayer

The standard
block has a
residual
connection from
the output of the
previous block to
the addition
layer.

Set the position
of the addition
layer using the

The standard
residual block
without
bottleneck units
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• reluLayer
• convolutio

n2dLayer
with [3,3]
filter and
[1,1] stride

• batchNorma
lizationLa
yer

• additionLa
yer

• reluLayer

The standard
block has a
residual
connection from
the output of the
previous block to
the addition
layer.

Set the position
of the addition
layer using the
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to"batchnorm-
before-add",
the residual
connection will
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normalization
layer.

ResidualBlock
Type argument.

contains a
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n2dLayer
with [1,1]
filter and
[2,2] stride.
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Example of an
initial residual
block for a
network without
a bottleneck and
with the batch
normalization
layer before the
addition layer.

Example of the
standard
residual block
for a network
with a bottleneck
and with the
batch
normalization
layer before the
addition layer.

Example of the
standard
residual block
for a network
without a
bottleneck and
with the batch
normalization
layer before the
addition layer.

Example of a
downsampling
residual block
for a network
without a
bottleneck and
with the batch
normalization
layer before the
addition layer.

 resnetLayers

1-1439



The convolution and fully connected layer weights are initialized using the He weight initialization
method [3]. For more information, see convolution2dLayer.

Tips
• When working with small images, set the InitialPoolingLayer option to "none" to remove

the initial pooling layer and reduce the amount of downsampling.
• Residual networks are usually named ResNet-X, where X is the depth of the network. The depth of

a network is defined as the largest number of sequential convolutional or fully connected layers on
a path from the input layer to the output layer. You can use the following formula to compute the
depth of your network:

depth = 

1 + 2∑
i = 1

N

si + 1       If no bottleneck

1 + 3∑
i = 1

N

si + 1            If bottleneck

     ,

where si is the depth of stack i.

Networks with the same depth can have different network architectures. For example, you can
create a ResNet-14 architecture with or without a bottleneck:

resnet14Bottleneck = resnetLayers([224 224 3],10, ...
StackDepth=[2 2], ...
NumFilters=[64 128]);

resnet14NoBottleneck = resnetLayers([224 224 3],10, ...
BottleneckType="none", ...
StackDepth=[2 2 2], ...
NumFilters=[64 128 256]);

The relationship between bottleneck and nonbottleneck architectures also means that a network
with a bottleneck will have a different depth than a network without a bottleneck.

resnet50Bottleneck = resnetLayers([224 224 3],10);

resnet34NoBottleneck = resnetLayers([224 224 3],10, ... 
BottleneckType="none");

Version History
Introduced in R2021b
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Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

You can use the residual network for code generation. First, create the network using the
resnetLayers function. Then, use the trainNetwork function to train the network. After training
and evaluating the network, you can generate code for the DAGNetwork object by using GPU
Coder™.

See Also
resnet3dLayers | trainNetwork | trainingOptions | dlnetwork | resnet18 | resnet50 |
resnet101

Topics
“Train Residual Network for Image Classification”
“Pretrained Deep Neural Networks”
“Train Network Using Custom Training Loop”

 resnetLayers

1-1441



resnet3dLayers
Create 3-D residual network

Syntax
lgraph = resnet3dLayers(inputSize,numClasses)
lgraph = resnet3dLayers( ___ ,Name=Value)

Description
lgraph = resnet3dLayers(inputSize,numClasses) creates a 3-D residual network with an
image input size specified by inputSize and a number of classes specified by numClasses. A
residual network consists of stacks of blocks. Each block contains deep learning layers. The network
includes an image classification layer, suitable for predicting the categorical label of an input image.

To create a 2-D residual network, use resnetLayers.

lgraph = resnet3dLayers( ___ ,Name=Value) creates a residual network using one or more
name-value arguments using any of the input arguments in the previous syntax. For example,
InitialNumFilters=32 specifies 32 filters in the initial convolutional layer.

Examples

3-D Residual Network with Bottleneck

Create a 3-D residual network with a bottleneck architecture.

imageSize = [224 224 64 3];
numClasses = 10;

lgraph = resnet3dLayers(imageSize,numClasses)

lgraph = 
  LayerGraph with properties:

         Layers: [177x1 nnet.cnn.layer.Layer]
    Connections: [192x2 table]
     InputNames: {'input'}
    OutputNames: {'output'}

Analyze the network.

analyzeNetwork(lgraph)

This network is equivalent to a 3-D ResNet-50 residual network.
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3-D Residual Network with Custom Stack Depth

Create a 3-D ResNet-101 network using a custom stack depth.

imageSize = [224 224 64 3];
numClasses = 10;

stackDepth = [3 4 23 3];
numFilters = [64 128 256 512];

lgraph = resnet3dLayers(imageSize,numClasses, ...
    StackDepth=stackDepth, ...
    NumFilters=numFilters)

lgraph = 
  LayerGraph with properties:

         Layers: [347x1 nnet.cnn.layer.Layer]
    Connections: [379x2 table]
     InputNames: {'input'}
    OutputNames: {'output'}

Analyze the network.

analyzeNetwork(lgraph)

Input Arguments
inputSize — Network input image size
3-element vector | 4-element vector

Network input image size, specified as one of the following:

• 3-element vector in the form [height, width, depth]
• 4-element vector in the form [height, width, depth, channel] where channel denotes the number of

image channels.

The height, width, and depth values must be greater than or equal to initialStride * poolingStride *
2D, where D is the number of downsampling blocks. Set the initial stride using the InitialStride
argument. The pooling stride is 1 when the InitialPoolingLayer is set to "none", and 2
otherwise.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numClasses — Number of classes
integer greater than 1

Number of classes in the image classification network, specified as an integer greater than 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: InitialFilterSize=[5,5,5],InitialNumFilters=32,BottleneckType="none"
specifies an initial filter size of 5-by-5-by-5 pixels, 32 initial filters, and a network architecture without
bottleneck components.

Initial Layers

InitialFilterSize — Filter size in first convolutional layer
7 (default) | positive integer | 3-element vector of positive integers

Filter size in the first convolutional layer, specified as one of the following:

• Positive integer. The filter has equal height, width, and depth. For example, specifying 5 yields a
filter of height 5, width 5, and depth 5.

• 3-element vector in the form [height, width, depth]. For example, specifying an initial filter size of
[1 5 2] yields a filter of height 1, width 5, and depth 2.

Example: InitialFilterSize=[5,5,5]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialNumFilters — Number of filters in first convolutional layer
64 (default) | positive integer

Number of filters in the first convolutional layer, specified as a positive integer. The number of initial
filters determines the number of channels (feature maps) in the output of the first convolutional layer
in the residual network.
Example: InitialNumFilters=32
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialStride — Stride in first convolutional layer
2 (default) | positive integer | 3-element vector of positive integers

Stride in the first convolutional layer, specified as a:

• Positive integer. The stride has equal height, width, and depth. For example, specifying 3 yields a
stride of height 3, width 3, and depth 3.

• 3-element vector in the form [height, width, depth]. For example, specifying an initial stride of [1
2 2] yields a stride of height 1, width 2, and depth 2.

The stride defines the step size for traversing the input in three dimensions.
Example: InitialStride=[3,3,3]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitialPoolingLayer — First pooling layer
"max" (default) | "average" | "none"

First pooling layer before the initial residual block, specified as one of the following:
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• "max" — Use a max pooling layer before the initial residual block. For more information, see
maxPooling3dLayer.

• "average" — Use an average pooling layer before the initial residual block. For more
information, see globalAveragePooling3dLayer.

• "none"— Do not use a pooling layer before the initial residual block.

Example: InitialPoolingLayer="average"
Data Types: char | string

Network Architecture

ResidualBlockType — Residual block type
"batchnorm-before-add" (default) | "batchnorm-after-add"

Residual block type, specified as one of the following:

• "batchnorm-before-add" — Add the batch normalization layer before the addition layer in the
residual blocks [1].

• "batchnorm-after-add" — Add the batch normalization layer after the addition layer in the
residual blocks [2].

The ResidualBlockType argument specifies the location of the batch normalization layer in the
standard and downsampling residual blocks. For more information, see “More About” on page 1-
1447.
Example: ResidualBlockType="batchnorm-after-add"
Data Types: char | string

BottleneckType — Block bottleneck type
"downsample-first-conv" (default) | "none"

Block bottleneck type, specified as one of the following:

• "downsample-first-conv" — Use bottleneck residual blocks that perform downsampling in the
first convolutional layer of the downsampling residual blocks, using a stride of 2. A bottleneck
residual block consists of three convolutional layers: a 1-by-1-by-1 layer for downsampling the
channel dimension, a 3-by-3-by-3 convolutional layer, and a 1-by-1-by-1 layer for upsampling the
channel dimension.

The number of filters in the final convolutional layer is four times that in the first two
convolutional layers. For more information, see “NumFilters” on page 1-0 .

• "none" — Do not use bottleneck residual blocks. The residual blocks consist of two 3-by-3-by-3
convolutional layers.

A bottleneck block performs a 1-by-1-by-1 convolution before the 3-by-3-by-3 convolution to reduce
the number of channels by a factor of four. Networks with and without bottleneck blocks will have a
similar level of computational complexity, but the total number of features propagating in the residual
connections is four times larger when you use bottleneck units. Therefore, using a bottleneck
increases the efficiency of the network [1]. For more information on the layers in each residual block,
see “More About” on page 1-1447.
Example: BottleneckType="none"
Data Types: char | string
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StackDepth — Number of residual blocks in each stack
[3 4 6 3] (default) | vector of positive integers

Number of residual blocks in each stack, specified as a vector of positive integers. For example, if the
stack depth is [3 4 6 3], the network has four stacks, with three blocks, four blocks, six blocks, and
three blocks.

Specify the number of filters in the convolutional layers of each stack using the NumFilters
argument. The StackDepth value must have the same number of elements as the NumFilters
value.
Example: StackDepth=[9 12 69 9]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFilters — Number of filters in convolutional layers of each stack
[64 128 256 512] (default) | vector of positive integers

Number of filters in the convolutional layers of each stack, specified as a vector of positive integers.

• When you set BottleneckType to "downsample-first-conv", the first two convolutional
layers in each block of each stack have the same number of filters, set by the NumFilters value.
The final convolutional layer has four times the number of filters in the first two convolutional
layers.

For example, suppose you set NumFilters to [4 5] and BottleneckType to "downsample-
first-conv". In the first stack, the first two convolutional layers in each block have 4 filters and
the final convolutional layer in each block has 16 filters. In the second stack, the first two
convolutional layers in each block have 5 filters and the final convolutional layer has 20 filters.

• When you set BottleneckType to "none", the convolutional layers in each stack have the same
number of filters, set by the NumFilters value.

The NumFilters value must have the same number of elements as the StackDepth value.

The NumFilters value determines the layers on the residual connection in the initial residual block.
There is a convolutional layer on the residual connection if one of the following conditions is met:

• BottleneckType="downsample-first-conv"(default) and InitialNumFilters is not equal
to four times the first element of NumFilters.

• BottleneckType="none" and InitialNumFilters is not equal to the first element of
NumFilters.

For more information about the layers in each residual block, see “More About” on page 1-1447.
Example: NumFilters=[32 64 126 256]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Normalization — Data normalization
"zerocenter" (default) | "zscore"

Data normalization to apply every time data is forward-propagated through the input layer, specified
as one of the following:

• "zerocenter" — Subtract the mean. The mean is calculated at training time.
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• "zscore" — Subtract the mean and divide by the standard deviation. The mean and standard
deviation are calculated at training time.

Example: Normalization="zscore"
Data Types: char | string

Output Arguments
lgraph — 3-D residual network
layerGraph object

3-D residual network, returned as a layerGraph object.

More About
Residual Network

Residual networks (ResNets) are a type of deep network consisting of building blocks that have
residual connections (also known as skip or shortcut connections). These connections allow the input
to skip the convolutional units of the main branch, thus providing a simpler path through the
network. By allowing the parameter gradients to flow more easily from the output layer to the earlier
layers of the network, residual connections help mitigate the problem of vanishing gradients during
early training.

The structure of a residual network is flexible. The key component is the inclusion of the residual
connections within residual blocks. A group of residual blocks is called a stack. A ResNet architecture
consists of initial layers, followed by stacks containing residual blocks, and then the final layers. A
network has three types of residual blocks:

• Initial residual block — This block occurs at the start of the first stack. The layers in the residual
connection of the initial residual block determine if the block preserves the activation sizes or
performs downsampling.

• Standard residual block — This block occurs multiple times in each stack, after the first
downsampling residual block. The standard residual block preserves the activation sizes.

• Downsampling residual block — This block occurs once, at the start of each stack. The first
convolutional unit in the downsampling block downsamples the spatial dimensions by a factor of
two.

A typical stack has a downsampling residual block, followed by m standard residual blocks, where m is
greater than or equal to one. The first stack is the only stack that begins with an initial residual block.
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The initial, standard, and downsampling residual blocks can be bottleneck or nonbottleneck blocks.
Bottleneck blocks perform a 1-by-1-by-1 convolution before the 3-by-3-by-3 convolution, to reduce the
number of channels by a factor of four. Networks with and without bottleneck blocks have a similar
level of computational complexity, but the total number of features propagating in the residual
connections is four times larger when you use the bottleneck units. Therefore, using bottleneck
blocks increases the efficiency of the network.

The layers inside each block are determined by the type of block and the options you set.
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Des
crip
tion

A residual
network
starts with
the
following
layers, in
order:

• image3
dInput
Layer

• convol
ution3
dLayer

• batchN
ormali
zation
Layer

• reluLa
yer

• (Option
al)
Pooling
layer
(either
max,
average
, or
none)

Set the
optional
pooling
layer using
the
InitialP
oolingLa
yer
argument.

The main branch
of the initial
residual block
has the same
layers as a
standard
residual block.

The
InitialNumFil
ters and
NumFilters
values determine
the layers on the
residual
connection. The
residual
connection has a
convolutional
layer with
[1,1,1] filter
and [1,1,1]
stride if one of
the following
conditions is
met:

• Bottleneck
Type="down
sample-
first-
conv"(defaul
t) and
InitialNum
Filters is
not equal to
four times the
first element
of
NumFilters.

• Bottleneck
Type="none
" and
InitialNum
Filters is
not equal to
the first
element of
NumFilters.

If
ResidualBlock

The standard
residual block
with bottleneck
units has the
following layers,
in order:

• convolutio
n3dLayer
with
[1,1,1]
filter and
[1,1,1]
stride

• batchNorma
lizationLa
yer

• reluLayer
• convolutio

n3dLayer
with
[3,3,3]
filter and
[1,1,1]
stride

• batchNorma
lizationLa
yer

• reluLayer
• convolutio

n3dLayer
with
[1,1,1]
filter and
[1,1,1]
stride

• batchNorma
lizationLa
yer

• additionLa
yer

• reluLayer

The standard
block has a
residual
connection from
the output of the
previous block to

The standard
residual block
without
bottleneck units
has the following
layers, in order:

• convolutio
n3dLayer
with
[3,3,3]
filter and
[1,1,1]
stride

• batchNorma
lizationLa
yer

• reluLayer
• convolutio

n3dLayer
with
[3,3,3]
filter and
[1,1,1]
stride

• batchNorma
lizationLa
yer

• additionLa
yer

• reluLayer

The standard
block has a
residual
connection from
the output of the
previous block to
the addition
layer.

Set the position
of the addition
layer using the
ResidualBlock
Type argument.

The
downsampling
residual block is
the same as the
standard block
(either with or
without the
bottleneck) but
with a stride of
[2,2,2] in the
first
convolutional
layer and
additional layers
on the residual
connection.

The layers on the
residual
connection
depend on the
ResidualBlock
Type value.

• When
ResidualBl
ockType is
set to
"batchnorm
-before-
add", the
second
branch
contains a
convolutio
n3dLayer
with
[1,1,1]
filter and
[2,2,2]
stride, and a
batchNorma
lizationLa
yer.

• When
ResidualBl
ockType is
set to
"batchnorm
-after-
add", the
second

A residual
network
ends with
the
following
layers, in
order:

• global
Averag
ePooli
ng3dLa
yer

• fullyC
onnect
edLaye
r

• softma
xLayer

• classi
ficati
onLaye
r
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Type is set
to"batchnorm-
before-add",
the residual
connection will
also have a batch
normalization
layer.

the addition
layer.

Set the position
of the addition
layer using the
ResidualBlock
Type argument.

branch
contains a
convolutio
n3dLayer
with
[1,1,1]
filter and
[2,2,2]
stride.

The
downsampling
block halves the
height and width
of the input, and
increases the
number of
channels.
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Exa
mpl
e
Visu
aliz
atio
n

Example of an
initial residual
block for a
network without
a bottleneck and
with the batch
normalization
layer before the
addition layer.

Example of the
standard
residual block
for a network
with a bottleneck
and with the
batch
normalization
layer before the
addition layer.

Example of the
standard
residual block
for a network
without a
bottleneck and
with the batch
normalization
layer before the
addition layer.

Example of a
downsampling
residual block
for a network
without a
bottleneck and
with the batch
normalization
layer before the
addition layer.
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The convolution and fully connected layer weights are initialized using the He weight initialization
method [3]. For more information, see convolution3dLayer.

Tips
• When working with small images, set the InitialPoolingLayer option to "none" to remove

the initial pooling layer and reduce the amount of downsampling.
• Residual networks are usually named ResNet-X, where X is the depth of the network. The depth of

a network is defined as the largest number of sequential convolutional or fully connected layers on
a path from the input layer to the output layer. You can use the following formula to compute the
depth of your network:

depth = 

1 + 2∑
i = 1

N

si + 1       If no bottleneck

1 + 3∑
i = 1

N

si + 1            If bottleneck

     ,

where si is the depth of stack i.

Networks with the same depth can have different network architectures. For example, you can
create a 3-D ResNet-14 architecture with or without a bottleneck:

resnet14Bottleneck = resnet3dLayers([224 224 64 3],10, ...
StackDepth=[2 2], ...
NumFilters=[64 128]);

resnet14NoBottleneck = resnet3dLayers([224 224 64 3],10, ...
BottleneckType="none", ...
StackDepth=[2 2 2], ...
NumFilters=[64 128 256]);

The relationship between bottleneck and nonbottleneck architectures also means that a network
with a bottleneck will have a different depth than a network without a bottleneck.

resnet50Bottleneck = resnet3dLayers([224 224 64 3],10);

resnet34NoBottleneck = resnet3dLayers([224 224 64 3],10, ... 
BottleneckType="none");

Version History
Introduced in R2021b

References
[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image

Recognition.” Preprint, submitted December 10, 2015. https://arxiv.org/abs/1512.03385.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity Mappings in Deep Residual
Networks.” Preprint, submitted July 25, 2016. https://arxiv.org/abs/1603.05027.
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[3] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

You can use the residual network for code generation. First, create the network using the
resnet3dLayers function. Then, use the trainNetwork function to train the network. After
training and evaluating the network, you can generate code for the DAGNetwork object by using GPU
Coder™.

See Also
resnetLayers | trainNetwork | trainingOptions | dlnetwork | resnet18 | resnet50 |
resnet101

Topics
“Train Residual Network for Image Classification”
“Pretrained Deep Neural Networks”
“Train Network Using Custom Training Loop”
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ROCCurve Properties
Receiver operating characteristic (ROC) curve appearance and behavior

Description
ROCCurve properties control the appearance and behavior of a ROCCurve object, which the plot
function of a rocmetrics object returns for each receiver operating characteristic (ROC) curve or
other performance curve.

By changing property values, you can modify certain aspects of the ROC curve. Use dot notation to
query and set properties; for example:

rocObj = rocmetrics(Lables,Scores,ClassNames);
curveObj = plot(rocObj);
c = curveObj(1).Color;
curveObj(1).Color = "red";

Properties
ROC Curve Data

XAxisMetric — Performance metric for x-axis
name of performance metric

This property is read-only.

Performance metric for the x-axis, stored in XData, specified as a string scalar of the performance
metric name.

The XAxisMetric name-value argument of the plot function sets this property. The default value of
this argument is "FalsePositiveRate".

For details about built-in and custom metric names, see the XAxisMetric name-value argument of
the plot function.

XData — x-axis values
numeric vector

This property is read-only.

x-axis values for XAxisMetric, specified as a numeric vector.
Data Types: double

YAxisMetric — Performance metric for y-axis
name of performance metric

This property is read-only.

Performance metric for the y-axis, stored in YData, specified as a string scalar of the performance
metric name.
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The YAxisMetric name-value argument of the plot function sets this property. The default value of
this argument is "TruePositiveRate".

For details about built-in and custom metric names, see the XAxisMetric name-value argument of
the plot function.

YData — y-axis values
numeric vector

This property is read-only.

y-axis values for YAxisMetric, specified as a numeric vector.
Data Types: double

Thresholds — Thresholds on classification scores
numeric vector

This property is read-only.

Thresholds on classification scores at which the software finds each of the performance metric values
(XData and YData), specified as a numeric vector.
Data Types: double

ROC Curve Options

ShowConfidenceIntervals — Flag to show confidence intervals
true or 1 | false or 0

Flag to show the confidence intervals for the y-axis metric (YAxisMetric), specified as logical 1
(true) or 0 (false).

The ShowConfidenceIntervals name-value argument of the plot function sets this property. The
default value of the argument is false.

The ShowConfidenceIntervals value can be true only if the Metrics property of the
rocmetrics object contains the confidence intervals for the y-axis metric.

Using confidence intervals requires Statistics and Machine Learning Toolbox.

Color

Color — Color of line and confidence interval shading
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the line and confidence interval shading, specified as an RGB triplet, hexadecimal color code,
color name, or short name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.
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Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

ColorMode — Mode for setting Color
'auto' (default) | 'manual'

Mode for setting the Color property, specified as one of these values:

• 'auto' — The software controls the value of the Color property by selecting a color from the
ColorOrder property of the axes.

• 'manual' — You control the value of the Color property manually by setting the value of the
Color property directly on the object.

If you change the value of the Color property manually, the software changes the value of the
ColorMode property to 'manual'.

Line

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'
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Line style, specified as one of the options in this table.

Line Style Description Resulting Line
"-" Solid line

"--" Dashed line

":" Dotted line

"-." Dash-dotted line

"none" No line No line

LineStyleMode — Mode for setting LineStyle
'auto' (default) | 'manual'

Mode for setting the LineStyle property, specified as one of these values:

• 'auto' — The software controls the value of the LineStyle property by selecting a line style
from the LineStyleOrder property of the axes.

• 'manual' — You control the value of the LineStyle property manually by setting the value of
the LineStyle property directly on the object.

If you change the value of the LineStyle property manually, the software changes the value of the
LineStyleMode property to 'manual'.

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has
markers, then the line width also affects the marker edges.

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line is displayed one pixel wide.

SeriesIndex — Series index
whole number

Series index, specified as a whole number greater than or equal to 0. This property is useful for
reassigning the colors, line styles, or markers of several ROCCurve objects so that they match each
other. By default, the SeriesIndex property of a ROCCurve object is a number that corresponds to
its order of creation, starting at 1.

The software uses the number to calculate indices for assigning color, line style, or markers when you
call plotting functions. The indices refer to the rows of the arrays stored in the ColorOrder and
LineStyleOrder properties of the axes.

The software automatically updates the color, line style, or markers of the ROCCurve object when you
change its SeriesIndex, or when you change the ColorOrder or LineStyleOrder properties of
the axes. However, the following conditions must be true for the changes to have any effect:

• At least one of these properties of the ROCCurve object is set to 'auto': ColorMode,
LineStyleMode, or MarkerMode.
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• The SeriesIndex property of the ROCCurve object is greater than 0.
• The NextSeriesIndex property of the axes object is greater than 0.

Markers

Marker — Marker symbol
'none' | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values in this table. By default, the object does not display
markers. Specifying a marker symbol adds markers at each data point or vertex.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

MarkerMode — Mode for setting Marker
'auto' (default) | 'manual'

Mode for setting the Marker property, specified as one of these values:

• 'auto' — The software controls the value of the object's Marker property.
• 'manual' — You control the value of the Marker property manually by setting the value of the

Marker property directly on the object.
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If you change the value of the Marker property manually, the software changes the value of the
MarkerMode property to 'manual'.

Legend

DisplayName — Text used in legend
character vector

Text used in the legend, specified as a character vector.

The default value of DisplayName is the name of the class for which the curve describes the
performance. If the curve is a ROC curve, then DisplayName also contains the area under the ROC
curve (AUC) value.

Alternatively, you can specify the legend text using the legend function.

• If you specify the text as an input argument to the legend function, then the legend uses the
specified text and sets the DisplayName property to the same value.

• If you do not specify the text as an input argument to the legend function, then the legend uses
the text in the DisplayName property.

If you interactively edit the character vector in an existing legend, then the software updates the
DisplayName property to the edited character vector.

Annotation — Control for legend
Annotation object

Control for including the ROCCurve object in the legend or excluding the object from the legend,
specified as an Annotation object. Set the underlying IconDisplayStyle property to one of these
values:

• 'on' — Include the ROCCurve object in the legend (default).
• 'off' — Do not include the ROCCurve object in the legend.

For example, to exclude the ROCCurve object curveObj from the legend, set the
IconDisplayStyle property to 'off'.

curveObj.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify the first input
argument as a vector of the graphics objects to include. If you do not specify an existing graphics
object in the first input argument, then it does not appear in the legend. However, graphics objects
added to the axes after the legend is created do appear in the legend. Consider creating the legend
after creating all the plots to avoid extra items.

Interactivity

Visible — State of visibility for object
'on' (default) | on/off logical value

State of visibility for an object, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.
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• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an invisible

object.

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content that appears
in a data tip by modifying the properties of the underlying DataTipTemplate object. For a list of
properties, see DataTipTemplate.

For an example of modifying data tips, see “Create Custom Data Tips”.

Note The DataTipTemplate object is not returned by findobj or findall, and it is not copied by
copyobj.

Selected — Selection state of object
'off' (default) | on/off logical value

Selection state of an object, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — The object is selected. If you click the object when editing the plot, the software sets the
object's Selected property to 'on'. If the SelectionHighlight property is also set to 'on',
the software displays selection handles around the object.

• 'off' — The object is not selected.

SelectionHighlight — Display of selection handles
'on' (default) | on/off logical value

Display of selection handles when an object is selected, specified as 'on' or 'off', or as numeric or
logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to
false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off
logical value of type matlab.lang.OnOffSwitchState.

• 'on' — Display selection handles around the object when the Selected property is set to 'on'.
• 'off' — Do not display selection handles around the object, even when the Selected property is

set to 'on'.

Callback Execution Control

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when they are visible. The Visible property must be set to
'on' and you must click a part of the ROCCurve object that has a defined color. You cannot click a
part that has an associated color property set to 'none'. If the plot contains markers, then the
entire marker is clickable if either the edge or the fill has a defined color. The HitTest property
determines if the ROCCurve object responds to the click or if an ancestor does.
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• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be set to 'on'
or 'off' and you can click a part of the ROCCurve object that has no color. The HitTest
property determines if the ROCCurve object responds to the click or if an ancestor does.

• 'none' — Mouse clicks cannot be captured. Clicking the ROCCurve object passes the click to the
object below it in the current view of the figure window. The HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | on/off logical value

Response to captured mouse clicks, specified as 'on' or 'off', or as numeric or logical 1 (true) or
0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Create a data tip at a data point of the ROCCurve object.
• 'off' — Trigger the callbacks for the nearest ancestor of the ROCCurve object that has one of

these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture mouse clicks

Note The PickableParts property determines if the ROCCurve object can capture mouse clicks. If
it cannot, then the HitTest property has no effect.

Parent/Child

Parent — Parent
Axes object

Parent, specified as an Axes object.

Children — Children
empty GraphicsPlaceholder array | DataTip object array

Children, specified as an empty GraphicsPlaceholder array or a DataTip object array. Use this
property to view a list of data tips plotted on the performance curve.

You cannot add or remove children using the Children property. To add a child to this list, set the
Parent property of the DataTip object to the ROCCurve object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of these
values:

• 'on' — The object handle is always visible.
• 'off' — The object handle is invisible at all times. This option is useful for preventing unintended

changes by another function. Set HandleVisibility to 'off' to temporarily hide the handle
during the execution of that function.

1 Deep Learning Functions

1-1462



• 'callback' — The object handle is visible from callbacks or functions invoked by callbacks, but
not from functions invoked from the command line. This option blocks access to the object at the
command line, but permits callback functions to access the object.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return the object.
Examples of such functions include the get, findobj, gca, gcf, gco, newplot, cla, clf, and
close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles regardless of their HandleVisibility property setting.

Identifier

Type — Type of graphics object
'roccurve'

This property is read-only.

Type of graphics object, specified as 'roccurve'. Use this property to find all objects of a given type
within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need to access the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

Version History
Introduced in R2022b

See Also
rocmetrics | addMetrics | average | plot

Topics
“ROC Curve and Performance Metrics”
“Compare Deep Learning Models Using ROC Curves”
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rocmetrics
Receiver operating characteristic (ROC) curve and performance metrics for binary and multiclass
classifiers

Description
Create a rocmetrics object to evaluate the performance of a classification model using receiver
operating characteristic (ROC) curves on page 1-1481 or other performance metrics. rocmetrics
supports both binary and multiclass problems.

For each class, rocmetrics computes performance metrics for a one-versus-all on page 1-1482 ROC
curve. You can compute metrics for an average ROC curve by using the average function. After
computing metrics for ROC curves, you can plot them by using the plot function.

By default, rocmetrics computes the false positive rates (FPR) and the true positive rates (TPR) to
obtain a ROC curve and the area under the ROC curve (AUC) on page 1-1482. You can compute
additional metrics by specifying the AdditionalMetrics name-value argument when you create an
object or by calling the addMetrics function after you create an object. A rocmetrics object stores
the computed metrics and AUC values in the Metrics and AUC properties, respectively.

rocmetrics computes pointwise confidence intervals for the performance metrics when you set the
NumBootstraps value to a positive integer or when you specify cross-validated data for the true
class labels (Labels), classification scores (Scores), and observation weights (Weights). For
details, see “Pointwise Confidence Intervals”. Using confidence intervals requires Statistics and
Machine Learning Toolbox.

Creation

Syntax
rocObj = rocmetrics(Labels,Scores,ClassNames)

rocObj = rocmetrics(Labels,Scores,ClassNames,Name=Value)

Description

rocObj = rocmetrics(Labels,Scores,ClassNames) creates a rocmetrics object using the
true class labels in Labels and the classification scores in Scores. Specify Labels as a vector of
length n, and specify Scores as a matrix of size n-by-K, where n is the number of observations, and K
is the number of classes. ClassNames specifies the column order in Scores.

The Metrics and AUC properties contain the performance metrics and AUC value for each class for
which you specify Scores and ClassNames.

If you specify cross-validated data in Labels and Scores as cell arrays, then rocmetrics computes
confidence intervals for the performance metrics. Using cross-validated data requires Statistics and
Machine Learning Toolbox.
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rocObj = rocmetrics(Labels,Scores,ClassNames,Name=Value) specifies additional options
using one or more name-value arguments. For example, Prior="uniform" sets all class
probabilities to be equal.

Input Arguments

Labels — True class labels
numeric vector | logical vector | categorical vector | character array | string array | cell array

True class labels, specified as a numeric vector, logical vector, categorical vector, character array,
string array, or cell array of character vectors. You can also specify Labels as a cell array of one of
these types for cross-validated data.

• For data that is not cross-validated, the length of Labels and the number of rows in Scores must
be equal.

• For cross-validated data, you must specify Labels, Scores, and Weights as cell arrays with the
same number of elements. rocmetrics treats an element in the cell arrays as data from one
cross-validation fold and computes pointwise confidence intervals for the performance metrics.
The length of Labels{i} and the number of rows in Scores{i} must be equal. Using cross-
validated data requires Statistics and Machine Learning Toolbox.

Each row of Labels or Labels{i} represents the true label of one observation.

This argument sets the Labels property.
Data Types: single | double | logical | char | string | cell

Scores — Classification scores
numeric matrix | cell array of numeric matrices

Classification scores, specified as a numeric matrix or a cell array of numeric matrices.

Each row of the matrix in Scores contains the classification scores of one observation for all classes
specified in ClassNames. The column order of Scores must match the class order in ClassNames.

• For a matrix input, Score(j,k) is the classification score of observation j for class
ClassNames(k). For example, predict returns predicted class scores as an n-by-K matrix,
where n is the number of observations and K is the number classes. Pass the output to
rocmetrics.

The number of rows in Scores and the length of Labels must be equal. rocmetrics adjusts
scores for each class relative to the scores for the rest of the classes. For details, see “Adjusted
Scores for Multiclass Classification Problem” on page 1-1483.

• For a vector input, Score(j) is the classification score of observation j for the class specified in
ClassNames.

• ClassNames must contain only one class.
• Prior must be a two-element vector with Prior(1) representing the prior probability for the
specified class.

• Cost must be a 2-by-2 matrix containing [Cost(P|P),Cost(N|P);Cost(P|N),Cost(N|
N)], where P is a positive class (the class for which you specify classification scores), and N is a
negative class.

• The length of Scores and the length of Labels must be equal.

 rocmetrics

1-1465



If you want to display the model operating point when you plot the ROC curve using the plot
function, the values in Score(j) must be the posterior probability. This restriction applies only to
a vector input.

• For cross-validated data, you must specify Labels, Scores, and Weights as cell arrays with the
same number of elements. rocmetrics treats an element in the cell arrays as data from one
cross-validation fold and computes pointwise confidence intervals for the performance metrics.
Score{i}(j,k) is the classification score of observation j in element i for class
ClassNames(k). The number of rows in Scores{i} and the length of Labels{i} must be equal.
Using cross-validated data requires Statistics and Machine Learning Toolbox.

For more information, see “Classification Score Input for rocmetrics”.

This argument sets the Scores property.
Data Types: single | double | cell

ClassNames — Class names
numeric vector | logical vector | categorical vector | character array | string array | cell array of
character vectors

Class names, specified as a numeric vector, logical vector, categorical vector, character array, string
array, or cell array of character vectors. ClassNames must have the same data type as the true labels
in Labels. The values in ClassNames must appear in Labels.

• If you specify classification scores for only one class in Scores, ClassNames specifies only the
name of this class.

• Otherwise, ClassNames specifies the order of the classes in Scores, Cost, and Prior.

This argument sets the ClassNames property.
Data Types: single | double | logical | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: FixedMetric="FalsePositiveRate",FixedMetricValues=0:0.01:1 holds the FPR
values fixed at 0:0.01:1.

Performance Metrics

AdditionalMetrics — Additional model performance metrics
[] (default) | character vector | string array | function handle | cell array

Additional model performance metrics to compute, specified as a character vector or string scalar of
the built-in metric name, string array of names, function handle (@metricName), or cell array of
names or function handles. A rocmetrics object always computes the false positive rates (FPR) and
the true positive rates (TPR) to obtain a ROC curve. Therefore, you do not have to specify to compute
FPR and TPR.

• Built-in metrics — Specify one of the following built-in metric names by using a character vector
or string scalar. You can specify more than one by using a string array.
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Name Description
"TruePositives" or "tp" Number of true positives (TP)
"FalseNegatives" or "fn" Number of false negatives (FN)
"FalsePositives" or "fp" Number of false positives (FP)
"TrueNegatives" or "tn" Number of true negatives (TN)
"SumOfTrueAndFalsePosit
ives" or "tp+fp"

Sum of TP and FP

"RateOfPositivePredicti
ons" or "rpp"

Rate of positive predictions (RPP), (TP+FP)/(TP+FN+FP+TN)

"RateOfNegativePredicti
ons" or "rnp"

Rate of negative predictions (RNP), (TN+FN)/(TP+FN+FP
+TN)

"Accuracy" or "accu" Accuracy, (TP+TN)/(TP+FN+FP+TN)
"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or miss rate, FN/(TP+FN)

"TrueNegativeRate",
"tnr", or "spec"

True negative rate (TNR), or specificity, TN/(TN+FP)

"PositivePredictiveValu
e", "ppv", or "prec"

Positive predictive value (PPV), or precision, TP/(TP+FP)

"NegativePredictiveValu
e" or "npv"

Negative predictive value (NPV), TN/(TN+FN)

"ExpectedCost" or
"ecost"

Expected cost, (TP*cost(P|P)+FN*cost(N|P)
+FP*cost(P|N)+TN*cost(N|N))/(TP+FN+FP+TN), where
cost is a 2-by-2 misclassification cost matrix containing
[0,cost(N|P);cost(P|N),0]. cost(N|P) is the cost of
misclassifying a positive class (P) as a negative class (N), and
cost(P|N) is the cost of misclassifying a negative class as a
positive class.

The software converts the K-by-K matrix specified by the Cost
name-value argument of rocmetrics to a 2-by-2 matrix for
each one-versus-all binary problem. For details, see
“Misclassification Cost Matrix”.

The software computes the scale vector using the prior class probabilities (Prior) and the
number of classes in Labels, and then scales the performance metrics according to this scale
vector. For details, see “Performance Metrics”.

• Custom metric — Specify a custom metric by using a function handle. A custom function that
returns a performance metric must have this form:

metric = customMetric(C,scale,cost)

• The output argument metric is a scalar value.
• A custom metric is a function of the confusion matrix (C), scale vector (scale), and cost matrix

(cost). The software finds these input values for each one-versus-all binary problem. For
details, see “Performance Metrics”.

• C is a 2-by-2 confusion matrix consisting of [TP,FN;FP,TN].
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• scale is a 2-by-1 scale vector.
• cost is a 2-by-2 misclassification cost matrix.

The software does not support cross-validation for a custom metric. Instead, you can specify to use
bootstrap when you create a rocmetrics object.

Note that the positive predictive value (PPV) is NaN for the reject-all threshold for which TP = FP = 0,
and the negative predictive value (NPV) is NaN for the accept-all threshold for which TN = FN = 0. For
more details, see “Thresholds, Fixed Metric, and Fixed Metric Values”.
Example: AdditionalMetrics=["Accuracy","PositivePredictiveValue"]
Example: AdditionalMetrics={"Accuracy",@m1,@m2} specifies the accuracy metric and the
custom metrics m1 and m2 as additional metrics. rocmetrics stores the custom metric values as
variables named CustomMetric1 and CustomMetric2 in the Metrics property.
Data Types: char | string | cell | function_handle

FixedMetric — Fixed metric
"Thresholds" (default) | "FalsePositiveRate" | "TruePositiveRate" | metric specified by
AdditionalMetrics

Fixed metric, specified as "Thresholds", "FalsePositiveRate" (or "fpr"),
"TruePositiveRate" (or "tpr"), or a metric specified by the AdditionalMetrics name-value
argument. To hold a custom metric fixed, specify FixedMetric as "CustomMetricN", where N is
the number that refers to the custom metric. For example, specify "CustomMetric1" to use the first
custom metric specified by AdditionalMetrics as the fixed metric.

rocmetrics finds the ROC curves and other metric values that correspond to the fixed values
(FixedMetricValues) of the fixed metric (FixedMetric), and stores the values in the Metrics
property as a table. For more details, see “Thresholds, Fixed Metric, and Fixed Metric Values”.

If rocmetrics computes confidence intervals, it uses one of two methods for the computation,
depending on the FixedMetric value:

• If FixedMetric is "Thresholds" (default), rocmetrics uses threshold averaging.
• If FixedMetric is a nondefault value, rocmetrics uses vertical averaging.

For details, see “Pointwise Confidence Intervals”.

Using confidence intervals requires Statistics and Machine Learning Toolbox.
Example: FixedMetric="TruePositiveRate"
Data Types: char | string

FixedMetricValues — Values for fixed metric
"all" (default) | numeric vector

Values for the fixed metric (FixedMetric), specified as "all" or a numeric vector.

rocmetrics finds the ROC curves and other metric values that correspond to the fixed values
(FixedMetricValues) of the fixed metric (FixedMetric), and stores the values in the Metrics
property as a table.

The default FixedMetric value is "Thresholds", and the default FixedMetricValues value is
"all". For each class, rocmetrics uses all distinct adjusted score values on page 1-1483 as
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threshold values and computes the performance metrics using the threshold values. Depending on
the UseNearestNeighbor setting, rocmetrics uses the exact threshold values corresponding to
the fixed values or the nearest threshold values. For more details, see “Thresholds, Fixed Metric, and
Fixed Metric Values”.

If rocmetrics computes confidence intervals, it holds FixedMetric fixed at FixedMetricValues.

• FixedMetric value is "Thresholds", and FixedMetricValues is "all" — rocmetrics
computes confidence intervals at the values corresponding to all distinct threshold values.

• FixedMetric value is a performance metric, and FixedMetricValues is "all" — rocmetrics
finds the metric values corresponding to all distinct threshold values, and computes confidence
intervals at the values corresponding to the metric values.

For details, see “Pointwise Confidence Intervals”. Using confidence intervals requires Statistics and
Machine Learning Toolbox.
Example: FixedMetricValues=0:0.01:1
Data Types: single | double

NaNFlag — NaN condition
"omitnan" (default) | "includenan"

NaN condition, specified as "omitnan" or "includenan".

• "omitnan" — rocmetrics ignores all NaN score values in the input Scores and the
corresponding values in Labels and Weights.

• "includenan" — rocmetrics uses the NaN score values in the input Scores for the calculation.
The function adds the observations with NaN scores to false classification counts in the respective
class. That is, the function counts observations with NaN scores from the positive class as false
negative (FN), and counts observations with NaN scores from the negative class as false positive
(FP).

For more details, see “NaN Score Values”.
Example: NaNFlag="includenan"
Data Types: char | string

UseNearestNeighbor — Indicator to use nearest metric values
false or 0 | true or 1

Indicator to use the nearest metric values, specified as logical 0 (false) or 1 (true).

• logical 0 (false) — rocmetrics uses the exact threshold values corresponding to the specified
fixed metric values in FixedMetricValues for FixedMetric.

• logical 1 (true) — Among the adjusted input scores on page 1-1483, rocmetrics finds a value
that is the nearest to the threshold value corresponding to each specified fixed metric value.

For more details, see “Thresholds, Fixed Metric, and Fixed Metric Values”.

The UseNearestNeighbor value must be false if rocmetrics computes confidence intervals.
Otherwise, the default value is true.

Using confidence intervals requires Statistics and Machine Learning Toolbox.
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Example: UseNearestNeighbor=false
Data Types: logical

Options for Classification Model

Cost — Misclassification cost
square matrix

Misclassification cost, specified as a K-by-K square matrix C, where K is the number of unique classes
in Labels. C(i,j) is the cost of classifying a point into class j if its true class is i (that is, the rows
correspond to the true class and the columns correspond to the predicted class). ClassNames
specifies the order of the classes.

rocmetrics converts the K-by-K matrix to a 2-by-2 matrix for each one-versus-all binary problem.
For details, see “Misclassification Cost Matrix”.

If you specify classification scores for only one class in Scores, the Cost value must be a 2-by-2
matrix containing [0,cost(N|P);cost(P|N),0], where P is a positive class (the class for which
you specify classification scores), and N is a negative class. cost(N|P) is the cost of misclassifying a
positive class as a negative class, and cost(P|N) is the cost of misclassifying a negative class as a
positive class.

The default value is C(i,j)=1 if i~=j, and C(i,j)=0 if i=j. The diagonal entries of a cost matrix
must be zero.

This argument sets the Cost property.
Example: Cost=[0 2;1 0]
Data Types: single | double

Prior — Prior class probabilities
"empirical" (default) | "uniform" | vector of scalar values

Prior class probabilities, specified as one of the following:

• "empirical" determines class probabilities from class frequencies in the true class labels
Labels. If you pass observation weights (Weights), rocmetrics also uses the weights to
compute the class probabilities.

• "uniform" sets all class probabilities to be equal.
• Vector of scalar values, with one scalar value for each class. ClassNames specifies the order of

the classes.

If you specify classification scores for only one class in Scores, the Prior value must be a two-
element vector with Prior(1) representing the prior probability for the specified class.

This argument sets the Prior property.
Example: Prior="uniform"
Data Types: single | double | char | string

Weights — Observation weights
numeric vector of positive values | cell array containing numeric vectors of positive values

1 Deep Learning Functions

1-1470



Observation weights, specified as a numeric vector of positive values or a cell array containing
numeric vectors of positive values.

• For data that is not cross-validated, specify Weights as a numeric vector that has the same length
as Labels.

• For cross-validated data, you must specify Labels, Scores, and Weights as cell arrays with the
same number of elements. rocmetrics treats an element in the cell arrays as data from one
cross-validation fold and computes pointwise confidence intervals for the performance metrics.
The length of Weights{i} and the length of Labels{i} must be equal. Using cross-validated
data requires Statistics and Machine Learning Toolbox.

rocmetrics weighs the observations in Labels and Scores with the corresponding values in
Weights. If you set the NumBootstraps value to a positive integer, rocmetrics draws samples
with replacement, using the weights as multinomial sampling probabilities. Using the
NumBootstraps name-value argument requires Statistics and Machine Learning Toolbox.

By default, Weights is a vector of ones or a cell array containing vectors of ones.

This argument sets the Weights property.
Data Types: single | double | cell

Options for Confidence Intervals

Alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the pointwise confidence intervals, specified as a scalar in the range (0,1).

If you specify Alpha as α, then rocmetrics computes 100×(1 – α)% pointwise confidence intervals
for the performance metrics.

This argument is related to computing confidence intervals. Therefore, it is valid only when you
specify cross-validated data for Labels, Scores, and Weights, or when you set the
NumBootstraps value to a positive integer.

This option requires Statistics and Machine Learning Toolbox.
Example: Alpha=0.01 specifies 99% confidence intervals.
Data Types: single | double

BootstrapOptions — Bootstrap options for parallel computation
statset("rocmetrics") (default) | structure

Bootstrap options for parallel computation, specified as a structure.

You can specify options for computing bootstrap iterations in parallel and setting random numbers
during the bootstrap sampling. Create the BootstrapOptions structure with statset. This table
lists the option fields and their values.

Field Name Field Value Default
UseParallel Set this value to true to

compute bootstrap iterations in
parallel.

false
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Field Name Field Value Default
UseSubstreams Set this value to true to run

computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: "mlfg6331_64" or
"mrg32k3a".

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then rocmetrics uses the
default stream or streams.

This argument is valid only when you specify NumBootstraps as a positive integer to compute
confidence intervals using bootstrapping.

This option requires Parallel Computing Toolbox and Statistics and Machine Learning Toolbox.
Example: BootstrapOptions=statset(UseParallel=true)
Data Types: struct

BootstrapType — Bootstrap confidence interval type
"bca" (default) | "corrected percentile" | "normal" | "percentile" | "student"

Bootstrap confidence interval type, specified as one of the values in this table.

Value Description
"bca" Bias corrected and accelerated percentile method

[8][9]. This method Involves a z0 factor computed
using the proportion of bootstrap values that are
less than the original sample value. To produce
reasonable results when the sample is lumpy, the
software computes z0 by including half of the
bootstrap values that are the same as the original
sample value.

"corrected percentile" or "cper" Bias corrected percentile method [10]
"normal" or "norm" Normal approximated interval with bootstrapped

bias and standard error [11]
"percentile" or "per" Basic percentile method
"student" or "stud" Studentized confidence interval [8]

This argument is valid only when you specify NumBootstraps as a positive integer to compute
confidence intervals using bootstrapping.

This option requires Statistics and Machine Learning Toolbox.
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Example: BootstrapType="student"
Data Types: char | string

NumBootstraps — Number of bootstrap samples to draw
0 (default) | nonnegative integer scalar

Number of bootstrap samples to draw for computing pointwise confidence intervals, specified as a
nonnegative integer scalar.

If you specify NumBootstraps as a positive integer, then rocmetrics uses NumBootstraps
bootstrap samples. To create each bootstrap sample, the function randomly selects n out of the n
rows of input data with replacement. The default value 0 implies that rocmetrics does not use
bootstrapping.

rocmetrics computes confidence intervals by using either cross-validated data or bootstrap
samples. Therefore, if you specify cross-validated data for Labels, Scores, and Weights, then
NumBootstraps must be 0.

For details, see “Pointwise Confidence Intervals”.

This option requires Statistics and Machine Learning Toolbox.
Example: NumBootstraps=500
Data Types: single | double

NumBootstrapsStudentizedSE — Number of bootstrap samples to draw for studentized
standard error estimate
100 (default) | positive integer scalar

Number of bootstrap samples to draw for the studentized standard error estimate, specified as a
positive integer scalar.

This argument is valid only when you specify NumBootstraps as a positive integer and
BootstrapType as "student" to compute studentized bootstrap confidence intervals. rocmetrics
estimates the studentized standard error estimate by using NumBootstrapsStudentizedSE
bootstrap data samples.

This option requires Statistics and Machine Learning Toolbox.
Example: NumBootstrapsStudentizedSE=500
Data Types: single | double

Properties
Performance Metrics

AUC — Area under ROC curve
numeric vector | numeric matrix

This property is read-only.

Area under the ROC curve (AUC) on page 1-1482, specified as a numeric vector or matrix.
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rocmetrics computes the AUC for each one-versus-all ROC curve (that is, for each class). The
column order of the AUC property value matches the class order in ClassNames.

For a binary problem where you specify Scores as a two-column matrix, this property is a 1-by-2
vector containing identical AUC values. The AUC values are identical because the overall model
performance on one class is identical to the performance on the other class for a binary problem.

If rocmetrics computes confidence intervals for AUC, the AUC property value is a matrix in which
the first row corresponds to the AUC values, and the second and third rows correspond to the lower
and upper bounds, respectively. rocmetrics computes confidence intervals for AUC if the function
also computes confidence intervals for the performance metrics and you set FixedMetric to
"Thresholds" (default), "FalsePositiveRate", or "TruePositiveRate". Using confidence
intervals requires Statistics and Machine Learning Toolbox.
Data Types: single | double

Metrics — Performance metrics
table

This property is read-only.

Performance metrics, specified as a table.

The table contains performance metric values for all classes, vertically concatenated according to the
class order in ClassNames. The table has a row for each unique threshold value for each class.
rocmetrics determines the threshold values to use based on the value of FixedMetric,
FixedMetricValues, and UseNearestNeighbor. For details, see “Thresholds, Fixed Metric, and
Fixed Metric Values”.

The number of rows for each class in the table is the number of unique threshold values.

Each row of the table contains these variables: ClassName, Threshold, FalsePositiveRate, and
TruePositiveRate, as well as a variable for each additional metric specified in
AdditionalMetrics. If you specify a custom metric, rocmetrics names the metric
"CustomMetricN", where N is the number that refers to the custom metric. For example,
"CustomMetric1" corresponds to the first custom metric specified by AdditionalMetrics.

Each variable in the Metrics table contains a vector or a three-column matrix.

• If rocmetrics does not compute confidence intervals, each variable contains a vector.
• If rocmetrics computes confidence intervals, both ClassName and the variable for

FixedMetric (Threshold, FalsePositiveRate, TruePositiveRate, or an additional metric)
contain a vector, and the other variables contain a three-column matrix. The first column of the
matrix corresponds to the metric values, and the second and third columns correspond to the
lower and upper bounds, respectively.

Using confidence intervals requires Statistics and Machine Learning Toolbox.

Data Types: table

Classification Model Properties

You can specify the following properties when creating a rocmetrics object.

ClassNames — Class names
numeric vector | logical vector | categorical vector | cell array of character vectors
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This property is read-only.

Class names, specified as a numeric vector, logical vector, categorical vector, or cell array of
character vectors.

For details, see the input argument ClassNames, which sets this property. (The software treats
character or string arrays as cell arrays of character vectors.)
Data Types: single | double | logical | cell | categorical

Cost — Misclassification cost
square matrix

This property is read-only.

Misclassification cost, specified as a square matrix.

For details, see the Cost name-value argument, which sets this property.
Data Types: single | double

Labels — True class labels
numeric vector | logical vector | categorical vector | cell array

This property is read-only.

True class labels, specified as a numeric vector, logical vector, categorical vector, cell array of
character vectors, or cell array of one of these types for cross-validated data.

For details, see the input argument Labels, which sets this property. (The software treats character
or string arrays as cell arrays of character vectors.)
Data Types: single | double | logical | cell | categorical

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector.

For details, see the Prior name-value argument, which sets this property. If you specify this
argument as a character vector or string scalar ("empirical" or "uniform"), rocmetrics
computes the prior probabilities and stores the Prior property as a numeric vector.
Data Types: single | double

Scores — Classification scores
numeric matrix | cell array of numeric matrices

This property is read-only.

Classification scores, specified as a numeric matrix or a cell array of numeric matrices.

For details, see the input argument Scores, which sets this property.
Data Types: single | double | cell
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Weights — Observation weights
numeric vector of positive values | cell array containing numeric vectors of positive values

This property is read-only.

Observation weights, specified as a numeric vector of positive values or a cell array containing
numeric vectors of positive values.

For details, see the Weights name-value argument, which sets this property.
Data Types: single | double | cell

Object Functions
addMetrics Compute additional classification performance metrics
average Compute performance metrics for average receiver operating characteristic (ROC)

curve in multiclass problem
plot Plot receiver operating characteristic (ROC) curves and other performance curves

Examples

Plot ROC Curve

Load a sample of predicted classification scores and true labels for a classification problem.

load('flowersDataResponses.mat')

trueLabels is the true labels for an image classification problem and scores is the softmax
prediction scores. scores is an N-by-K array where N is the number of observations and K is the
number of classes.

trueLabels = flowersData.trueLabels;
scores = flowersData.scores;

Load the class names. The column order of scores follows the class order stored in classNames.

classNames = flowersData.classNames;

Create a rocmetrics object by using the true labels in trueLabels and the classification scores in
scores. Specify the column order of scores using classNames.

rocObj = rocmetrics(trueLabels,scores,classNames);

rocObj is a rocmetrics object that stores the AUC values and performance metrics for each class
in the AUC and Metrics properties. Display the AUC property.

rocObj.AUC

ans = 1x5 single row vector

    0.9781    0.9889    0.9728    0.9809    0.9732

Plot the ROC curve for each class.

plot(rocObj)
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The filled circle markers indicate the model operating points. The legend displays the class name and
AUC value for each curve.

Plot the macro average ROC curve.

plot(rocObj,AverageROCType=["macro"],ClassNames=[])
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Compute Confidence Intervals Using Bootstrapping

Compute the confidence intervals for FPR and TPR for fixed threshold values by using bootstrap
samples, and plot the confidence intervals for TPR on the ROC curve by using the plot function. This
examples requires Statistics and Machine Learning Toolbox™.

Load a sample of true labels and the prediction scores for a classification problem. For this example,
there are five classes: daisy, dandelion, roses, sunflowers, and tulips. The class names are stored in
classNames. The scores are the softmax prediction scores generated using the predict function.
scores is an N-by-K array where N is the number of observations and K is the number of classes.
The column order of scores follows the class order stored in classNames.

load('flowersDataResponses.mat')

scores = flowersData.scores;
trueLabels = flowersData.trueLabels;
predLabels = flowersData.predictedLabels;

classNames = flowersData.classNames;

Create a rocmetrics object by using the true labels in trueLabels and the classification scores in
scores. Specify the column order of scores using classNames. Specify NumBootstraps as 100 to
use 100 bootstrap samples to compute the confidence intervals.
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rocObj = rocmetrics(trueLabels,scores,classNames,NumBootstraps=100);

Find the rows for the second class in the table of the Metrics property, and display the first eight
rows.

idx = rocObj.Metrics.ClassName ==classNames(2);
head(rocObj.Metrics(idx,:))

    ClassName    Threshold    FalsePositiveRate          TruePositiveRate       
    _________    _________    _________________    _____________________________

    dandelion        1           0    0    0             0          0          0
    dandelion        1           0    0    0       0.23889    0.17858    0.31326
    dandelion        1           0    0    0       0.26111    0.20107    0.34007
    dandelion        1           0    0    0       0.27222    0.21829    0.35778
    dandelion        1           0    0    0       0.28889    0.22739    0.36583
    dandelion        1           0    0    0       0.29444    0.23682    0.41685
    dandelion        1           0    0    0           0.3    0.24296    0.42567
    dandelion        1           0    0    0       0.31111    0.24964    0.42614

Each row of the table contains the metric value and its confidence intervals for FPR and TPR for a
fixed threshold value. The Threshold variable is a column vector, and the FalsePositiveRate and
TruePositiveRate variables are three-column matrices. The first column of the matrices
corresponds to the metric values, and the second and third columns correspond to the lower and
upper bounds, respectively.

Plot the ROC curve and the confidence intervals for TPR. Specify
ShowConfidenceIntervals=true to show the confidence intervals.

plot(rocObj,ShowConfidenceIntervals=true)
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The shaded area around the ROC curve indicates the confidence intervals. The confidence intervals
represent the uncertainty of the curve due to the variance in the data set for the trained model.

Specify one class to plot by using the ClassNames name-value argument.

plot(rocObj,ShowConfidenceIntervals=true,ClassNames="daisy")
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More About
Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate versus the false positive rate for different thresholds of
classification scores.

The true positive rate and the false positive rate are defined as follows:

• True positive rate (TPR), also known as recall or sensitivity — TP/(TP+FN), where TP is the
number of true positives and FN is the number of false negatives

• False positive rate (FPR), also known as fallout or 1-specificity — FP/(TN+FP), where FP is the
number of false positives and TN is the number of true negatives

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs. For each class, rocmetrics uses all distinct adjusted score on
page 1-1483 values as threshold values to create a ROC curve.

For a multiclass classification problem, rocmetrics formulates a set of one-versus-all on page 1-
1482 binary classification problems to have one binary problem for each class, and finds a ROC curve
for each class using the corresponding binary problem. Each binary problem assumes one class as
positive and the rest as negative.
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For a binary classification problem, if you specify the classification scores as a matrix, rocmetrics
formulates two one-versus-all binary classification problems. Each of these problems treats one class
as a positive class and the other class as a negative class, and rocmetrics finds two ROC curves.
Use one of the curves to evaluate the binary classification problem.

For more details, see “ROC Curve and Performance Metrics”.

Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
classification and evaluates the performance on each class by using the binary classification that the
class is positive.

For example, the OVA coding design for three classes formulates three binary classifications:

Binary 1 Binary 2 Binary 3
Class 1 1 −1 −1
Class 2 −1 1 −1
Class 3 −1 −1 1

Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

Model Operating Point

The model operating point represents the FPR and TPR corresponding to the typical threshold value.

The typical threshold value depends on the input format of the Scores argument (classification
scores) specified when you create a rocmetrics object:

• If you specify Scores as a matrix, rocmetrics assumes that the values in Scores are the scores
for a multiclass classification problem and uses adjusted score on page 1-1483 values. A multiclass
classification model classifies an observation into a class that yields the largest score, which
corresponds to a nonnegative score in the adjusted scores. Therefore, the threshold value is 0.

• If you specify Scores as a column vector, rocmetrics assumes that the values in Scores are
posterior probabilities of the class specified in ClassNames. A binary classification model
classifies an observation into a class that yields a higher posterior probability, that is, a posterior
probability greater than 0.5. Therefore, the threshold value is 0.5.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. However, if the classification scores are not posterior probabilities, you must specify Scores
as a matrix. A binary classifier classifies an observation into a class that yields a larger score, which
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is equivalent to a class that yields a nonnegative adjusted score. Therefore, if you specify Scores as a
matrix for a binary classifier, rocmetrics can find a correct model operating point using the same
scheme that it applies to a multiclass classifier. If you specify classification scores that are not
posterior probabilities as a vector, rocmetrics cannot identify a correct model operating point
because it always uses 0.5 as a threshold for the model operating point.

The plot function displays a filled circle marker at the model operating point for each ROC curve
(see ShowModelOperatingPoint). The function chooses a point corresponding to the typical
threshold value. If the curve does not have a data point for the typical threshold value, the function
finds a point that has the smallest threshold value greater than the typical threshold. The point on the
curve indicates identical performance to the performance of the typical threshold value.

Algorithms
Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s1,s2,s3] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s1-max(s2,s3),s2-max(s1,s3),s3-max(s1,s2)].

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.

Version History
Introduced in R2022b
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sequenceFoldingLayer
Sequence folding layer

Description
A sequence folding layer converts a batch of image sequences to a batch of images. Use a sequence
folding layer to perform convolution operations on time steps of image sequences independently.

To use a sequence folding layer, you must connect the miniBatchSize output to the
miniBatchSize input of the corresponding sequence unfolding layer. For an example, see “Create
Network for Video Classification” on page 1-1486.

Creation

Syntax
layer = sequenceFoldingLayer
layer = sequenceFoldingLayer('Name',Name)

Description

layer = sequenceFoldingLayer creates a sequence folding layer.

layer = sequenceFoldingLayer('Name',Name) creates a sequence folding layer and sets the
optional Name property using a name-value pair. For example,
sequenceFoldingLayer('Name','fold1') creates a sequence folding layer with the name
'fold1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double
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InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
2 (default)

Number of outputs of the layer.

The layer has two outputs:

• 'out' – Output feature map corresponding to reshaped input.
• 'miniBatchSize' – Size of the mini-batch passed into the layer. This output must be connected

to the 'miniBatchSize' input of the corresponding sequence unfolding layer.

Data Types: double

OutputNames — Output names
{'out','miniBatchSize'} (default)

Output names of the layer.

The layer has two outputs:

• 'out' – Output feature map corresponding to reshaped input.
• 'miniBatchSize' – Size of the mini-batch passed into the layer. This output must be connected

to the 'miniBatchSize' input of the corresponding sequence unfolding layer.

Data Types: cell

Examples

Create Sequence Folding Layer

Create a sequence folding layer with name the 'fold1'.

layer = sequenceFoldingLayer('Name','fold1')

layer = 
  SequenceFoldingLayer with properties:

           Name: 'fold1'
     NumOutputs: 2
    OutputNames: {'out'  'miniBatchSize'}
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Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical
image data.

• To input sequences of images into a network, use a sequence input layer.
• To apply convolutional operations independently to each time step, first convert the sequences of

images to an array of images using a sequence folding layer.
• To restore the sequence structure after performing these operations, convert this array of images

back to image sequences using a sequence unfolding layer.
• To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10
classes.

Define the following network architecture:

• A sequence input layer with an input size of [28 28 1].
• A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
• An LSTM layer with 200 hidden units that outputs the last time step only.
• A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a
classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding
layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the
sequence structure and reshape the output of the convolutional layers to sequences of feature
vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and
the LSTM layer.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
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    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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See Also
lstmLayer | bilstmLayer | gruLayer | classifyAndUpdateState | predictAndUpdateState
| resetState | flattenLayer | sequenceUnfoldingLayer | sequenceInputLayer

Topics
“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”
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sequenceInputLayer
Sequence input layer

Description
A sequence input layer inputs sequence data to a network.

Creation

Syntax
layer = sequenceInputLayer(inputSize)
layer = sequenceInputLayer(inputSize,Name,Value)

Description

layer = sequenceInputLayer(inputSize) creates a sequence input layer and sets the
InputSize property.

layer = sequenceInputLayer(inputSize,Name,Value) sets the optional MinLength,
Normalization, Mean, and Name properties using name-value pairs. You can specify multiple name-
value pairs. Enclose each property name in single quotes.

Properties
Sequence Input

InputSize — Size of input
positive integer | vector of positive integers

Size of the input, specified as a positive integer or a vector of positive integers.

• For vector sequence input, InputSize is a scalar corresponding to the number of features.
• For 1-D image sequence input, InputSize is vector of two elements [h c], where h is the image

height and c is the number of channels of the image.
• For 2-D image sequence input, InputSize is vector of three elements [h w c], where h is the

image height, w is the image width, and c is the number of channels of the image.
• For 3-D image sequence input, InputSize is vector of four elements [h w d c], where h is the

image height, w is the image width, d is the image depth, and c is the number of channels of the
image.

To specify the minimum sequence length of the input data, use the MinLength property.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MinLength — Minimum sequence length of input data
1 (default) | positive integer
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Minimum sequence length of input data, specified as a positive integer. When training or making
predictions with the network, if the input data has fewer than MinLength time steps, then the
software throws an error.

When you create a network that downsamples data in the time dimension, you must take care that
the network supports your training data and any data for prediction. Some deep learning layers
require that the input has a minimum sequence length. For example, a 1-D convolution layer requires
that the input has at least as many time steps as the filter size.

As time series of sequence data propagates through a network, the sequence length can change. For
example, downsampling operations such as 1-D convolutions can output data with fewer time steps
than its input. This means that downsampling operations can cause later layers in the network to
throw an error because the data has a shorter sequence length than the minimum length required by
the layer.

When you train or assemble a network, the software automatically checks that sequences of length 1
can propagate through the network. Some networks might not support sequences of length 1, but can
successfully propagate sequences of longer lengths. To check that a network supports propagating
your training and expected prediction data, set the MinLength property to a value less than or equal
to the minimum length of your data and the expected minimum length of your prediction data.

Tip To prevent convolution and pooling layers from changing the size of the data, set the Padding
option of the layer to "same" or "causal".

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Normalization — Data normalization
'none' (default) | 'zerocenter' | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' |
function handle

Data normalization to apply every time data is forward propagated through the input layer, specified
as one of the following:

• 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and

maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the

form Y = func(X), where X is the input data and the output Y is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics when using the
trainNetwork function. To save time when training, specify the required statistics for normalization
and set the ResetInputNormalization option in trainingOptions to 0 (fasle).

The software applies normalization to all input elements, including padding values.
Data Types: char | string | function_handle
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NormalizationDimension — Normalization dimension
'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' – If the training option is false and you specify any of the normalization statistics (Mean,
StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics.
Otherwise, recalculate the statistics at training time and apply channel-wise normalization.

• 'channel' – Channel-wise normalization.
• 'element' – Element-wise normalization.
• 'all' – Normalize all values using scalar statistics.

Data Types: char | string

Mean — Mean for zero-center and z-score normalization
[] (default) | numeric array | numeric scalar

Mean for zero-center and z-score normalization, specified as a numeric array, or empty.

• For vector sequence input, Mean must be a InputSize-by-1 vector of means per channel, a
numeric scalar, or [].

• For 2-D image sequence input, Mean must be a numeric array of the same size as InputSize, a 1-
by-1-by-InputSize(3) array of means per channel, a numeric scalar, or [].

• For 3-D image sequence input, Mean must be a numeric array of the same size as InputSize, a 1-
by-1-by-1-by-InputSize(4) array of means per channel, a numeric scalar, or [].

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If
Mean is [], then the trainNetwork function calculates the mean and ignores padding values. To
train a dlnetwork object using a custom training loop or assemble a network without training it
using the assembleNetwork function, you must set the Mean property to a numeric scalar or a
numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StandardDeviation — Standard deviation
[] (default) | numeric array | numeric scalar

Standard deviation used for z-score normalization, specified as a numeric array, a numeric scalar, or
empty.

• For vector sequence input, StandardDeviation must be a InputSize-by-1 vector of standard
deviations per channel, a numeric scalar, or [].

• For 2-D image sequence input, StandardDeviation must be a numeric array of the same size as
InputSize, a 1-by-1-by-InputSize(3) array of standard deviations per channel, a numeric
scalar, or [].

• For 3-D image sequence input, StandardDeviation must be a numeric array of the same size as
InputSize, a 1-by-1-by-1-by-InputSize(4) array of standard deviations per channel, or a
numeric scalar.

If you specify the StandardDeviation property, then Normalization must be 'zscore'. If
StandardDeviation is [], then the trainNetwork function calculates the mean and ignores
padding values. To train a dlnetwork object using a custom training loop or assemble a network

1 Deep Learning Functions

1-1492



without training it using the assembleNetwork function, you must set the StandardDeviation
property to a numeric scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Min — Minimum value for rescaling
[] (default) | numeric array | numeric scalar

Minimum value for rescaling, specified as a numeric array, or empty.

• For vector sequence input, Min must be a InputSize-by-1 vector of means per channel or a
numeric scalar.

• For 2-D image sequence input, Min must be a numeric array of the same size as InputSize, a 1-
by-1-by-InputSize(3) array of minima per channel, or a numeric scalar.

• For 3-D image sequence input, Min must be a numeric array of the same size as InputSize, a 1-
by-1-by-1-by-InputSize(4) array of minima per channel, or a numeric scalar.

If you specify the Min property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Min is [], then the trainNetwork function calculates the minima and
ignores padding values. To train a dlnetwork object using a custom training loop or assemble a
network without training it using the assembleNetwork function, you must set the Min property to a
numeric scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Max — Maximum value for rescaling
[] (default) | numeric array | numeric scalar

Maximum value for rescaling, specified as a numeric array, or empty.

• For vector sequence input, Max must be a InputSize-by-1 vector of means per channel or a
numeric scalar.

• For 2-D image sequence input, Max must be a numeric array of the same size as InputSize, a 1-
by-1-by-InputSize(3) array of maxima per channel, a numeric scalar, or [].

• For 3-D image sequence input, Max must be a numeric array of the same size as InputSize, a 1-
by-1-by-1-by-InputSize(4) array of maxima per channel, a numeric scalar, or [].

If you specify the Max property, then Normalization must be 'rescale-symmetric' or
'rescale-zero-one'. If Max is [], then the trainNetwork function calculates the maxima and
ignores padding values. To train a dlnetwork object using a custom training loop or assemble a
network without training it using the assembleNetwork function, you must set the Max property to a
numeric scalar or a numeric array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SplitComplexInputs — Flag to split input data into real and imaginary components
0 (false) (default) | 1 (true)

This property is read-only.

Flag to split input data into real and imaginary components specified as one of these values:

• 0 (false) – Do not split input data.
• 1 (true) – Split data into real and imaginary components.
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When SplitComplexInputs is 1, then the layer outputs twice as many channels as the input data.
For example, if the input data is complex-values with numChannels channels, then the layer outputs
data with 2*numChannels channels, where channels 1 through numChannels contain the real
components of the input data and numChannels+1 through 2*numChannels contain the imaginary
components of the input data. If the input data is real, then channels numChannels+1 through
2*numChannels are all zero.

To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.

For an example showing how to train a network with complex-valued data, see “Train Network with
Complex-Valued Data”.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
0 (default)

This property is read-only.

Number of inputs of the layer. The layer has no inputs.
Data Types: double

InputNames — Input names
{} (default)

This property is read-only.

Input names of the layer. The layer has no inputs.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
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Data Types: cell

Examples

Create Sequence Input Layer

Create a sequence input layer with the name 'seq1' and an input size of 12.

layer = sequenceInputLayer(12,'Name','seq1')

layer = 
  SequenceInputLayer with properties:

                      Name: 'seq1'
                 InputSize: 12
                 MinLength: 1
        SplitComplexInputs: 0

   Hyperparameters
             Normalization: 'none'
    NormalizationDimension: 'auto'

Include a sequence input layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Create Sequence Input Layer for Image Sequences

Create a sequence input layer for sequences of 224-224 RGB images with the name 'seq1'.

layer = sequenceInputLayer([224 224 3], 'Name', 'seq1')

layer = 
  SequenceInputLayer with properties:
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                      Name: 'seq1'
                 InputSize: [224 224 3]
                 MinLength: 1
        SplitComplexInputs: 0

   Hyperparameters
             Normalization: 'none'
    NormalizationDimension: 'auto'

Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.

Load the Japanese Vowels data set as described in [1] and [2]. XTrain is a cell array containing 270
sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. Y is a
categorical vector of labels 1,2,...,9. The entries in XTrain are matrices with 12 rows (one row for
each feature) and a varying number of columns (one column for each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),'Location','northeastoutside')
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Define the LSTM network architecture. Specify the input size as 12 (the number of features of the
input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the
sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a
softmax layer and a classification layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the
mini-batch size to 27 and set the maximum number of epochs to 70.
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Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(XTrain,YTrain,layers,options);

Load the test set and classify the sequences into speakers.
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[XTest,YTest] = japaneseVowelsTestData;

Classify the test data. Specify the same mini-batch size used for training.

YPred = classify(net,XTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy of the predictions.

acc = sum(YPred == YTest)./numel(YTest)

acc = 0.9432

Classification LSTM Networks

To create an LSTM network for sequence-to-label classification, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, a softmax layer, and a classification
output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of classes. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For an example showing how to train an LSTM network for sequence-to-label classification and
classify new data, see “Sequence Classification Using Deep Learning”.

To create an LSTM network for sequence-to-sequence classification, use the same architecture as for
sequence-to-label classification, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Regression LSTM Networks

To create an LSTM network for sequence-to-one regression, create a layer array containing a
sequence input layer, an LSTM layer, a fully connected layer, and a regression output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the
fully connected layer to the number of responses. You do not need to specify the sequence length.
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For the LSTM layer, specify the number of hidden units and the output mode 'last'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numResponses)
    regressionLayer];

To create an LSTM network for sequence-to-sequence regression, use the same architecture as for
sequence-to-one regression, but set the output mode of the LSTM layer to 'sequence'.

numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numResponses)
    regressionLayer];

For an example showing how to train an LSTM network for sequence-to-sequence regression and
predict on new data, see “Sequence-to-Sequence Regression Using Deep Learning”.

Deeper LSTM Networks

You can make LSTM networks deeper by inserting extra LSTM layers with the output mode
'sequence' before the LSTM layer. To prevent overfitting, you can insert dropout layers after the
LSTM layers.

For sequence-to-label classification networks, the output mode of the last LSTM layer must be
'last'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','last')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

For sequence-to-sequence classification networks, the output mode of the last LSTM layer must be
'sequence'.

numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
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numClasses = 9;
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits1,'OutputMode','sequence')
    dropoutLayer(0.2)
    lstmLayer(numHiddenUnits2,'OutputMode','sequence')
    dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical
image data.

• To input sequences of images into a network, use a sequence input layer.
• To apply convolutional operations independently to each time step, first convert the sequences of

images to an array of images using a sequence folding layer.
• To restore the sequence structure after performing these operations, convert this array of images

back to image sequences using a sequence unfolding layer.
• To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10
classes.

Define the following network architecture:

• A sequence input layer with an input size of [28 28 1].
• A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
• An LSTM layer with 200 hidden units that outputs the last time step only.
• A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a
classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding
layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the
sequence structure and reshape the output of the convolutional layers to sequences of feature
vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and
the LSTM layer.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
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    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)
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Version History
Introduced in R2017b

sequenceInputLayer, by default, uses channel-wise normalization for zero-center
normalization
Behavior change in future release

Starting in R2019b, sequenceInputLayer, by default, uses channel-wise normalization for zero-
center normalization. In previous versions, this layer uses element-wise normalization. To reproduce
this behavior, set the NormalizationDimension option of this layer to 'element'.

trainNetwork ignores padding values when calculating normalization statistics
Behavior changed in R2020a

Starting in R2020a, trainNetwork ignores padding values when calculating normalization statistics.
This means that the Normalization option in the sequenceInputLayer now makes training
invariant to data operations, for example, 'zerocenter' normalization now implies that the training
results are invariant to the mean of the data.

If you train on padded sequences, then the calculated normalization factors may be different in
earlier versions and can produce different results.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• For vector sequence inputs, the number of features must be a constant during code generation.
• Code generation does not support 'Normalization' specified using a function handle.
• Code generation does not support complex input and does not support 'SplitComplexInputs'

option.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural
network. Once the network is trained and evaluated, you can configure the code generator to
generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM
GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network
library (cuDNN), or the NVIDIA TensorRT high performance inference library.

• The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only
vector input sequences.

• For vector sequence inputs, the number of features must be a constant during code generation.
• For image sequence inputs, the height, width, and the number of channels must be a constant

during code generation.
• Code generation does not support 'Normalization' specified using a function handle.
• Code generation does not support complex input and does not support 'SplitComplexInputs'

option.

See Also
trainNetwork | lstmLayer | bilstmLayer | gruLayer | classifyAndUpdateState |
predictAndUpdateState | resetState | sequenceFoldingLayer | flattenLayer |
sequenceUnfoldingLayer | Deep Network Designer | featureInputLayer

Topics
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Classify Videos Using Deep Learning”
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“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”
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sequenceUnfoldingLayer
Sequence unfolding layer

Description
A sequence unfolding layer restores the sequence structure of the input data after sequence folding.

To use a sequence unfolding layer, you must connect the miniBatchSize output of the
corresponding sequence folding layer to the miniBatchSize input of the sequence unfolding layer.
For an example, see “Create Network for Video Classification” on page 1-1507.

Creation

Syntax
layer = sequenceUnfoldingLayer
layer = sequenceUnfoldingLayer('Name',Name)

Description

layer = sequenceUnfoldingLayer creates a sequence unfolding layer.

layer = sequenceUnfoldingLayer('Name',Name) creates a sequence unfolding layer and sets
the optional Name property using a name-value pair. For example,
sequenceUnfoldingLayer('Name','unfold1') creates a sequence unfolding layer with the
name 'unfold1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer.

This layer has two inputs:

• 'in' – Input feature map.
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• 'miniBatchSize' – Size of the mini-batch from the corresponding sequence folding layer. This
output must be connected to the 'miniBatchSize' output of the corresponding sequence
folding layer.

Data Types: double

InputNames — Input names
{'in','miniBatchSize'} (default)

Input names of the layer.

This layer has two inputs:

• 'in' – Input feature map.
• 'miniBatchSize' – Size of the mini-batch from the corresponding sequence folding layer. This

output must be connected to the 'miniBatchSize' output of the corresponding sequence
folding layer.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Sequence Unfolding Layer

Create a sequence unfolding layer with the name 'unfold1'.

layer = sequenceUnfoldingLayer('Name','unfold1')

layer = 
  SequenceUnfoldingLayer with properties:

          Name: 'unfold1'
     NumInputs: 2
    InputNames: {'in'  'miniBatchSize'}
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Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical
image data.

• To input sequences of images into a network, use a sequence input layer.
• To apply convolutional operations independently to each time step, first convert the sequences of

images to an array of images using a sequence folding layer.
• To restore the sequence structure after performing these operations, convert this array of images

back to image sequences using a sequence unfolding layer.
• To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10
classes.

Define the following network architecture:

• A sequence input layer with an input size of [28 28 1].
• A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
• An LSTM layer with 200 hidden units that outputs the last time step only.
• A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a
classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding
layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the
sequence structure and reshape the output of the convolutional layers to sequences of feature
vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and
the LSTM layer.

inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
    sequenceInputLayer(inputSize,'Name','input')
    
    sequenceFoldingLayer('Name','fold')
    
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    
    fullyConnectedLayer(numClasses, 'Name','fc')
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    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding
layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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See Also
lstmLayer | bilstmLayer | gruLayer | classifyAndUpdateState | predictAndUpdateState
| resetState | sequenceFoldingLayer | flattenLayer | sequenceInputLayer

Topics
“Classify Videos Using Deep Learning”
“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Long Short-Term Memory Networks”
“Visualize Activations of LSTM Network”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”
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SeriesNetwork
Series network for deep learning

Description
A series network is a neural network for deep learning with layers arranged one after the other. It has
a single input layer and a single output layer.

Creation
There are several ways to create a SeriesNetwork object:

• Load a pretrained network using alexnet, darknet19, vgg16, or vgg19. For an example, see
“Load Pretrained AlexNet Convolutional Neural Network” on page 1-1512.

• Train or fine-tune a network using trainNetwork. For an example, see “Train Network for Image
Classification” on page 1-1513.

• Import a pretrained network from TensorFlow-Keras, Caffe, or the ONNX (Open Neural Network
Exchange) model format.

• For a Keras model, use importKerasNetwork. For an example, see “Import and Plot Keras
Network” on page 1-909.

• For a Caffe model, use importCaffeNetwork. For an example, see “Import Caffe Network” on
page 1-886.

• For an ONNX model, use importONNXNetwork. For an example, see “Import ONNX Network
as DAGNetwork” on page 1-986.

• Assemble a deep learning network from pretrained layers using the assembleNetwork function.

Note To learn about other pretrained networks, such as googlenet and resnet50, see “Pretrained
Deep Neural Networks”.

Properties
Layers — Network layers
Layer array

This property is read-only.

Network layers, specified as a Layer array.

InputNames — Network input layer names
cell array of character vectors

This property is read-only.

Network input layer names, specified as a cell array of character vectors.
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Data Types: cell

OutputNames — Network output layer names
cell array

Network output layer names, specified as a cell array of character vectors.
Data Types: cell

Object Functions
activations Compute deep learning network layer activations
classify Classify data using trained deep learning neural network
predict Predict responses using trained deep learning neural network
predictAndUpdateState Predict responses using a trained recurrent neural network and update the

network state
classifyAndUpdateState Classify data using a trained recurrent neural network and update the

network state
resetState Reset state parameters of neural network
plot Plot neural network architecture

Examples

Load Pretrained AlexNet Convolutional Neural Network

Load a pretrained AlexNet convolutional neural network and examine the layers and classes.

Load the pretrained AlexNet network using alexnet. The output net is a SeriesNetwork object.

net = alexnet

net = 
  SeriesNetwork with properties:

    Layers: [25×1 nnet.cnn.layer.Layer]

Using the Layers property, view the network architecture. The network comprises of 25 layers.
There are 8 layers with learnable weights: 5 convolutional layers, and 3 fully connected layers.

net.Layers

ans = 
  25x1 Layer array with layers:

     1   'data'     Image Input                   227x227x3 images with 'zerocenter' normalization
     2   'conv1'    Convolution                   96 11x11x3 convolutions with stride [4  4] and padding [0  0  0  0]
     3   'relu1'    ReLU                          ReLU
     4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     5   'pool1'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
     6   'conv2'    Grouped Convolution           2 groups of 128 5x5x48 convolutions with stride [1  1] and padding [2  2  2  2]
     7   'relu2'    ReLU                          ReLU
     8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     9   'pool2'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    10   'conv3'    Convolution                   384 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    11   'relu3'    ReLU                          ReLU

1 Deep Learning Functions

1-1512



    12   'conv4'    Grouped Convolution           2 groups of 192 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu4'    ReLU                          ReLU
    14   'conv5'    Grouped Convolution           2 groups of 128 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu5'    ReLU                          ReLU
    16   'pool5'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
    17   'fc6'      Fully Connected               4096 fully connected layer
    18   'relu6'    ReLU                          ReLU
    19   'drop6'    Dropout                       50% dropout
    20   'fc7'      Fully Connected               4096 fully connected layer
    21   'relu7'    ReLU                          ReLU
    22   'drop7'    Dropout                       50% dropout
    23   'fc8'      Fully Connected               1000 fully connected layer
    24   'prob'     Softmax                       softmax
    25   'output'   Classification Output         crossentropyex with 'tench' and 999 other classes

You can view the names of the classes learned by the network by viewing the Classes property of
the classification output layer (the final layer). View the first 10 classes by selecting the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical array
     tench 
     goldfish 
     great white shark 
     tiger shark 
     hammerhead 
     electric ray 
     stingray 
     cock 
     hen 
     ostrich 

Import Layers from Caffe Network

Specify the example file 'digitsnet.prototxt' to import.

protofile = 'digitsnet.prototxt';

Import the network layers.

layers = importCaffeLayers(protofile)

layers = 

  1x7 Layer array with layers:

     1   'testdata'   Image Input             28x28x1 images
     2   'conv1'      Convolution             20 5x5x1 convolutions with stride [1  1] and padding [0  0]
     3   'relu1'      ReLU                    ReLU
     4   'pool1'      Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0]
     5   'ip1'        Fully Connected         10 fully connected layer
     6   'loss'       Softmax                 softmax
     7   'output'     Classification Output   crossentropyex with 'class1', 'class2', and 8 other classes
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Train Network for Image Classification

Load the data as an ImageDatastore object.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet', ...
    'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

The datastore contains 10,000 synthetic images of digits from 0 to 9. The images are generated by
applying random transformations to digit images created with different fonts. Each digit image is 28-
by-28 pixels. The datastore contains an equal number of images per category.

Display some of the images in the datastore.

figure
numImages = 10000;
perm = randperm(numImages,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
    drawnow;
end

Divide the datastore so that each category in the training set has 750 images and the testing set has
the remaining images from each label.
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numTrainingFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainingFiles,'randomize');

splitEachLabel splits the image files in digitData into two new datastores, imdsTrain and
imdsTest.

Define the convolutional neural network architecture.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the options to the default settings for the stochastic gradient descent with momentum. Set the
maximum number of epochs at 20, and start the training with an initial learning rate of 0.0001.

options = trainingOptions('sgdm', ...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(imdsTrain,layers,options);
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Run the trained network on the test set, which was not used to train the network, and predict the
image labels (digits).

YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;

Calculate the accuracy. The accuracy is the ratio of the number of true labels in the test data
matching the classifications from classify to the number of images in the test data.

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9412

Version History
Introduced in R2016a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState,
classifyAndUpdateState, and resetState object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState,
classifyAndUpdateState, and resetState object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
alexnet | vgg16 | vgg19 | darknet19 | importCaffeNetwork | trainNetwork |
trainingOptions | DAGNetwork | analyzeNetwork | assembleNetwork | plot | classify |
predict

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Sequence Classification Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”
“Long Short-Term Memory Networks”
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setL2Factor
Package: nnet.cnn.layer

Set L2 regularization factor of layer learnable parameter

Syntax
layerUpdated = setL2Factor(layer,parameterName,factor)
layerUpdated = setL2Factor(layer,parameterPath,factor)

netUpdated = setL2Factor(net,layerName,parameterName,factor)
netUpdated = setL2Factor(net,parameterPath,factor)

Description
layerUpdated = setL2Factor(layer,parameterName,factor) sets the L2 regularization
factor of the parameter with the name parameterName in layer to factor.

For built-in layers, you can set the L2 regularization factor directly by using the corresponding
property. For example, for a convolution2dLayer layer, the syntax layer =
setL2Factor(layer,'Weights',factor) is equivalent to layer.WeightL2Factor = factor.

layerUpdated = setL2Factor(layer,parameterPath,factor) sets the L2 regularization
factor of the parameter specified by the path parameterPath. Use this syntax when the parameter is
in a dlnetwork object in a custom layer.

netUpdated = setL2Factor(net,layerName,parameterName,factor) sets the L2
regularization factor of the parameter with the name parameterName in the layer with name
layerName for the specified dlnetwork object.

netUpdated = setL2Factor(net,parameterPath,factor) sets the L2 regularization factor of
the parameter specified by the path parameterPath. Use this syntax when the parameter is in a
nested layer.

Examples

Set and Get L2 Regularization Factor of Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a layer.

Create a layer array containing the custom layer preluLayer, attached to this is example as a
supporting file. To access this layer, open this example as a live script.

Create a layer array including a custom layer preluLayer.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
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    preluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the L2 regularization factor of the Alpha learnable parameter of the preluLayer to 2.

layers(4) = setL2Factor(layers(4),"Alpha",2);

View the updated L2 regularization factor.

factor = getL2Factor(layers(4),"Alpha")

factor = 2

Set and Get L2 Regularization Factor of Nested Layer Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example
as a supporting file. To access this file, open this example as a Live Script.

numFilters = 64;
layer = residualBlockLayer(numFilters)

layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

   State Parameters
    No properties.

  Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 
  7x1 Layer array with layers:

     1   'conv_1'        2-D Convolution       64 3x3 convolutions with stride [1  1] and padding 'same'
     2   'groupnorm_1'   Group Normalization   Group normalization
     3   'relu_1'        ReLU                  ReLU
     4   'conv_2'        2-D Convolution       64 3x3 convolutions with stride [1  1] and padding 'same'
     5   'groupnorm_2'   Group Normalization   Group normalization
     6   'add'           Addition              Element-wise addition of 2 inputs
     7   'relu_2'        ReLU                  ReLU

Set the L2 regularization factor of the learnable parameter 'Weights' of the layer 'conv_1' to 2
using the setL2Factor function.
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factor = 2;
layer = setL2Factor(layer,'Network/conv_1/Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(layer,'Network/conv_1/Weights')

factor = 2

Set and Get L2 Regularization Factor of dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);

Set the L2 regularization factor of the 'Weights' learnable parameter of the convolution layer to 2
using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'conv','Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'conv','Weights')

factor = 2

Set and Get L2 Regularization Factor of Nested dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer in a dlnetwork
object.

Create a dlnetwork object containing the custom layer residualBlockLayer attached to this
example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
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    convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
    groupNormalizationLayer('all-channels','Name','gn')
    reluLayer('Name','relu')
    maxPooling2dLayer(3,'Stride',2,'Name','max')
    residualBlockLayer(numFilters,'Name','res1')
    residualBlockLayer(numFilters,'Name','res2')
    residualBlockLayer(2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
    residualBlockLayer(2*numFilters,'Name','res4')
    residualBlockLayer(4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
    residualBlockLayer(4*numFilters,'Name','res6')
    globalAveragePooling2dLayer('Name','gap')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','sm')];

dlnet = dlnetwork(layers);

The Learnables property of the dlnetwork object is a table that contains the learnable parameters
of the network. The table includes parameters of nested layers in separate rows. View the learnable
parameters of the layer "res1".

learnables = dlnet.Learnables;
idx = learnables.Layer == "res1";
learnables(idx,:)

ans=8×3 table
    Layer              Parameter                     Value       
    ______    ____________________________    ___________________

    "res1"    "Network/conv_1/Weights"        {3x3x32x32 dlarray}
    "res1"    "Network/conv_1/Bias"           {1x1x32    dlarray}
    "res1"    "Network/groupnorm_1/Offset"    {1x1x32    dlarray}
    "res1"    "Network/groupnorm_1/Scale"     {1x1x32    dlarray}
    "res1"    "Network/conv_2/Weights"        {3x3x32x32 dlarray}
    "res1"    "Network/conv_2/Bias"           {1x1x32    dlarray}
    "res1"    "Network/groupnorm_2/Offset"    {1x1x32    dlarray}
    "res1"    "Network/groupnorm_2/Scale"     {1x1x32    dlarray}

For the layer "res1", set the L2 regularization factor of the learnable parameter 'Weights' of the
layer 'conv_1' to 2 using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'res1/Network/conv_1/Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'res1/Network/conv_1/Weights')

factor = 2

Input Arguments
layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.
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parameterName — Parameter name
character vector | string scalar

Parameter name, specified as a character vector or a string scalar.

factor — L2 regularization factor
nonnegative scalar

L2 regularization factor for the parameter, specified as a nonnegative scalar.

The software multiplies this factor with the global L2 regularization factor to determine the L2
regularization factor for the specified parameter. For example, if factor is 2, then the L2
regularization for the specified parameter is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Example: 2

parameterPath — Path to parameter in nested layer
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is
a custom layer that itself defines a layer graph as a learnable parameter.

If the input to setL2Factor is a nested layer, then the parameter path has the form
"propertyName/layerName/parameterName", where:

• propertyName is the name of the property containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where
propertyName1 and layerName1 correspond to the layer in the input to the setL2Factor
function, and the subsequent parts correspond to the deeper levels.
Example: For layer input to setL2Factor, the path "Network/conv1/Weights" specifies the
"Weights" parameter of the layer with name "conv1" in the dlnetwork object given by
layer.Network.

If the input to setL2Factor is a dlnetwork object and the desired parameter is in a nested layer,
then the parameter path has the form "layerName1/propertyName/layerName/
parameterName", where:

• layerName1 is the name of the layer in the input dlnetwork object
• propertyName is the property of the layer containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/
propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where
layerName1 and propertyName1 correspond to the layer in the input to the setL2Factor
function, and the subsequent parts correspond to the deeper levels.
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Example: For dlnetwork input to setL2Factor, the path "res1/Network/conv1/Weights"
specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given
by layer.Network, where layer is the layer with name "res1" in the input network net.
Data Types: char | string

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layerName — Layer name
string scalar | character vector

Layer name, specified as a string scalar or a character vector.
Data Types: char | string

Output Arguments
layerUpdated — Updated layer
Layer object

Updated layer, returned as a Layer.

netUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork.

Version History
Introduced in R2017b

See Also
setLearnRateFactor | getLearnRateFactor | getL2Factor | trainNetwork |
trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”
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setLearnRateFactor
Package: nnet.cnn.layer

Set learn rate factor of layer learnable parameter

Syntax
layerUpdated = setLearnRateFactor(layer,parameterName,factor)
layerUpdated = setLearnRateFactor(layer,parameterPath,factor)

netUpdated = setLearnRateFactor(net,layerName,parameterName,factor)
netUpdated = setLearnRateFactor(net,parameterPath,factor)

Description
layerUpdated = setLearnRateFactor(layer,parameterName,factor) sets the learn rate
factor of the parameter with the name parameterName in layer to factor.

For built-in layers, you can set the learn rate factor directly by using the corresponding property. For
example, for a convolution2dLayer layer, the syntax layer =
setLearnRateFactor(layer,'Weights',factor) is equivalent to
layer.WeightLearnRateFactor = factor.

layerUpdated = setLearnRateFactor(layer,parameterPath,factor) sets the learn rate
factor of the parameter specified by the path parameterPath. Use this syntax when the parameter is
in a dlnetwork object in a custom layer.

netUpdated = setLearnRateFactor(net,layerName,parameterName,factor) sets the
learn rate factor of the parameter with the name parameterName in the layer with name layerName
for the specified dlnetwork object.

netUpdated = setLearnRateFactor(net,parameterPath,factor) sets the learn rate factor
of the parameter specified by the path parameterPath. Use this syntax when the parameter is in a
nested layer.

Examples

Set and Get Learning Rate Factor of Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a custom PReLU layer.

Create a layer array containing the custom layer preluLayer, attached to this is example as a
supporting file. To access this layer, open this example as a live script.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    preluLayer
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    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the learn rate factor of the Alpha learnable parameter of the preluLayer to 2.

layers(4) = setLearnRateFactor(layers(4),"Alpha",2);

View the updated learn rate factor.

factor = getLearnRateFactor(layers(4),"Alpha")

factor = 2

Set and Get Learning Rate Factor of Nested Layer Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example
as a supporting file. To access this file, open this example as a Live Script.

numFilters = 64;
layer = residualBlockLayer(numFilters)

layer = 
  residualBlockLayer with properties:

       Name: ''

   Learnable Parameters
    Network: [1x1 dlnetwork]

   State Parameters
    No properties.

  Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 
  7x1 Layer array with layers:

     1   'conv_1'        2-D Convolution       64 3x3 convolutions with stride [1  1] and padding 'same'
     2   'groupnorm_1'   Group Normalization   Group normalization
     3   'relu_1'        ReLU                  ReLU
     4   'conv_2'        2-D Convolution       64 3x3 convolutions with stride [1  1] and padding 'same'
     5   'groupnorm_2'   Group Normalization   Group normalization
     6   'add'           Addition              Element-wise addition of 2 inputs
     7   'relu_2'        ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv_1' to 2 using
the setLearnRateFactor function.

 setLearnRateFactor

1-1525



factor = 2;
layer = setLearnRateFactor(layer,'Network/conv_1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(layer,'Network/conv_1/Weights')

factor = 2

Set and Get Learn Rate Factor of dlnetwork Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);

Set the learn rate factor of the 'Weights' learnable parameter of the convolution layer to 2 using
the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'conv','Weights',factor);

Get the updated learn rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'conv','Weights')

factor = 2

Set and Get Learning Rate Factor of Nested dlnetwork Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer in a dlnetwork
object.

Create a dlnetwork object containing the custom layer residualBlockLayer attached to this
example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
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    convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
    groupNormalizationLayer('all-channels','Name','gn')
    reluLayer('Name','relu')
    maxPooling2dLayer(3,'Stride',2,'Name','max')
    residualBlockLayer(numFilters,'Name','res1')
    residualBlockLayer(numFilters,'Name','res2')
    residualBlockLayer(2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
    residualBlockLayer(2*numFilters,'Name','res4')
    residualBlockLayer(4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
    residualBlockLayer(4*numFilters,'Name','res6')
    globalAveragePooling2dLayer('Name','gap')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','sm')];

dlnet = dlnetwork(layers);

View the layers of the nested network in the layer 'res1'.

dlnet.Layers(6).Network.Layers

ans = 
  7x1 Layer array with layers:

     1   'conv_1'        2-D Convolution       32 3x3x32 convolutions with stride [1  1] and padding 'same'
     2   'groupnorm_1'   Group Normalization   Group normalization with 32 channels split into 1 groups
     3   'relu_1'        ReLU                  ReLU
     4   'conv_2'        2-D Convolution       32 3x3x32 convolutions with stride [1  1] and padding 'same'
     5   'groupnorm_2'   Group Normalization   Group normalization with 32 channels split into 32 groups
     6   'add'           Addition              Element-wise addition of 2 inputs
     7   'relu_2'        ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv_1' to 2 using
the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'res1/Network/conv_1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'res1/Network/conv_1/Weights')

factor = 2

Freeze Learnable Parameters of dlnetwork Object

Load a pretrained network.

net = squeezenet;

Convert the network to a layer graph, remove the output layer, and convert it to a dlnetwork object.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,'ClassificationLayer_predictions');
dlnet = dlnetwork(lgraph);
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The Learnables property of the dlnetwork object is a table that contains the learnable parameters
of the network. The table includes parameters of nested layers in separate rows. View the first few
rows of the learnables table.

learnables = dlnet.Learnables;
head(learnables)

          Layer           Parameter           Value       
    __________________    _________    ___________________

    "conv1"               "Weights"    {3x3x3x64  dlarray}
    "conv1"               "Bias"       {1x1x64    dlarray}
    "fire2-squeeze1x1"    "Weights"    {1x1x64x16 dlarray}
    "fire2-squeeze1x1"    "Bias"       {1x1x16    dlarray}
    "fire2-expand1x1"     "Weights"    {1x1x16x64 dlarray}
    "fire2-expand1x1"     "Bias"       {1x1x64    dlarray}
    "fire2-expand3x3"     "Weights"    {3x3x16x64 dlarray}
    "fire2-expand3x3"     "Bias"       {1x1x64    dlarray}

To freeze the learnable parameters of the network, loop over the learnable parameters and set the
learn rate to 0 using the setLearnRateFactor function.

factor = 0;

numLearnables = size(learnables,1);
for i = 1:numLearnables
    layerName = learnables.Layer(i);
    parameterName = learnables.Parameter(i);
    
    dlnet = setLearnRateFactor(dlnet,layerName,parameterName,factor);
end

To use the updated learn rate factors when training, you must pass the dlnetwork object to the
update function in the custom training loop. For example, use the command

[dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity);

Input Arguments
layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.

parameterName — Parameter name
character vector | string scalar

Parameter name, specified as a character vector or a string scalar.

factor — Learning rate factor
nonnegative scalar

Learning rate factor for the parameter, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
specified parameter. For example, if factor is 2, then the learning rate for the specified parameter is
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twice the current global learning rate. The software determines the global learning rate based on the
settings specified with the trainingOptions function.
Example: 2

parameterPath — Path to parameter in nested layer
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is
a custom layer that itself defines a layer graph as a learnable parameter.

If the input to setLearnRateFactor is a nested layer, then the parameter path has the form
"propertyName/layerName/parameterName", where:

• propertyName is the name of the property containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where
propertyName1 and layerName1 correspond to the layer in the input to the setLearnRateFactor
function, and the subsequent parts correspond to the deeper levels.
Example: For layer input to setLearnRateFactor, the path "Network/conv1/Weights" specifies
the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given by
layer.Network.

If the input to setLearnRateFactor is a dlnetwork object and the desired parameter is in a
nested layer, then the parameter path has the form "layerName1/propertyName/layerName/
parameterName", where:

• layerName1 is the name of the layer in the input dlnetwork object
• propertyName is the property of the layer containing a dlnetwork object
• layerName is the name of the layer in the dlnetwork object
• parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/
propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where
layerName1 and propertyName1 correspond to the layer in the input to the setLearnRateFactor
function, and the subsequent parts correspond to the deeper levels.
Example: For dlnetwork input to setLearnRateFactor, the path "res1/Network/conv1/
Weights" specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork
object given by layer.Network, where layer is the layer with name "res1" in the input network
net.
Data Types: char | string

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layerName — Layer name
string scalar | character vector
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Layer name, specified as a string scalar or a character vector.
Data Types: char | string

Output Arguments
layerUpdated — Updated layer
Layer object

Updated layer, returned as a Layer.

netUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork.

Version History
Introduced in R2017b

See Also
setL2Factor | getLearnRateFactor | getL2Factor | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”
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sgdmupdate
Update parameters using stochastic gradient descent with momentum (SGDM)

Syntax
[netUpdated,vel] = sgdmupdate(net,grad,vel)
[params,vel] = sgdmupdate(params,grad,vel)
[ ___ ] = sgdmupdate( ___ learnRate,momentum)

Description
Update the network learnable parameters in a custom training loop using the stochastic gradient
descent with momentum (SGDM) algorithm.

Note This function applies the SGDM optimization algorithm to update network parameters in
custom training loops that use networks defined as dlnetwork objects or model functions. If you
want to train a network defined as a Layer array or as a LayerGraph, use the following functions:

• Create a TrainingOptionsSGDM object using the trainingOptions function.
• Use the TrainingOptionsSGDM object with the trainNetwork function.

[netUpdated,vel] = sgdmupdate(net,grad,vel) updates the learnable parameters of the
network net using the SGDM algorithm. Use this syntax in a training loop to iteratively update a
network defined as a dlnetwork object.

[params,vel] = sgdmupdate(params,grad,vel) updates the learnable parameters in params
using the SGDM algorithm. Use this syntax in a training loop to iteratively update the learnable
parameters of a network defined using functions.

[ ___ ] = sgdmupdate( ___ learnRate,momentum) also specifies values to use for the global
learning rate and momentum, in addition to the input arguments in previous syntaxes.

Examples

Update Learnable Parameters Using sgdmupdate

Perform a single SGDM update step with a global learning rate of 0.05 and momentum of 0.95.

Create the parameters and parameter gradients as numeric arrays.

params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the parameter velocities for the first iteration.

vel = [];
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Specify custom values for the global learning rate and momentum.

learnRate = 0.05;
momentum = 0.95;

Update the learnable parameters using sgdmupdate.

[params,vel] = sgdmupdate(params,grad,vel,learnRate,momentum);

Train Network Using sgdmupdate

Use sgdmupdate to train a network using the SGDM algorithm.

Load Training Data

Load the digits training data.

[XTrain,TTrain] = digitTrain4DArrayData;
classes = categories(TTrain);
numClasses = numel(classes);

Define Network

Define the network architecture and specify the average image value using the Mean option in the
image input layer.

layers = [
    imageInputLayer([28 28 1],'Mean',mean(XTrain,4))
    convolution2dLayer(5,20)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    convolution2dLayer(3,20,'Padding',1)
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers);

Define Model Loss Function

Create the helper function modelLoss, listed at the end of the example. The function takes a
dlnetwork object and a mini-batch of input data with corresponding labels, and returns the loss and
the gradients of the loss with respect to the learnable parameters.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;
numEpochs = 20;
numObservations = numel(TTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
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Train Network

Initialize the velocity parameter.

vel = [];

Calculate the total number of iterations for the training progress monitor.

numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters using the sgdmupdate function. At the end of each
iteration, display the training progress.

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

iteration = 0;
epoch = 0;

while epoch < numEpochs && ~monitor.Stop
    epoch = epoch + 1;

    % Shuffle data.
    idx = randperm(numel(TTrain));
    XTrain = XTrain(:,:,:,idx);
    TTrain = TTrain(idx);

    i = 0;
    while i < numIterationsPerEpoch && ~monitor.Stop
        i = i + 1;
        iteration = iteration + 1;

        % Read mini-batch of data and convert the labels to dummy
        % variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);

        T = zeros(numClasses, miniBatchSize,"single");
        for c = 1:numClasses
            T(c,TTrain(idx)==classes(c)) = 1;
        end

        % Convert mini-batch of data to a dlarray.
        X = dlarray(single(X),"SSCB");

        % If training on a GPU, then convert data to a gpuArray.
        if canUseGPU
            X = gpuArray(X);
        end

        % Evaluate the model loss and gradients using dlfeval and the
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        % modelLoss function.
        [loss,gradients] = dlfeval(@modelLoss,net,X,T);

        % Update the network parameters using the SGDM optimizer.
        [net,vel] = sgdmupdate(net,gradients,vel);

        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Test the Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.

[XTest,TTest] = digitTest4DArrayData;

Convert the data to a dlarray with the dimension format "SSCB" (spatial, spatial, channel, batch).
For GPU prediction, also convert the data to a gpuArray.

XTest = dlarray(XTest,"SSCB");
if canUseGPU
    XTest = gpuArray(XTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.

YTest = predict(net,XTest);
[~,idx] = max(extractdata(YTest),[],1);
YTest = classes(idx);

1 Deep Learning Functions

1-1534



Evaluate the classification accuracy.

accuracy = mean(YTest==TTest)

accuracy = 0.9916

Model Loss Function

The modelLoss function takes a dlnetwork object net and a mini-batch of input data X with
corresponding labels T, and returns the loss and the gradients of the loss with respect to the
learnable parameters in net. To compute the gradients automatically, use the dlgradient function.

function [loss,gradients] = modelLoss(net,X,T)

Y = forward(net,X);

loss = crossentropy(Y,T);

gradients = dlgradient(loss,net.Learnables);

end

Input Arguments
net — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the Learnables property of the dlnetwork object. net.Learnables is a
table with three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as net.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a
table.

If you specify params as a table, it must contain the following three variables.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.
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The input argument grad must be provided with exactly the same data type, ordering, and fields (for
structures) or variables (for tables) as params.
Data Types: single | double | struct | table | cell

grad — Gradients of the loss
dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of grad depends on the input network or learnable parameters. The following table
shows the required format for grad for possible inputs to sgdmupdate.

Input Learnable Parameters Gradients
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables. grad must
have a Value variable
consisting of cell arrays that
contain the gradient of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. grad must have a
Value variable consisting of cell
arrays that contain the gradient
of each learnable parameter.

You can obtain grad from a call to dlfeval that evaluates a function that contains a call to
dlgradient. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

vel — Parameter velocities
[] | dlarray | numeric array | cell array | structure | table

Parameter velocities, specified as an empty array, a dlarray, a numeric array, a cell array, a
structure, or a table.

The exact form of vel depends on the input network or learnable parameters. The following table
shows the required format for vel for possible inputs to sgdmpdate.
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Input Learnable Parameters Velocities
net Table net.Learnables

containing Layer, Parameter,
and Value variables. The
Value variable consists of cell
arrays that contain each
learnable parameter as a
dlarray.

Table with the same data type,
variables, and ordering as
net.Learnables. vel must
have a Value variable
consisting of cell arrays that
contain the velocity of each
learnable parameter.

params dlarray dlarray with the same data
type and ordering as params

Numeric array Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data
types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. vel must have a
Value variable consisting of cell
arrays that contain the velocity
of each learnable parameter.

If you specify vel as an empty array, the function assumes no previous velocities and runs in the
same way as for the first update in a series of iterations. To update the learnable parameters
iteratively, use the vel output of a previous call to sgdmupdate as the vel input.

learnRate — Global learning rate
0.01 (default) | positive scalar

Learning rate, specified as a positive scalar. The default value of learnRate is 0.01.

If you specify the network parameters as a dlnetwork object, the learning rate for each parameter is
the global learning rate multiplied by the corresponding learning rate factor property defined in the
network layers.

momentum — Momentum
0.9 (default) | positive scalar between 0 and 1

Momentum, specified as a positive scalar between 0 and 1. The default value of momentum is 0.9.

Output Arguments
netUpdated — Updated network
dlnetwork object

Network, returned as a dlnetwork object.
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The function updates the Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

vel — Updated parameter velocities
dlarray | numeric array | cell array | structure | table

Updated parameter velocities, returned as a dlarray, a numeric array, a cell array, a structure, or a
table.

More About
Stochastic Gradient Descent with Momentum

The function uses the stochastic gradient descent with momentum algorithm to update the learnable
parameters. For more information, see the definition of the stochastic gradient descent with
momentum algorithm under “Stochastic Gradient Descent” on page 1-1628 on the
trainingOptions reference page.

Version History
Introduced in R2019b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.

• grad
• params

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlnetwork | dlarray | dlupdate | rmspropupdate | adamupdate | forward | dlgradient |
dlfeval

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”
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shuffle
Shuffle data in augmentedImageDatastore

Syntax
auimds2 = shuffle(auimds)

Description
auimds2 = shuffle(auimds) returns an augmentedImageDatastore object containing a
random ordering of the data from augmented image datastore auimds.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object.

Output Arguments
auimds2 — Output datastore
augmentedImageDatastore object

Output datastore, returned as an augmentedImageDatastore object containing randomly ordered
files from auimds.

Version History
Introduced in R2018a

See Also
read | readByIndex | readall
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shuffle
Shuffle data in minibatchqueue

Syntax
shuffle(mbq)

Description
shuffle(mbq) resets the data held in mbq and shuffles it into a random order. After shuffling, the
next function returns different mini-batches. Use this syntax to reset and shuffle your data after each
training epoch in a custom training loop.

Examples

Differences Between shuffle and reset

The shuffle function resets and shuffles the minibatchqueue object so that you can obtain data
from it in a random order. By contrast, the reset function resets the minibatchqueue object to the
start of the underlying datastore.

Create a minibatchqueue object from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds,'MinibatchSize',256)

mbq = 
minibatchqueue with 1 output and properties:

   Mini-batch creation:
           MiniBatchSize: 256
        PartialMiniBatch: 'return'
            MiniBatchFcn: 'collate'
    DispatchInBackground: 0

   Outputs:
              OutputCast: {'single'}
         OutputAsDlarray: 1
         MiniBatchFormat: {''}
       OutputEnvironment: {'auto'}

Obtain the first mini-batch of data.

X1 = next(mbq);

Iterate over the rest of the data in the minibatchqueue object. Use hasdata to check if data is still
available.

while hasdata(mbq)
    next(mbq);
end
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Shuffle the minibatchqueue object and obtain the first mini-batch after the queue is shuffled.

shuffle(mbq);
X2 = next(mbq);

Iterate over the remaining data again.

while hasdata(mbq)
    next(mbq);
end

Reset the minibatchqueue object and obtain the first mini-batch after the queue is reset.

reset(mbq);
X3 = next(mbq);

Check whether the mini-batches obtained after resetting or shuffling the minibatchqueue object
are the same as the first mini-batch after the minibatchqueue object is created.

isequal(X1,X2)
isequal(X1,X3)

ans = 
   0
ans = 
   1

The reset function returns the minibatchqueue object to the start of the underlying data, so that
the next function returns mini-batches in the same order each time. By contrast, the shuffle
function shuffles the underlying data and produces randomized mini-batches.

Input Arguments
mbq — Queue of mini-batches
minibatchqueue

Queue of mini-batches, specified as a minibatchqueue object.

Version History
Introduced in R2020b

See Also
hasdata | next | minibatchqueue | reset

Topics
“Train Deep Learning Model in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
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shufflenet
Pretrained ShuffleNet convolutional neural network

Syntax
net = shufflenet

Description
ShuffleNet is a convolutional neural network that is trained on more than a million images from the
ImageNet database [1]. The network can classify images into 1000 object categories, such as
keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature
representations for a wide range of images. The network has an image input size of 224-by-224. For
more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ShuffleNet model. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with ShuffleNet.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load ShuffleNet instead of GoogLeNet.

net = shufflenet returns a pretrained ShuffleNet convolutional neural network.

This function requires the Deep Learning Toolbox Model for ShuffleNet Network support package. If
this support package is not installed, then the function provides a download link.

Examples

Download ShuffleNet Support Package

Download and install the Deep Learning Toolbox Model for ShuffleNet Network support package.

Type shufflenet at the command line.

shufflenet

If the Deep Learning Toolbox Model for ShuffleNet Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing shufflenet at the command line. If the required support package is installed, then the
function returns a DAGNetwork object.

shufflenet

ans = 

  DAGNetwork with properties:

         Layers: [173×1 nnet.cnn.layer.Layer]
    Connections: [188×2 table]
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Visualize the network using Deep Network Designer.

deepNetworkDesigner(shufflenet)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Transfer Learning with ShuffleNet

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses
the GoogLeNet pretrained network. To perform transfer learning using a different network, load your
desired pretrained network and follow the steps in the example.

Load the ShuffleNet network instead of GoogLeNet.

net = shufflenet
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Follow the remaining steps in the example to retrain your network. You must replace the last
learnable layer and the classification layer in your network with new layers for training. The example
shows you how to find which layers to replace.

Output Arguments
net — Pretrained ShuffleNet convolutional neural network
DAGNetwork object

Pretrained ShuffleNet convolutional neural network, returned as a DAGNetwork object.

Version History
Introduced in R2019a

References
[1] ImageNet. http://www.image-net.org

[2] Zhang, Xiangyu, Xinyu Zhou, Mengxiao Lin, and Jian Sun. "ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices." arXiv preprint arXiv:1707.01083v2
(2017).

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | trainNetwork | layerGraph |
DAGNetwork | resnet50 | resnet101 | inceptionresnetv2 | squeezenet | densenet201 |
nasnetmobile | nasnetlarge

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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sigmoid
Apply sigmoid activation

Syntax
Y = sigmoid(X)

Description
The sigmoid activation operation applies the sigmoid function to the input data.

This operation is equivalent to

f (x) = 1
1 + e−x .

Note This function applies the sigmoid operation to dlarray data. If you want to apply sigmoid
within a layerGraph object or Layer array, use the following layer:

• sigmoidLayer

Y = sigmoid(X) computes the sigmoid activation of the input X by applying the sigmoid transfer
function. All values in Y are between 0 and 1.

Examples

Apply Sigmoid Activation

Use the sigmoid function to set all values in the input data to a value between 0 and 1.

Create the input data as a single observation of random values with a height and width of seven and
32 channels.

height = 7;
width = 7;
channels = 32;
observations = 1;

X = randn(height,width,channels,observations);
X = dlarray(X,'SSCB');

Compute the sigmoid activation.

Y = sigmoid(X);
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All values in Y now range between 0 and 1.

Input Arguments
X — Input data
dlarray

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.
Data Types: single | double

Output Arguments
Y — Sigmoid activations
dlarray

Sigmoid activations, returned as a dlarray. All values in Y are between 0 and 1. The output Y has
the same underlying data type as the input X.

If the input data X is a formatted dlarray, Y has the same dimension format as X. If the input data is
not a formatted dlarray, Y is an unformatted dlarray with the same dimension order as the input
data.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlgradient | dlfeval | softmax | crossentropy | huber | mse

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
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“List of Functions with dlarray Support”
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sigmoidLayer
Sigmoid layer

Description
A sigmoid layer applies a sigmoid function to the input such that the output is bounded in the interval
(0,1).

Tip  To use the sigmoid layer for binary or multilabel classification problems, create a custom binary
cross-entropy loss output layer or use a custom training loop.

Creation

Syntax
layer = sigmoidLayer
layer = sigmoidLayer('Name',Name)

Description

layer = sigmoidLayer creates a sigmoid layer.

layer = sigmoidLayer('Name',Name) creates a sigmoid layer and sets the optional Name
property using a name-value pair argument. For example, sigmoidLayer('Name','sig1') creates
a sigmoid layer with the name 'sig1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)
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This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Sigmoid Layer

Create a sigmoid layer with the name 'sig1'.

layer = sigmoidLayer('Name', 'sig1')

layer = 
  SigmoidLayer with properties:

    Name: 'sig1'

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

More About
Sigmoid Layer

A sigmoid layer applies a sigmoid function to the input such that the output is bounded in the interval
(0,1).

This operation is equivalent to
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f (x) = 1
1 + e−x .

A multilabel classification problem can be thought of as a binary classification problem, where each
class is considered independently of other classes as either present or not present. Solving this type
of problem requires the sigmoid activation function, where for any sample xn the posterior probability
of class Ck is

P(Ck xn) = 1
1 + e−ak

.

The value ak is the weighted sum of all the units that are connected to class k. Performing multilabel
classification requires a sigmoid layer followed by a custom binary cross-entropy loss layer.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | convolution2dLayer | tanhLayer | softmaxLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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softmax
Apply softmax activation to channel dimension

Syntax
Y = softmax(X)
Y = softmax(X,'DataFormat',FMT)

Description
The softmax activation operation applies the softmax function to the channel dimension of the input
data.

The softmax function normalizes the value of the input data across the channel dimension such that it
sums to one. You can regard the output of the softmax function as a probability distribution.

Note This function applies the softmax operation to dlarray data. If you want to apply softmax
within a layerGraph object or Layer array, use the following layer:

• softmaxLayer

Y = softmax(X) computes the softmax activation of the input X by applying the softmax transfer
function to the channel dimension of the input data. All values in Y are between 0 and 1, and sum to
1. The input X must be a formatted dlarray. The output Y is a formatted dlarray with the same
dimension format as X.

Y = softmax(X,'DataFormat',FMT) also specifies dimension format FMT when X is not a
formatted dlarray. The output Y is an unformatted dlarray with the same dimension order as X.

Examples

Apply Softmax Activation

Use the softmax function to set all values in the input data to values between 0 and 1 that sum to 1
over all channels.

Create the input classification data as two observations of random variables. The data can be in any
of 10 categories.

numCategories = 10;
observations = 2;

X = rand(numCategories,observations);
X = dlarray(X,'CB');

Compute the softmax activation.
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Y = softmax(X)
totalProb = sum(Y,1)

Y =

  10(C) x 2(B) dlarray

    0.1151    0.0578
    0.1261    0.1303
    0.0579    0.1285
    0.1270    0.0802
    0.0959    0.1099
    0.0562    0.0569
    0.0673    0.0753
    0.0880    0.1233
    0.1328    0.1090
    0.1337    0.1288
totalProb =

  1(C) x 2(B) dlarray

    1.0000    1.0000

All values in Y range between 0 and 1. The values over all channels sum to 1 for each observation.

Input Arguments
X — Input data
dlarray

Input data, specified as a formatted dlarray or an unformatted dlarray. When X is not a formatted
dlarray, you must specify the dimension label format using 'DataFormat',FMT.

X must contain a 'C' channel dimension.
Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of
'DataFormat' and a character array or string FMT that provides a label for each dimension of the
data. Each character in FMT must be one of the following:

• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at
most once.

You must specify 'DataFormat',FMT when the input data is not a formatted dlarray.
Example: 'DataFormat','SSCB'
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Data Types: char | string

Output Arguments
Y — Softmax activations
dlarray

Softmax activations, returned as a dlarray. All values in Y are between 0 and 1. The output Y has
the same underlying data type as the input X.

If the input data X is a formatted dlarray, Y has the same dimension format as X. If the input data is
not a formatted dlarray, Y is an unformatted dlarray with the same dimension order as the input
data.

More About
Softmax Activation

The softmax function normalizes the input across the channel dimension, such that it sums to one.
For more information, see the definition of “Softmax Layer” on page 1-1557 on the softmaxLayer
reference page.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | batchnorm | fullyconnect | relu | crossentropy | dlgradient | dlfeval | huber |
l1loss | l2loss

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
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“Make Predictions Using Model Function”
“Train Network with Multiple Outputs”
“List of Functions with dlarray Support”
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softmaxLayer
Softmax layer

Description
A softmax layer applies a softmax function to the input.

Creation

Syntax
layer = softmaxLayer
layer = softmaxLayer('Name',Name)

Description

layer = softmaxLayer creates a softmax layer.

layer = softmaxLayer('Name',Name) creates a softmax layer and sets the optional Name
property using a name-value pair. For example, softmaxLayer('Name','sm1') creates a softmax
layer with the name 'sm1'. Enclose the property name in single quotes.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
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Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Softmax Layer

Create a softmax layer with the name 'sm1'.

layer = softmaxLayer('Name','sm1')

layer = 
  SoftmaxLayer with properties:

    Name: 'sm1'

Include a softmax layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex
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More About
Softmax Layer

A softmax layer applies a softmax function to the input.

For classification problems, a softmax layer and then a classification layer usually follow the final fully
connected layer.

The output unit activation function is the softmax function:

yr x =
exp ar x

∑
j = 1

k
exp a j x

,

where 0 ≤ yr ≤ 1 and ∑
j = 1

k
y j = 1.

The softmax function is the output unit activation function after the last fully connected layer for
multi-class classification problems:

P cr x, θ =
P x, θ cr P cr

∑
j = 1

k
P x, θ c j P c j

=
exp ar x, θ

∑
j = 1

k
exp a j x, θ

,

where 0 ≤ P cr x, θ ≤ 1 and ∑
j = 1

k
P c j x, θ = 1. Moreover, ar = ln P x, θ cr P cr , P x, θ cr  is the

conditional probability of the sample given class r, and P cr  is the class prior probability.

The softmax function is also known as the normalized exponential and can be considered the multi-
class generalization of the logistic sigmoid function [1].

Version History
Introduced in R2016a

References
[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | classificationLayer | convolution2dLayer | fullyConnectedLayer
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Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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sortClasses
Package: mlearnlib.graphics.chart

Sort classes of confusion matrix chart

Syntax
sortClasses(cm,order)

Description
sortClasses(cm,order) sorts the classes of the confusion matrix chart cm in the order specified
by order. You can sort the classes in their natural order, by the values along the diagonal of the
confusion matrix, or in fixed order that you specify.

Examples

Sort Classes in a Fixed Order

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network. Create a confusion matrix chart.

load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
cm = confusionchart(trueLabels,predictedLabels);
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Reorder the classes of the confusion matrix chart so that the classes are in a fixed order.

sortClasses(cm, ...
    ["cat" "dog" "horse" "deer" "bird" "frog", ...
    "airplane" "ship" "automobile" "truck"])
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Sort Classes by Precision or Recall

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network. Create a confusion matrix chart with column and row summaries

load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
cm = confusionchart(trueLabels,predictedLabels, ...
    'ColumnSummary','column-normalized', ...
    'RowSummary','row-normalized');
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To sort the classes of the confusion matrix by class-wise recall (true positive rate), normalize the cell
values across each row, that is, by the number of observations that have the same true class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the row summaries to the right
are decreasing.

cm.Normalization = 'row-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
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To sort the classes by class-wise precision (positive predictive value), normalize the cell values across
each column, that is, by the number of observations that have the same predicted class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the column summaries at the
bottom are decreasing.

cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
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Input Arguments
cm — Confusion matrix chart
ConfusionMatrixChart object

Confusion matrix chart, specified as a ConfusionMatrixChart object. To create a confusion matrix
chart, use confusionchart,

order — Order in which to sort classes
'auto' | 'ascending-diagonal' | 'descending-diagonal' | array

Order in which to sort the classes of the confusion matrix chart, specified as one of these values:

• 'auto' — Sorts the classes into their natural order as defined by the sort function. For example,
if the class labels of the confusion matrix chart are a string vector, then sort alphabetically. If the
class labels are an ordinal categorical vector, then use the order of the class labels.

• 'ascending-diagonal' — Sort the classes so that the values along the diagonal of the
confusion matrix increase from top left to bottom right.

• 'descending-diagonal' — Sort the classes so that the values along the diagonal of the
confusion matrix decrease from top left to bottom right.

• 'cluster' (Requires Statistics and Machine Learning Toolbox) — Sort the classes to cluster
similar classes. You can customize clustering by using the pdist, linkage, and
optimalleaforder functions. For details, see “Sort Classes to Cluster Similar Classes”
(Statistics and Machine Learning Toolbox).
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• Array — Sort the classes in a unique order specified by a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. The array must be a
permutation of the ClassLabels property of the confusion matrix chart.

Example: sortClasses(cm,'ascending-diagonal')
Example: sortClasses(cm,["owl","cat","toad"])

Version History
Introduced in R2018b

See Also
Functions
categorical | confusionchart

Properties
ConfusionMatrixChart Properties

Topics
“Deep Learning in MATLAB”
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squeezenet
SqueezeNet convolutional neural network

Syntax
net = squeezenet
net = squeezenet('Weights','imagenet')

lgraph = squeezenet('Weights','none')

Description
SqueezeNet is a convolutional neural network that is 18 layers deep. You can load a pretrained
version of the network trained on more than a million images from the ImageNet database [1]. The
pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich feature representations for a wide range
of images. This function returns a SqueezeNet v1.1 network, which has similar accuracy to
SqueezeNet v1.0 but requires fewer floating-point operations per prediction [3]. The network has an
image input size of 227-by-227. For more pretrained networks in MATLAB, see “Pretrained Deep
Neural Networks”.

You can use classify to classify new images using the SqueezeNet network. For an example, see
“Classify Image Using SqueezeNet” on page 1-1582.

You can retrain a SqueezeNet network to perform a new task using transfer learning. For an example,
see “Interactive Transfer Learning Using SqueezeNet” on page 1-1567.

net = squeezenet returns a SqueezeNet network trained on the ImageNet data set.

net = squeezenet('Weights','imagenet') returns a SqueezeNet network trained on the
ImageNet data set. This syntax is equivalent to net = squeezenet.

lgraph = squeezenet('Weights','none') returns the untrained SqueezeNet network
architecture.

Examples

Load SqueezeNet Network

Load a pretrained SqueezeNet network.

net = squeezenet

net = 

  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
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This function returns a DAGNetwork object.

SqueezeNet is included within Deep Learning Toolbox. To load other networks, use functions such as
googlenet to get links to download pretrained networks from the Add-On Explorer.

Interactive Transfer Learning Using SqueezeNet

This example shows how to fine-tune a pretrained SqueezeNet network to classify a new collection of
images. This process is called transfer learning and is usually much faster and easier than training a
new network, because you can apply learned features to a new task using a smaller number of
training images. To prepare a network for transfer learning interactively, use Deep Network Designer.

Extract Data

In the workspace, extract the MathWorks Merch data set. This is a small data set containing 75
images of MathWorks merchandise, belonging to five different classes (cap, cube, playing cards,
screwdriver, and torch).

unzip("MerchData.zip");

Open SqueezeNet in Deep Network Designer

Open Deep Network Designer with SqueezeNet.

deepNetworkDesigner(squeezenet);

Deep Network Designer displays a zoomed-out view of the whole network in the Designer pane.
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Explore the network plot. To zoom in with the mouse, use Ctrl+scroll wheel. To pan, use the arrow
keys, or hold down the scroll wheel and drag the mouse. Select a layer to view its properties.
Deselect all layers to view the network summary in the Properties pane.

Import Data

To load the data into Deep Network Designer, on the Data tab, click Import Data > Import Image
Data. The Import Image Data dialog box opens.

In the Data source list, select Folder. Click Browse and select the extracted MerchData folder.

Divide the data into 70% training data and 30% validation data.

Specify augmentation operations to perform on the training images. For this example, apply a random
reflection in the x-axis, a random rotation from the range [-90,90] degrees, and a random rescaling
from the range [1,2]. Data augmentation helps prevent the network from overfitting and memorizing
the exact details of the training images.
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Click Import to import the data into Deep Network Designer.

Visualize Data

Using Deep Network Designer, you can visually inspect the distribution of the training and validation
data in the Data tab. You can also view random observations and their labels as a simple check
before training. You can see that, in this example, there are five classes in the data set.
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Edit Network for Transfer Learning

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'conv10' and
'ClassificationLayer_predictions' in SqueezeNet, contain information on how to combine
the features that the network extracts into class probabilities, a loss value, and predicted labels. To
retrain a pretrained network to classify new images, replace these two layers with new layers
adapted to the new data set.

In most networks, the last layer with learnable weights is a fully connected layer. In some networks,
such as SqueezeNet, the last learnable layer is the final convolutional layer instead. In this case,
replace the convolutional layer with a new convolutional layer with the number of filters equal to the
number of classes.

In the Designer pane, drag a new convolution2dLayer onto the canvas. To match the original
convolutional layer, set FilterSize to 1,1. Change NumFilters to the number of classes in the
new data, in this example, 5.

Change the learning rates so that learning is faster in the new layer than in the transferred layers by
setting WeightLearnRateFactor and BiasLearnRateFactor to 10. Delete the last 2-D
convolutional layer and connect your new layer instead.
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Replace the output layer. Scroll to the end of the Layer Library and drag a new
classificationLayer onto the canvas. Delete the original output layer and connect your new
layer instead.
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Check Network

To make sure your edited network is ready for training, click Analyze, and ensure the Deep Learning
Network Analyzer reports zero errors.
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Train Network

Specify training options. Select the Training tab and click Training Options.

• Set the initial learn rate to a small value to slow down learning in the transferred layers.
• Specify the validation frequency so that the accuracy on the validation data is calculated once

every epoch.
• Specify a small number of epochs. An epoch is a full training cycle on the entire training data set.

For transfer learning, you do not need to train for as many epochs.
• Specify the mini-batch size, that is, how many images to use in each iteration. To ensure the whole

data set is used during each epoch, set the mini-batch size to evenly divide the number of training
samples.

For this example, set InitialLearnRate to 0.0001, ValidationFrequency to 5, and MaxEpochs to
8. As there are 55 observations, set MiniBatchSize to 11.
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To train the network with the specified training options, click Close and then click Train.

Deep Network Designer allows you to visualize and monitor training progress. You can then edit the
training options and retrain the network, if required.
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Export Results and Generate MATLAB Code

To export the network architecture with the trained weights, on the Training tab, select Export >
Export Trained Network and Results. Deep Network Designer exports the trained network as the
variable trainedNetwork_1 and the training info as the variable trainInfoStruct_1.

trainInfoStruct_1

trainInfoStruct_1 = struct with fields:
               TrainingLoss: [1×40 double]
           TrainingAccuracy: [1×40 double]
             ValidationLoss: [3.3420 NaN NaN NaN 2.1187 NaN NaN NaN NaN 1.4291 NaN NaN NaN NaN 0.8527 NaN NaN NaN NaN 0.5849 NaN NaN NaN NaN 0.4678 NaN NaN NaN NaN 0.3967 NaN NaN NaN NaN 0.3875 NaN NaN NaN NaN 0.3749]
         ValidationAccuracy: [20 NaN NaN NaN 30 NaN NaN NaN NaN 55.0000 NaN NaN NaN NaN 65 NaN NaN NaN NaN 85 NaN NaN NaN NaN 95 NaN NaN NaN NaN 95 NaN NaN NaN NaN 95 NaN NaN NaN NaN 95]
              BaseLearnRate: [1×40 double]
        FinalValidationLoss: 0.3749
    FinalValidationAccuracy: 95

You can also generate MATLAB code, which recreates the network and the training options used. On
the Training tab, select Export > Generate Code for Training. Examine the MATLAB code to learn
how to programmatically prepare the data for training, create the network architecture, and train the
network.

Classify New Image

Load a new image to classify using the trained network.

I = imread("MerchDataTest.jpg");

Deep Network Designer resizes the images during training to match the network input size. To view
the network input size, go to the Designer pane and select the imageInputLayer (first layer). This
network has an input size of 227-by-227.

Resize the test image to match the network input size.

I = imresize(I, [227 227]);

Classify the test image using the trained network.

[YPred,probs] = classify(trainedNetwork_1,I);
imshow(I)
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label = YPred;
title(string(label) + ", " + num2str(100*max(probs),3) + "%");

Programmatic Transfer Learning Using SqueezeNet

This example shows how to fine-tune a pretrained SqueezeNet convolutional neural network to
perform classification on a new collection of images.

SqueezeNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.
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Load Data

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

This very small data set now contains 55 training images and 20 validation images. Display some
sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);

I = imtile(imds, 'Frames', idx);

figure
imshow(I)
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Load Pretrained Network

Load the pretrained SqueezeNet neural network.

net = squeezenet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(net)
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The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Replace Final Layers

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'conv10' and
'ClassificationLayer_predictions' in SqueezeNet, contain information on how to combine
the features that the network extracts into class probabilities, a loss value, and predicted labels. To
retrain a pretrained network to classify new images, replace these two layers with new layers
adapted to the new data set.

Extract the layer graph from the trained network.

lgraph = layerGraph(net); 

Find the names of the two layers to replace. You can do this manually or you can use the supporting
function findLayersToReplace to find these layers automatically.

[learnableLayer,classLayer] = findLayersToReplace(lgraph);
[learnableLayer,classLayer] 

ans = 
  1x2 Layer array with layers:
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     1   'conv10'                            2-D Convolution         1000 1x1x512 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'ClassificationLayer_predictions'   Classification Output   crossentropyex with 'tench' and 999 other classes

In most networks, the last layer with learnable weights is a fully connected layer. In some networks,
such as SqueezeNet, the last learnable layer is a 1-by-1 convolutional layer instead. In this case,
replace the convolutional layer with a new convolutional layer with the number of filters equal to the
number of classes. To learn faster in the new layers than in the transferred layers, increase the
WeightLearnRateFactor and BiasLearnRateFactor values of the convolutional layer.

numClasses = numel(categories(imdsTrain.Labels))

numClasses = 5

newConvLayer =  convolution2dLayer([1, 1],numClasses,'WeightLearnRateFactor',10,'BiasLearnRateFactor',10,"Name",'new_conv');
lgraph = replaceLayer(lgraph,'conv10',newConvLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClassificatonLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassificatonLayer);

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
    'RandXReflection',true, ...
    'RandXTranslation',pixelRange, ...
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
    'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the convolutional layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size to be 11 so that in each
epoch you consider all of the data. The software validates the network every ValidationFrequency
iterations during training.

options = trainingOptions('sgdm', ...
    'MiniBatchSize',11, ...
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    'MaxEpochs',7, ...
    'InitialLearnRate',2e-4, ...
    'Shuffle','every-epoch', ...
    'ValidationData',augimdsValidation, ...
    'ValidationFrequency',3, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available. This requires Parallel Computing Toolbox™ and a supported GPU device. For
information on supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).
Otherwise, trainNetwork uses a CPU. You can also specify the execution environment by using the
'ExecutionEnvironment' name-value pair argument of trainingOptions.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);

Classify Validation Images

Classify the validation images using the fine-tuned network.

[YPred,scores] = classify(netTransfer,augimdsValidation);
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Display four sample validation images with their predicted labels.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end

Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the
network predicts correctly.

YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy = 1

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks”.

Classify Image Using SqueezeNet

Read, resize, and classify an image using SqueezeNet.
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First, load a pretrained SqueezeNet model.

net = squeezenet;

Read the image using imread.

I = imread('peppers.png');
figure
imshow(I)

The pretrained model requires the image size to be the same as the input size of the network.
Determine the input size of the network using the InputSize property of the first layer of the
network.

sz = net.Layers(1).InputSize

sz = 1×3

   227   227     3

Resize the image to the input size of the network.
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I = imresize(I,sz(1:2));
figure
imshow(I)

Classify the image using classify.

label = classify(net,I)

label = categorical
     bell pepper 

Show the image and classification result together.

figure
imshow(I)
title(label)
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Feature Extraction Using SqueezeNet

This example shows how to extract learned image features from a pretrained convolutional neural
network and use those features to train an image classifier.

Feature extraction is the easiest and fastest way to use the representational power of pretrained deep
networks. For example, you can train a support vector machine (SVM) using fitcecoc (Statistics
and Machine Learning Toolbox™) on the extracted features. Because feature extraction requires only
a single pass through the data, it is a good starting point if you do not have a GPU to accelerate
network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip("MerchData.zip");

imds = imageDatastore("MerchData", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,"randomized");

This very small data set now has 55 training images and 20 validation images. Display some sample
images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);
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I = imtile(imds,"Frames",idx);

figure
imshow(I)

Load Pretrained Network

Load a pretrained SqueezeNet network. SqueezeNet is trained on more than a million images and
can classify images into 1000 object categories, for example, keyboard, mouse, pencil, and many
animals. As a result, the model has learned rich feature representations for a wide range of images.

net = squeezenet;
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Analyze the network architecture.

analyzeNetwork(net)

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1).InputSize

inputSize = 1×3

   227   227     3

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher
level features, constructed using the lower level features of earlier layers. To get the feature
representations of the training and test images, use activations on the global average pooling
layer "pool10". To get a lower level representation of the images, use an earlier layer in the
network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before inputting them to the
network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);

layer = "pool10";
featuresTrain = activations(net,augimdsTrain,layer,OutputAs="rows");
featuresTest = activations(net,augimdsTest,layer,OutputAs="rows");
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Extract the class labels from the training and test data.

TTrain = imdsTrain.Labels;
TTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,TTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test
images.

YPred = predict(mdl,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
    subplot(2,2,i)
    I = readimage(imdsTest,idx(i));
    label = YPred(idx(i));
    
    imshow(I)
    title(label)
end
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Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

accuracy = mean(YPred == TTest)

accuracy = 0.9500

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try
transfer learning instead.

Output Arguments
net — Pretrained SqueezeNet convolutional neural network
DAGNetwork object

Pretrained SqueezeNet convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained SqueezeNet convolutional neural network architecture
LayerGraph object

Untrained SqueezeNet convolutional neural network architecture, returned as a LayerGraph object.

Version History
Introduced in R2018a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, load the network by passing the squeezenet function to
coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('squeezenet').

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax squeezenet('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = squeezenet or by
passing the squeezenet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('squeezenet').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax squeezenet('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | resnet18 | resnet50 | resnet101 |
inceptionv3 | inceptionresnetv2 | densenet201 | trainNetwork | layerGraph |
DAGNetwork

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”
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stripdims
Remove dlarray data format

Syntax
Y = stripdims(X)

Description
Y = stripdims(X) returns the dlarray X without any dimension labels. Y is an unformatted
dlarray.

Examples

Remove Data Format from dlarray

Create a formatted dlarray.

dlX = dlarray(randn(3,2,1,2),'SSTU')

dlX = 
  3(S) x 2(S) x 1(T) x 2(U) dlarray

(:,:,1,1) =

    0.5377    0.8622
    1.8339    0.3188
   -2.2588   -1.3077

(:,:,1,2) =

   -0.4336    2.7694
    0.3426   -1.3499
    3.5784    3.0349

Create an array that is the same as dlX but has no dimension labels.

y = stripdims(dlX)

y = 
  3x2x1x2 dlarray

(:,:,1,1) =

    0.5377    0.8622
    1.8339    0.3188
   -2.2588   -1.3077
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(:,:,1,2) =

   -0.4336    2.7694
    0.3426   -1.3499
    3.5784    3.0349

Input Arguments
X — Input data
dlarray object

Input data, specified as a formatted or unformatted dlarray object.

Output Arguments
Y — Unformatted dlarray
unformatted dlarray object

Unformatted dlarray, returned as an unformatted dlarray object that is the same as the input
array X, but without any dimension labels. If X is unformatted, then Y = X.

Tips
• Use stripdims to ensure that a dlarray behaves like a numeric array of the same size, without

any special behavior due to dimension labels.
• ndims(X) can decrease after a stripdims call because the function removes trailing singleton

dimensions.

X = dlarray(ones(3,2), 'SCB');
ndims(X)

ans =

     3

X = stripdims(X);
ndims(X)

ans =

     2

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
dims | finddim | dlarray
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summary
Print network summary

Syntax
summary(net)

Description
summary(net) prints a summary of the dlnetwork object net. The summary shows whether the
network is initialized, the total number of learnable parameters, and information about the network
inputs.

Network input summaries require or input layers or an initialized network. Network learnable
parameter summaries require an initialized network.

Examples

Print Network Summary

Load the dlnetwork object net from the dlnetDigits MAT file.

load dlnetDigits

Print the network summary using the summary function.

summary(net)

   Initialized: true

   Number of learnables: 84k

   Inputs:
      1   'in'   28x28x1 images

Input Arguments
net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

Version History
Introduced in R2022b

See Also
dlnetwork | initialize | plot
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Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”

 summary

1-1595



swishLayer
Swish layer

Description
A swish activation layer applies the swish function on the layer inputs.

The swish operation is given by f (x) = x
1 + e−x .

Creation
Syntax
layer = swishLayer
layer = swishLayer('Name',Name)

Description

layer = swishLayer creates a swish layer.

layer = swishLayer('Name',Name) creates a swish layer and sets the optional Name property
using a name-value argument. For example, swishLayer('Name','swish1') creates a swish layer
with the name 'swish1'.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.
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Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Swish Layer

Create a swish layer with the name 'swish1'.

layer = swishLayer('Name','swish1')

layer = 
  SwishLayer with properties:

    Name: 'swish1'

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Include a swish layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    swishLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]

layers = 
  8x1 Layer array with layers:
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     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization     Batch normalization
     4   ''   Swish                   Swish
     5   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   Fully Connected         10 fully connected layer
     7   ''   Softmax                 softmax
     8   ''   Classification Output   crossentropyex

More About
Swish Layer

A swish activation layer applies the swish function on the layer inputs. The swish operation is given
by f (x) = x

1 + e−x . The swish layer does not change the size of its input.

Activation layers such as swish layers improve the training accuracy for some applications and
usually follow convolution and normalization layers. Other nonlinear activation layers perform
different operations. For a list of activation layers, see “Activation Layers”.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
reluLayer | trainNetwork | batchNormalizationLayer | leakyReluLayer |
clippedReluLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Compare Activation Layers”
“List of Deep Learning Layers”
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tanhLayer
Hyperbolic tangent (tanh) layer

Description
A hyperbolic tangent (tanh) activation layer applies the tanh function on the layer inputs.

Creation

Syntax
layer = tanhLayer
layer = tanhLayer('Name',Name)

Description

layer = tanhLayer creates a hyperbolic tangent layer.

layer = tanhLayer('Name',Name) additionally specifies the optional Name property. For
example, tanhLayer('Name','tanh1') creates a tanh layer with the name 'tanh1'.

Properties
Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell
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NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Hyperbolic Tangent Layer

Create a hyperbolic tangent (tanh) layer with the name 'tanh1'.

layer = tanhLayer('Name','tanh1')

layer = 
  TanhLayer with properties:

    Name: 'tanh1'

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Include a tanh layer in a Layer array.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
    batchNormalizationLayer
    tanhLayer
    
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32)
    batchNormalizationLayer
    tanhLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
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layers = 
  11x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   2-D Convolution         16 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   Batch Normalization     Batch normalization
     4   ''   Tanh                    Hyperbolic tangent
     5   ''   2-D Max Pooling         2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     6   ''   2-D Convolution         32 3x3 convolutions with stride [1  1] and padding [0  0  0  0]
     7   ''   Batch Normalization     Batch normalization
     8   ''   Tanh                    Hyperbolic tangent
     9   ''   Fully Connected         10 fully connected layer
    10   ''   Softmax                 softmax
    11   ''   Classification Output   crossentropyex

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | batchNormalizationLayer | leakyReluLayer | clippedReluLayer |
reluLayer | swishLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Activation Layers”
“List of Deep Learning Layers”
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taylorPrunableNetwork
Network that can be pruned by using first-order Taylor approximation

Description
A TaylorPrunableNetwork object enables support for pruning of filters in convolution layers by
using first-order Taylor approximation. To prune filters in a dlnetwork object, first convert it to a
TaylorPrunableNetwork object and then use the associated object functions.

To prune a deep neural network, you require the Deep Learning Toolbox Model Quantization Library
support package. This support package is a free add-on that you can download using the Add-On
Explorer. Alternatively, see Deep Learning Toolbox Model Quantization Library.

Creation
Syntax
prunableNet = taylorPrunableNetwork(net)
prunableNet = taylorPrunableNetwork(layers)

Description

prunableNet = taylorPrunableNetwork(net) converts a dlnetwork object net to a
TaylorPrunableNetwork object. The latter is a different representation of the same network that is
suitable for pruning by using the Taylor pruning algorithm. If the input network cannot be pruned,
this function produces an error.

prunableNet = taylorPrunableNetwork(layers) converts the network layers specified in
layers to a TaylorPrunableNetwork object that is suitable for pruning by using the Taylor
pruning algorithm. The input layers must be a LayerGraph object or a Layer array that can be
converted to a dlnetwork object.

Input Arguments

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layers — Network layers
LayerGraph object | Layer array

Network layers, specified as a layerGraph object or as a Layer array.

Properties
Learnables — Network learnable parameters
table
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Network learnable parameters, specified as a table with three columns:

• Layer – Layer name, specified as a string scalar.
• Parameter – Parameter name, specified as a string scalar.
• Value – Value of parameter, specified as a dlarray object.

The network learnable parameters contain the features learned by the network. For example, the
weights of convolution and fully connected layers.
Data Types: table

State — Network state
table

Network state, specified as a table.

The network state is a table with three columns:

• Layer – Layer name, specified as a string scalar.
• Parameter – State parameter name, specified as a string scalar.
• Value – Value of state parameter, specified as a dlarray object.

Layer states contain information calculated during the layer operation to be retained for use in
subsequent forward passes of the layer. For example, the cell state and hidden state of LSTM layers,
or running statistics in batch normalization layers.

For recurrent layers, such as LSTM layers, with the HasStateInputs property set to 1 (true), the
state table does not contain entries for the states of that layer.

During training or inference, you can update the network state using the output of the forward and
predict functions.
Data Types: table

InputNames — Network input layer names
cell array of character vectors

This property is read-only.

Network input layer names, specified as a cell array of character vectors.
Data Types: cell

OutputNames — Names of layers that return network outputs
cell array of character vectors | string array

Names of layers that return network outputs, specified as a cell array of character vectors or a string
array.

If you do not specify the output names, then the software sets the OutputNames property to the
layers with disconnected outputs. If a layer has multiple outputs, then the disconnected outputs are
specified as 'layerName/outputName'.

The predict and forward functions, by default, return the data output by the layers given by the
OutputNames property.

 taylorPrunableNetwork

1-1603



Data Types: cell | string

NumPrunables — Number of convolution layer filters that are suitable for pruning
nonnegative integer

Number of convolution layer filters in the network that are suitable for pruning by using first-order
Taylor approximation, specified as a nonnegative integer.

Object Functions
forward Compute deep learning network output for training
predict Compute deep learning network output for inference
updatePrunables Remove filters from prunable layers based on importance scores
updateScore Compute and accumulate Taylor-based importance scores for pruning
dlnetwork Deep learning network for custom training loops

Examples

Prune dlnetwork Object to Compress the Model

This example shows how to prune a dlnetwork object by using a custom pruning loop.

Load dlnetwork Object

Load a trained dlnetwork object and the corresponding classes.

s = load("digitsCustom.mat");
dlnet_1 = s.dlnet;
classes = s.classes;

Inspect the layers of the dlnetwork object. The network has three convolution layers at locations 2,
5, and 8 of the Layer array.

layers_1 = dlnet_1.Layers

layers_1 = 
  12x1 Layer array with layers:

     1   'input'     Image Input           28x28x1 images with 'zerocenter' normalization
     2   'conv1'     2-D Convolution       20 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'bn1'       Batch Normalization   Batch normalization with 20 channels
     4   'relu1'     ReLU                  ReLU
     5   'conv2'     2-D Convolution       20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     6   'bn2'       Batch Normalization   Batch normalization with 20 channels
     7   'relu2'     ReLU                  ReLU
     8   'conv3'     2-D Convolution       20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     9   'bn3'       Batch Normalization   Batch normalization with 20 channels
    10   'relu3'     ReLU                  ReLU
    11   'fc'        Fully Connected       10 fully connected layer
    12   'softmax'   Softmax               softmax

Load Data for Prediction

Load the digits data for prediction.

dataFolder = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");
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imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

Partition the data into pruning and validation sets. Set aside 10% of the data for validation using the
splitEachLabel function.

[imdsPrune,imdsValidation] = splitEachLabel(imds,0.9,"randomize");

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the images, use augmented image datastores.

inputSize = [28 28 1];
augimdsPrune = augmentedImageDatastore(inputSize(1:2),imdsPrune);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Prune dlnetwork Object

Convert the dlnetwork object to a representation that is suitable for pruning by using the
taylorPrunableNetwork function. This function returns a TaylorPrunableNetwork object that
has the NumPrunables property set to 48. This indicates that 48 filters in the original model are
suitable for pruning by using the Taylor pruning algorithm.

prunableNet_1 = taylorPrunableNetwork(dlnet_1)

prunableNet_1 = 
  TaylorPrunableNetwork with properties:

      Learnables: [14x3 table]
           State: [6x3 table]
      InputNames: {'input'}
     OutputNames: {'softmax'}
    NumPrunables: 48

Create a minibatchqueue object that processes and manages mini-batches of images during
pruning. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not format the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

miniBatchSize = 128;
imds.ReadSize = miniBatchSize;

mbq = minibatchqueue(augimdsPrune, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["SSCB" ""]);
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Calculate Taylor-based importance scores of the prunable filters in the network by looping over the
mini-batches of data. For each mini-batch:

• Calculate pruning activations and pruning gradients by using the modelLoss function defined at
the end of this example

• Update importance scores of the prunable filters by using the updateScore function

while hasdata(mbq)
    [X,T] = next(mbq);
    [~,pruningActivations,pruningGradients] = dlfeval(@modelLoss,prunableNet_1,X,T);
    prunableNet_1 = updateScore(prunableNet_1,pruningActivations,pruningGradients);
end

Finally, remove filters with the lowest importance scores to create a new TaylorPrunableNetwork
object by using the updatePrunables function. By default, a single call to this function removes 8
filters. Observe that the new network prunableNet_2 has 40 prunable filters remaining.

prunableNet_2 = updatePrunables(prunableNet_1)

prunableNet_2 = 
  TaylorPrunableNetwork with properties:

      Learnables: [14x3 table]
           State: [6x3 table]
      InputNames: {'input'}
     OutputNames: {'softmax'}
    NumPrunables: 40

To further compress the model, run the custom pruning loop and update prunables again.

Extract Pruned dlnetwork Object

Use the dlnetwork function to extract the pruned dlnetwork object from the pruned
TaylorPrunableNetwork object. You can now use this compressed dlnetwork object to perform
inference.

dlnet_2 = dlnetwork(prunableNet_2);

Compare the convolution layers of the original and the pruned dlnetwork objects. Observe that the
three convolution layers in the pruned network have fewer filters. These counts agree with the fact
that, by default, a single call to the updatePrunables function removes 8 filters from the network.

conv_layers_1 = dlnet_1.Layers([2 5 8])

conv_layers_1 = 
  3x1 Convolution2DLayer array with layers:

     1   'conv1'   2-D Convolution   20 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'conv2'   2-D Convolution   20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'conv3'   2-D Convolution   20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]

conv_layers_2 = dlnet_2.Layers([2 5 8])

conv_layers_2 = 
  3x1 Convolution2DLayer array with layers:

     1   'conv1'   2-D Convolution   17 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
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     2   'conv2'   2-D Convolution   18 3x3x17 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'conv3'   2-D Convolution   17 3x3x18 convolutions with stride [1  1] and padding [1  1  1  1]

Supporting Functions

Model Loss Function

The modelLoss function takes a TaylorPrunableNetwork object net, a mini-batch of input data X
with corresponding targets T and returns activations in net and the gradients of the loss with respect
to the activations in net. To compute the gradients automatically, this function uses the dlgradient
function.

function [loss, pruningActivations, pruningGradients] = modelLoss(net,X,T)

% Calculate network output for training.
[out, ~, pruningActivations] = forward(net,X);

% Calculate loss.
loss = crossentropy(out,T);

% Compute pruning gradients.
pruningGradients = dlgradient(loss,pruningActivations);
end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenating into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(dataX)
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% Concatenate.
X = cat(4,dataX{1:end});

% Normalize the images.
X = X/255;

end

More About
Layers Supported for Pruning

The Taylor pruning algorithm prunes filters from convolution2dLayer objects. Pruning
convolutional filters can also reduce the number of learnable parameters in downstream layers, for
example:

• batchNormalizationLayer
• fullyConnectedLayer
• groupedConvolution2dLayer
• transposedConv2dLayer

Effect of Network Architecture on Pruning

For certain network architectures, data dependency between the prunable layers and other layers in
the network might prevent pruning of filters. These are some example architectures that exhibit this
behavior:

• Your network has a convolution2dLayer, a groupNormalizationLayer and another
convolution2dLayer connected in sequence. The presence of the group normalization layer
prevents pruning of filters of the first convolution layer, because doing so changes the shape of the
input channels of the group normalization layer.

• Your network has a 2-D convolution layer, a softmax layer, and an output layer connected in
sequence. This architecture prevents pruning of filters of the convolution layer because doing so
changes the output size of the network.

Algorithms
For an individual input data point in the pruning dataset, you use the forward function to calculate
the output of the deep learning network and the activations of the prunable filters. Then you calculate
the gradients of the loss with respect to these activations using automatic differentiation. You then
pass the network, the activations, and the gradients to the updateScore function. For each prunable
filter in the network, the updateScore function calculates the change in loss that occurs if that filter
is pruned from the network (up to first-order Taylor approximation). Based on this change, the
function associates an importance score with that filter and updates the TaylorPrunableNetwork
object [1].

Inside the custom pruning loop, you accumulate importance scores for the prunable filters over all
mini-batches of the pruning dataset. Then you pass the network object to the updatePrunables
function. This functions prunes the filters that have the lowest importance scores and hence have the
smallest effect on the accuracy of the network output. The number of filters that a single call to the
updatePrunables function prunes is determined by the optional name-value argument
MaxToPrune, that has a default value of 8.
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All these steps complete a single pruning iteration. To further compress your model, repeat these
steps multiple times over a loop.

Version History
Introduced in R2022a

References
[1] Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. "Pruning Convolutional

Neural Networks for Resource Efficient Inference." Preprint, submitted June 8, 2017. https://
arxiv.org/abs/1611.06440.

See Also
predict | forward | updatePrunables | updateScore | dlnetwork

Topics
“Prune Filters in a Detection Network Using Taylor Scores”
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trainingOptions
Options for training deep learning neural network

Syntax
options = trainingOptions(solverName)
options = trainingOptions(solverName,Name=Value)

Description
options = trainingOptions(solverName) returns training options for the optimizer specified
by solverName. To train a network, use the training options as an input argument to the
trainNetwork function.

options = trainingOptions(solverName,Name=Value) returns training options with
additional options specified by one or more name-value arguments.

Examples

Specify Training Options

Create a set of options for training a network using stochastic gradient descent with momentum.
Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum number of epochs for
training to 20, and use a mini-batch with 64 observations at each iteration. Turn on the training
progress plot.

options = trainingOptions("sgdm", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.2, ...
    LearnRateDropPeriod=5, ...
    MaxEpochs=20, ...
    MiniBatchSize=64, ...
    Plots="training-progress")

options = 
  TrainingOptionsSGDM with properties:

                        Momentum: 0.9000
                InitialLearnRate: 0.0100
               LearnRateSchedule: 'piecewise'
             LearnRateDropFactor: 0.2000
             LearnRateDropPeriod: 5
                L2Regularization: 1.0000e-04
         GradientThresholdMethod: 'l2norm'
               GradientThreshold: Inf
                       MaxEpochs: 20
                   MiniBatchSize: 64
                         Verbose: 1
                VerboseFrequency: 50
                  ValidationData: []
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             ValidationFrequency: 50
              ValidationPatience: Inf
                         Shuffle: 'once'
                  CheckpointPath: ''
             CheckpointFrequency: 1
         CheckpointFrequencyUnit: 'epoch'
            ExecutionEnvironment: 'auto'
                      WorkerLoad: []
                       OutputFcn: []
                           Plots: 'training-progress'
                  SequenceLength: 'longest'
            SequencePaddingValue: 0
        SequencePaddingDirection: 'right'
            DispatchInBackground: 0
         ResetInputNormalization: 1
    BatchNormalizationStatistics: 'population'
                   OutputNetwork: 'last-iteration'

Monitor Deep Learning Training Progress

This example shows how to monitor the training process of deep learning networks.

When you train networks for deep learning, it is often useful to monitor the training progress. By
plotting various metrics during training, you can learn how the training is progressing. For example,
you can determine if and how quickly the network accuracy is improving, and whether the network is
starting to overfit the training data.

This example shows how to monitor training progress for networks trained using the trainNetwork
function. For networks trained using a custom training loop, use a trainingProgressMonitor
object to plot metrics during training. For more information, see “Monitor Custom Training Loop
Progress”.

When you set the Plots training option to "training-progress" in trainingOptions and start
network training, trainNetwork creates a figure and displays training metrics at every iteration.
Each iteration is an estimation of the gradient and an update of the network parameters. If you
specify validation data in trainingOptions, then the figure shows validation metrics each time
trainNetwork validates the network. The figure plots the following:

• Training accuracy — Classification accuracy on each individual mini-batch.
• Smoothed training accuracy — Smoothed training accuracy, obtained by applying a smoothing

algorithm to the training accuracy. It is less noisy than the unsmoothed accuracy, making it easier
to spot trends.

• Validation accuracy — Classification accuracy on the entire validation set (specified using
trainingOptions).

• Training loss, smoothed training loss, and validation loss — The loss on each mini-batch, its
smoothed version, and the loss on the validation set, respectively. If the final layer of your network
is a classificationLayer, then the loss function is the cross entropy loss. For more
information about loss functions for classification and regression problems, see “Output Layers”.

For regression networks, the figure plots the root mean square error (RMSE) instead of the accuracy.
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The figure marks each training Epoch using a shaded background. An epoch is a full pass through
the entire data set.

During training, you can stop training and return the current state of the network by clicking the stop
button in the top-right corner. For example, you might want to stop training when the accuracy of the
network reaches a plateau and it is clear that the accuracy is no longer improving. After you click the
stop button, it can take a while for the training to complete. Once training is complete,
trainNetwork returns the trained network.

When training finishes, view the Results showing the finalized validation accuracy and the reason
that training finished. If the OutputNetwork training option is "last-iteration" (default), the
finalized metrics correspond to the last training iteration. If the OutputNetwork training option is
"best-validation-loss", the finalized metrics correspond to the iteration with the lowest
validation loss. The iteration from which the final validation metrics are calculated is labeled Final in
the plots.

If your network contains batch normalization layers, then the final validation metrics can be different
to the validation metrics evaluated during training. This is because the mean and variance statistics
used for batch normalization can be different after training completes. For example, if the
BatchNormalizationStatisics training option is "population", then after training, the
software finalizes the batch normalization statistics by passing through the training data once more
and uses the resulting mean and variance. If the BatchNormalizationStatisics training option
is "moving", then the software approximates the statistics during training using a running estimate
and uses the latest values of the statistics.

On the right, view information about the training time and settings. To learn more about training
options, see “Set Up Parameters and Train Convolutional Neural Network”.

To save the training progress plot, click Export Training Plot in the training window. You can save
the plot as a PNG, JPEG, TIFF, or PDF file. You can also save the individual plots of loss, accuracy, and
root mean squared error using the axes toolbar.

1 Deep Learning Functions

1-1612



Plot Training Progress During Training

Train a network and plot the training progress during training.

Load the training data, which contains 5000 images of digits. Set aside 1000 of the images for
network validation.

[XTrain,YTrain] = digitTrain4DArrayData;

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Construct a network to classify the digit image data.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,Padding="same")
    batchNormalizationLayer
    reluLayer   
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(3,16,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,Stride=2)
    convolution2dLayer(3,32,Padding="same")
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    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify options for network training. To validate the network at regular intervals during training,
specify validation data. Choose the ValidationFrequency value so that the network is validated
about once per epoch. To plot training progress during training, set the Plots training option to
"training-progress".

options = trainingOptions("sgdm", ...
    MaxEpochs=8, ...
    ValidationData={XValidation,YValidation}, ...
    ValidationFrequency=30, ...
    Verbose=false, ...
    Plots="training-progress");

Train the network.

net = trainNetwork(XTrain,YTrain,layers,options);
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Input Arguments
solverName — Solver for training network
'sgdm' | 'rmsprop' | 'adam'

Solver for training network, specified as one of the following:

• 'sgdm' — Use the stochastic gradient descent with momentum (SGDM) optimizer. You can specify
the momentum value using the Momentum training option.

• 'rmsprop'— Use the RMSProp optimizer. You can specify the decay rate of the squared gradient
moving average using the SquaredGradientDecayFactor training option.

• 'adam'— Use the Adam optimizer. You can specify the decay rates of the gradient and squared
gradient moving averages using the GradientDecayFactor and
SquaredGradientDecayFactor training options, respectively.

For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-1628.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
InitialLearnRate=0.03,L2Regularization=0.0005,LearnRateSchedule="piecewise"
specifies the initial learning rate as 0.03 and theL2 regularization factor as 0.0005, and instructs the
software to drop the learning rate every given number of epochs by multiplying with a certain factor.

Plots and Display

Plots — Plots to display during network training
'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

• 'none' — Do not display plots during training.
• 'training-progress' — Plot training progress. The plot shows mini-batch loss and accuracy,

validation loss and accuracy, and additional information on the training progress. The plot has a
stop button  in the top-right corner. Click the button to stop training and return the current
state of the network. You can save the training plot as an image or PDF by clicking Export
Training Plot. For more information on the training progress plot, see “Monitor Deep Learning
Training Progress”.

Verbose — Indicator to display training progress information
1 (true) (default) | 0 (false)

Indicator to display training progress information in the command window, specified as 1 (true) or 0
(false).

The verbose output displays the following information:
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Classification Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch Accuracy Classification accuracy on the mini-batch.
Validation Accuracy Classification accuracy on the validation data. If

you do not specify validation data, then the
function does not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
ClassificationOutputLayer object, then the
loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes.

Validation Loss Loss on the validation data. If the output layer is
a ClassificationOutputLayer object, then
the loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes. If you do not specify validation data, then
the function does not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.
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Regression Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch RMSE Root-mean-squared-error (RMSE) on the mini-

batch.
Validation RMSE RMSE on the validation data. If you do not

specify validation data, then the software does
not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
RegressionOutputLayer object, then the loss
is the half-mean-squared-error.

Validation Loss Loss on the validation data. If the output layer is
a RegressionOutputLayer object, then the
loss is the half-mean-squared-error. If you do not
specify validation data, then the software does
not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.

When training stops, the verbose output displays the reason for stopping.

To specify validation data, use the ValidationData training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

VerboseFrequency — Frequency of verbose printing
50 (default) | positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer. This option only has an effect when the Verbose training
option is 1 (true).

If you validate the network during training, then trainNetwork also prints to the command window
every time validation occurs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Mini-Batch Options

MaxEpochs — Maximum number of epochs
30 (default) | positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function
using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

If the mini-batch size does not evenly divide the number of training samples, then trainNetwork
discards the training data that does not fit into the final complete mini-batch of each epoch.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Shuffle — Option for data shuffling
'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

• 'once' — Shuffle the training and validation data once before training.
• 'never' — Do not shuffle the data.
• 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation

data before each network validation. If the mini-batch size does not evenly divide the number of
training samples, then trainNetwork discards the training data that does not fit into the final
complete mini-batch of each epoch. To avoid discarding the same data every epoch, set the
Shuffle training option to 'every-epoch'.

Validation

ValidationData — Data to use for validation during training
[] (default) | datastore | table | cell array

Data to use for validation during training, specified as [], a datastore, a table, or a cell array
containing the validation predictors and responses.

You can specify validation predictors and responses using the same formats supported by the
trainNetwork function. You can specify the validation data as a datastore, table, or the cell array
{predictors,responses}, where predictors contains the validation predictors and responses
contains the validation responses.

For more information, see the images, sequences, and features input arguments of the
trainNetwork function.

During training, trainNetwork calculates the validation accuracy and validation loss on the
validation data. To specify the validation frequency, use the ValidationFrequency training option.
You can also use the validation data to stop training automatically when the validation loss stops
decreasing. To turn on automatic validation stopping, use the ValidationPatience training option.

If your network has layers that behave differently during prediction than during training (for
example, dropout layers), then the validation accuracy can be higher than the training (mini-batch)
accuracy.

The validation data is shuffled according to the Shuffle training option. If Shuffle is 'every-
epoch', then the validation data is shuffled before each network validation.
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If ValidationData is [], then the software does not validate the network during training.

ValidationFrequency — Frequency of network validation
50 (default) | positive integer

Frequency of network validation in number of iterations, specified as a positive integer.

The ValidationFrequency value is the number of iterations between evaluations of validation
metrics. To specify validation data, use the ValidationData training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ValidationPatience — Patience of validation stopping
Inf (default) | positive integer

Patience of validation stopping of network training, specified as a positive integer or Inf.

ValidationPatience specifies the number of times that the loss on the validation set can be larger
than or equal to the previously smallest loss before network training stops. If ValidationPatience
is Inf, then the values of the validation loss do not cause training to stop early.

The returned network depends on the OutputNetwork training option. To return the network with
the lowest validation loss, set the OutputNetwork training option to "best-validation-loss".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputNetwork — Network to return when training completes
'last-iteration' (default) | 'best-validation-loss'

Network to return when training completes, specified as one of the following:

• 'last-iteration' – Return the network corresponding to the last training iteration.
• 'best-validation-loss' – Return the network corresponding to the training iteration with the

lowest validation loss. To use this option, you must specify the ValidationData training option.

Solver Options

InitialLearnRate — Initial learning rate
positive scalar

Initial learning rate used for training, specified as a positive scalar.

The default value is 0.01 for the 'sgdm' solver and 0.001 for the 'rmsprop' and 'adam' solvers.

If the learning rate is too low, then training can take a long time. If the learning rate is too high, then
training might reach a suboptimal result or diverge.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LearnRateSchedule — Option for dropping learning rate during training
'none' (default) | 'piecewise'

Option for dropping the learning rate during training, specified as of the following:

• 'none' — The learning rate remains constant throughout training.
• 'piecewise' — The software updates the learning rate every certain number of epochs by

multiplying with a certain factor. Use the LearnRateDropFactor training option to specify the
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value of this factor. Use the LearnRateDropPeriod training option to specify the number of
epochs between multiplications.

LearnRateDropPeriod — Number of epochs for dropping the learning rate
10 (default) | positive integer

Number of epochs for dropping the learning rate, specified as a positive integer. This option is valid
only when the LearnRateSchedule training option is 'piecewise'.

The software multiplies the global learning rate with the drop factor every time the specified number
of epochs passes. Specify the drop factor using the LearnRateDropFactor training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LearnRateDropFactor — Factor for dropping the learning rate
0.1 (default) | scalar from 0 to 1

Factor for dropping the learning rate, specified as a scalar from 0 to 1. This option is valid only when
the LearnRateSchedule training option is 'piecewise'.

LearnRateDropFactor is a multiplicative factor to apply to the learning rate every time a certain
number of epochs passes. Specify the number of epochs using the LearnRateDropPeriod training
option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

L2Regularization — Factor for L2 regularization
0.0001 (default) | nonnegative scalar

Factor for L2 regularization (weight decay), specified as a nonnegative scalar. For more information,
see “L2 Regularization” on page 1-1630.

You can specify a multiplier for the L2 regularization for network layers with learnable parameters.
For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Momentum — Contribution of previous step
0.9 (default) | scalar from 0 to 1

Contribution of the parameter update step of the previous iteration to the current iteration of
stochastic gradient descent with momentum, specified as a scalar from 0 to 1.

A value of 0 means no contribution from the previous step, whereas a value of 1 means maximal
contribution from the previous step. The default value works well for most tasks.

To specify the Momentum training option, solverName must be 'sgdm'.

For more information, see “Stochastic Gradient Descent with Momentum” on page 1-1629.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

GradientDecayFactor — Decay rate of gradient moving average
0.9 (default) | nonnegative scalar less than 1

Decay rate of gradient moving average for the Adam solver, specified as a nonnegative scalar less
than 1. The gradient decay rate is denoted by β1 in the “Adam” on page 1-1629 section.
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To specify the GradientDecayFactor training option, solverName must be 'adam'.

The default value works well for most tasks.

For more information, see “Adam” on page 1-1629.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SquaredGradientDecayFactor — Decay rate of squared gradient moving average
nonnegative scalar less than 1

Decay rate of squared gradient moving average for the Adam and RMSProp solvers, specified as a
nonnegative scalar less than 1. The squared gradient decay rate is denoted by β2 in [4].

To specify the SquaredGradientDecayFactor training option, solverName must be 'adam' or
'rmsprop'.

Typical values of the decay rate are 0.9, 0.99, and 0.999, corresponding to averaging lengths of 10,
100, and 1000 parameter updates, respectively.

The default value is 0.999 for the Adam solver. The default value is 0.9 for the RMSProp solver.

For more information, see “Adam” on page 1-1629 and “RMSProp” on page 1-1629.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Epsilon — Denominator offset
1e-8 (default) | positive scalar

Denominator offset for Adam and RMSProp solvers, specified as a positive scalar.

The solver adds the offset to the denominator in the network parameter updates to avoid division by
zero. The default value works well for most tasks.

To specify the Epsilon training option, solverName must be 'adam' or 'rmsprop'.

For more information, see “Adam” on page 1-1629 and “RMSProp” on page 1-1629.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ResetInputNormalization — Option to reset input layer normalization
1 (true) (default) | 0 (false)

Option to reset input layer normalization, specified as one of the following:

• 1 (true) — Reset the input layer normalization statistics and recalculate them at training time.
• 0 (false) — Calculate normalization statistics at training time when they are empty.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

BatchNormalizationStatistics — Mode to evaluate statistics in batch normalization
layers
'population' (default) | 'moving'

Mode to evaluate the statistics in batch normalization layers, specified as one of the following:
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• 'population' – Use the population statistics. After training, the software finalizes the statistics
by passing through the training data once more and uses the resulting mean and variance.

• 'moving' – Approximate the statistics during training using a running estimate given by update
steps

μ* = λμμ + (1 − λμ)μ

σ2* = λσ2σ2+(1‐λσ2)σ2

where μ* and σ2* denote the updated mean and variance, respectively, λμ and λσ2 denote the

mean and variance decay values, respectively, μ  and σ2 denote the mean and variance of the layer
input, respectively, and μ and σ2 denote the latest values of the moving mean and variance values,
respectively. After training, the software uses the most recent value of the moving mean and
variance statistics. This option supports CPU and single GPU training only.

Gradient Clipping

GradientThreshold — Gradient threshold
Inf (default) | positive scalar

Gradient threshold, specified as Inf or a positive scalar. If the gradient exceeds the value of
GradientThreshold, then the gradient is clipped according to the GradientThresholdMethod
training option.

For more information, see Gradient Clipping on page 1-1630.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

GradientThresholdMethod — Gradient threshold method
'l2norm' (default) | 'global-l2norm' | 'absolute-value'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as one of the following:

• 'l2norm' — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.

• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-1630.

Sequence Options

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.
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• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Hardware Options

ExecutionEnvironment — Hardware resource for training network
'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:
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• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

'gpu', 'multi-gpu', and 'parallel' options require Parallel Computing Toolbox. To use a GPU
for deep learning, you must also have a supported GPU device. For information on supported devices,
see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of these options
and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize
and InitialLearnRate training options by the number of GPUs.

The 'multi-gpu' and 'parallel' options do not support networks containing custom layers with
state parameters or built-in layers that are stateful at training time. For example:

• recurrent layers such as LSTMLayer, BiLSTMLayer, or GRULayer objects when the
SequenceLength training option is a positive integer

• BatchNormalizationLayer objects when the BatchNormalizationStatistics training
option is set to 'moving'

WorkerLoad — Parallel worker load division
scalar from 0 to 1 | positive integer | numeric vector

Parallel worker load division between GPUs or CPUs, specified as one of the following:

• Scalar from 0 to 1 — Fraction of workers on each machine to use for network training
computation. If you train the network using data in a mini-batch datastore with background
dispatch enabled, then the remaining workers fetch and preprocess data in the background.

• Positive integer — Number of workers on each machine to use for network training computation.
If you train the network using data in a mini-batch datastore with background dispatch enabled,
then the remaining workers fetch and preprocess data in the background.

• Numeric vector — Network training load for each worker in the parallel pool. For a vector W,
worker i gets a fraction W(i)/sum(W) of the work (number of examples per mini-batch). If you
train a network using data in a mini-batch datastore with background dispatch enabled, then you
can assign a worker load of 0 to use that worker for fetching data in the background. The
specified vector must contain one value per worker in the parallel pool.

If the parallel pool has access to GPUs, then workers without a unique GPU are never used for
training computation. The default for pools with GPUs is to use all workers with a unique GPU for
training computation, and the remaining workers for background dispatch. If the pool does not have
access to GPUs and CPUs are used for training, then the default is to use one worker per machine for
background data dispatch.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DispatchInBackground — Flag to enable background dispatch
0 (false) (default) | 1 (true)

Flag to enable background dispatch (asynchronous prefetch queuing) to read training data from
datastores, specified as 0 (false) or 1 (true). Background dispatch requires Parallel Computing
Toolbox.

DispatchInBackground is only supported for datastores that are partitionable. For more
information, see “Use Datastore for Parallel Training and Background Dispatching”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Checkpoints

CheckpointPath — Path for saving checkpoint networks
"" (default) | character vector

Path for saving the checkpoint networks, specified as a character vector or string scalar.

• If you do not specify a path (that is, you use the default ""), then the software does not save any
checkpoint networks.

• If you specify a path, then trainNetwork saves checkpoint networks to this path and assigns a
unique name to each network. You can then load any checkpoint network and resume training
from that network.

If the folder does not exist, then you must first create it before specifying the path for saving the
checkpoint networks. If the path you specify does not exist, then trainingOptions returns an
error.

The CheckpointFrequency and CheckpointFrequencyUnit options specify the frequency of
saving checkpoint networks.

For more information about saving network checkpoints, see “Save Checkpoint Networks and
Resume Training”.
Data Types: char | string

CheckpointFrequency — Frequency of saving checkpoint networks
1 (default) | positive integer

Frequency of saving checkpoint networks, specified as a positive integer.

If CheckpointFrequencyUnit is 'epoch', then the software saves checkpoint networks every
CheckpointFrequency epochs.

If CheckpointFrequencyUnit is 'iteration', then the software saves checkpoint networks every
CheckpointFrequency iterations.

This option only has an effect when CheckpointPath is nonempty.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CheckpointFrequencyUnit — Checkpoint frequency unit
'epoch' (default) | 'iteration'
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Checkpoint frequency unit, specified as 'epoch' or 'iteration'.

If CheckpointFrequencyUnit is 'epoch', then the software saves checkpoint networks every
CheckpointFrequency epochs.

If CheckpointFrequencyUnit is 'iteration', then the software saves checkpoint networks every
CheckpointFrequency iterations.

This option only has an effect when CheckpointPath is nonempty.

OutputFcn — Output functions
function handle | cell array of function handles

Output functions to call during training, specified as a function handle or cell array of function
handles. trainNetwork calls the specified functions once before the start of training, after each
iteration, and once after training has finished. trainNetwork passes a structure containing
information in the following fields:

Field Description
Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
ValidationLoss Loss on the validation data
BaseLearnRate Current base learning rate
TrainingAccuracy Accuracy on the current mini-batch (classification

networks)
TrainingRMSE RMSE on the current mini-batch (regression

networks)
ValidationAccuracy Accuracy on the validation data (classification

networks)
ValidationRMSE RMSE on the validation data (regression

networks)
State Current training state, with a possible value of

"start", "iteration", or "done".

If a field is not calculated or relevant for a certain call to the output functions, then that field contains
an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop
training early, make your output function return 1 (true). If any output function returns 1 (true), then
training finishes and trainNetwork returns the latest network. For an example showing how to use
output functions, see “Customize Output During Deep Learning Network Training”.
Data Types: function_handle | cell

Output Arguments
options — Training options
TrainingOptionsSGDM | TrainingOptionsRMSProp | TrainingOptionsADAM
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Training options, returned as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object. To train a neural network, use the training options as an input
argument to the trainNetwork function.

If solverName is 'sgdm', 'rmsprop', or 'adam', then the training options are returned as a
TrainingOptionsSGDM, TrainingOptionsRMSProp, or TrainingOptionsADAM object,
respectively.

You can edit training option properties of TrainingOptionsSGDM, TrainingOptionsADAM, and
TrainingOptionsRMSProp objects directly. For example, to change the mini-batch size after using
the trainingOptions function, you can edit the MiniBatchSize property directly:

options = trainingOptions('sgdm');
options.MiniBatchSize = 64;

Tips
• For most deep learning tasks, you can use a pretrained network and adapt it to your own data. For

an example showing how to use transfer learning to retrain a convolutional neural network to
classify a new set of images, see “Train Deep Learning Network to Classify New Images”.
Alternatively, you can create and train networks from scratch using layerGraph objects with the
trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your
task, then you can create a custom training loop using automatic differentiation. To learn more,
see “Define Deep Learning Network for Custom Training Loops”.

Algorithms
Initial Weights and Biases

For convolutional and fully connected layers, the initialization for the weights and biases are given by
the WeightsInitializer and BiasInitializer properties of the layers, respectively. For
examples showing how to change the initialization for the weights and biases, see “Specify Initial
Weights and Biases in Convolutional Layer” on page 1-384 and “Specify Initial Weights and Biases in
Fully Connected Layer” on page 1-709.

Stochastic Gradient Descent

The standard gradient descent algorithm updates the network parameters (weights and biases) to
minimize the loss function by taking small steps at each iteration in the direction of the negative
gradient of the loss,

θℓ + 1 = θℓ− α∇E θℓ ,

where ℓis the iteration number, α > 0 is the learning rate, θ is the parameter vector, and E θ  is the
loss function. In the standard gradient descent algorithm, the gradient of the loss function, ∇E θ , is
evaluated using the entire training set, and the standard gradient descent algorithm uses the entire
data set at once.

By contrast, at each iteration the stochastic gradient descent algorithm evaluates the gradient and
updates the parameters using a subset of the training data. A different subset, called a mini-batch, is
used at each iteration. The full pass of the training algorithm over the entire training set using mini-
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batches is one epoch. Stochastic gradient descent is stochastic because the parameter updates
computed using a mini-batch is a noisy estimate of the parameter update that would result from using
the full data set. You can specify the mini-batch size and the maximum number of epochs by using the
MiniBatchSize and MaxEpochs training options, respectively.

Stochastic Gradient Descent with Momentum

The stochastic gradient descent algorithm can oscillate along the path of steepest descent towards
the optimum. Adding a momentum term to the parameter update is one way to reduce this oscillation
[2]. The stochastic gradient descent with momentum (SGDM) update is

θℓ + 1 = θℓ− α∇E θℓ + γ θℓ− θℓ− 1 ,

where γ determines the contribution of the previous gradient step to the current iteration. You can
specify this value using the Momentum training option. To train a neural network using the stochastic
gradient descent with momentum algorithm, specify 'sgdm' as the first input argument to
trainingOptions. To specify the initial value of the learning rate α, use the InitialLearnRate
training option. You can also specify different learning rates for different layers and parameters. For
more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.

RMSProp

Stochastic gradient descent with momentum uses a single learning rate for all the parameters. Other
optimization algorithms seek to improve network training by using learning rates that differ by
parameter and can automatically adapt to the loss function being optimized. RMSProp (root mean
square propagation) is one such algorithm. It keeps a moving average of the element-wise squares of
the parameter gradients,

vℓ = β2vℓ− 1 + (1 − β2)[∇E θℓ ]2

β2 is the decay rate of the moving average. Common values of the decay rate are 0.9, 0.99, and 0.999.
The corresponding averaging lengths of the squared gradients equal 1/(1-β2), that is, 10, 100, and
1000 parameter updates, respectively. You can specify β2 by using the
SquaredGradientDecayFactor training options. The RMSProp algorithm uses this moving average
to normalize the updates of each parameter individually,

θℓ + 1 = θℓ−
α∇E θℓ

vℓ + ϵ

where the division is performed element-wise. Using RMSProp effectively decreases the learning
rates of parameters with large gradients and increases the learning rates of parameters with small
gradients. ɛ is a small constant added to avoid division by zero. You can specify ɛ by using the
Epsilon training option, but the default value usually works well. To use RMSProp to train a neural
network, specify 'rmsprop' as the first input to trainingOptions.

Adam

Adam (derived from adaptive moment estimation) [4] uses a parameter update that is similar to
RMSProp, but with an added momentum term. It keeps an element-wise moving average of both the
parameter gradients and their squared values,

mℓ = β1mℓ− 1 + (1 − β1)∇E θℓ

vℓ = β2vℓ− 1 + (1 − β2)[∇E θℓ ]2
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You can specify the β1 and β2 decay rates using the GradientDecayFactor and
SquaredGradientDecayFactor training options, respectively. Adam uses the moving averages to
update the network parameters as

θℓ + 1 = θℓ−
αml
vl + ϵ

If gradients over many iterations are similar, then using a moving average of the gradient enables the
parameter updates to pick up momentum in a certain direction. If the gradients contain mostly noise,
then the moving average of the gradient becomes smaller, and so the parameter updates become
smaller too. You can specify ɛ by using the Epsilon training option. The default value usually works
well, but for certain problems a value as large as 1 works better. To use Adam to train a neural
network, specify 'adam' as the first input to trainingOptions. The full Adam update also includes
a mechanism to correct a bias the appears in the beginning of training. For more information, see [4].

Specify the learning rate α for all optimization algorithms using theInitialLearnRate training
option. The effect of the learning rate is different for the different optimization algorithms, so the
optimal learning rates are also different in general. You can also specify learning rates that differ by
layers and by parameter. For more information, see “Set Up Parameters in Convolutional and Fully
Connected Layers”.

Gradient Clipping

If the gradients increase in magnitude exponentially, then the training is unstable and can diverge
within a few iterations. This "gradient explosion" is indicated by a training loss that goes to NaN or
Inf. Gradient clipping helps prevent gradient explosion by stabilizing the training at higher learning
rates and in the presence of outliers [3]. Gradient clipping enables networks to be trained faster, and
does not usually impact the accuracy of the learned task.

There are two types of gradient clipping.

• Norm-based gradient clipping rescales the gradient based on a threshold, and does not change the
direction of the gradient. The 'l2norm' and 'global-l2norm' values of
GradientThresholdMethod are norm-based gradient clipping methods.

• Value-based gradient clipping clips any partial derivative greater than the threshold, which can
result in the gradient arbitrarily changing direction. Value-based gradient clipping can have
unpredictable behavior, but sufficiently small changes do not cause the network to diverge. The
'absolute-value' value of GradientThresholdMethod is a value-based gradient clipping
method.

L2 Regularization

Adding a regularization term for the weights to the loss function E θ  is one way to reduce overfitting
[1], [2]. The regularization term is also called weight decay. The loss function with the regularization
term takes the form

ER θ = E θ + λΩ w ,

where w is the weight vector, λ is the regularization factor (coefficient), and the regularization
function Ω w  is

Ω w = 1
2wTw .

1 Deep Learning Functions

1-1630



Note that the biases are not regularized [2]. You can specify the regularization factor λ by using the
L2Regularization training option. You can also specify different regularization factors for different
layers and parameters. For more information, see “Set Up Parameters in Convolutional and Fully
Connected Layers”.

The loss function that the software uses for network training includes the regularization term.
However, the loss value displayed in the command window and training progress plot during training
is the loss on the data only and does not include the regularization term.

Version History
Introduced in R2016a

trainNetwork pads mini-batches to length of longest sequence before splitting when you
specify SequenceLength training option as an integer

Starting in R2022b, when you train a network with sequence data using the trainNetwork function
and the SequenceLength option is an integer, the software pads sequences to the length of the
longest sequence in each mini-batch and then splits the sequences into mini-batches with the
specified sequence length. If SequenceLength does not evenly divide the sequence length of the
mini-batch, then the last split mini-batch has a length shorter than SequenceLength. This behavior
prevents the network training on time steps that contain only padding values.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, use a custom training loop and implement this behavior
when you preprocess mini-batches of data.

ValidationPatience training option default is Inf
Behavior changed in R2018b

Starting in R2018b, the default value of the ValidationPatience training option is Inf, which
means that automatic stopping via validation is turned off. This behavior prevents the training from
stopping before sufficiently learning from the data.

In previous versions, the default value is 5. To reproduce this behavior, set the
ValidationPatience option to 5.

Different file name for checkpoint networks
Behavior changed in R2018b

Starting in R2018b, when saving checkpoint networks, the software assigns file names beginning
with net_checkpoint_. In previous versions, the software assigns file names beginning with
convnet_checkpoint_.

If you have code that saves and loads checkpoint networks, then update your code to load files with
the new name.
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TrainingOptionsADAM
Training options for Adam optimizer

Description
Training options for Adam (adaptive moment estimation) optimizer, including learning rate
information, L2 regularization factor, and mini-batch size.

Creation
Create a TrainingOptionsADAM object using trainingOptions and specifying 'adam' as the first
input argument.

Properties
Plots and Display

Plots — Plots to display during network training
'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

• 'none' — Do not display plots during training.
• 'training-progress' — Plot training progress. The plot shows mini-batch loss and accuracy,

validation loss and accuracy, and additional information on the training progress. The plot has a
stop button  in the top-right corner. Click the button to stop training and return the current
state of the network. You can save the training plot as an image or PDF by clicking Export
Training Plot. For more information on the training progress plot, see “Monitor Deep Learning
Training Progress”.

Verbose — Indicator to display training progress information
1 (true) (default) | 0 (false)

Indicator to display training progress information in the command window, specified as 1 (true) or 0
(false).

The verbose output displays the following information:
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Classification Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch Accuracy Classification accuracy on the mini-batch.
Validation Accuracy Classification accuracy on the validation data. If

you do not specify validation data, then the
function does not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
ClassificationOutputLayer object, then the
loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes.

Validation Loss Loss on the validation data. If the output layer is
a ClassificationOutputLayer object, then
the loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes. If you do not specify validation data, then
the function does not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.
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Regression Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch RMSE Root-mean-squared-error (RMSE) on the mini-

batch.
Validation RMSE RMSE on the validation data. If you do not

specify validation data, then the software does
not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
RegressionOutputLayer object, then the loss
is the half-mean-squared-error.

Validation Loss Loss on the validation data. If the output layer is
a RegressionOutputLayer object, then the
loss is the half-mean-squared-error. If you do not
specify validation data, then the software does
not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.

When training stops, the verbose output displays the reason for stopping.

To specify validation data, use the ValidationData training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

VerboseFrequency — Frequency of verbose printing
50 (default) | positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer. This option only has an effect when the Verbose training
option is 1 (true).

If you validate the network during training, then trainNetwork also prints to the command window
every time validation occurs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Mini-Batch Options

MaxEpochs — Maximum number of epochs
30 (default) | positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function
using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

If the mini-batch size does not evenly divide the number of training samples, then trainNetwork
discards the training data that does not fit into the final complete mini-batch of each epoch.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Shuffle — Option for data shuffling
'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

• 'once' — Shuffle the training and validation data once before training.
• 'never' — Do not shuffle the data.
• 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation

data before each network validation. If the mini-batch size does not evenly divide the number of
training samples, then trainNetwork discards the training data that does not fit into the final
complete mini-batch of each epoch. To avoid discarding the same data every epoch, set the
Shuffle training option to 'every-epoch'.

Validation

ValidationData — Data to use for validation during training
[] (default) | datastore | table | cell array

Data to use for validation during training, specified as [], a datastore, a table, or a cell array
containing the validation predictors and responses.

You can specify validation predictors and responses using the same formats supported by the
trainNetwork function. You can specify the validation data as a datastore, table, or the cell array
{predictors,responses}, where predictors contains the validation predictors and responses
contains the validation responses.

For more information, see the images, sequences, and features input arguments of the
trainNetwork function.

During training, trainNetwork calculates the validation accuracy and validation loss on the
validation data. To specify the validation frequency, use the ValidationFrequency training option.
You can also use the validation data to stop training automatically when the validation loss stops
decreasing. To turn on automatic validation stopping, use the ValidationPatience training option.

If your network has layers that behave differently during prediction than during training (for
example, dropout layers), then the validation accuracy can be higher than the training (mini-batch)
accuracy.

The validation data is shuffled according to the Shuffle training option. If Shuffle is 'every-
epoch', then the validation data is shuffled before each network validation.
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If ValidationData is [], then the software does not validate the network during training.

ValidationFrequency — Frequency of network validation
50 (default) | positive integer

Frequency of network validation in number of iterations, specified as a positive integer.

The ValidationFrequency value is the number of iterations between evaluations of validation
metrics. To specify validation data, use the ValidationData training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ValidationPatience — Patience of validation stopping
Inf (default) | positive integer

Patience of validation stopping of network training, specified as a positive integer or Inf.

ValidationPatience specifies the number of times that the loss on the validation set can be larger
than or equal to the previously smallest loss before network training stops. If ValidationPatience
is Inf, then the values of the validation loss do not cause training to stop early.

The returned network depends on the OutputNetwork training option. To return the network with
the lowest validation loss, set the OutputNetwork training option to "best-validation-loss".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputNetwork — Network to return when training completes
'last-iteration' (default) | 'best-validation-loss'

Network to return when training completes, specified as one of the following:

• 'last-iteration' – Return the network corresponding to the last training iteration.
• 'best-validation-loss' – Return the network corresponding to the training iteration with the

lowest validation loss. To use this option, you must specify the ValidationData training option.

Solver Options

InitialLearnRate — Initial learning rate
0.001 (default) | positive scalar

Initial learning rate used for training, specified as a positive scalar.

If the learning rate is too low, then training can take a long time. If the learning rate is too high, then
training might reach a suboptimal result or diverge.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LearnRateScheduleSettings — Settings for learning rate schedule
structure

This property is read-only.

Settings for the learning rate schedule, specified as a structure. LearnRateScheduleSettings has
the field Method, which specifies the type of method for adjusting the learning rate. The possible
methods are:
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• 'none' — The learning rate is constant throughout training.
• 'piecewise' — The learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more fields:

• DropRateFactor — The multiplicative factor by which the learning rate drops during training
• DropPeriod — The number of epochs that passes between adjustments to the learning rate

during training

Specify the settings for the learning schedule rate using trainingOptions.
Data Types: struct

L2Regularization — Factor for L2 regularization
0.0001 (default) | nonnegative scalar

Factor for L2 regularization (weight decay), specified as a nonnegative scalar. For more information,
see “L2 Regularization” on page 1-1646.

You can specify a multiplier for the L2 regularization for network layers with learnable parameters.
For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

GradientDecayFactor — Decay rate of gradient moving average
0.9 (default) | nonnegative scalar less than 1

Decay rate of gradient moving average for the Adam solver, specified as a nonnegative scalar less
than 1. The gradient decay rate is denoted by β1 in the “Adam” on page 1-1645 section.

The default value works well for most tasks.

For more information, see “Adam” on page 1-1645.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SquaredGradientDecayFactor — Decay rate of squared gradient moving average
0.999 (default) | nonnegative scalar less than 1

Decay rate of squared gradient moving average for the Adam solver, specified as a nonnegative scalar
less than 1. The squared gradient decay rate is denoted by β2 in the “Adam” on page 1-1645 section.

Typical values of the decay rate are 0.9, 0.99, and 0.999, corresponding to averaging lengths of 10,
100, and 1000 parameter updates, respectively.

For more information, see “Adam” on page 1-1645.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Epsilon — Denominator offset
1e-8 (default) | positive scalar

Denominator offset for Adam solver, specified as a positive scalar.

The solver adds the offset to the denominator in the network parameter updates to avoid division by
zero. The default value works well for most tasks.
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For more information, see “Adam” on page 1-1645.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ResetInputNormalization — Option to reset input layer normalization
1 (true) (default) | 0 (false)

Option to reset input layer normalization, specified as one of the following:

• 1 (true) — Reset the input layer normalization statistics and recalculate them at training time.
• 0 (false) — Calculate normalization statistics at training time when they are empty.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

BatchNormalizationStatistics — Mode to evaluate statistics in batch normalization
layers
'population' (default) | 'moving'

Mode to evaluate the statistics in batch normalization layers, specified as one of the following:

• 'population' – Use the population statistics. After training, the software finalizes the statistics
by passing through the training data once more and uses the resulting mean and variance.

• 'moving' – Approximate the statistics during training using a running estimate given by update
steps

μ* = λμμ + (1 − λμ)μ

σ2* = λσ2σ2+(1‐λσ2)σ2

where μ* and σ2* denote the updated mean and variance, respectively, λμ and λσ2 denote the

mean and variance decay values, respectively, μ  and σ2 denote the mean and variance of the layer
input, respectively, and μ and σ2 denote the latest values of the moving mean and variance values,
respectively. After training, the software uses the most recent value of the moving mean and
variance statistics. This option supports CPU and single GPU training only.

Gradient Clipping

GradientThreshold — Gradient threshold
Inf (default) | positive scalar

Gradient threshold, specified as Inf or a positive scalar. If the gradient exceeds the value of
GradientThreshold, then the gradient is clipped according to the GradientThresholdMethod
training option.

For more information, see Gradient Clipping on page 1-1646.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

GradientThresholdMethod — Gradient threshold method
'l2norm' (default) | 'global-l2norm' | 'absolute-value'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as one of the following:
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• 'l2norm' — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.

• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-1646.

Sequence Options

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
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earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Hardware Options

ExecutionEnvironment — Hardware resource for training network
'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

'gpu', 'multi-gpu', and 'parallel' options require Parallel Computing Toolbox. To use a GPU
for deep learning, you must also have a supported GPU device. For information on supported devices,
see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of these options
and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize
and InitialLearnRate training options by the number of GPUs.

The 'multi-gpu' and 'parallel' options do not support networks containing custom layers with
state parameters or built-in layers that are stateful at training time. For example:

• recurrent layers such as LSTMLayer, BiLSTMLayer, or GRULayer objects when the
SequenceLength training option is a positive integer

• BatchNormalizationLayer objects when the BatchNormalizationStatistics training
option is set to 'moving'
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WorkerLoad — Parallel worker load division
scalar from 0 to 1 | positive integer | numeric vector

Parallel worker load division between GPUs or CPUs, specified as one of the following:

• Scalar from 0 to 1 — Fraction of workers on each machine to use for network training
computation. If you train the network using data in a mini-batch datastore with background
dispatch enabled, then the remaining workers fetch and preprocess data in the background.

• Positive integer — Number of workers on each machine to use for network training computation.
If you train the network using data in a mini-batch datastore with background dispatch enabled,
then the remaining workers fetch and preprocess data in the background.

• Numeric vector — Network training load for each worker in the parallel pool. For a vector W,
worker i gets a fraction W(i)/sum(W) of the work (number of examples per mini-batch). If you
train a network using data in a mini-batch datastore with background dispatch enabled, then you
can assign a worker load of 0 to use that worker for fetching data in the background. The
specified vector must contain one value per worker in the parallel pool.

If the parallel pool has access to GPUs, then workers without a unique GPU are never used for
training computation. The default for pools with GPUs is to use all workers with a unique GPU for
training computation, and the remaining workers for background dispatch. If the pool does not have
access to GPUs and CPUs are used for training, then the default is to use one worker per machine for
background data dispatch.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DispatchInBackground — Flag to enable background dispatch
0 (false) (default) | 1 (true)

Flag to enable background dispatch (asynchronous prefetch queuing) to read training data from
datastores, specified as 0 (false) or 1 (true). Background dispatch requires Parallel Computing
Toolbox.

DispatchInBackground is only supported for datastores that are partitionable. For more
information, see “Use Datastore for Parallel Training and Background Dispatching”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Checkpoints

CheckpointPath — Path for saving checkpoint networks
"" (default) | character vector

Path for saving the checkpoint networks, specified as a character vector or string scalar.

• If you do not specify a path (that is, you use the default ""), then the software does not save any
checkpoint networks.

• If you specify a path, then trainNetwork saves checkpoint networks to this path and assigns a
unique name to each network. You can then load any checkpoint network and resume training
from that network.

If the folder does not exist, then you must first create it before specifying the path for saving the
checkpoint networks. If the path you specify does not exist, then trainingOptions returns an
error.
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The CheckpointFrequency and CheckpointFrequencyUnit options specify the frequency of
saving checkpoint networks.

For more information about saving network checkpoints, see “Save Checkpoint Networks and
Resume Training”.
Data Types: char | string

CheckpointFrequency — Frequency of saving checkpoint networks
1 (default) | positive integer

Frequency of saving checkpoint networks, specified as a positive integer.

If CheckpointFrequencyUnit is 'epoch', then the software saves checkpoint networks every
CheckpointFrequency epochs.

If CheckpointFrequencyUnit is 'iteration', then the software saves checkpoint networks every
CheckpointFrequency iterations.

This option only has an effect when CheckpointPath is nonempty.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CheckpointFrequencyUnit — Checkpoint frequency unit
'epoch' (default) | 'iteration'

Checkpoint frequency unit, specified as 'epoch' or 'iteration'.

If CheckpointFrequencyUnit is 'epoch', then the software saves checkpoint networks every
CheckpointFrequency epochs.

If CheckpointFrequencyUnit is 'iteration', then the software saves checkpoint networks every
CheckpointFrequency iterations.

This option only has an effect when CheckpointPath is nonempty.

OutputFcn — Output functions
function handle | cell array of function handles

Output functions to call during training, specified as a function handle or cell array of function
handles. trainNetwork calls the specified functions once before the start of training, after each
iteration, and once after training has finished. trainNetwork passes a structure containing
information in the following fields:

Field Description
Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
ValidationLoss Loss on the validation data
BaseLearnRate Current base learning rate
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Field Description
TrainingAccuracy Accuracy on the current mini-batch (classification

networks)
TrainingRMSE RMSE on the current mini-batch (regression

networks)
ValidationAccuracy Accuracy on the validation data (classification

networks)
ValidationRMSE RMSE on the validation data (regression

networks)
State Current training state, with a possible value of

"start", "iteration", or "done".

If a field is not calculated or relevant for a certain call to the output functions, then that field contains
an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop
training early, make your output function return 1 (true). If any output function returns 1 (true), then
training finishes and trainNetwork returns the latest network. For an example showing how to use
output functions, see “Customize Output During Deep Learning Network Training”.
Data Types: function_handle | cell

Examples
Create Training Options for the Adam Optimizer

Create a set of options for training a neural network using the Adam optimizer. Set the maximum
number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration.
Specify the learning rate and the decay rate of the moving average of the squared gradient. Turn on
the training progress plot.

options = trainingOptions("adam", ...
    InitialLearnRate=3e-4, ...
    SquaredGradientDecayFactor=0.99, ...
    MaxEpochs=20, ...
    MiniBatchSize=64, ...
    Plots="training-progress")

options = 
  TrainingOptionsADAM with properties:

             GradientDecayFactor: 0.9000
      SquaredGradientDecayFactor: 0.9900
                         Epsilon: 1.0000e-08
                InitialLearnRate: 3.0000e-04
               LearnRateSchedule: 'none'
             LearnRateDropFactor: 0.1000
             LearnRateDropPeriod: 10
                L2Regularization: 1.0000e-04
         GradientThresholdMethod: 'l2norm'
               GradientThreshold: Inf
                       MaxEpochs: 20
                   MiniBatchSize: 64
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                         Verbose: 1
                VerboseFrequency: 50
                  ValidationData: []
             ValidationFrequency: 50
              ValidationPatience: Inf
                         Shuffle: 'once'
                  CheckpointPath: ''
             CheckpointFrequency: 1
         CheckpointFrequencyUnit: 'epoch'
            ExecutionEnvironment: 'auto'
                      WorkerLoad: []
                       OutputFcn: []
                           Plots: 'training-progress'
                  SequenceLength: 'longest'
            SequencePaddingValue: 0
        SequencePaddingDirection: 'right'
            DispatchInBackground: 0
         ResetInputNormalization: 1
    BatchNormalizationStatistics: 'population'
                   OutputNetwork: 'last-iteration'

Algorithms
Adam

Adam (derived from adaptive moment estimation) [1] uses a parameter update that is similar to
RMSProp, but with an added momentum term. It keeps an element-wise moving average of both the
parameter gradients and their squared values,

mℓ = β1mℓ− 1 + (1 − β1)∇E θℓ

vℓ = β2vℓ− 1 + (1 − β2)[∇E θℓ ]2

You can specify the β1 and β2 decay rates using the GradientDecayFactor and
SquaredGradientDecayFactor training options, respectively. Adam uses the moving averages to
update the network parameters as

θℓ + 1 = θℓ−
αml
vl + ϵ

If gradients over many iterations are similar, then using a moving average of the gradient enables the
parameter updates to pick up momentum in a certain direction. If the gradients contain mostly noise,
then the moving average of the gradient becomes smaller, and so the parameter updates become
smaller too. You can specify ɛ by using the Epsilon training option. The default value usually works
well, but for certain problems a value as large as 1 works better. To use Adam to train a neural
network, specify 'adam' as the first input to trainingOptions. The full Adam update also includes
a mechanism to correct a bias the appears in the beginning of training. For more information, see [1].

Specify the learning rate α for all optimization algorithms using theInitialLearnRate training
option. The effect of the learning rate is different for the different optimization algorithms, so the
optimal learning rates are also different in general. You can also specify learning rates that differ by
layers and by parameter. For more information, see “Set Up Parameters in Convolutional and Fully
Connected Layers”.
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L2 Regularization

Adding a regularization term for the weights to the loss function E θ  is one way to reduce overfitting
[1], [2]. The regularization term is also called weight decay. The loss function with the regularization
term takes the form

ER θ = E θ + λΩ w ,

where w is the weight vector, λ is the regularization factor (coefficient), and the regularization
function Ω w  is

Ω w = 1
2wTw .

Note that the biases are not regularized [2]. You can specify the regularization factor λ by using the
L2Regularization training option. You can also specify different regularization factors for different
layers and parameters. For more information, see “Set Up Parameters in Convolutional and Fully
Connected Layers”.

The loss function that the software uses for network training includes the regularization term.
However, the loss value displayed in the command window and training progress plot during training
is the loss on the data only and does not include the regularization term.

Gradient Clipping

If the gradients increase in magnitude exponentially, then the training is unstable and can diverge
within a few iterations. This "gradient explosion" is indicated by a training loss that goes to NaN or
Inf. Gradient clipping helps prevent gradient explosion by stabilizing the training at higher learning
rates and in the presence of outliers [3]. Gradient clipping enables networks to be trained faster, and
does not usually impact the accuracy of the learned task.

There are two types of gradient clipping.

• Norm-based gradient clipping rescales the gradient based on a threshold, and does not change the
direction of the gradient. The 'l2norm' and 'global-l2norm' values of
GradientThresholdMethod are norm-based gradient clipping methods.

• Value-based gradient clipping clips any partial derivative greater than the threshold, which can
result in the gradient arbitrarily changing direction. Value-based gradient clipping can have
unpredictable behavior, but sufficiently small changes do not cause the network to diverge. The
'absolute-value' value of GradientThresholdMethod is a value-based gradient clipping
method.

Version History
Introduced in R2018a

trainNetwork pads mini-batches to length of longest sequence before splitting when you
specify SequenceLength training option as an integer

Starting in R2022b, when you train a network with sequence data using the trainNetwork function
and the SequenceLength option is an integer, the software pads sequences to the length of the
longest sequence in each mini-batch and then splits the sequences into mini-batches with the
specified sequence length. If SequenceLength does not evenly divide the sequence length of the
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mini-batch, then the last split mini-batch has a length shorter than SequenceLength. This behavior
prevents the network training on time steps that contain only padding values.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, use a custom training loop and implement this behavior
when you preprocess mini-batches of data.

ValidationPatience training option default is Inf
Behavior changed in R2018b

Starting in R2018b, the default value of the ValidationPatience training option is Inf, which
means that automatic stopping via validation is turned off. This behavior prevents the training from
stopping before sufficiently learning from the data.

In previous versions, the default value is 5. To reproduce this behavior, set the
ValidationPatience option to 5.

References
[1] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint

arXiv:1412.6980 (2014).

See Also
trainNetwork | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Resume Training from Checkpoint Network”
“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
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TrainingOptionsRMSProp
Training options for RMSProp optimizer

Description
Training options for RMSProp (root mean square propagation) optimizer, including learning rate
information, L2 regularization factor, and mini-batch size.

Creation
Create a TrainingOptionsRMSProp object using trainingOptions and specifying 'rmsprop' as
the first input argument.

Properties
Plots and Display

Plots — Plots to display during network training
'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

• 'none' — Do not display plots during training.
• 'training-progress' — Plot training progress. The plot shows mini-batch loss and accuracy,

validation loss and accuracy, and additional information on the training progress. The plot has a
stop button  in the top-right corner. Click the button to stop training and return the current
state of the network. You can save the training plot as an image or PDF by clicking Export
Training Plot. For more information on the training progress plot, see “Monitor Deep Learning
Training Progress”.

Verbose — Indicator to display training progress information
1 (true) (default) | 0 (false)

Indicator to display training progress information in the command window, specified as 1 (true) or 0
(false).

The verbose output displays the following information:
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Classification Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch Accuracy Classification accuracy on the mini-batch.
Validation Accuracy Classification accuracy on the validation data. If

you do not specify validation data, then the
function does not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
ClassificationOutputLayer object, then the
loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes.

Validation Loss Loss on the validation data. If the output layer is
a ClassificationOutputLayer object, then
the loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes. If you do not specify validation data, then
the function does not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.
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Regression Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch RMSE Root-mean-squared-error (RMSE) on the mini-

batch.
Validation RMSE RMSE on the validation data. If you do not

specify validation data, then the software does
not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
RegressionOutputLayer object, then the loss
is the half-mean-squared-error.

Validation Loss Loss on the validation data. If the output layer is
a RegressionOutputLayer object, then the
loss is the half-mean-squared-error. If you do not
specify validation data, then the software does
not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.

When training stops, the verbose output displays the reason for stopping.

To specify validation data, use the ValidationData training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

VerboseFrequency — Frequency of verbose printing
50 (default) | positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer. This option only has an effect when the Verbose training
option is 1 (true).

If you validate the network during training, then trainNetwork also prints to the command window
every time validation occurs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Mini-Batch Options

MaxEpochs — Maximum number of epochs
30 (default) | positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function
using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

If the mini-batch size does not evenly divide the number of training samples, then trainNetwork
discards the training data that does not fit into the final complete mini-batch of each epoch.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Shuffle — Option for data shuffling
'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

• 'once' — Shuffle the training and validation data once before training.
• 'never' — Do not shuffle the data.
• 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation

data before each network validation. If the mini-batch size does not evenly divide the number of
training samples, then trainNetwork discards the training data that does not fit into the final
complete mini-batch of each epoch. To avoid discarding the same data every epoch, set the
Shuffle training option to 'every-epoch'.

Validation

ValidationData — Data to use for validation during training
[] (default) | datastore | table | cell array

Data to use for validation during training, specified as [], a datastore, a table, or a cell array
containing the validation predictors and responses.

You can specify validation predictors and responses using the same formats supported by the
trainNetwork function. You can specify the validation data as a datastore, table, or the cell array
{predictors,responses}, where predictors contains the validation predictors and responses
contains the validation responses.

For more information, see the images, sequences, and features input arguments of the
trainNetwork function.

During training, trainNetwork calculates the validation accuracy and validation loss on the
validation data. To specify the validation frequency, use the ValidationFrequency training option.
You can also use the validation data to stop training automatically when the validation loss stops
decreasing. To turn on automatic validation stopping, use the ValidationPatience training option.

If your network has layers that behave differently during prediction than during training (for
example, dropout layers), then the validation accuracy can be higher than the training (mini-batch)
accuracy.

The validation data is shuffled according to the Shuffle training option. If Shuffle is 'every-
epoch', then the validation data is shuffled before each network validation.
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If ValidationData is [], then the software does not validate the network during training.

ValidationFrequency — Frequency of network validation
50 (default) | positive integer

Frequency of network validation in number of iterations, specified as a positive integer.

The ValidationFrequency value is the number of iterations between evaluations of validation
metrics. To specify validation data, use the ValidationData training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ValidationPatience — Patience of validation stopping
Inf (default) | positive integer

Patience of validation stopping of network training, specified as a positive integer or Inf.

ValidationPatience specifies the number of times that the loss on the validation set can be larger
than or equal to the previously smallest loss before network training stops. If ValidationPatience
is Inf, then the values of the validation loss do not cause training to stop early.

The returned network depends on the OutputNetwork training option. To return the network with
the lowest validation loss, set the OutputNetwork training option to "best-validation-loss".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputNetwork — Network to return when training completes
'last-iteration' (default) | 'best-validation-loss'

Network to return when training completes, specified as one of the following:

• 'last-iteration' – Return the network corresponding to the last training iteration.
• 'best-validation-loss' – Return the network corresponding to the training iteration with the

lowest validation loss. To use this option, you must specify the ValidationData training option.

Solver Options

InitialLearnRate — Initial learning rate
0.001 (default) | positive scalar

Initial learning rate used for training, specified as a positive scalar.

If the learning rate is too low, then training can take a long time. If the learning rate is too high, then
training might reach a suboptimal result or diverge.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LearnRateScheduleSettings — Settings for learning rate schedule
structure

This property is read-only.

Settings for the learning rate schedule, specified as a structure. LearnRateScheduleSettings has
the field Method, which specifies the type of method for adjusting the learning rate. The possible
methods are:
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• 'none' — The learning rate is constant throughout training.
• 'piecewise' — The learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more fields:

• DropRateFactor — The multiplicative factor by which the learning rate drops during training
• DropPeriod — The number of epochs that passes between adjustments to the learning rate

during training

Specify the settings for the learning schedule rate using trainingOptions.
Data Types: struct

L2Regularization — Factor for L2 regularization
0.0001 (default) | nonnegative scalar

Factor for L2 regularization (weight decay), specified as a nonnegative scalar. For more information,
see “L2 Regularization” on page 1-1660.

You can specify a multiplier for the L2 regularization for network layers with learnable parameters.
For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SquaredGradientDecayFactor — Decay rate of squared gradient moving average
0.9 (default) | nonnegative scalar less than 1

Decay rate of squared gradient moving average for the RMSProp solver, specified as a nonnegative
scalar less than 1.

Typical values of the decay rate are 0.9, 0.99, and 0.999, corresponding to averaging lengths of 10,
100, and 1000 parameter updates, respectively.

For more information, see “RMSProp” on page 1-1660.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Epsilon — Denominator offset
1e-8 (default) | positive scalar

Denominator offset for the RMSProp solver, specified as a positive scalar.

The solver adds the offset to the denominator in the network parameter updates to avoid division by
zero. The default value works well for most tasks.

For more information about the different solvers, see “RMSProp” on page 1-1660.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ResetInputNormalization — Option to reset input layer normalization
1 (true) (default) | 0 (false)

Option to reset input layer normalization, specified as one of the following:

• 1 (true) — Reset the input layer normalization statistics and recalculate them at training time.
• 0 (false) — Calculate normalization statistics at training time when they are empty.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

BatchNormalizationStatistics — Mode to evaluate statistics in batch normalization
layers
'population' (default) | 'moving'

Mode to evaluate the statistics in batch normalization layers, specified as one of the following:

• 'population' – Use the population statistics. After training, the software finalizes the statistics
by passing through the training data once more and uses the resulting mean and variance.

• 'moving' – Approximate the statistics during training using a running estimate given by update
steps

μ* = λμμ + (1 − λμ)μ

σ2* = λσ2σ2+(1‐λσ2)σ2

where μ* and σ2* denote the updated mean and variance, respectively, λμ and λσ2 denote the

mean and variance decay values, respectively, μ  and σ2 denote the mean and variance of the layer
input, respectively, and μ and σ2 denote the latest values of the moving mean and variance values,
respectively. After training, the software uses the most recent value of the moving mean and
variance statistics. This option supports CPU and single GPU training only.

Gradient Clipping

GradientThreshold — Gradient threshold
Inf (default) | positive scalar

Gradient threshold, specified as Inf or a positive scalar. If the gradient exceeds the value of
GradientThreshold, then the gradient is clipped according to the GradientThresholdMethod
training option.

For more information, see Gradient Clipping on page 1-1660.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

GradientThresholdMethod — Gradient threshold method
'l2norm' (default) | 'global-l2norm' | 'absolute-value'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as one of the following:

• 'l2norm' — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.

• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-1660.
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Sequence Options

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Hardware Options

ExecutionEnvironment — Hardware resource for training network
'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

'gpu', 'multi-gpu', and 'parallel' options require Parallel Computing Toolbox. To use a GPU
for deep learning, you must also have a supported GPU device. For information on supported devices,
see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of these options
and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize
and InitialLearnRate training options by the number of GPUs.

The 'multi-gpu' and 'parallel' options do not support networks containing custom layers with
state parameters or built-in layers that are stateful at training time. For example:

• recurrent layers such as LSTMLayer, BiLSTMLayer, or GRULayer objects when the
SequenceLength training option is a positive integer

• BatchNormalizationLayer objects when the BatchNormalizationStatistics training
option is set to 'moving'

WorkerLoad — Parallel worker load division
scalar from 0 to 1 | positive integer | numeric vector

Parallel worker load division between GPUs or CPUs, specified as one of the following:

• Scalar from 0 to 1 — Fraction of workers on each machine to use for network training
computation. If you train the network using data in a mini-batch datastore with background
dispatch enabled, then the remaining workers fetch and preprocess data in the background.

• Positive integer — Number of workers on each machine to use for network training computation.
If you train the network using data in a mini-batch datastore with background dispatch enabled,
then the remaining workers fetch and preprocess data in the background.

• Numeric vector — Network training load for each worker in the parallel pool. For a vector W,
worker i gets a fraction W(i)/sum(W) of the work (number of examples per mini-batch). If you
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train a network using data in a mini-batch datastore with background dispatch enabled, then you
can assign a worker load of 0 to use that worker for fetching data in the background. The
specified vector must contain one value per worker in the parallel pool.

If the parallel pool has access to GPUs, then workers without a unique GPU are never used for
training computation. The default for pools with GPUs is to use all workers with a unique GPU for
training computation, and the remaining workers for background dispatch. If the pool does not have
access to GPUs and CPUs are used for training, then the default is to use one worker per machine for
background data dispatch.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DispatchInBackground — Flag to enable background dispatch
0 (false) (default) | 1 (true)

Flag to enable background dispatch (asynchronous prefetch queuing) to read training data from
datastores, specified as 0 (false) or 1 (true). Background dispatch requires Parallel Computing
Toolbox.

DispatchInBackground is only supported for datastores that are partitionable. For more
information, see “Use Datastore for Parallel Training and Background Dispatching”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Checkpoints

CheckpointPath — Path for saving checkpoint networks
"" (default) | character vector

Path for saving the checkpoint networks, specified as a character vector or string scalar.

• If you do not specify a path (that is, you use the default ""), then the software does not save any
checkpoint networks.

• If you specify a path, then trainNetwork saves checkpoint networks to this path and assigns a
unique name to each network. You can then load any checkpoint network and resume training
from that network.

If the folder does not exist, then you must first create it before specifying the path for saving the
checkpoint networks. If the path you specify does not exist, then trainingOptions returns an
error.

The CheckpointFrequency and CheckpointFrequencyUnit options specify the frequency of
saving checkpoint networks.

For more information about saving network checkpoints, see “Save Checkpoint Networks and
Resume Training”.
Data Types: char | string

CheckpointFrequency — Frequency of saving checkpoint networks
1 (default) | positive integer

Frequency of saving checkpoint networks, specified as a positive integer.

If CheckpointFrequencyUnit is 'epoch', then the software saves checkpoint networks every
CheckpointFrequency epochs.
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If CheckpointFrequencyUnit is 'iteration', then the software saves checkpoint networks every
CheckpointFrequency iterations.

This option only has an effect when CheckpointPath is nonempty.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CheckpointFrequencyUnit — Checkpoint frequency unit
'epoch' (default) | 'iteration'

Checkpoint frequency unit, specified as 'epoch' or 'iteration'.

If CheckpointFrequencyUnit is 'epoch', then the software saves checkpoint networks every
CheckpointFrequency epochs.

If CheckpointFrequencyUnit is 'iteration', then the software saves checkpoint networks every
CheckpointFrequency iterations.

This option only has an effect when CheckpointPath is nonempty.

OutputFcn — Output functions
function handle | cell array of function handles

Output functions to call during training, specified as a function handle or cell array of function
handles. trainNetwork calls the specified functions once before the start of training, after each
iteration, and once after training has finished. trainNetwork passes a structure containing
information in the following fields:

Field Description
Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
ValidationLoss Loss on the validation data
BaseLearnRate Current base learning rate
TrainingAccuracy Accuracy on the current mini-batch (classification

networks)
TrainingRMSE RMSE on the current mini-batch (regression

networks)
ValidationAccuracy Accuracy on the validation data (classification

networks)
ValidationRMSE RMSE on the validation data (regression

networks)
State Current training state, with a possible value of

"start", "iteration", or "done".

If a field is not calculated or relevant for a certain call to the output functions, then that field contains
an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop
training early, make your output function return 1 (true). If any output function returns 1 (true), then
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training finishes and trainNetwork returns the latest network. For an example showing how to use
output functions, see “Customize Output During Deep Learning Network Training”.
Data Types: function_handle | cell

Examples
Create Training Options for the RMSProp Optimizer

Create a set of options for training a neural network using the RMSProp optimizer. Set the maximum
number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration.
Specify the learning rate and the decay rate of the moving average of the squared gradient. Turn on
the training progress plot.

options = trainingOptions("rmsprop", ...
    InitialLearnRate=3e-4, ...
    SquaredGradientDecayFactor=0.99, ...
    MaxEpochs=20, ...
    MiniBatchSize=64, ...
    Plots="training-progress")

options = 
  TrainingOptionsRMSProp with properties:

      SquaredGradientDecayFactor: 0.9900
                         Epsilon: 1.0000e-08
                InitialLearnRate: 3.0000e-04
               LearnRateSchedule: 'none'
             LearnRateDropFactor: 0.1000
             LearnRateDropPeriod: 10
                L2Regularization: 1.0000e-04
         GradientThresholdMethod: 'l2norm'
               GradientThreshold: Inf
                       MaxEpochs: 20
                   MiniBatchSize: 64
                         Verbose: 1
                VerboseFrequency: 50
                  ValidationData: []
             ValidationFrequency: 50
              ValidationPatience: Inf
                         Shuffle: 'once'
                  CheckpointPath: ''
             CheckpointFrequency: 1
         CheckpointFrequencyUnit: 'epoch'
            ExecutionEnvironment: 'auto'
                      WorkerLoad: []
                       OutputFcn: []
                           Plots: 'training-progress'
                  SequenceLength: 'longest'
            SequencePaddingValue: 0
        SequencePaddingDirection: 'right'
            DispatchInBackground: 0
         ResetInputNormalization: 1
    BatchNormalizationStatistics: 'population'
                   OutputNetwork: 'last-iteration'
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Algorithms
RMSProp

Stochastic gradient descent with momentum uses a single learning rate for all the parameters. Other
optimization algorithms seek to improve network training by using learning rates that differ by
parameter and can automatically adapt to the loss function being optimized. RMSProp (root mean
square propagation) is one such algorithm. It keeps a moving average of the element-wise squares of
the parameter gradients,

vℓ = β2vℓ− 1 + (1 − β2)[∇E θℓ ]2

β2 is the decay rate of the moving average. Common values of the decay rate are 0.9, 0.99, and 0.999.
The corresponding averaging lengths of the squared gradients equal 1/(1-β2), that is, 10, 100, and
1000 parameter updates, respectively. You can specify β2 by using the
SquaredGradientDecayFactor training options. The RMSProp algorithm uses this moving average
to normalize the updates of each parameter individually,

θℓ + 1 = θℓ−
α∇E θℓ

vℓ + ϵ

where the division is performed element-wise. Using RMSProp effectively decreases the learning
rates of parameters with large gradients and increases the learning rates of parameters with small
gradients. ɛ is a small constant added to avoid division by zero. You can specify ɛ by using the
Epsilon training option, but the default value usually works well. To use RMSProp to train a neural
network, specify 'rmsprop' as the first input to trainingOptions.

L2 Regularization

Adding a regularization term for the weights to the loss function E θ  is one way to reduce overfitting
[1], [2]. The regularization term is also called weight decay. The loss function with the regularization
term takes the form

ER θ = E θ + λΩ w ,

where w is the weight vector, λ is the regularization factor (coefficient), and the regularization
function Ω w  is

Ω w = 1
2wTw .

Note that the biases are not regularized [2]. You can specify the regularization factor λ by using the
L2Regularization training option. You can also specify different regularization factors for different
layers and parameters. For more information, see “Set Up Parameters in Convolutional and Fully
Connected Layers”.

The loss function that the software uses for network training includes the regularization term.
However, the loss value displayed in the command window and training progress plot during training
is the loss on the data only and does not include the regularization term.

Gradient Clipping

If the gradients increase in magnitude exponentially, then the training is unstable and can diverge
within a few iterations. This "gradient explosion" is indicated by a training loss that goes to NaN or
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Inf. Gradient clipping helps prevent gradient explosion by stabilizing the training at higher learning
rates and in the presence of outliers [3]. Gradient clipping enables networks to be trained faster, and
does not usually impact the accuracy of the learned task.

There are two types of gradient clipping.

• Norm-based gradient clipping rescales the gradient based on a threshold, and does not change the
direction of the gradient. The 'l2norm' and 'global-l2norm' values of
GradientThresholdMethod are norm-based gradient clipping methods.

• Value-based gradient clipping clips any partial derivative greater than the threshold, which can
result in the gradient arbitrarily changing direction. Value-based gradient clipping can have
unpredictable behavior, but sufficiently small changes do not cause the network to diverge. The
'absolute-value' value of GradientThresholdMethod is a value-based gradient clipping
method.

Version History
Introduced in R2018a

trainNetwork pads mini-batches to length of longest sequence before splitting when you
specify SequenceLength training option as an integer

Starting in R2022b, when you train a network with sequence data using the trainNetwork function
and the SequenceLength option is an integer, the software pads sequences to the length of the
longest sequence in each mini-batch and then splits the sequences into mini-batches with the
specified sequence length. If SequenceLength does not evenly divide the sequence length of the
mini-batch, then the last split mini-batch has a length shorter than SequenceLength. This behavior
prevents the network training on time steps that contain only padding values.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, use a custom training loop and implement this behavior
when you preprocess mini-batches of data.

ValidationPatience training option default is Inf
Behavior changed in R2018b

Starting in R2018b, the default value of the ValidationPatience training option is Inf, which
means that automatic stopping via validation is turned off. This behavior prevents the training from
stopping before sufficiently learning from the data.

In previous versions, the default value is 5. To reproduce this behavior, set the
ValidationPatience option to 5.

See Also
trainNetwork | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Resume Training from Checkpoint Network”
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“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
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TrainingOptionsSGDM
Training options for stochastic gradient descent with momentum

Description
Training options for stochastic gradient descent with momentum, including learning rate information,
L2 regularization factor, and mini-batch size.

Creation
Create a TrainingOptionsSGDM object using trainingOptions and specifying 'sgdm' as the first
input argument.

Properties
Plots and Display

Plots — Plots to display during network training
'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

• 'none' — Do not display plots during training.
• 'training-progress' — Plot training progress. The plot shows mini-batch loss and accuracy,

validation loss and accuracy, and additional information on the training progress. The plot has a
stop button  in the top-right corner. Click the button to stop training and return the current
state of the network. You can save the training plot as an image or PDF by clicking Export
Training Plot. For more information on the training progress plot, see “Monitor Deep Learning
Training Progress”.

Verbose — Indicator to display training progress information
1 (true) (default) | 0 (false)

Indicator to display training progress information in the command window, specified as 1 (true) or 0
(false).

The verbose output displays the following information:
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Classification Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch Accuracy Classification accuracy on the mini-batch.
Validation Accuracy Classification accuracy on the validation data. If

you do not specify validation data, then the
function does not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
ClassificationOutputLayer object, then the
loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes.

Validation Loss Loss on the validation data. If the output layer is
a ClassificationOutputLayer object, then
the loss is the cross entropy loss for multi-class
classification problems with mutually exclusive
classes. If you do not specify validation data, then
the function does not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.
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Regression Networks

Field Description
Epoch Epoch number. An epoch corresponds to a full

pass of the data.
Iteration Iteration number. An iteration corresponds to a

mini-batch.
Time Elapsed Time elapsed in hours, minutes, and seconds.
Mini-batch RMSE Root-mean-squared-error (RMSE) on the mini-

batch.
Validation RMSE RMSE on the validation data. If you do not

specify validation data, then the software does
not display this field.

Mini-batch Loss Loss on the mini-batch. If the output layer is a
RegressionOutputLayer object, then the loss
is the half-mean-squared-error.

Validation Loss Loss on the validation data. If the output layer is
a RegressionOutputLayer object, then the
loss is the half-mean-squared-error. If you do not
specify validation data, then the software does
not display this field.

Base Learning Rate Base learning rate. The software multiplies the
learn rate factors of the layers by this value.

When training stops, the verbose output displays the reason for stopping.

To specify validation data, use the ValidationData training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

VerboseFrequency — Frequency of verbose printing
50 (default) | positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer. This option only has an effect when the Verbose training
option is 1 (true).

If you validate the network during training, then trainNetwork also prints to the command window
every time validation occurs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Mini-Batch Options

MaxEpochs — Maximum number of epochs
30 (default) | positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function
using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MiniBatchSize — Size of mini-batch
128 (default) | positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is
a subset of the training set that is used to evaluate the gradient of the loss function and update the
weights.

If the mini-batch size does not evenly divide the number of training samples, then trainNetwork
discards the training data that does not fit into the final complete mini-batch of each epoch.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Shuffle — Option for data shuffling
'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

• 'once' — Shuffle the training and validation data once before training.
• 'never' — Do not shuffle the data.
• 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation

data before each network validation. If the mini-batch size does not evenly divide the number of
training samples, then trainNetwork discards the training data that does not fit into the final
complete mini-batch of each epoch. To avoid discarding the same data every epoch, set the
Shuffle training option to 'every-epoch'.

Validation

ValidationData — Data to use for validation during training
[] (default) | datastore | table | cell array

Data to use for validation during training, specified as [], a datastore, a table, or a cell array
containing the validation predictors and responses.

You can specify validation predictors and responses using the same formats supported by the
trainNetwork function. You can specify the validation data as a datastore, table, or the cell array
{predictors,responses}, where predictors contains the validation predictors and responses
contains the validation responses.

For more information, see the images, sequences, and features input arguments of the
trainNetwork function.

During training, trainNetwork calculates the validation accuracy and validation loss on the
validation data. To specify the validation frequency, use the ValidationFrequency training option.
You can also use the validation data to stop training automatically when the validation loss stops
decreasing. To turn on automatic validation stopping, use the ValidationPatience training option.

If your network has layers that behave differently during prediction than during training (for
example, dropout layers), then the validation accuracy can be higher than the training (mini-batch)
accuracy.

The validation data is shuffled according to the Shuffle training option. If Shuffle is 'every-
epoch', then the validation data is shuffled before each network validation.
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If ValidationData is [], then the software does not validate the network during training.

ValidationFrequency — Frequency of network validation
50 (default) | positive integer

Frequency of network validation in number of iterations, specified as a positive integer.

The ValidationFrequency value is the number of iterations between evaluations of validation
metrics. To specify validation data, use the ValidationData training option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ValidationPatience — Patience of validation stopping
Inf (default) | positive integer

Patience of validation stopping of network training, specified as a positive integer or Inf.

ValidationPatience specifies the number of times that the loss on the validation set can be larger
than or equal to the previously smallest loss before network training stops. If ValidationPatience
is Inf, then the values of the validation loss do not cause training to stop early.

The returned network depends on the OutputNetwork training option. To return the network with
the lowest validation loss, set the OutputNetwork training option to "best-validation-loss".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputNetwork — Network to return when training completes
'last-iteration' (default) | 'best-validation-loss'

Network to return when training completes, specified as one of the following:

• 'last-iteration' – Return the network corresponding to the last training iteration.
• 'best-validation-loss' – Return the network corresponding to the training iteration with the

lowest validation loss. To use this option, you must specify the ValidationData training option.

Solver Options

InitialLearnRate — Initial learning rate
0.01 (default) | positive scalar

Initial learning rate used for training, specified as a positive scalar.

If the learning rate is too low, then training can take a long time. If the learning rate is too high, then
training might reach a suboptimal result or diverge.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LearnRateScheduleSettings — Settings for learning rate schedule
structure

This property is read-only.

Settings for the learning rate schedule, specified as a structure. LearnRateScheduleSettings has
the field Method, which specifies the type of method for adjusting the learning rate. The possible
methods are:
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• 'none' — The learning rate is constant throughout training.
• 'piecewise' — The learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more fields:

• DropRateFactor — The multiplicative factor by which the learning rate drops during training
• DropPeriod — The number of epochs that passes between adjustments to the learning rate

during training

Specify the settings for the learning schedule rate using trainingOptions.
Data Types: struct

L2Regularization — Factor for L2 regularization
0.0001 (default) | nonnegative scalar

Factor for L2 regularization (weight decay), specified as a nonnegative scalar. For more information,
see “L2 Regularization” on page 1-1675.

You can specify a multiplier for the L2 regularization for network layers with learnable parameters.
For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Momentum — Contribution of previous step
0.9 (default) | scalar from 0 to 1

Contribution of the parameter update step of the previous iteration to the current iteration of
stochastic gradient descent with momentum, specified as a scalar from 0 to 1.

A value of 0 means no contribution from the previous step, whereas a value of 1 means maximal
contribution from the previous step. The default value works well for most tasks.

For more information, see “Stochastic Gradient Descent with Momentum” on page 1-1675.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ResetInputNormalization — Option to reset input layer normalization
1 (true) (default) | 0 (false)

Option to reset input layer normalization, specified as one of the following:

• 1 (true) — Reset the input layer normalization statistics and recalculate them at training time.
• 0 (false) — Calculate normalization statistics at training time when they are empty.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

BatchNormalizationStatistics — Mode to evaluate statistics in batch normalization
layers
'population' (default) | 'moving'

Mode to evaluate the statistics in batch normalization layers, specified as one of the following:

• 'population' – Use the population statistics. After training, the software finalizes the statistics
by passing through the training data once more and uses the resulting mean and variance.
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• 'moving' – Approximate the statistics during training using a running estimate given by update
steps

μ* = λμμ + (1 − λμ)μ

σ2* = λσ2σ2+(1‐λσ2)σ2

where μ* and σ2* denote the updated mean and variance, respectively, λμ and λσ2 denote the

mean and variance decay values, respectively, μ  and σ2 denote the mean and variance of the layer
input, respectively, and μ and σ2 denote the latest values of the moving mean and variance values,
respectively. After training, the software uses the most recent value of the moving mean and
variance statistics. This option supports CPU and single GPU training only.

Gradient Clipping

GradientThreshold — Gradient threshold
Inf (default) | positive scalar

Gradient threshold, specified as Inf or a positive scalar. If the gradient exceeds the value of
GradientThreshold, then the gradient is clipped according to the GradientThresholdMethod
training option.

For more information, see Gradient Clipping on page 1-1675.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

GradientThresholdMethod — Gradient threshold method
'l2norm' (default) | 'global-l2norm' | 'absolute-value'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as one of the following:

• 'l2norm' — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.

• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-1675.

Sequence Options

SequenceLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

• "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.
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• Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

• "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

• "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Hardware Options

ExecutionEnvironment — Hardware resource for training network
'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
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• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.
• 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your

default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

• 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform training computation. If the pool
does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

'gpu', 'multi-gpu', and 'parallel' options require Parallel Computing Toolbox. To use a GPU
for deep learning, you must also have a supported GPU device. For information on supported devices,
see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of these options
and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize
and InitialLearnRate training options by the number of GPUs.

The 'multi-gpu' and 'parallel' options do not support networks containing custom layers with
state parameters or built-in layers that are stateful at training time. For example:

• recurrent layers such as LSTMLayer, BiLSTMLayer, or GRULayer objects when the
SequenceLength training option is a positive integer

• BatchNormalizationLayer objects when the BatchNormalizationStatistics training
option is set to 'moving'

WorkerLoad — Parallel worker load division
scalar from 0 to 1 | positive integer | numeric vector

Parallel worker load division between GPUs or CPUs, specified as one of the following:

• Scalar from 0 to 1 — Fraction of workers on each machine to use for network training
computation. If you train the network using data in a mini-batch datastore with background
dispatch enabled, then the remaining workers fetch and preprocess data in the background.

• Positive integer — Number of workers on each machine to use for network training computation.
If you train the network using data in a mini-batch datastore with background dispatch enabled,
then the remaining workers fetch and preprocess data in the background.

• Numeric vector — Network training load for each worker in the parallel pool. For a vector W,
worker i gets a fraction W(i)/sum(W) of the work (number of examples per mini-batch). If you
train a network using data in a mini-batch datastore with background dispatch enabled, then you
can assign a worker load of 0 to use that worker for fetching data in the background. The
specified vector must contain one value per worker in the parallel pool.

If the parallel pool has access to GPUs, then workers without a unique GPU are never used for
training computation. The default for pools with GPUs is to use all workers with a unique GPU for
training computation, and the remaining workers for background dispatch. If the pool does not have
access to GPUs and CPUs are used for training, then the default is to use one worker per machine for
background data dispatch.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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DispatchInBackground — Flag to enable background dispatch
0 (false) (default) | 1 (true)

Flag to enable background dispatch (asynchronous prefetch queuing) to read training data from
datastores, specified as 0 (false) or 1 (true). Background dispatch requires Parallel Computing
Toolbox.

DispatchInBackground is only supported for datastores that are partitionable. For more
information, see “Use Datastore for Parallel Training and Background Dispatching”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Checkpoints

CheckpointPath — Path for saving checkpoint networks
"" (default) | character vector

Path for saving the checkpoint networks, specified as a character vector or string scalar.

• If you do not specify a path (that is, you use the default ""), then the software does not save any
checkpoint networks.

• If you specify a path, then trainNetwork saves checkpoint networks to this path and assigns a
unique name to each network. You can then load any checkpoint network and resume training
from that network.

If the folder does not exist, then you must first create it before specifying the path for saving the
checkpoint networks. If the path you specify does not exist, then trainingOptions returns an
error.

The CheckpointFrequency and CheckpointFrequencyUnit options specify the frequency of
saving checkpoint networks.

For more information about saving network checkpoints, see “Save Checkpoint Networks and
Resume Training”.
Data Types: char | string

CheckpointFrequency — Frequency of saving checkpoint networks
1 (default) | positive integer

Frequency of saving checkpoint networks, specified as a positive integer.

If CheckpointFrequencyUnit is 'epoch', then the software saves checkpoint networks every
CheckpointFrequency epochs.

If CheckpointFrequencyUnit is 'iteration', then the software saves checkpoint networks every
CheckpointFrequency iterations.

This option only has an effect when CheckpointPath is nonempty.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CheckpointFrequencyUnit — Checkpoint frequency unit
'epoch' (default) | 'iteration'

Checkpoint frequency unit, specified as 'epoch' or 'iteration'.
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If CheckpointFrequencyUnit is 'epoch', then the software saves checkpoint networks every
CheckpointFrequency epochs.

If CheckpointFrequencyUnit is 'iteration', then the software saves checkpoint networks every
CheckpointFrequency iterations.

This option only has an effect when CheckpointPath is nonempty.

OutputFcn — Output functions
function handle | cell array of function handles

Output functions to call during training, specified as a function handle or cell array of function
handles. trainNetwork calls the specified functions once before the start of training, after each
iteration, and once after training has finished. trainNetwork passes a structure containing
information in the following fields:

Field Description
Epoch Current epoch number
Iteration Current iteration number
TimeSinceStart Time in seconds since the start of training
TrainingLoss Current mini-batch loss
ValidationLoss Loss on the validation data
BaseLearnRate Current base learning rate
TrainingAccuracy Accuracy on the current mini-batch (classification

networks)
TrainingRMSE RMSE on the current mini-batch (regression

networks)
ValidationAccuracy Accuracy on the validation data (classification

networks)
ValidationRMSE RMSE on the validation data (regression

networks)
State Current training state, with a possible value of

"start", "iteration", or "done".

If a field is not calculated or relevant for a certain call to the output functions, then that field contains
an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop
training early, make your output function return 1 (true). If any output function returns 1 (true), then
training finishes and trainNetwork returns the latest network. For an example showing how to use
output functions, see “Customize Output During Deep Learning Network Training”.
Data Types: function_handle | cell

Examples
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Specify Training Options

Create a set of options for training a network using stochastic gradient descent with momentum.
Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum number of epochs for
training to 20, and use a mini-batch with 64 observations at each iteration. Turn on the training
progress plot.

options = trainingOptions("sgdm", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.2, ...
    LearnRateDropPeriod=5, ...
    MaxEpochs=20, ...
    MiniBatchSize=64, ...
    Plots="training-progress")

options = 
  TrainingOptionsSGDM with properties:

                        Momentum: 0.9000
                InitialLearnRate: 0.0100
               LearnRateSchedule: 'piecewise'
             LearnRateDropFactor: 0.2000
             LearnRateDropPeriod: 5
                L2Regularization: 1.0000e-04
         GradientThresholdMethod: 'l2norm'
               GradientThreshold: Inf
                       MaxEpochs: 20
                   MiniBatchSize: 64
                         Verbose: 1
                VerboseFrequency: 50
                  ValidationData: []
             ValidationFrequency: 50
              ValidationPatience: Inf
                         Shuffle: 'once'
                  CheckpointPath: ''
             CheckpointFrequency: 1
         CheckpointFrequencyUnit: 'epoch'
            ExecutionEnvironment: 'auto'
                      WorkerLoad: []
                       OutputFcn: []
                           Plots: 'training-progress'
                  SequenceLength: 'longest'
            SequencePaddingValue: 0
        SequencePaddingDirection: 'right'
            DispatchInBackground: 0
         ResetInputNormalization: 1
    BatchNormalizationStatistics: 'population'
                   OutputNetwork: 'last-iteration'
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Algorithms
Stochastic Gradient Descent with Momentum

The stochastic gradient descent algorithm can oscillate along the path of steepest descent towards
the optimum. Adding a momentum term to the parameter update is one way to reduce this oscillation
[2]. The stochastic gradient descent with momentum (SGDM) update is

θℓ + 1 = θℓ− α∇E θℓ + γ θℓ− θℓ− 1 ,

where γ determines the contribution of the previous gradient step to the current iteration. You can
specify this value using the Momentum training option. To train a neural network using the stochastic
gradient descent with momentum algorithm, specify 'sgdm' as the first input argument to
trainingOptions. To specify the initial value of the learning rate α, use the InitialLearnRate
training option. You can also specify different learning rates for different layers and parameters. For
more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.

L2 Regularization

Adding a regularization term for the weights to the loss function E θ  is one way to reduce overfitting
[1], [2]. The regularization term is also called weight decay. The loss function with the regularization
term takes the form

ER θ = E θ + λΩ w ,

where w is the weight vector, λ is the regularization factor (coefficient), and the regularization
function Ω w  is

Ω w = 1
2wTw .

Note that the biases are not regularized [2]. You can specify the regularization factor λ by using the
L2Regularization training option. You can also specify different regularization factors for different
layers and parameters. For more information, see “Set Up Parameters in Convolutional and Fully
Connected Layers”.

The loss function that the software uses for network training includes the regularization term.
However, the loss value displayed in the command window and training progress plot during training
is the loss on the data only and does not include the regularization term.

Gradient Clipping

If the gradients increase in magnitude exponentially, then the training is unstable and can diverge
within a few iterations. This "gradient explosion" is indicated by a training loss that goes to NaN or
Inf. Gradient clipping helps prevent gradient explosion by stabilizing the training at higher learning
rates and in the presence of outliers [3]. Gradient clipping enables networks to be trained faster, and
does not usually impact the accuracy of the learned task.

There are two types of gradient clipping.

• Norm-based gradient clipping rescales the gradient based on a threshold, and does not change the
direction of the gradient. The 'l2norm' and 'global-l2norm' values of
GradientThresholdMethod are norm-based gradient clipping methods.

• Value-based gradient clipping clips any partial derivative greater than the threshold, which can
result in the gradient arbitrarily changing direction. Value-based gradient clipping can have

 TrainingOptionsSGDM

1-1675



unpredictable behavior, but sufficiently small changes do not cause the network to diverge. The
'absolute-value' value of GradientThresholdMethod is a value-based gradient clipping
method.

Version History
Introduced in R2016a

trainNetwork pads mini-batches to length of longest sequence before splitting when you
specify SequenceLength training option as an integer

Starting in R2022b, when you train a network with sequence data using the trainNetwork function
and the SequenceLength option is an integer, the software pads sequences to the length of the
longest sequence in each mini-batch and then splits the sequences into mini-batches with the
specified sequence length. If SequenceLength does not evenly divide the sequence length of the
mini-batch, then the last split mini-batch has a length shorter than SequenceLength. This behavior
prevents the network training on time steps that contain only padding values.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, use a custom training loop and implement this behavior
when you preprocess mini-batches of data.

ValidationPatience training option default is Inf
Behavior changed in R2018b

Starting in R2018b, the default value of the ValidationPatience training option is Inf, which
means that automatic stopping via validation is turned off. This behavior prevents the training from
stopping before sufficiently learning from the data.

In previous versions, the default value is 5. To reproduce this behavior, set the
ValidationPatience option to 5.

See Also
trainNetwork | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Resume Training from Checkpoint Network”
“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
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trainingProgressMonitor
Monitor and plot training progress for deep learning custom training loops

Description
Use a TrainingProgressMonitor object to track training progress when using a custom training
loop.

You can use a TrainingProgressMonitor object to:

• Create animated custom metric plots and record custom metrics during training.
• Display and record training information during training.
• Stop training early.
• Track training progress with a progress bar.
• Track elapsed time.

This image shows an example of the Training Progress window during training. For more information
about configuring the Training Progress window and an example showing how to generate this figure,
see “Monitor Custom Training Loop Progress”.
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Creation
Syntax
monitor = trainingProgressMonitor
monitor = trainingProgressMonitor(Name=Value)

Description

monitor = trainingProgressMonitor creates a TrainingProgressMonitor object that you
can use to track the training progress and create training plots.

monitor = trainingProgressMonitor(Name=Value) sets the Metrics, Info, Visible,
Progress, Status, and XLabel properties using one or more name-value arguments.

Properties
Metrics — Metric names
"" (default) | string scalar | character vector | string array | cell array of character vectors

Metric names, specified as a string scalar, character vector, string array, or cell array of character
vectors. Valid names begin with a letter, and contain letters, digits, and underscores. Each metric
appears in its own training subplot. To plot more than one metric in a single subplot, use the
groupSubPlot function.
Example: ["TrainingLoss","ValidationLoss"];
Data Types: char | string | cell

Info — Information names
"" (default) | string scalar | character vector | string array | cell array of character vectors

Information names, specified as a string scalar, character vector, string array, or cell array of
character vectors. Valid names begin with a letter, and contain letters, digits, and underscores. These
names appear in the Training Progress window but do not appear as training plots.
Example: ["GradientDecayFactor","SquaredGradientDecayFactor"];
Data Types: char | string | cell

Stop — Request to stop training
false or 0 (default) | true or 1

This property is read-only.

Request to stop training, specified as a numeric or logical 0 (false) or 1 (true). The value of this
property changes to 1 when you click the Stop button in the Training Progress window. The Stop
button only appears if you set the Visible property to 'on' or 1 (true).
Data Types: logical

Visible — State of visibility
'on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
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property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display the Training Progress window.
• 'off' — Hide the Training Progress window without deleting it. You still can access the

properties of an invisible object.

Example: 'off'

Progress — Training progress percentage
0 (default) | scalar in the range [0, 100] | dlarray object in the range [0, 100]

Training progress percentage, specified as a scalar or dlarray object in the range [0, 100].
Example: 17;

XLabel — Horizontal axis label
"" (default) | string scalar | character vector

Horizontal axis label in the training plot, specified as a string scalar or character vector.
Example: "Iteration";
Data Types: char | string | cell

Status — Training status
"" (default) | string scalar | character vector

Training status, specified as a string scalar or character vector.
Example: "Running";
Data Types: char | string | cell

MetricData — Metric values
structure

This property is read-only.

Metric values, specified as a structure. Use the Metrics property to specify the field names for the
structure. Each field contains a matrix with two columns. The first column contains the custom
training loop step values and the second column contains the metric values recorded by the
recordMetrics function.
Data Types: struct

InfoData — Information values
structure

This property is read-only.

Information values, specified as a structure. Use the Info property to specify the field names for the
structure. Each field is a column vector that contains the values updated by the updateInfo
function.
Data Types: struct
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Object Functions
groupSubPlot Group metrics in training plot
recordMetrics Record metric values for custom training loops
updateInfo Update information values for custom training loops

Examples

Track Progress and Produce Training Plots

Use a TrainingProgressMonitor object to track training progress and produce training plots for
custom training loops.

Create a TrainingProgressMonitor object. The monitor automatically tracks the start time and
the elapsed time. The timer starts when you create the object.

Tip To ensure that the elapsed time accurately reflects the training time, make sure you create the
TrainingProgressMonitor object close to the start of your custom training loop.

monitor = trainingProgressMonitor;

Before you start the training, specify names for the information and metric values.

monitor.Info = ["LearningRate","Epoch","Iteration"];
monitor.Metrics = ["TrainingLoss","ValidationLoss","TrainingAccuracy","ValidationAccuracy"];

Specify the horizontal axis label for the training plot. Group the training and validation loss in the
same subplot, and group the training and validation accuracy in the same plot.

monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);
groupSubPlot(monitor,"Accuracy",["TrainingAccuracy","ValidationAccuracy"]);

During training:

• Evaluate the Stop property at the start of each step in your custom training loop. When you click
the Stop button in the Training Progress window, the Stop property changes to 1. Training stops
if your training loop exits when the Stop property is 1.

• Update the information values. The updated values appear in the Training Progress window.
• Record the metric values. The recorded values appear in the training plot.
• Update the training progress percentage based on the fraction of iterations completed.

Note The following example code is a template. You must edit this training loop to compute your
metric and information values. For a complete example that you can run in MATLAB, see “Monitor
Custom Training Loop Progress During Training”.

epoch = 0;
iteration = 0;

monitor.Status = "Running";
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while epoch < maxEpochs && ~monitor.Stop
    epoch = epoch + 1;

    while hasData(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Add code to calculate metric and information values.
        % lossTrain = ...

       updateInfo(monitor, ...
            LearningRate=learnRate, ...
            Epoch=string(epoch) + " of " + string(maxEpochs), ...
            Iteration=string(iteration) + " of " + string(numIterations));

       recordMetrics(monitor,iteration, ...
            TrainingLoss=lossTrain, ...
            TrainingAccuracy=accuracyTrain, ...
            ValidationLoss=lossValidation, ...
            ValidationAccuracy=accuracyValidation);

        monitor.Progress = 100*iteration/numIterations;
    end
end

The Training Progress window shows animated plots of the metrics, and the information values,
training progress bar, and elapsed time.

• The training plots update each time you call recordMetrics.
• The values under Information update each time you call updateInfo.
• The elapsed time updates each time you call recordMetrics or updateInfo, and when you

update the property.
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Prepare Plotting Code for Custom Training Experiment

A TrainingProgressMonitor object has the same properties and object functions as an
experiments.Monitor object. Therefore, you can easily adapt your plotting code for use in an
Experiment Manager setup script.

How you monitor training depends on where you are training.

• If you are using a custom training loop script, you must create and manage a
TrainingProgressMonitor object yourself.

• If you are using a custom training experiment, Experiment Manager creates an
experiments.Monitor object for each trial of your experiment. By default, Experiment
Manager saves the experiments.Monitor object as the variable monitor.

In Experiment Manager, you can use the experiments.Monitor object in place of the
TrainingProgressMonitor object in your custom training loop code.

For example, suppose your training script creates a TrainingProgressMonitor object to track and
plot training and validation loss.

monitor = trainingProgressMonitor( ...
    Metrics=["TrainingLoss","ValidationLoss"], ...
    XLabel="Iteration");

groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);
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iteration = 1;
recordMetrics(monitor,iteration,TrainingLoss=loss,ValidationLoss=lossVal);

To adapt this code for use in Experiment Manager with an experiments.Monitor object:

• Convert any code that sets properties using Name=Value syntax to use dot notation.
• Delete the call to trainingProgressMonitor. This is because Experiment Manager creates a

monitor for you.

Use the adapted code inside your Experiment Manager setup function.

% Inside custom training experiment setup function

monitor.Metrics=["TrainingLoss","ValidationLoss"];
monitor.XLabel = "Iteration";

groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);

iteration = 1;
recordMetrics(monitor,iteration,TrainingLoss=loss,ValidationLoss=lossVal);

Note Experiment Manager accesses the monitor object as the second input argument of the
training function. You must check that the second input argument matches the variable name of your
monitor object. For more information, see “Configure Custom Training Experiment” on page 1-49.

Tips
• The information values appear in the Training Progress window and the training plot shows a

record of the metric values. Use information values for text and for numerical values that you
want to display in the training window but not in the training plot.

• When you click the Stop button in the Training Progress window, the Stop property is set to 1
(true). This stops training if your training loop exits when the Stop property is 1. For example, to
enable early stopping, include the following code in your custom training loop.

while numEpochs < maxEpochs && ~monitor.Stop    
% Custom training loop code.   
end

• The elapsed time updates each time you call recordMetrics or updateInfo, and when you
update the Progress property.

Version History
Introduced in R2022b

See Also
groupSubPlot | updateInfo | recordMetrics | experiments.Monitor

Topics
“Monitor Custom Training Loop Progress”
“Train Network Using Custom Training Loop”
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trainNetwork
Train deep learning neural network

Syntax
net = trainNetwork(images,layers,options)
net = trainNetwork(images,responses,layers,options)

net = trainNetwork(sequences,layers,options)
net = trainNetwork(sequences,responses,layers,options)

net = trainNetwork(features,layers,options)
net = trainNetwork(features,responses,layers,options)

net = trainNetwork(mixed,layers,options)

[net,info] = trainNetwork( ___ )

Description
For classification and regression tasks, you can train various types of neural networks using the
trainNetwork function.

For example, you can train:

• a convolutional neural network (ConvNet, CNN) for image data
• a recurrent neural network (RNN) such as a long short-term memory (LSTM) or a gated recurrent

unit (GRU) network for sequence and time-series data
• a multilayer perceptron (MLP) network for numeric feature data

You can train on either a CPU or a GPU. For image classification and image regression, you can train
a single network in parallel using multiple GPUs or a local or remote parallel pool. Training on a GPU
or in parallel requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also
have a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). To specify training options, including options for the
execution environment, use the trainingOptions function.

When training a neural network, you can specify the predictors and responses as a single input or in
two separate inputs.

net = trainNetwork(images,layers,options) trains the neural network specified by layers
for image classification and regression tasks using the images and responses specified by images
and the training options defined by options.

net = trainNetwork(images,responses,layers,options) trains using the images specified
by images and responses specified by responses.

net = trainNetwork(sequences,layers,options) trains a neural network for sequence or
time-series classification and regression tasks (for example, an LSTM or GRU network) using the
sequences and responses specified by sequences.
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net = trainNetwork(sequences,responses,layers,options) trains using the sequences
specified by sequences and responses specified by responses.

net = trainNetwork(features,layers,options) trains a neural network for feature
classification or regression tasks (for example, a multilayer perceptron (MLP) network) using the
feature data and responses specified by features.

net = trainNetwork(features,responses,layers,options) trains using the feature data
specified by features and responses specified by responses.

net = trainNetwork(mixed,layers,options) trains a neural network with multiple inputs
with mixed data types with the data and responses specified by mixed.

[net,info] = trainNetwork( ___ ) also returns information on the training using any of the
previous syntaxes.

Examples

Train Network for Image Classification

Load the data as an ImageDatastore object.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet', ...
    'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

The datastore contains 10,000 synthetic images of digits from 0 to 9. The images are generated by
applying random transformations to digit images created with different fonts. Each digit image is 28-
by-28 pixels. The datastore contains an equal number of images per category.

Display some of the images in the datastore.

figure
numImages = 10000;
perm = randperm(numImages,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
    drawnow;
end
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Divide the datastore so that each category in the training set has 750 images and the testing set has
the remaining images from each label.

numTrainingFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainingFiles,'randomize');

splitEachLabel splits the image files in digitData into two new datastores, imdsTrain and
imdsTest.

Define the convolutional neural network architecture.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Set the options to the default settings for the stochastic gradient descent with momentum. Set the
maximum number of epochs at 20, and start the training with an initial learning rate of 0.0001.

options = trainingOptions('sgdm', ...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4, ...
    'Verbose',false, ...
    'Plots','training-progress');
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Train the network.

net = trainNetwork(imdsTrain,layers,options);

Run the trained network on the test set, which was not used to train the network, and predict the
image labels (digits).

YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;

Calculate the accuracy. The accuracy is the ratio of the number of true labels in the test data
matching the classifications from classify to the number of images in the test data.

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9412
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Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent
the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Create an imageDataAugmenter object that specifies preprocessing options for image
augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images
up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

imageAugmenter = imageDataAugmenter( ...
    'RandRotation',[-20,20], ...
    'RandXTranslation',[-3 3], ...
    'RandYTranslation',[-3 3])

imageAugmenter = 
  imageDataAugmenter with properties:

           FillValue: 0
     RandXReflection: 0
     RandYReflection: 0
        RandRotation: [-20 20]
           RandScale: [1 1]
          RandXScale: [1 1]
          RandYScale: [1 1]
          RandXShear: [0 0]
          RandYShear: [0 0]
    RandXTranslation: [-3 3]
    RandYTranslation: [-3 3]

Create an augmentedImageDatastore object to use for network training and specify the image
output size. During training, the datastore performs image augmentation and resizes the images. The
datastore augments the images without saving any images to memory. trainNetwork updates the
network parameters and then discards the augmented images.
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imageSize = [28 28 1];
augimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter);

Specify the convolutional neural network architecture.

layers = [
    imageInputLayer(imageSize)
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
    'MaxEpochs',15, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{XValidation,YValidation});

Train the network. Because the validation images are not augmented, the validation accuracy is
higher than the training accuracy.

net = trainNetwork(augimds,layers,opts);
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Train Network for Image Regression

Load the sample data, which consists of synthetic images of handwritten digits. The third output
contains the corresponding angles in degrees by which each image has been rotated.

Load the training images as 4-D arrays using digitTrain4DArrayData. The output XTrain is a 28-
by-28-by-1-by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits.

YTrain contains the rotation angles in degrees.

[XTrain,~,YTrain] = digitTrain4DArrayData;

Display 20 random training images using imshow.

figure
numTrainImages = numel(YTrain);
idx = randperm(numTrainImages,20);
for i = 1:numel(idx)
    subplot(4,5,i)    
    imshow(XTrain(:,:,:,idx(i)))
    drawnow;
end
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Specify the convolutional neural network architecture. For regression problems, include a regression
layer at the end of the network.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer];

Specify the network training options. Set the initial learn rate to 0.001.

options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.001, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(XTrain,YTrain,layers,options);
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Test the performance of the network by evaluating the prediction accuracy of the test data. Use
predict to predict the angles of rotation of the validation images.

[XTest,~,YTest] = digitTest4DArrayData;
YPred = predict(net,XTest);

Evaluate the performance of the model by calculating the root-mean-square error (RMSE) of the
predicted and actual angles of rotation.

rmse = sqrt(mean((YTest - YPred).^2))

rmse = single
    6.0709

Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.
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Load the Japanese Vowels data set as described in [1] and [2]. XTrain is a cell array containing 270
sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. Y is a
categorical vector of labels 1,2,...,9. The entries in XTrain are matrices with 12 rows (one row for
each feature) and a varying number of columns (one column for each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures),'Location','northeastoutside')

Define the LSTM network architecture. Specify the input size as 12 (the number of features of the
input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the
sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a
softmax layer and a classification layer.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
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    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 12 dimensions
     2   ''   LSTM                    LSTM with 100 hidden units
     3   ''   Fully Connected         9 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the
mini-batch size to 27 and set the maximum number of epochs to 70.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...
    'Verbose',false, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(XTrain,YTrain,layers,options);
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Load the test set and classify the sequences into speakers.

[XTest,YTest] = japaneseVowelsTestData;

Classify the test data. Specify the same mini-batch size used for training.

YPred = classify(net,XTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy of the predictions.

acc = sum(YPred == YTest)./numel(YTest)

acc = 0.9432

Train Network with Numeric Features

If you have a data set of numeric features (for example a collection of numeric data without spatial or
time dimensions), then you can train a deep learning network using a feature input layer.
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Read the transmission casing data from the CSV file "transmissionCasingData.csv".

filename = "transmissionCasingData.csv";
tbl = readtable(filename,'TextType','String');

Convert the labels for prediction to categorical using the convertvars function.

labelName = "GearToothCondition";
tbl = convertvars(tbl,labelName,'categorical');

To train a network using categorical features, you must first convert the categorical features to
numeric. First, convert the categorical predictors to categorical using the convertvars function by
specifying a string array containing the names of all the categorical input variables. In this data set,
there are two categorical features with names "SensorCondition" and "ShaftCondition".

categoricalInputNames = ["SensorCondition" "ShaftCondition"];
tbl = convertvars(tbl,categoricalInputNames,'categorical');

Loop over the categorical input variables. For each variable:

• Convert the categorical values to one-hot encoded vectors using the onehotencode function.
• Add the one-hot vectors to the table using the addvars function. Specify to insert the vectors

after the column containing the corresponding categorical data.
• Remove the corresponding column containing the categorical data.

for i = 1:numel(categoricalInputNames)
    name = categoricalInputNames(i);
    oh = onehotencode(tbl(:,name));
    tbl = addvars(tbl,oh,'After',name);
    tbl(:,name) = [];
end

Split the vectors into separate columns using the splitvars function.

tbl = splitvars(tbl);

View the first few rows of the table. Notice that the categorical predictors have been split into
multiple columns with the categorical values as the variable names.

head(tbl)

    SigMean     SigMedian    SigRMS    SigVar     SigPeak    SigPeak2Peak    SigSkewness    SigKurtosis    SigCrestFactor    SigMAD     SigRangeCumSum    SigCorrDimension    SigApproxEntropy    SigLyapExponent    PeakFreq    HighFreqPower    EnvPower    PeakSpecKurtosis    No Sensor Drift    Sensor Drift    No Shaft Wear    Shaft Wear    GearToothCondition
    ________    _________    ______    _______    _______    ____________    ___________    ___________    ______________    _______    ______________    ________________    ________________    _______________    ________    _____________    ________    ________________    _______________    ____________    _____________    __________    __________________

    -0.94876     -0.9722     1.3726    0.98387    0.81571       3.6314        -0.041525       2.2666           2.0514         0.8081        28562              1.1429             0.031581            79.931            0          6.75e-06       3.23e-07         162.13                0                1                1              0           No Tooth Fault  
    -0.97537    -0.98958     1.3937    0.99105    0.81571       3.6314        -0.023777       2.2598           2.0203        0.81017        29418              1.1362             0.037835            70.325            0          5.08e-08       9.16e-08         226.12                0                1                1              0           No Tooth Fault  
      1.0502      1.0267     1.4449    0.98491     2.8157       3.6314         -0.04162       2.2658           1.9487        0.80853        31710              1.1479             0.031565            125.19            0          6.74e-06       2.85e-07         162.13                0                1                0              1           No Tooth Fault  
      1.0227      1.0045     1.4288    0.99553     2.8157       3.6314        -0.016356       2.2483           1.9707        0.81324        30984              1.1472             0.032088             112.5            0          4.99e-06        2.4e-07         162.13                0                1                0              1           No Tooth Fault  
      1.0123      1.0024     1.4202    0.99233     2.8157       3.6314        -0.014701       2.2542           1.9826        0.81156        30661              1.1469              0.03287            108.86            0          3.62e-06       2.28e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0275      1.0102     1.4338     1.0001     2.8157       3.6314         -0.02659       2.2439           1.9638        0.81589        31102              1.0985             0.033427            64.576            0          2.55e-06       1.65e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0464      1.0275     1.4477     1.0011     2.8157       3.6314        -0.042849       2.2455           1.9449        0.81595        31665              1.1417             0.034159            98.838            0          1.73e-06       1.55e-07         230.39                0                1                0              1           No Tooth Fault  
      1.0459      1.0257     1.4402    0.98047     2.8157       3.6314        -0.035405       2.2757            1.955        0.80583        31554              1.1345               0.0353            44.223            0          1.11e-06       1.39e-07         230.39                0                1                0              1           No Tooth Fault  

View the class names of the data set.

classNames = categories(tbl{:,labelName})

classNames = 2x1 cell
    {'No Tooth Fault'}
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    {'Tooth Fault'   }

Next, partition the data set into training and test partitions. Set aside 15% of the data for testing.

Determine the number of observations for each partition.

numObservations = size(tbl,1);
numObservationsTrain = floor(0.85*numObservations);
numObservationsTest = numObservations - numObservationsTrain;

Create an array of random indices corresponding to the observations and partition it using the
partition sizes.

idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxTest = idx(numObservationsTrain+1:end);

Partition the table of data into training and testing partitions using the indices.

tblTrain = tbl(idxTrain,:);
tblTest = tbl(idxTest,:);

Define a network with a feature input layer and specify the number of features. Also, configure the
input layer to normalize the data using Z-score normalization.

numFeatures = size(tbl,2) - 1;
numClasses = numel(classNames);
 
layers = [
    featureInputLayer(numFeatures,'Normalization', 'zscore')
    fullyConnectedLayer(50)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options.

miniBatchSize = 16;

options = trainingOptions('adam', ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false);

Train the network using the architecture defined by layers, the training data, and the training
options.

net = trainNetwork(tblTrain,layers,options);
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Predict the labels of the test data using the trained network and calculate the accuracy. The accuracy
is the proportion of the labels that the network predicts correctly.

YPred = classify(net,tblTest,'MiniBatchSize',miniBatchSize);
YTest = tblTest{:,labelName};

accuracy = sum(YPred == YTest)/numel(YTest)

accuracy = 0.9688

Input Arguments
images — Image data
datastore | numeric array | table

Image data, specified as one of the following:
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Data Type Description Example Usage
Datastore ImageDatastore Datastore of images

saved on disk.
Train image
classification neural
network with images
saved on disk, where
the images are the same
size.

When the images are
different sizes, use an
AugmentedImageData
store object.

ImageDatastore
objects support image
classification tasks only.
To use image datastores
for regression networks,
create a transformed or
combined datastore that
contains the images and
responses using the
transform and
combine functions,
respectively.

AugmentedImageData
store

Datastore that applies
random affine
geometric
transformations,
including resizing,
rotation, reflection,
shear, and translation.

• Train image
classification neural
network with images
saved on disk, where
the images are
different sizes.

• Train image
classification neural
network and
generate new data
using
augmentations.
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Data Type Description Example Usage
TransformedDatasto
re

Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function.

• Train image
regression neural
network.

• Train networks with
multiple inputs.

• Transform
datastores with
outputs not
supported by
trainNetwork.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores.

• Train image
regression neural
network.

• Train networks with
multiple inputs.

• Combine predictors
and responses from
different data
sources.

PixelLabelImageDat
astore

Datastore that applies
identical affine
geometric
transformations to
images and
corresponding pixel
labels.

Train neural network
for semantic
segmentation.

RandomPatchExtract
ionDatastore

Datastore that extracts
pairs of random patches
from images or pixel
label images and
optionally applies
identical random affine
geometric
transformations to the
pairs.

Train neural network
for object detection.

DenoisingImageData
store

Datastore that applies
randomly generated
Gaussian noise.

Train neural network
for image denoising.
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Data Type Description Example Usage
Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data.

Train neural network
using data in a format
that other datastores do
not support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric array Images specified as
numeric array. If you
specify images as a
numeric array, then you
must also specify the
responses argument.

Train neural network
using data that fits in
memory and does not
require additional
processing like
augmentation.

Table Images specified as a
table. If you specify
images as a table, then
you can also specify
which columns contain
the responses using the
responses argument.

Train neural network
using data stored in a
table.

For networks with multiple inputs, the datastore must be a TransformedDatastore or
CombinedDatastore object.

Tip For sequences of images, for example video data, use the sequences input argument.

Datastore

Datastores read mini-batches of images and responses. Datastores are best suited when you have
data that does not fit in memory or when you want to apply augmentations or transformations to the
data.

The list below lists the datastores that are directly compatible with trainNetwork for image data.

• ImageDatastore
• AugmentedImageDatastore
• CombinedDatastore
• TransformedDatastore
• PixelLabelImageDatastore
• RandomPatchExtractionDatastore
• DenoisingImageDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

For example, you can create an image datastore using the imageDatastore function and use the
names of the folders containing the images as labels by setting the 'LabelSource' option to
'foldernames'. Alternatively, you can specify the labels manually using the Labels property of the
image datastore.
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Note that ImageDatastore objects allow for batch reading of JPG or PNG image files using
prefetching. If you use a custom function for reading the images, then ImageDatastore objects do
not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.

Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

You can use other built-in datastores for training deep learning networks by using the transform
and combine functions. These functions can convert the data read from datastores to the format
required by trainNetwork.

For networks with multiple inputs, the datastore must be a TransformedDatastore or
CombinedDatastore object.

The required format of the datastore output depends on the network architecture.

Network Architecture Datastore Output Example Output
Single input layer Table or cell array with two

columns.

The first and second columns
specify the predictors and
responses, respectively.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

Table for network with one input
and one output:

data = read(ds)

data =

  4×2 table

        Predictors        Response
    __________________    ________

    {224×224×3 double}       2    
    {224×224×3 double}       7    
    {224×224×3 double}       9    
    {224×224×3 double}       9  

Cell array for network with one
input and one output:

data = read(ds)

data =

  4×2 cell array

    {224×224×3 double}    {[2]}
    {224×224×3 double}    {[7]}
    {224×224×3 double}    {[9]}
    {224×224×3 double}    {[9]}
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Network Architecture Datastore Output Example Output
Multiple input layers Cell array with (numInputs +

1) columns, where numInputs
is the number of network inputs.

The first numInputs columns
specify the predictors for each
input and the last column
specifies the responses.

The order of inputs is given by
the InputNames property of the
layer graph layers.

Cell array for network with two
inputs and one output.

data = read(ds)

data =

  4×3 cell array

    {224×224×3 double}    {128×128×3 double}    {[2]}
    {224×224×3 double}    {128×128×3 double}    {[2]}
    {224×224×3 double}    {128×128×3 double}    {[9]}
    {224×224×3 double}    {128×128×3 double}    {[9]}

The format of the predictors depends on the type of data.

Data Format
2-D images h-by-w-by-c numeric array, where h, w, and c are

the height, width, and number of channels of the
images, respectively.

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the images, respectively.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,
or a 1-by-1 cell array containing the numeric array.

The format of the responses depends on the type of task.

Task Response Format
Image classification Categorical scalar
Image regression • Numeric scalar

• Numeric vector
• 3-D numeric array representing a 2-D image
• 4-D numeric array representing a 3-D image

For responses returned in tables, the elements must be a categorical scalar, a numeric scalar, a
numeric row vector, or a 1-by-1 cell array containing a numeric array.

For more information, see “Datastores for Deep Learning”.

Numeric Array

For data that fits in memory and does not require additional processing like augmentation, you can
specify a data set of images as a numeric array. If you specify images as a numeric array, then you
must also specify the responses argument.

The size and shape of the numeric array depends on the type of image data.
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Data Format
2-D images h-by-w-by-c-by-N numeric array, where h, w, and

c are the height, width, and number of channels
of the images, respectively, and N is the number
of images.

3-D images h-by-w-by-d-by-c-by-N numeric array, where h, w,
d, and c are the height, width, depth, and number
of channels of the images, respectively, and N is
the number of images.

Table

As an alternative to datastores or numeric arrays, you can also specify images and responses in a
table. If you specify images as a table, then you can also specify which columns contain the responses
using the responses argument.

When specifying images and responses in a table, each row in the table corresponds to an
observation.

For image input, the predictors must be in the first column of the table, specified as one of the
following:

• Absolute or relative file path to an image, specified as a character vector
• 1-by-1 cell array containing a h-by-w-by-c numeric array representing a 2-D image, where h, w,

and c correspond to the height, width, and number of channels of the image, respectively.

The format of the responses depends on the type of task.

Task Response Format
Image classification Categorical scalar
Image regression • Numeric scalar

• Two or more columns of scalar values
• 1-by-1 cell array containing a h-by-w-by-c

numeric array representing a 2-D image
• 1-by-1 cell array containing a h-by-w-by-d-by-c

numeric array representing a 3-D image

For neural networks with image input, if you do not specify responses, then the function, by default,
uses the first column of tbl for the predictors and the subsequent columns as responses.

Tip

• If the predictors or the responses contains NaNs, then they are propagated through the network
during training. In these cases, the training usually fails to converge.

• For regression tasks, normalizing the responses often helps to stabilize and speed up training of
neural networks for regression. For more information, see “Train Convolutional Neural Network
for Regression”.

• To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
table
Complex Number Support: Yes

sequences — Sequence or time series data
datastore | cell array of numeric arrays | numeric array

Sequence or time series data, specified as one of the following:

Data Type Description Example Usage
Datastore TransformedDatasto

re
Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function.

• Transform
datastores with
outputs not
supported by
trainNetwork.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores.

Combine predictors and
responses from different
data sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data.

Train neural network
using data in a format
that other datastores do
not support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric or cell array A single sequence
specified as a numeric
array or a data set of
sequences specified as
cell array of numeric
arrays. If you specify
sequences as a numeric
or cell array, then you
must also specify the
responses argument.

Train neural network
using data that fits in
memory and does not
require additional
processing like custom
transformations.

Datastore

Datastores read mini-batches of sequences and responses. Datastores are best suited when you have
data that does not fit in memory or when you want to apply transformations to the data.

The list below lists the datastores that are directly compatible with trainNetwork for sequence
data.

• CombinedDatastore
• TransformedDatastore
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• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for training deep learning networks by using the transform
and combine functions. These functions can convert the data read from datastores to the table or cell
array format required by trainNetwork. For example, you can transform and combine data read
from in-memory arrays and CSV files using ArrayDatastore and TabularTextDatastore objects,
respectively.

The datastore must return data in a table or cell array. Custom mini-batch datastores must output
tables.

Datastore Output Example Output
Table data = read(ds)

data =

  4×2 table

        Predictors        Response
    __________________    ________

    {12×50 double}           2    
    {12×50 double}           7    
    {12×50 double}           9    
    {12×50 double}           9  

Cell array data = read(ds)

data =

  4×2 cell array

    {12×50 double}        {[2]}
    {12×50 double}        {[7]}
    {12×50 double}        {[9]}
    {12×50 double}        {[9]}

The format of the predictors depend on the type of data.

Data Format of Predictors
Vector sequence c-by-s matrix, where c is the number of features

of the sequence and s is the sequence length.
1-D image sequence h-by-c-by-s array, where h and c correspond to

the height and number of channels of the image,
respectively, and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.
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Data Format of Predictors
2-D image sequence h-by-w-by-c-by-s array, where h, w, and c

correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence h-by-w-by-d-by-c-by-s array, where h, w, d, and c
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,
or a 1-by-1 cell array containing a numeric array.

The format of the responses depends on the type of task.

Task Format of Responses
Sequence-to-label classification Categorical scalar
Sequence-to-one regression Scalar
Sequence-to-vector regression Numeric row vector
Sequence-to-sequence classification • 1-by-s sequence of categorical labels, where s

is the sequence length of the corresponding
predictor sequence.

• h-by-w-by-s sequence of categorical labels,
where h, w, and s are the height, width, and
sequence length of the corresponding
predictor sequence, respectively.

• h-by-w-by-d-by-s sequence of categorical
labels, where h, w, d, and s are the height,
width, depth, and sequence length of the
corresponding predictor sequence,
respectively.

Each sequence in the mini-batch must have the
same sequence length.
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Task Format of Responses
Sequence-to-sequence regression • R-by-s matrix, where R is the number of

responses and s is the sequence length of the
corresponding predictor sequence.

• h-by-w-by-R-by-s sequence of numeric
responses, where R is the number of
responses , and h, w, and s are the height,
width, and sequence length of the
corresponding predictor sequence,
respectively.

• h-by-w-by-d-by-R-by-s sequence of numeric
responses, where R is the number of
responses , and h, w, d, and s are the height,
width, depth, and sequence length of the
corresponding predictor sequence,
respectively.

Each sequence in the mini-batch must have the
same sequence length.

For responses returned in tables, the elements must be a categorical scalar, a numeric scalar, a
numeric row vector, or a 1-by-1 cell array containing a numeric array.

For more information, see “Datastores for Deep Learning”.

Numeric or Cell Array

For data that fits in memory and does not require additional processing like custom transformations,
you can specify a single sequence as a numeric array or a data set of sequences as a cell array of
numeric arrays. If you specify sequences as a cell or numeric array, then you must also specify the
responses argument.

For cell array input, the cell array must be an N-by-1 cell array of numeric arrays, where N is the
number of observations. The size and shape of the numeric array representing a sequence depends
on the type of sequence data.

Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

1-D image sequences h-by-c-by-s arrays, where h and c correspond to
the height and number of channels of the images,
respectively, and s is the sequence length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.
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Input Description
3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and c

correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

The trainNetwork function supports networks with at most one sequence input layer.

Tip

• If the predictors or the responses contains NaNs, then they are propagated through the network
during training. In these cases, the training usually fails to converge.

• For regression tasks, normalizing the responses often helps to stabilize and speed up training. For
more information, see “Train Convolutional Neural Network for Regression”.

• To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
cell
Complex Number Support: Yes

features — Feature data
datastore | numeric array | table

Feature data, specified as one of the following:

Data Type Description Example Usage
Datastore TransformedDatasto

re
Datastore that
transforms batches of
data read from an
underlying datastore
using a custom
transformation function.

• Train networks with
multiple inputs.

• Transform
datastores with
outputs not
supported by
trainNetwork.

• Apply custom
transformations to
datastore output.

CombinedDatastore Datastore that reads
from two or more
underlying datastores.

• Train networks with
multiple inputs.

• Combine predictors
and responses from
different data
sources.
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Data Type Description Example Usage
Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data.

Train neural network
using data in a format
that other datastores do
not support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Table Feature data specified
as a table. If you specify
features as a table, then
you can also specify
which columns contain
the responses using the
responses argument.

Train neural network
using data stored in a
table.

Numeric array Feature data specified
as numeric array. If you
specify features as a
numeric array, then you
must also specify the
responses argument.

Train neural network
using data that fits in
memory and does not
require additional
processing like custom
transformations.

Datastore

Datastores read mini-batches of feature data and responses. Datastores are best suited when you
have data that does not fit in memory or when you want to apply transformations to the data.

The list below lists the datastores that are directly compatible with trainNetwork for feature data.

• CombinedDatastore
• TransformedDatastore
• Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for training deep learning networks by using the transform
and combine functions. These functions can convert the data read from datastores to the table or cell
array format required by trainNetwork. For more information, see “Datastores for Deep Learning”.

For networks with multiple inputs, the datastore must be a TransformedDatastore or
CombinedDatastore object.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Network Architecture Datastore Output Example Output
Single input layer Table or cell array with two

columns.

The first and second columns
specify the predictors and
responses, respectively.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

Table for network with one input
and one output:

data = read(ds)

data =

  4×2 table

        Predictors        Response
    __________________    ________

    {24×1 double}            2    
    {24×1 double}            7    
    {24×1 double}            9    
    {24×1 double}            9  

Cell array for network with one
input and one output:

data = read(ds)

data =

  4×2 cell array

    {24×1 double}    {[2]}
    {24×1 double}    {[7]}
    {24×1 double}    {[9]}
    {24×1 double}    {[9]}

Multiple input layers Cell array with (numInputs +
1) columns, where numInputs
is the number of network inputs.

The first numInputs columns
specify the predictors for each
input and the last column
specifies the responses.

The order of inputs is given by
the InputNames property of the
layer graph layers.

Cell array for network with two
inputs and one output:

data = read(ds)

data =

  4×3 cell array

    {24×1 double}    {28×1 double}    {[2]}
    {24×1 double}    {28×1 double}    {[2]}
    {24×1 double}    {28×1 double}    {[9]}
    {24×1 double}    {28×1 double}    {[9]}

The predictors must be c-by-1 column vectors, where c is the number of features.

The format of the responses depends on the type of task.

Task Format of Responses
Classification Categorical scalar
Regression • Scalar

• Numeric vector

For more information, see “Datastores for Deep Learning”.
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Table

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data and responses as a table.

Each row in the table corresponds to an observation. The arrangement of predictors and responses in
the table columns depends on the type of task.

Task Predictors Responses
Feature classification Features specified in one or

more columns as scalars.

If you do not specify the
responses argument, then the
predictors must be in the first
numFeatures columns of the
table, where numFeatures is
the number of features of the
input data.

Categorical label
Feature regression One or more columns of scalar

values

For classification networks with feature input, if you do not specify the responses argument, then
the function, by default, uses the first (numColumns - 1) columns of tbl for the predictors and the
last column for the labels, where numFeatures is the number of features in the input data.

For regression networks with feature input, if you do not specify the responseNames argument, then
the function, by default, uses the first numFeatures columns for the predictors and the subsequent
columns for the responses, where numFeatures is the number of features in the input data.
Numeric Array

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data as a numeric array. If you specify feature data as a
numeric array, then you must also specify the responses argument.

The numeric array must be an N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input data.

Tip

• Normalizing the responses often helps to stabilize and speed up training of neural networks for
regression. For more information, see “Train Convolutional Neural Network for Regression”.

• Responses must not contain NaNs. If the predictor data contains NaNs, then they are propagated
through the training. However, in most cases, the training fails to converge.

• To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
table
Complex Number Support: Yes

mixed — Mixed data
datastore
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Mixed data and responses, specified as one of the following:

Data Type Description Example Usage
TransformedDatastore Datastore that transforms

batches of data read from an
underlying datastore using a
custom transformation function.

• Train networks with multiple
inputs.

• Transform outputs of
datastores not supported by
trainNetwork to the have
the required format.

• Apply custom
transformations to datastore
output.

CombinedDatastore Datastore that reads from two
or more underlying datastores.

• Train networks with multiple
inputs.

• Combine predictors and
responses from different
data sources.

Custom mini-batch datastore Custom datastore that returns
mini-batches of data.

Train neural network using data
in a format that other datastores
do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for training deep learning networks by using the transform
and combine functions. These functions can convert the data read from datastores to the table or cell
array format required by trainNetwork. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.

Datastore Output Example Output
Cell array with (numInputs + 1) columns, where
numInputs is the number of network inputs.

The first numInputs columns specify the
predictors for each input and the last column
specifies the responses.

The order of inputs is given by the InputNames
property of the layer graph layers.

data = read(ds)

data =

  4×3 cell array

    {24×1 double}    {28×1 double}    {[2]}
    {24×1 double}    {28×1 double}    {[2]}
    {24×1 double}    {28×1 double}    {[9]}
    {24×1 double}    {28×1 double}    {[9]}

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.
Similarly, the format of the responses must match the formats described in the images, sequences,
or features argument descriptions that corresponds to the type of task.

The trainNetwork function supports networks with at most one sequence input layer.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.
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Tip

• To convert a numeric array to a datastore, use ArrayDatastore.
• When combining layers in a network with mixed types of data, you may need to reformat the data

before passing it to a combination layer (such as a concatenation or an addition layer). To
reformat the data, you can use a flatten layer to flatten the spatial dimensions into the channel
dimension, or create a FunctionLayer object or custom layer that reformats and reshapes.

responses — Responses
categorical vector | numeric array | cell array of sequences | character vector | cell array of character
vectors | string array

Responses.

When the input data is a numeric array of a cell array, specify the responses as one of the following.

• categorical vector of labels
• numeric array of numeric responses
• cell array of categorical or numeric sequences

When the input data is a table, you can optionally specify which columns of the table contains the
responses as one of the following:

• character vector
• cell array of character vectors
• string array

When the input data is a numeric array or a cell array, then the format of the responses depends on
the type of task.

Task Format
Classification Image classification N-by-1 categorical vector of

labels, where N is the number of
observations.

Feature classification
Sequence-to-label classification
Sequence-to-sequence
classification

N-by-1 cell array of categorical
sequences of labels, where N is
the number of observations.
Each sequence must have the
same number of time steps as
the corresponding predictor
sequence.

For sequence-to-sequence
classification tasks with one
observation, sequences can
also be a vector. In this case,
responses must be a
categorical row-vector of labels.
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Task Format
Regression 2-D image regression • N-by-R matrix, where N is

the number of images and R
is the number of responses.

• h-by-w-by-c-by-N numeric
array, where h, w, and c are
the height, width, and
number of channels of the
images, respectively, and N
is the number of images.

3-D image regression • N-by-R matrix, where N is
the number of images and R
is the number of responses.

• h-by-w-by-d-by-c-by-N
numeric array, where h, w, d,
and c are the height, width,
depth, and number of
channels of the images,
respectively, and N is the
number of images.

Feature regression N-by-R matrix, where N is the
number of observations and R is
the number of responses.

Sequence-to-one regression N-by-R matrix, where N is the
number of sequences and R is
the number of responses.
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Task Format
Sequence-to-sequence
regression

N-by-1 cell array of numeric
sequences, where N is the
number of sequences, with
sequences given by one of the
following:

• R-by-s matrix, where R is the
number of responses and s is
the sequence length of the
corresponding predictor
sequence.

• h-by-w-by-R-by-s array,
where h and w are the height
and width of the output,
respectively, R is the number
of responses, and s is the
sequence length of the
corresponding predictor
sequence.

• h-by-w-by-d-by-R-by-s array,
where h, w, and d are the
height, width, and depth of
the output, respectively, R is
the number of responses,
and s is the sequence length
of the corresponding
predictor sequence.

For sequence-to-sequence
regression tasks with one
observation, sequences can be
a numeric array. In this case,
responses must be a numeric
array of responses.

Tip Normalizing the responses often helps to stabilize and speed up training of neural networks for
regression. For more information, see “Train Convolutional Neural Network for Regression”.

Tip Responses must not contain NaNs. If the predictor data contains NaNs, then they are propagated
through the training. However, in most cases, the training fails to converge.

layers — Network layers
Layer array | LayerGraph object

Network layers, specified as a Layer array or a LayerGraph object.

To create a network with all layers connected sequentially, you can use a Layer array as the input
argument. In this case, the returned network is a SeriesNetwork object.
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A directed acyclic graph (DAG) network has a complex structure in which layers can have multiple
inputs and outputs. To create a DAG network, specify the network architecture as a LayerGraph
object and then use that layer graph as the input argument to trainNetwork.

The trainNetwork function supports networks with at most one sequence input layer.

For a list of built-in layers, see “List of Deep Learning Layers”.

options — Training options
TrainingOptionsSGDM | TrainingOptionsRMSProp | TrainingOptionsADAM

Training options, specified as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or
TrainingOptionsADAM object returned by the trainingOptions function.

Output Arguments
net — Trained network

SeriesNetwork object | DAGNetwork object

Trained network, returned as a SeriesNetwork object or a DAGNetwork object.

If you train the network using a Layer array, then net is a SeriesNetwork object. If you train the
network using a LayerGraph object, then net is a DAGNetwork object.

info — Training information

structure

Training information, returned as a structure, where each field is a scalar or a numeric vector with
one element per training iteration.

For classification tasks, info contains the following fields:

• TrainingLoss — Loss function values
• TrainingAccuracy — Training accuracies
• ValidationLoss — Loss function values
• ValidationAccuracy — Validation accuracies
• BaseLearnRate — Learning rates
• FinalValidationLoss — Validation loss of returned network
• FinalValidationAccuracy — Validation accuracy of returned network
• OutputNetworkIteration — Iteration number of returned network

For regression tasks, info contains the following fields:

• TrainingLoss — Loss function values
• TrainingRMSE — Training RMSE values
• ValidationLoss — Loss function values
• ValidationRMSE — Validation RMSE values
• BaseLearnRate — Learning rates
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• FinalValidationLoss — Validation loss of returned network
• FinalValidationRMSE — Validation RMSE of returned network
• OutputNetworkIteration — Iteration number of returned network

The structure only contains the fields ValidationLoss, ValidationAccuracy, ValidationRMSE ,
FinalValidationLoss , FinalValidationAccuracy, and FinalValidationRMSE when
options specifies validation data. The ValidationFrequency training option determines which
iterations the software calculates validation metrics. The final validation metrics are scalar. The other
fields of the structure are row vectors, where each element corresponds to a training iteration. For
iterations when the software does not calculate validation metrics, the corresponding values in the
structure are NaN.

For networks containing batch normalization layers, if the BatchNormalizationStatistics
training option is 'population' then the final validation metrics are often different from the
validation metrics evaluated during training. This is because batch normalization layers in the final
network perform different operations than during training. For more information, see
batchNormalizationLayer.

More About
Save Checkpoint Networks and Resume Training

Deep Learning Toolbox enables you to save networks as .mat files during training. This periodic
saving is especially useful when you have a large network or a large data set, and training takes a
long time. If the training is interrupted for some reason, you can resume training from the last saved
checkpoint network. If you want trainNetwork to save checkpoint networks, then you must specify
the name of the path by using the CheckpointPath option of trainingOptions. If the path that
you specify does not exist, then trainingOptions returns an error.

trainNetwork automatically assigns unique names to checkpoint network files. In the example
name, net_checkpoint__351__2018_04_12__18_09_52.mat, 351 is the iteration number,
2018_04_12 is the date, and 18_09_52 is the time at which trainNetwork saves the network. You
can load a checkpoint network file by double-clicking it or using the load command at the command
line. For example:

load net_checkpoint__351__2018_04_12__18_09_52.mat

You can then resume training by using the layers of the network as an input argument to
trainNetwork. For example:

trainNetwork(XTrain,TTrain,net.Layers,options)

You must manually specify the training options and the input data, because the checkpoint network
does not contain this information. For an example, see “Resume Training from Checkpoint Network”.

Floating-Point Arithmetic

When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.
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Version History
Introduced in R2016a

trainNetwork pads mini-batches to length of longest sequence before splitting when you
specify SequenceLength training option as an integer

Starting in R2022b, when you train a network with sequence data using the trainNetwork function
and the SequenceLength option is an integer, the software pads sequences to the length of the
longest sequence in each mini-batch and then splits the sequences into mini-batches with the
specified sequence length. If SequenceLength does not evenly divide the sequence length of the
mini-batch, then the last split mini-batch has a length shorter than SequenceLength. This behavior
prevents the network training on time steps that contain only padding values.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequenceLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, use a custom training loop and implement this behavior
when you preprocess mini-batches of data.

Support for specifying tables of MAT file paths will be removed
Warns starting in R2021a

When specifying sequence data for the trainNetwork function, support for specifying tables of MAT
file paths will be removed in a future release.

To train networks with sequences that do not fit in memory, use a datastore. You can use any
datastore to read your data and then use the transform function to transform the datastore output
to the format the trainNetwork function requires. For example, you can read data using a
FileDatastore or TabularTextDatastore object then transform the output using the
transform function.

trainNetwork automatically stops training when loss is NaN
Behavior changed in R2021b

When you train a network using the trainNetwork function, training automatically stops when the
loss is NaN. Usually, a loss value of NaN introduces NaN values to the network learnable parameters,
which in turn can cause the network to fail to train or to make valid predictions. This change helps
identify issues with the network before training completes.

In previous releases, the network continues to train when the loss is NaN.

References
[1] Kudo, M., J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pp. 1103–1111.

[2] Kudo, M., J. Toyama, and M. Shimbo. Japanese Vowels Data Set. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
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To run computation in parallel, set the 'ExecutionEnvironment' option to 'multi-gpu' or
'parallel'.

Use trainingOptions to set the 'ExecutionEnvironment' and supply the options to
trainNetwork. If you do not set 'ExecutionEnvironment', then trainNetwork runs on a GPU if
available.

For details, see “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

• To prevent out-of-memory errors, recommended practice is not to move large sets of training data
onto the GPU. Instead, train your network on a GPU by using trainingOptions to set the
'ExecutionEnvironment' to "auto" or "gpu" and supply the options to trainNetwork.

• The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

• A gpuArray
• A cell array containing gpuArray objects
• A table containing gpuArray objects
• A datastore that outputs cell arrays containing gpuArray objects
• A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
trainingOptions | SeriesNetwork | DAGNetwork | LayerGraph | classify | predict |
analyzeNetwork | assembleNetwork | Deep Network Designer

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Train Convolutional Neural Network for Regression”
“Sequence Classification Using Deep Learning”
“Train Network on Image and Feature Data”
“Deep Learning in MATLAB”
“Define Custom Deep Learning Layers”
“List of Deep Learning Layers”
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transposedConv1dLayer
Transposed 1-D convolution layer

Syntax
layer = transposedConv1dLayer(filterSize,numFilters)
layer = transposedConv1dLayer(filterSize,numFilters,Name=Value)

Description
A transposed 1-D convolution layer upsamples one-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the
transpose of convolution and does not perform deconvolution.

layer = transposedConv1dLayer(filterSize,numFilters) returns a 1-D transposed
convolution layer and sets the FilterSize and NumFilters properties.

layer = transposedConv1dLayer(filterSize,numFilters,Name=Value) returns a 1-D
transposed convolutional layer and specifies additional options using one or more name-value
arguments.

Examples

Create 1-D Transposed Convolutional Layer

Create a 1-D transposed convolutional layer with 96 filters of length 11 and a stride of 4.

layer = transposedConv1dLayer(11,96,Stride=4)

layer = 
  TransposedConvolution1DLayer with properties:

            Name: ''

   Hyperparameters
      FilterSize: 11
     NumChannels: 'auto'
      NumFilters: 96
          Stride: 4
    CroppingMode: 'manual'
    CroppingSize: [0 0]

   Learnable Parameters
         Weights: []
            Bias: []

  Show all properties
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Input Arguments
filterSize — Length of filters
positive integer

Length of the filters, specified as a positive integer. The filter size defines the size of the local regions
to which the neurons connect in the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numFilters — Number of filters
positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the output of the layer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: transposedConv1dLayer(11,96,Stride=4) creates a 1-D transposed convolutional
layer with 96 filters of length 11 and a stride of 4.

Transposed Convolution

Stride — Upsampling factor
1 (default) | positive integer

Upsampling factor of the input, specified as a positive integer that corresponds to the horizontal
stride.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Cropping — Output size reduction
0 (default) | "same" | nonnegative integer | vector of two nonnegative integers

Output size reduction, specified as one of the following:

• "same" — Set the cropping so that the output size equals inputSize.*Stride, where
inputSize is the length of the layer input. If Cropping is "same", then the software
automatically sets the CroppingMode property of the layer to 'same'.

The software trims an equal amount from the left and right, when possible. If the horizontal crop
amount has an odd value, then the software trims an extra column from the right.

• A positive integer — Crop the specified amount of data from the left and right edges.
• A vector of nonnegative integers [l r] — Crop l and r from the left and right, respectively.

If you set the Cropping option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string
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NumChannels — Number of input channels
"auto" (default) | positive integer

Number of input channels, specified as one of the following:

• "auto" — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' — Initialize the weights with the Glorot initializer [1] (also known as the Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with a mean
of zero and a variance of 2/(numIn + numOut), where numIn = FilterSize*NumChannels
and numOut = FilterSize*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with a mean of zero and a variance of 2/numIn, where numIn =
FilterSize*NumChannels.

• 'narrow-normal' — Initialize the weights by independently sampling from a normal distribution
with a mean of zero and a standard deviation of 0.01.

• 'zeros' — Initialize the weights with zeros.
• 'ones' — Initialize the weights with ones.
• Function handle — Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
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Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the transposed convolution operation, specified as a FilterSize-by-NumFilters-
by-NumChannels numeric array or [].

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the transposed convolutional operation, specified as a 1-by-NumFilters numeric
array or [].

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar
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L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

Output Arguments
layer — Transposed 1-D convolution layer
TransposedConvolution1DLayer object

Transposed 1-D convolution layer, returned as a TransposedConvolution1DLayer object.

Algorithms
1-D Transposed Convolutional Layer

A transposed 1-D convolution layer upsamples one-dimensional feature maps.

The standard convolution operation downsamples the input by applying sliding convolutional filters to
the input. By flattening the input and output, you can express the convolution operation as
Y = CX + B for the convolution matrix C and bias vector B that can be derived from the layer weights
and biases.

Similarly, the transposed convolution operation upsamples the input by applying sliding convolutional
filters to the input. To upsample the input instead of downsampling using sliding filters, the layer
zero-pads each edge of the input with padding that has the size of the corresponding filter edge size
minus 1.
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By flattening the input and output, the transposed convolution operation is equivalent to
Y = C⊤X + B, where C and B denote the convolution matrix and bias vector for standard convolution
derived from the layer weights and biases, respectively. This operation is equivalent to the backward
function of a standard convolution layer.

A 1-D transposed convolution layer upsamples a single dimension only. The dimension that the layer
upsamples depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer upsamples the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer upsamples the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer upsamples the spatial dimension.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of TransposedConvolution1DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SCB" (spatial, channel, batch) "SCB" (spatial, channel, batch)
"CBT" (channel, batch, time) "CBT" (channel, batch, time)
"SCBT" (spatial, channel, batch, time) "SCBT" (spatial, channel, batch, time)

Version History
Introduced in R2022a
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References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.
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See Also
trainingOptions | trainNetwork | sequenceInputLayer | lstmLayer | bilstmLayer |
gruLayer | maxPooling1dLayer | averagePooling1dLayer | globalMaxPooling1dLayer |
globalAveragePooling1dLayer | convolution1dLayer

Topics
“Time Series Anomaly Detection Using Deep Learning”
“Sequence Classification Using 1-D Convolutions”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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transposedConv2dLayer
Transposed 2-D convolution layer

Syntax
layer = transposedConv2dLayer(filterSize,numFilters)
layer = transposedConv2dLayer(filterSize,numFilters,Name,Value)

Description
A transposed 2-D convolution layer upsamples two-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer performs
the transpose of convolution and does not perform deconvolution.

layer = transposedConv2dLayer(filterSize,numFilters) returns a 2-D transposed
convolution layer and sets the FilterSize and NumFilters properties.

layer = transposedConv2dLayer(filterSize,numFilters,Name,Value) returns a 2-D
transposed convolutional layer and specifies additional options using one or more name-value pair
arguments.

Examples

Create Transposed Convolutional Layer

Create a transposed convolutional layer with 96 filters, each with a height and width of 11. Use a
stride of 4 in the horizontal and vertical directions.

layer = transposedConv2dLayer(11,96,'Stride',4);

Input Arguments
filterSize — Height and width of filters
positive integer | vector of two positive integers

Height and width of the filters, specified as a positive integer or a vector of two positive integers [h
w], where h is the height and w is the width. The filter size defines the size of the local regions to
which the neurons connect in the input.

If filterSize is a positive integer, then the software uses the same value for both dimensions.
Example: [5 6] specifies filters of height and width of 5 and 6, respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numFilters — Number of filters
positive integer
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Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the output of the layer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: transposedConv2dLayer(11,96,'Stride',4) creates a 2-D transposed convolutional
layer with 96 filters of size 11 and a stride of 4.

Transposed Convolution

Stride — Up-sampling factor
1 (default) | vector of two positive integers | positive integer

Up-sampling factor of the input, specified as one of the following:

• A vector of two positive integers [a b], where a is the vertical stride and b is the horizontal
stride.

• A positive integer the corresponds to both the vertical and horizontal stride.

Example: 'Stride',[2 1]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Cropping — Output size reduction
0 (default) | "same" | nonnegative integer | vector of two nonnegative integers

Output size reduction, specified as one of the following:

• "same" – Set the cropping so that the output size equals inputSize.*Stride, where
inputSize is the height and width of the layer input. If you set the Cropping option to "same",
then the software automatically sets the CroppingMode property of the layer to 'same'.

The software trims an equal amount from the top and bottom, and the left and right, if possible. If
the vertical crop amount has an odd value, then the software trims an extra row from the bottom.
If the horizontal crop amount has an odd value, then the software trims an extra column from the
right.

• A positive integer – Crop the specified amount of data from all the edges.
• A vector of nonnegative integers [a b] - Crop a from the top and bottom and crop b from the left

and right.
• A vector [t b l r] - Crop t, b, l, r from the top, bottom, left, and right of the input,

respectively.

If you set the Cropping option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.
Example: [1 2]
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NumChannels — Number of input channels
"auto" (default) | positive integer

Number of input channels, specified as one of the following:

• "auto" — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
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• Function handle — Initialize the bias with a custom function. If you specify a function handle, then
the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the transposed convolution operation, specified as a filterSize(1)-by-
filterSize(2)-by-numFilters-by-NumChannels numeric array or [].

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the transposed convolutional operation, specified as a 1-by-1-by-numFilters
numeric array or [].

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.

 transposedConv2dLayer

1-1731



Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

Output Arguments
layer — Transposed 2-D convolution layer
TransposedConvolution2DLayer object

Transposed 2-D convolution layer, returned as a TransposedConvolution2DLayer object.

Algorithms
2-D Transposed Convolutional Layer

A transposed 2-D convolution layer upsamples two-dimensional feature maps.

The standard convolution operation downsamples the input by applying sliding convolutional filters to
the input. By flattening the input and output, you can express the convolution operation as
Y = CX + B for the convolution matrix C and bias vector B that can be derived from the layer weights
and biases.
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Similarly, the transposed convolution operation upsamples the input by applying sliding convolutional
filters to the input. To upsample the input instead of downsampling using sliding filters, the layer
zero-pads each edge of the input with padding that has the size of the corresponding filter edge size
minus 1.

By flattening the input and output, the transposed convolution operation is equivalent to
Y = C⊤X + B, where C and B denote the convolution matrix and bias vector for standard convolution
derived from the layer weights and biases, respectively. This operation is equivalent to the backward
function of a standard convolution layer.

This image shows a 4-by-4 filter upsampling 2-by-2 input. The lower map represents the input and the
upper map represents the output. 2

Version History
Introduced in R2017b

Default weights initialization is Glorot
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot
initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

2 Image credit: Convolution arithmetic (License)
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In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of the layer to 'narrow-normal'.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support asymmetric cropping of the input. For example, specifying a
vector [t b l r] for the 'Cropping' parameter to crop the top, bottom, left, and right of the
input is not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
averagePooling2dLayer | maxPooling2dLayer | TransposedConvolution2DLayer |
SoftmaxLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”
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transposedConv3dLayer
Transposed 3-D convolution layer

Syntax
layer = transposedConv3dLayer(filterSize,numFilters)
layer = transposedConv3dLayer(filterSize,numFilters,Name,Value)

Description
A transposed 3-D convolution layer upsamples three-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer performs
the transpose of convolution and does not perform deconvolution.

layer = transposedConv3dLayer(filterSize,numFilters) returns a 3-D transposed
convolution layer and sets the FilterSize and NumFilters properties.

layer = transposedConv3dLayer(filterSize,numFilters,Name,Value) returns a 3-D
transposed convolutional layer and specifies additional options using one or more name-value pair
arguments.

Examples

Create Transposed 3-D Convolutional Layer

Create a transposed 3-D convolutional layer with 32 filters, each with a height, width, and depth of
11. Use a stride of 4 in the horizontal and vertical directions and 2 along the depth.

layer = transposedConv3dLayer(11,32,'Stride',[4 4 2])

layer = 
  TransposedConvolution3DLayer with properties:

            Name: ''

   Hyperparameters
      FilterSize: [11 11 11]
     NumChannels: 'auto'
      NumFilters: 32
          Stride: [4 4 2]
    CroppingMode: 'manual'
    CroppingSize: [2x3 double]

   Learnable Parameters
         Weights: []
            Bias: []

  Show all properties
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Input Arguments
filterSize — Height, width, and depth of filters
positive integer | vector of three positive integers

Height, width, and depth of the filters, specified as a positive integer or a vector of three positive
integers [h w d], where h is the height, w is the width, and d is the depth. The filter size defines the
size of the local regions to which the neurons connect in the input.

If filterSize is a scalar, then the software uses the same value for all three dimensions.
Example: [5 6 7] specifies filters with a height, width, and depth of 5, 6, and 7 respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

numFilters — Number of filters
positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the output of the layer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: transposedConv3dLayer(11,96,'Stride',4) creates a 3-D transposed convolutional
layer with 96 filters of size 11 and a stride of 4.

Transposed Convolution

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
depth. When creating the layer, you can specify Stride as a scalar to use the same value for step
sizes in all three directions.
Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Cropping — Output size reduction
0 (default) | "same" | vector of nonnegative integers | matrix of nonnegative integers

Output size reduction, specified as one of the following:

• 'same' – Set the cropping so that the output size equals inputSize.*Stride, where
inputSize is the height, width, and depth of the layer input. If you set the Cropping option to
"same", then the software automatically sets the CroppingMode property of the layer to 'same'.
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The software trims an equal amount from the top and bottom, the left and right, and the front and
back, if possible. If the vertical crop amount has an odd value, then the software trims an extra
row from the bottom. If the horizontal crop amount has an odd value, then the software trims an
extra column from the right. If the depth crop amount has an odd value, then the software trims
an extra plane from the back.

• A positive integer – Crop the specified amount of data from all the edges.
• A vector of nonnegative integers [a b c] – Crop a from the top and bottom, crop b from the left

and right, and crop c from the front and back.
• a matrix of nonnegative integers [t l f; b r bk] of nonnegative integers — Crop t, l, f, b, r,

bk from the top, left, front, bottom, right, and back of the input, respectively.

If you set the Cropping option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.
Example: [1 2 2]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

NumChannels — Number of input channels
"auto" (default) | positive integer

Number of input channels, specified as one of the following:

• "auto" — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
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• Function handle – Initialize the weights with a custom function. If you specify a function handle,
then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the transposed convolution operation, specified as a FilterSize(1)-by-
FilterSize(2)-by-FilterSize(3)-by-numFilters-by-NumChannels numeric array or [].

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the transposed convolutional operation, specified as a 1-by-1-by-1-by-numFilters
numeric array or [].

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.
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The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string
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Output Arguments
layer — Transposed 3-D convolution layer
TransposedConvolution3DLayer object

Transposed 3-D convolution layer, returned as a TransposedConvolution3dLayer object.

Algorithms
3-D Transposed Convolutional Layer

A transposed 3-D convolution layer upsamples three-dimensional feature maps.

The standard convolution operation downsamples the input by applying sliding convolutional filters to
the input. By flattening the input and output, you can express the convolution operation as
Y = CX + B for the convolution matrix C and bias vector B that can be derived from the layer weights
and biases.

Similarly, the transposed convolution operation upsamples the input by applying sliding convolutional
filters to the input. To upsample the input instead of downsampling using sliding filters, the layer
zero-pads each edge of the input with padding that has the size of the corresponding filter edge size
minus 1.

By flattening the input and output, the transposed convolution operation is equivalent to
Y = C⊤X + B, where C and B denote the convolution matrix and bias vector for standard convolution
derived from the layer weights and biases, respectively. This operation is equivalent to the backward
function of a standard convolution layer.

Version History
Introduced in R2019a

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

See Also
maxPooling3dLayer | averagePooling3dLayer | TransposedConvolution3dLayer |
SoftmaxLayer | transposedConv2dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
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“List of Deep Learning Layers”
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TransposedConvolution1DLayer
Transposed 1-D convolution layer

Description
A transposed 1-D convolution layer upsamples one-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer performs
the transpose of convolution and does not perform deconvolution.

Creation
Create a transposed convolution 1-D output layer using transposedConv1dLayer.

Properties
Transposed Convolution

FilterSize — Length of filters
positive integer

Length of the filters, specified as a positive integer. The filter size defines the size of the local regions
to which the neurons connect in the input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFilters — Number of filters
positive integer

This property is read-only.

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the layer output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stride — Step size for traversing input
1 (default) | positive integer

Step size for traversing the input, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CroppingMode — Method to determine cropping size
'manual' (default) | 'same'

Method to determine cropping size, specified as 'manual' or 'same'.

1 Deep Learning Functions

1-1742



The software automatically sets the value of CroppingMode based on the Cropping value you
specify when creating the layer.

• If you set the Cropping option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.

• If you set the Cropping option to 'same', then the software automatically sets the
CroppingMode property of the layer to 'same' and set the cropping so that the output size
equals inputSize.*Stride, where inputSize is the length of the layer input.

To specify the cropping size, use the Cropping option of transposedConv1dLayer.

NumChannels — Number of input channels
'auto' (default) | positive integer

This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' — Initialize the weights with the Glorot initializer [1] (also known as the Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with a mean
of zero and a variance of 2/(numIn + numOut), where numIn = FilterSize*NumChannels
and numOut = FilterSize*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with a mean of zero and a variance of 2/numIn, where numIn =
FilterSize*NumChannels.

• 'narrow-normal' — Initialize the weights by independently sampling from a normal distribution
with a mean of zero and a standard deviation of 0.01.

• 'zeros' — Initialize the weights with zeros.
• 'ones' — Initialize the weights with ones.
• Function handle — Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle
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BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the transposed convolution operation, specified as a FilterSize-by-NumFilters-
by-NumChannels numeric array or [].

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the transposed convolutional operation, specified as a 1-by-NumFilters numeric
array or [].

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
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BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)
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This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Object Functions

Examples

Create 1-D Transposed Convolutional Layer

Create a 1-D transposed convolutional layer with 96 filters of length 11 and a stride of 4.

layer = transposedConv1dLayer(11,96,Stride=4)

layer = 
  TransposedConvolution1DLayer with properties:

            Name: ''

   Hyperparameters
      FilterSize: 11
     NumChannels: 'auto'
      NumFilters: 96
          Stride: 4
    CroppingMode: 'manual'
    CroppingSize: [0 0]

   Learnable Parameters
         Weights: []
            Bias: []

  Show all properties
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Algorithms
1-D Transposed Convolutional Layer

A transposed 1-D convolution layer upsamples one-dimensional feature maps.

The standard convolution operation downsamples the input by applying sliding convolutional filters to
the input. By flattening the input and output, you can express the convolution operation as
Y = CX + B for the convolution matrix C and bias vector B that can be derived from the layer weights
and biases.

Similarly, the transposed convolution operation upsamples the input by applying sliding convolutional
filters to the input. To upsample the input instead of downsampling using sliding filters, the layer
zero-pads each edge of the input with padding that has the size of the corresponding filter edge size
minus 1.

By flattening the input and output, the transposed convolution operation is equivalent to
Y = C⊤X + B, where C and B denote the convolution matrix and bias vector for standard convolution
derived from the layer weights and biases, respectively. This operation is equivalent to the backward
function of a standard convolution layer.

A 1-D transposed convolution layer upsamples a single dimension only. The dimension that the layer
upsamples depends on the layer input:

• For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer upsamples the time dimension.

• For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer upsamples the spatial dimension.

• For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer upsamples the spatial dimension.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

• "S" — Spatial
• "C" — Channel
• "B" — Batch
• "T" — Time
• "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionLayer object, or using the forward and predict
functions with dlnetwork objects.
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This table shows the supported input formats of TransposedConvolution1DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattable option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SCB" (spatial, channel, batch) "SCB" (spatial, channel, batch)
"CBT" (channel, batch, time) "CBT" (channel, batch, time)
"SCBT" (spatial, channel, batch, time) "SCBT" (spatial, channel, batch, time)

Version History
Introduced in R2022a

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.

[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

See Also
transposedConv1dLayer | trainingOptions | trainNetwork | sequenceInputLayer |
lstmLayer | bilstmLayer | gruLayer | maxPooling1dLayer | averagePooling1dLayer |
globalMaxPooling1dLayer | globalAveragePooling1dLayer | convolution1dLayer

Topics
“Time Series Anomaly Detection Using Deep Learning”
“Sequence Classification Using 1-D Convolutions”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Long Short-Term Memory Networks”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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TransposedConvolution2DLayer
Transposed 2-D convolution layer

Description
A transposed 2-D convolution layer upsamples two-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the
transpose of convolution and does not perform deconvolution.

Creation
Create a transposed convolution 2-D layer using transposedConv2dLayer.

Properties
Transposed Convolution

FilterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector of two positive integers [h w], where h is the
height and w is the width. FilterSize defines the size of the local regions to which the neurons
connect in the input.

If you set FilterSize using an input argument, then you can specify FilterSize as scalar to use
the same value for both dimensions.
Example: [5 5] specifies filters of height 5 and width 5.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFilters — Number of filters
positive integer

This property is read-only.

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the layer output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector [a b] of two
positive integers, where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both step sizes.
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Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

CroppingMode — Method to determine cropping size
'manual' (default) | 'same'

Method to determine cropping size, specified as 'manual' or same.

The software automatically sets the value of CroppingMode based on the 'Cropping' value you
specify when creating the layer.

• If you set the Cropping option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.

• If you set the 'Cropping' option to 'same', then the software automatically sets the
CroppingMode property of the layer to 'same' and set the cropping so that the output size
equals inputSize .* Stride, where inputSize is the height and width of the layer input.

To specify the cropping size, use the 'Cropping' option of transposedConv2dLayer.

CroppingSize — Output size reduction
[0 0 0 0] (default) | vector of four nonnegative integers

Output size reduction, specified as a vector of four nonnegative integers [t b l r], where t, b, l, r
are the amounts to crop from the top, bottom, left, and right, respectively.

To specify the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.
Example: [0 1 0 1]

Cropping — Output size reduction
[0 0] (default) | vector of two nonnegative integers

Note Cropping property will be removed in a future release. Use CroppingSize instead. To specify
the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.

Output size reduction, specified as a vector of two nonnegative integers [a b], where a corresponds
to the cropping from the top and bottom and b corresponds to the cropping from the left and right.

To specify the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.
Example: [0 1]

NumChannels — Number of input channels
'auto' (default) | positive integer

This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the convolutional layer, specified as a FilterSize(1)-by-FilterSize(2)-by-
NumFilters-by-NumChannels array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
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layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.
Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-NumFilters array.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Deep Learning Functions

1-1752



BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell
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Examples

Create Transposed Convolutional Layer

Create a transposed convolutional layer with 96 filters, each with a height and width of 11. Use a
stride of 4 in the horizontal and vertical directions.

layer = transposedConv2dLayer(11,96,'Stride',4);

Algorithms
2-D Transposed Convolutional Layer

A transposed 2-D convolution layer upsamples two-dimensional feature maps.

The standard convolution operation downsamples the input by applying sliding convolutional filters to
the input. By flattening the input and output, you can express the convolution operation as
Y = CX + B for the convolution matrix C and bias vector B that can be derived from the layer weights
and biases.

Similarly, the transposed convolution operation upsamples the input by applying sliding convolutional
filters to the input. To upsample the input instead of downsampling using sliding filters, the layer
zero-pads each edge of the input with padding that has the size of the corresponding filter edge size
minus 1.

By flattening the input and output, the transposed convolution operation is equivalent to
Y = C⊤X + B, where C and B denote the convolution matrix and bias vector for standard convolution
derived from the layer weights and biases, respectively. This operation is equivalent to the backward
function of a standard convolution layer.

This image shows a 4-by-4 filter upsampling 2-by-2 input. The lower map represents the input and the
upper map represents the output. 3

3 Image credit: Convolution arithmetic (License)
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Version History
Introduced in R2017b

Default weights initialization is Glorot
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot
initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal
distribution with zero mean and variance 0.01. To reproduce this behavior, set the
'WeightsInitializer' option of the layer to 'narrow-normal'.

Cropping property of TransposedConvolution2DLayer will be removed
Not recommended starting in R2019a

Cropping property of TransposedConvolution2DLayer will be removed, use CroppingSize
instead. To update your code, replace all instances of the Cropping property with CroppingSize.

References
[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the Difficulty of Training Deep Feedforward

Neural Networks." In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–356. Sardinia, Italy: AISTATS, 2010.
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[2] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification." In Proceedings of the
2015 IEEE International Conference on Computer Vision, 1026–1034. Washington, DC: IEEE
Computer Vision Society, 2015.

See Also
averagePooling2dLayer | transposedConv2dLayer | maxPooling2dLayer |
convolution2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
“Compare Layer Weight Initializers”
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TransposedConvolution3dLayer
Transposed 3-D convolution layer

Description
A transposed 3-D convolution layer upsamples three-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the
transpose of convolution and does not perform deconvolution.

Creation
Create a transposed convolution 3-D layer using transposedConv3dLayer.

Properties
Transposed Convolution

FilterSize — Height, width, and depth of filters
vector of three positive integers

Height, width, and depth of the filters, specified as a vector [h w d] of three positive integers,
where h is the height, w is the width, and d is the depth. FilterSize defines the size of the local
regions to which the neurons connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the
height, width, and depth.
Example: [5 5 5] specifies filters with a height, width, and depth of 5.

NumFilters — Number of filters
positive integer

This property is read-only.

Number of filters, specified as a positive integer. This number corresponds to the number of neurons
in the layer that connect to the same region in the input. This parameter determines the number of
channels (feature maps) in the layer output.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
depth. When creating the layer, you can specify Stride as a scalar to use the same value for step
sizes in all three directions.
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Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CroppingMode — Method to determine cropping size
'manual' (default) | 'same'

Method to determine cropping size, specified as 'manual' or 'same'.

The software automatically sets the value of CroppingMode based on the 'Cropping' value you
specify when creating the layer.

• If you set the Cropping option to a numeric value, then the software automatically sets the
CroppingMode property of the layer to 'manual'.

• If you set the 'Cropping' option to 'same', then the software automatically sets the
CroppingMode property of the layer to 'same' and set the cropping so that the output size
equals inputSize .* Stride, where inputSize is the height, width, and depth of the layer
input.

To specify the cropping size, use the 'Cropping' option of transposedConv3dLayer.

CroppingSize — Output size reduction
[0 0 0;0 0 0] (default) | matrix of nonnegative integers

Output size reduction, specified as a matrix of nonnegative integers [t l f; b r bk], t, l, f, b, r,
bk are the amounts to crop from the top, left, front, bottom, right, and back of the input, respectively.

To specify the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.
Example: [0 1 0 1 0 1]

NumChannels — Number of input channels
'auto' (default) | positive integer

This property is read-only.

Number of input channels, specified as one of the following:

• 'auto' — Automatically determine the number of input channels at training time.
• Positive integer — Configure the layer for the specified number of input channels. NumChannels

and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:
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• 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
The Glorot initializer independently samples from a uniform distribution with zero mean and
variance 2/(numIn + numOut), where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels and numOut =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumFilters.

• 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal
distribution with zero mean and variance 2/numIn, where numIn =
FilterSize(1)*FilterSize(2)*FilterSize(3)*NumChannels.

• 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution
with zero mean and standard deviation 0.01.

• 'zeros' – Initialize the weights with zeros.
• 'ones' – Initialize the weights with ones.
• Function handle – Initialize the weights with a custom function. If you specify a function handle,

then the function must be of the form weights = func(sz), where sz is the size of the weights.
For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' — Initialize the bias with zeros.
• 'ones' — Initialize the bias with ones.
• 'narrow-normal' — Initialize the bias by independently sampling from a normal distribution

with a mean of zero and a standard deviation of 0.01.
• Function handle — Initialize the bias with a custom function. If you specify a function handle, then

the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.
Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the transposed convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly
using the Weights property of the layer. When you train a network, if the Weights property of the
layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the
Weights property is empty, then trainNetwork uses the initializer specified by the
WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-FilterSize(3)-by-
NumFilters-by-NumChannels array.
Data Types: single | double
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Bias — Layer biases
[] (default) | numeric array

Layer biases for the transposed convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-1-by-NumFilters array.
Data Types: single | double

Learning Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the
weights in this layer is twice the current global learning rate. The software determines the global
learning rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the weights in this layer. For example, if WeightL2Factor is 2, then the L2
regularization for the weights in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2
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regularization for the biases in this layer is twice the global L2 regularization factor. You can specify
the global L2 regularization factor using the trainingOptions function.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples
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Create Transposed 3-D Convolutional Layer

Create a transposed 3-D convolutional layer with 32 filters, each with a height, width, and depth of
11. Use a stride of 4 in the horizontal and vertical directions and 2 along the depth.

layer = transposedConv3dLayer(11,32,'Stride',[4 4 2])

layer = 
  TransposedConvolution3DLayer with properties:

            Name: ''

   Hyperparameters
      FilterSize: [11 11 11]
     NumChannels: 'auto'
      NumFilters: 32
          Stride: [4 4 2]
    CroppingMode: 'manual'
    CroppingSize: [2x3 double]

   Learnable Parameters
         Weights: []
            Bias: []

  Show all properties

Algorithms
3-D Transposed Convolutional Layer

A transposed 3-D convolution layer upsamples three-dimensional feature maps.

The standard convolution operation downsamples the input by applying sliding convolutional filters to
the input. By flattening the input and output, you can express the convolution operation as
Y = CX + B for the convolution matrix C and bias vector B that can be derived from the layer weights
and biases.

Similarly, the transposed convolution operation upsamples the input by applying sliding convolutional
filters to the input. To upsample the input instead of downsampling using sliding filters, the layer
zero-pads each edge of the input with padding that has the size of the corresponding filter edge size
minus 1.

By flattening the input and output, the transposed convolution operation is equivalent to
Y = C⊤X + B, where C and B denote the convolution matrix and bias vector for standard convolution
derived from the layer weights and biases, respectively. This operation is equivalent to the backward
function of a standard convolution layer.

Version History
Introduced in R2019a
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See Also
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Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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unfreezeParameters
Convert nonlearnable network parameters in ONNXParameters to learnable

Syntax
params = unfreezeParameters(params,names)

Description
params = unfreezeParameters(params,names) unfreezes the network parameters specified by
names in the ONNXParameters object params. The function moves the specified parameters from
params.Nonlearnables in the input argument params to params.Learnables in the output
argument params.

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the squeezenet convolution neural network as a function and fine-tune the pretrained
network with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper
Functions on page 1-1768.

Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network. Specify the mini-
batch size.

unzip("MerchData.zip");
miniBatchSize = 8;
imds = imageDatastore("MerchData", ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames", ...
    ReadSize=miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end
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Extract the training set and one-hot encode the categorical classification labels.

XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';

Determine the number of classes in the data.

classes = categories(YTrain_categ);
numClasses = numel(classes)

numClasses = 5

squeezenet is a convolutional neural network that is trained on more than a million images from the
ImageNet database. As a result, the network has learned rich feature representations for a wide
range of images. The network can classify images into 1000 object categories, such as keyboard,
mouse, pencil, and many animals.

Import the pretrained squeezenet network as a function.

squeezenetONNX()
params = importONNXFunction("squeezenet.onnx","squeezenetFcn")
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Function containing the imported ONNX network architecture was saved to the file squeezenetFcn.m.
To learn how to use this function, type: help squeezenetFcn.

params = 
  ONNXParameters with properties:

             Learnables: [1×1 struct]
          Nonlearnables: [1×1 struct]
                  State: [1×1 struct]
          NumDimensions: [1×1 struct]
    NetworkFunctionName: 'squeezenetFcn'

params is an ONNXParameters object that contains the network parameters. squeezenetFcn is a
model function that contains the network architecture. importONNXFunction saves
squeezenetFcn in the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf("%.2f accuracy before transfer learning\n",accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network by typing params.Learnables. These parameters,
such as the weights (W) and bias (B) of convolution and fully connected layers, are updated by the
network during training. Nonlearnable parameters remain constant during training.

The last two learnable parameters of the pretrained network are configured for 1000 classes.

conv10_W: [1×1×512×1000 dlarray]

conv10_B: [1000×1 dlarray]

The parameters conv10_W and conv10_B must be fine-tuned for the new classification problem.
Transfer the parameters to classify five classes by initializing the parameters.

params.Learnables.conv10_W = rand(1,1,512,5);
params.Learnables.conv10_B = rand(5,1);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you
do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers
can significantly speed up network training.

params = freezeParameters(params,"all");

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,"conv10_W");
params = unfreezeParameters(params,"conv10_B");

The network is ready for training. Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
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initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Calculate the total number of iterations for the training progress monitor.

numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
numIterations = numEpochs*numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object immediately after the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the network.

epoch = 0;
iteration = 0;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop

    epoch = epoch + 1;
    
    % Shuffle data.
    idx = randperm(numObservations);
    XTrain = XTrain(:,:,:,idx);
    YTrain = YTrain(:,idx);
    
    % Loop over mini-batches.
    i = 0;
    while i < numIterationsPerEpoch && ~monitor.Stop
        i = i + 1;
        iteration = iteration + 1;
        
        % Read mini-batch of data.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,:,idx);        
        Y = YTrain(:,idx);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            X = gpuArray(X);         
        end
        
        % Evaluate the model gradients and loss using dlfeval and the
        % modelGradients function.
        [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
        params.State = state;
        
        % Determine the learning rate for the time-based decay learning rate schedule.
        learnRate = initialLearnRate/(1 + decay*iteration);
        
        % Update the network parameters using the SGDM optimizer.
        [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);
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        % Update the training progress monitor.
        recordMetrics(monitor,iteration,Loss=loss);
        updateInfo(monitor,Epoch=epoch);
        monitor.Progress = 100 * iteration/numIterations;
    end
end

Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf("%.2f accuracy after transfer learning\n",accuracyAfterTraining);

1.00 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.

The getNetworkAccuracy function evaluates the network performance by calculating the
classification accuracy.

function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = squeezenetFcn(X,onnxParams,Training=false);

[~,YIdx] = max(Y,[],1);
[~,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;
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end

The modelGradients function calculates the loss and gradients.

function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = squeezenetFcn(X,onnxParams,Training=true);
loss = crossentropy(y,Y,DataFormat="CB");
grad = dlgradient(loss,onnxParams.Learnables);

end

The squeezenetONNX function generates an ONNX model of the squeezenet network.

function squeezenetONNX()
    
exportONNXNetwork(squeezenet,"squeezenet.onnx");

end

Input Arguments
params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX model.

names — Names of parameters to unfreeze
'all' | string array

Names of the parameters to unfreeze, specified as 'all' or a string array. Unfreeze all nonlearnable
parameters by setting names to 'all'. Unfreeze k nonlearnable parameters by defining the
parameter names in the 1-by-k string array names.
Example: ["gpu_0_sl_pred_b_0", "gpu_0_sl_pred_w_0"]
Data Types: char | string

Output Arguments
params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by unfreezeParameters.

Version History
Introduced in R2020b

See Also
importONNXFunction | ONNXParameters | freezeParameters
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TFLiteModel
TensorFlow Lite model

Description
A TFLiteModel object enables support for simulation and code generation for deep learning
inference by using TensorFlow Lite models

Use a TFLiteModel object with the predict function in your MATLAB code to perform inference in
MATLAB execution, code generation, or MATLAB Function block in Simulink models. For more
information, see “Prerequisites for Deep Learning with TensorFlow Lite Models”.

To use this object, you must install the Deep Learning Toolbox Interface for TensorFlow Lite support
package.

Creation
To create a TFLiteModel object from a pretrained TensorFlow Lite model file, use the
loadTFLiteModel function.

Properties
ModelName — Name of the TensorFlow Lite model file
character vector

Name of the TensorFlow Lite model file, specified as a character vector.

NumInputs — Number of inputs of the TensorFlow Lite model
numeric scalar

Number of inputs the TensorFlow Lite model accepts, specified as a integer-valued numeric scalar.

NumOutputs — Number of outputs of the TensorFlow Lite model
numeric scalar

Number of outputs the TensorFlow Lite model produces, specified as a integer-valued numeric scalar.

InputSize — Size of inputs of the TensorFlow model
cell array containing numeric arrays

Size of inputs of the TensorFlow model, specified as a cell array containing numeric arrays.

OutputSize — Size of outputs of the TensorFlow model
cell array containing numeric arrays

Size of outputs of the TensorFlow model, specified as a cell array containing numeric arrays.

NumThreads — Number of computational threads used for inference computation
numeric scalar
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Number of computational threads used for running inference with the TensorFlow Lite model,
specified as an integer-valued numeric scalar.

The default value of this property is equal to the value returned by the maxNumCompThreads
function.

Mean — Mean for input data normalization
127.5 (default) | double scalar

Mean value to which the input data is normalized, specified as a double scalar. If the input data is not
normalized, you must set this property to 0. Otherwise, set this property based on how the input data
is normalized.

StandardDeviation — Standard deviation for input data normalization
127.5 (default) | double scalar

Standard deviation to which the input data is normalized, specified as a double scalar. If the input
data is not normalized, you must set this property to 1. Otherwise, set this property based on how the
input data is normalized.

Object Functions
predict Compute deep learning network output for inference by using a TensorFlow Lite model

Examples

Perform Inference with TensorFlow Lite Model

Suppose that your current working directory contains a TensorFlow Lite Model named
mobilenet_v1_0.5_224.tflite.

Load the model by using the loadTFLite function. Inspect the object this function creates.

net = loadTFLiteModel('mobilenet_v1_0.5_224.tflite');
disp(net)

  TFLiteModel with properties:
            ModelName: 'mobilenet_v1_0.5_224.tflite'
            NumInputs: 1
           NumOutputs: 1
            InputSize: {[224 224 3]}
           OutputSize: {[1001 1]}
           NumThreads: 8
                 Mean: 127.5000
    StandardDeviation: 127.5000

Create a MATLAB function that can perform inference using the object net. This function loads the
Mobilenet-V1 model into a persistent network object. Then the function performs prediction by
passing the network object to the predict function. Subsequent calls to this function reuse this the
persistent object.

function out = tflite_predict(in)
persistent net;
if isempty(net)
    net = loadTFLiteModel('mobilenet_v1_0.5_224.tflite');
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end
out = predict(net,in);
end

For an example that shows how to generate code for this function and deploy on Raspberry Pi
hardware, see “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi”.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If code generation target is the host computer, the default value of the NumThreads property is
equal to the value returned by the maxNumCompThreads function.

• If code generation target is a non-host hardware board, the default value of the NumThreads
property is -1. To optimize performance, in your entry-point function, set this property based on
the number of threads available on your hardware board.

See Also
loadTFLiteModel | predict

Topics
“Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi”
“Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and
Raspberry Pi”
“Prerequisites for Deep Learning with TensorFlow Lite Models”
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predict
Compute deep learning network output for inference by using a TensorFlow Lite model

Syntax
Y = predict(net,X)
[Y1,...,YN] = predict(net,X)

Description
Y = predict(net,X) returns the network output Y during inference given the input data X and the
network net with a single input and a single output.

To use this function, you must install the Deep Learning Toolbox Interface for TensorFlow Lite
support package.

[Y1,...,YN] = predict(net,X) returns the N outputs Y1, …, YN during inference for networks
that have N outputs.

Tip For prediction with SeriesNetwork and DAGNetwork objects, see predict.

Examples

Perform Inference with TensorFlow Lite Model

Suppose that your current working directory contains a TensorFlow Lite Model named
mobilenet_v1_0.5_224.tflite.

Load the model by using the loadTFLite function. Inspect the object this function creates.

net = loadTFLiteModel('mobilenet_v1_0.5_224.tflite');
disp(net)

  TFLiteModel with properties:
            ModelName: 'mobilenet_v1_0.5_224.tflite'
            NumInputs: 1
           NumOutputs: 1
            InputSize: {[224 224 3]}
           OutputSize: {[1001 1]}
           NumThreads: 8
                 Mean: 127.5000
    StandardDeviation: 127.5000

Create a MATLAB function that can perform inference using the object net. This function loads the
Mobilenet-V1 model into a persistent network object. Then the function performs prediction by
passing the network object to the predict function. Subsequent calls to this function reuse this the
persistent object.

function out = tflite_predict(in)
persistent net;

 predict
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if isempty(net)
    net = loadTFLiteModel('mobilenet_v1_0.5_224.tflite');
end
out = predict(net,in);
end

For an example that shows how to generate code for this function and deploy on Raspberry Pi
hardware, see “Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi”.

Input Arguments
net — Object representing TensorFlow Lite model
TFLiteModel object

TFLiteModel object that represents the TensorFlow Lite model file.

X — Input to the network
numeric array

Image or sequence input to the network, specified as a numeric array.

• For image classification networks, the input must be of shape (H,W,C,N), where H is height, W is
width, C is channel, and N is batch size.

• For recurrent neural networks, the input must be of shape (D, N, S), where D is channel or feature
dimension, N is batch size, and S is timestamp or sequence length.

Output Arguments
Y — Output data
numeric array

Output data, specified as a numeric array.

When performing inference with quantized TensorFlow Lite models, the output data is normalized in
one of these ways:

• Signed 8-bit integer type outputs are normalized as output[i] = (prediction[i] + 128) /
256.0.

• Unsigned 8-bit integer type outputs are normalized as output[i] = prediction[i] / 255.0.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
loadTFLiteModel | TFLiteModel
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Topics
“Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi”
“Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and
Raspberry Pi”
“Prerequisites for Deep Learning with TensorFlow Lite Models”
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updateInfo
Package: experiments

Update information columns in experiment results table

Syntax
updateInfo(monitor,infoName=infoValue)
updateInfo(monitor,infoName1=infoValue1,...,infoNameN=infoValueN)
updateInfo(monitor,infoStructure)

Description
updateInfo(monitor,infoName=infoValue) updates the specified information column for a trial
in the Experiment Manager results table.

updateInfo(monitor,infoName1=infoValue1,...,infoNameN=infoValueN) updates
multiple information columns for a trial.

updateInfo(monitor,infoStructure) updates the information columns using the values
specified by the structure infoStructure.

Examples

Track Progress, Display Information and Record Metric Values, and Produce Training Plots

Use an experiments.Monitor object to track the progress of the training, display information and
metric values in the experiment results table, and produce training plots for custom training
experiments.

Before starting the training, specify the names of the information and metric columns of the
Experiment Manager results table.

monitor.Info = ["GradientDecayFactor","SquaredGradientDecayFactor"];
monitor.Metrics = ["TrainingLoss","ValidationLoss"];

Specify the horizontal axis label for the training plot. Group the training and validation loss in the
same subplot.

monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);

Update the values of the gradient decay factor and the squared gradient decay factor for the trial in
the results table.

updateInfo(monitor, ...
    GradientDecayFactor=gradientDecayFactor, ...
    SquaredGradientDecayFactor=squaredGradientDecayFactor);

After each iteration of the custom training loop, record the value of training and validation loss for
the trial in the results table and the training plot.
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recordMetrics(monitor,iteration, ...
    TrainingLoss=trainingLoss, ...
    ValidationLoss=validationLoss);

Update the training progress for the trial based on the fraction of iterations completed.

monitor.Progress = 100 * (iteration/numIterations);

Specify Information Values by Using Structure

Use a structure to update values of information columns in the results table.

structure.GradientDecayFactor = gradientDecayFactor;
structure.SquaredGradientDecayFactor = squaredGradientDecayFactor;
updateInfo(monitor,structure);

Input Arguments
monitor — Experiment monitor
experiments.Monitor object

Experiment monitor for the trial, specified as an experiments.Monitor object. When you run a
custom training experiment, Experiment Manager passes this object as the second input argument of
the training function.

infoName — Information column name
string | character vector

Information column name, specified as a string or character vector. This name must be an element of
the Info property of the experiments.Monitor object monitor.
Data Types: char | string

infoValue — Information column value
numeric scalar | string | character vector | dlarray

Information column value, specified as a numeric scalar, string, character vector, or dlarray object.

infoStructure — Information column names and values
structure

Information column names and values, specified as a structure. Names must be elements of the Info
property of the experiments.Monitor object monitor and can appear in any order in the
structure.
Example:
struct(GradientDecayFactor=gradientDecayFactor,SquaredGradientDecayFactor=squ
aredGradientDecayFactor)

Data Types: struct

Tips
• Both information and metric columns display values in the results table for your experiment.

Additionally, the training plot shows a record of the metric values. Use information columns for
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text and for numerical values that you want to display in the results table but not in the training
plot.

Version History
Introduced in R2021a

See Also
Apps
Experiment Manager

Objects
experiments.Monitor

Functions
groupSubPlot | recordMetrics | struct
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updateInfo
Package: deep

Update information values for custom training loops

Syntax
updateInfo(monitor,infoName=infoValue)
updateInfo(monitor,infoName1=infoValue1,...,infoNameN=infoValueN)
updateInfo(monitor,infoStructure)

Description
updateInfo(monitor,infoName=infoValue) updates the specified information in the Training
Progress window and saves the values in the InfoData property of the
TrainingProgressMonitor object monitor.

updateInfo(monitor,infoName1=infoValue1,...,infoNameN=infoValueN) updates
multiple information values.

updateInfo(monitor,infoStructure) updates the information using the values specified by the
structure infoStructure.

Examples

Track Progress and Produce Training Plots

Use a TrainingProgressMonitor object to track training progress and produce training plots for
custom training loops.

Create a TrainingProgressMonitor object. The monitor automatically tracks the start time and
the elapsed time. The timer starts when you create the object.

Tip To ensure that the elapsed time accurately reflects the training time, make sure you create the
TrainingProgressMonitor object close to the start of your custom training loop.

monitor = trainingProgressMonitor;

Before you start the training, specify names for the information and metric values.

monitor.Info = ["LearningRate","Epoch","Iteration"];
monitor.Metrics = ["TrainingLoss","ValidationLoss","TrainingAccuracy","ValidationAccuracy"];

Specify the horizontal axis label for the training plot. Group the training and validation loss in the
same subplot, and group the training and validation accuracy in the same plot.

monitor.XLabel = "Iteration";
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"]);
groupSubPlot(monitor,"Accuracy",["TrainingAccuracy","ValidationAccuracy"]);
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During training:

• Evaluate the Stop property at the start of each step in your custom training loop. When you click
the Stop button in the Training Progress window, the Stop property changes to 1. Training stops
if your training loop exits when the Stop property is 1.

• Update the information values. The updated values appear in the Training Progress window.
• Record the metric values. The recorded values appear in the training plot.
• Update the training progress percentage based on the fraction of iterations completed.

Note The following example code is a template. You must edit this training loop to compute your
metric and information values. For a complete example that you can run in MATLAB, see “Monitor
Custom Training Loop Progress During Training”.

epoch = 0;
iteration = 0;

monitor.Status = "Running";

while epoch < maxEpochs && ~monitor.Stop
    epoch = epoch + 1;

    while hasData(mbq) && ~monitor.Stop
        iteration = iteration + 1;

        % Add code to calculate metric and information values.
        % lossTrain = ...

       updateInfo(monitor, ...
            LearningRate=learnRate, ...
            Epoch=string(epoch) + " of " + string(maxEpochs), ...
            Iteration=string(iteration) + " of " + string(numIterations));

       recordMetrics(monitor,iteration, ...
            TrainingLoss=lossTrain, ...
            TrainingAccuracy=accuracyTrain, ...
            ValidationLoss=lossValidation, ...
            ValidationAccuracy=accuracyValidation);

        monitor.Progress = 100*iteration/numIterations;
    end
end

The Training Progress window shows animated plots of the metrics, and the information values,
training progress bar, and elapsed time.

• The training plots update each time you call recordMetrics.
• The values under Information update each time you call updateInfo.
• The elapsed time updates each time you call recordMetrics or updateInfo, and when you

update the property.
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Specify Information Values by Using Structure

Use a structure to update the information values.

structure.GradientDecayFactor = gradientDecayFactor;
structure.SquaredGradientDecayFactor = squaredGradientDecayFactor;
updateInfo(monitor,structure);

Input Arguments
monitor — Training progress monitor
TrainingProgressMonitor object

Training progress monitor, specified as a TrainingProgressMonitor object.

infoName — Information name
string scalar | character vector

Information name, specified as a string scalar or character vector. This name must be an element of
the Info property of monitor.
Data Types: char | string | cell

infoValue — Information value
numeric scalar | string scalar | character vector | dlarray object

Information value, specified as a numeric scalar, string scalar, character vector, or dlarray object.
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infoStructure — Information names and values
structure

Information names and values, specified as a structure. Names must be elements of the Info
property of monitor and can appear in any order in the structure.
Example:
struct(GradientDecayFactor=gradientDecayFactor,SquaredGradientDecayFactor=squ
aredGradientDecayFactor)

Data Types: struct

Tips
• The information values appear in the Training Progress window and the training plot shows a

record of the metric values. Use information values for text and for numerical values that you
want to display in the training window but not in the training plot.

Version History
Introduced in R2022b

See Also
groupSubPlot | trainingProgressMonitor | recordMetrics

Topics
“Monitor Custom Training Loop Progress”
“Train Network Using Custom Training Loop”
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updatePrunables
Package: deep.prune

Remove filters from prunable layers based on importance scores

Syntax
prunableNet_new = updatePrunables(prunableNet)
prunableNet_new = updatePrunables(prunableNet,MaxToPrune=maxToPrune)

Description
prunableNet_new = updatePrunables(prunableNet) removes up to 8 prunable filters from
the convolution layers of prunableNet and returns an updated TaylorPrunableNetwork object.
This function removes filters that have the lowest Taylor-based importance scores.

To prune a deep neural network, you require the Deep Learning Toolbox Model Quantization Library
support package This support package is a free add-on that you can download using the Add-On
Explorer. Alternatively, see Deep Learning Toolbox Model Quantization Library.

prunableNet_new = updatePrunables(prunableNet,MaxToPrune=maxToPrune) removes up
to maxToPrune prunable filters from the convolution layers of prunableNet and returns an updated
TaylorPrunableNetwork object.

Examples

Prune dlnetwork Object to Compress the Model

This example shows how to prune a dlnetwork object by using a custom pruning loop.

Load dlnetwork Object

Load a trained dlnetwork object and the corresponding classes.

s = load("digitsCustom.mat");
dlnet_1 = s.dlnet;
classes = s.classes;

Inspect the layers of the dlnetwork object. The network has three convolution layers at locations 2,
5, and 8 of the Layer array.

layers_1 = dlnet_1.Layers

layers_1 = 
  12x1 Layer array with layers:

     1   'input'     Image Input           28x28x1 images with 'zerocenter' normalization
     2   'conv1'     2-D Convolution       20 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'bn1'       Batch Normalization   Batch normalization with 20 channels
     4   'relu1'     ReLU                  ReLU
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     5   'conv2'     2-D Convolution       20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     6   'bn2'       Batch Normalization   Batch normalization with 20 channels
     7   'relu2'     ReLU                  ReLU
     8   'conv3'     2-D Convolution       20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     9   'bn3'       Batch Normalization   Batch normalization with 20 channels
    10   'relu3'     ReLU                  ReLU
    11   'fc'        Fully Connected       10 fully connected layer
    12   'softmax'   Softmax               softmax

Load Data for Prediction

Load the digits data for prediction.

dataFolder = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");

imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

Partition the data into pruning and validation sets. Set aside 10% of the data for validation using the
splitEachLabel function.

[imdsPrune,imdsValidation] = splitEachLabel(imds,0.9,"randomize");

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the images, use augmented image datastores.

inputSize = [28 28 1];
augimdsPrune = augmentedImageDatastore(inputSize(1:2),imdsPrune);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Prune dlnetwork Object

Convert the dlnetwork object to a representation that is suitable for pruning by using the
taylorPrunableNetwork function. This function returns a TaylorPrunableNetwork object that
has the NumPrunables property set to 48. This indicates that 48 filters in the original model are
suitable for pruning by using the Taylor pruning algorithm.

prunableNet_1 = taylorPrunableNetwork(dlnet_1)

prunableNet_1 = 
  TaylorPrunableNetwork with properties:

      Learnables: [14x3 table]
           State: [6x3 table]
      InputNames: {'input'}
     OutputNames: {'softmax'}
    NumPrunables: 48

Create a minibatchqueue object that processes and manages mini-batches of images during
pruning. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not format the class labels.
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• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

miniBatchSize = 128;
imds.ReadSize = miniBatchSize;

mbq = minibatchqueue(augimdsPrune, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["SSCB" ""]);

Calculate Taylor-based importance scores of the prunable filters in the network by looping over the
mini-batches of data. For each mini-batch:

• Calculate pruning activations and pruning gradients by using the modelLoss function defined at
the end of this example

• Update importance scores of the prunable filters by using the updateScore function

while hasdata(mbq)
    [X,T] = next(mbq);
    [~,pruningActivations,pruningGradients] = dlfeval(@modelLoss,prunableNet_1,X,T);
    prunableNet_1 = updateScore(prunableNet_1,pruningActivations,pruningGradients);
end

Finally, remove filters with the lowest importance scores to create a new TaylorPrunableNetwork
object by using the updatePrunables function. By default, a single call to this function removes 8
filters. Observe that the new network prunableNet_2 has 40 prunable filters remaining.

prunableNet_2 = updatePrunables(prunableNet_1)

prunableNet_2 = 
  TaylorPrunableNetwork with properties:

      Learnables: [14x3 table]
           State: [6x3 table]
      InputNames: {'input'}
     OutputNames: {'softmax'}
    NumPrunables: 40

To further compress the model, run the custom pruning loop and update prunables again.

Extract Pruned dlnetwork Object

Use the dlnetwork function to extract the pruned dlnetwork object from the pruned
TaylorPrunableNetwork object. You can now use this compressed dlnetwork object to perform
inference.

dlnet_2 = dlnetwork(prunableNet_2);

Compare the convolution layers of the original and the pruned dlnetwork objects. Observe that the
three convolution layers in the pruned network have fewer filters. These counts agree with the fact
that, by default, a single call to the updatePrunables function removes 8 filters from the network.

conv_layers_1 = dlnet_1.Layers([2 5 8])
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conv_layers_1 = 
  3x1 Convolution2DLayer array with layers:

     1   'conv1'   2-D Convolution   20 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'conv2'   2-D Convolution   20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'conv3'   2-D Convolution   20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]

conv_layers_2 = dlnet_2.Layers([2 5 8])

conv_layers_2 = 
  3x1 Convolution2DLayer array with layers:

     1   'conv1'   2-D Convolution   17 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'conv2'   2-D Convolution   18 3x3x17 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'conv3'   2-D Convolution   17 3x3x18 convolutions with stride [1  1] and padding [1  1  1  1]

Supporting Functions

Model Loss Function

The modelLoss function takes a TaylorPrunableNetwork object net, a mini-batch of input data X
with corresponding targets T and returns activations in net and the gradients of the loss with respect
to the activations in net. To compute the gradients automatically, this function uses the dlgradient
function.

function [loss, pruningActivations, pruningGradients] = modelLoss(net,X,T)

% Calculate network output for training.
[out, ~, pruningActivations] = forward(net,X);

% Calculate loss.
loss = crossentropy(out,T);

% Compute pruning gradients.
pruningGradients = dlgradient(loss,pruningActivations);
end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
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T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenating into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(dataX)

% Concatenate.
X = cat(4,dataX{1:end});

% Normalize the images.
X = X/255;

end

Input Arguments
prunableNet — Network for pruning by using first-order Taylor approximation
TaylorPrunableNetwork object

Network for pruning by using first-order Taylor approximation, specified as a
TaylorPrunableNetwork object.

maxToPrune — Maximum number of filters to be pruned
8 (default) | numeric scalar

Maximum number of filters to be pruned, specified as a numeric integer-valued scalar

Output Arguments
prunableNet_new — Pruned network
TaylorPrunableNetwork object

Network object from which filters with low Taylor-based importance scores have been removed,
specified as a TaylorPrunableNetwork object.

Version History
Introduced in R2022a

See Also
taylorPrunableNetwork | updateScore | dlnetwork | forward | predict

Topics
“Prune Filters in a Detection Network Using Taylor Scores”
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updateScore
Package: deep.prune

Compute and accumulate Taylor-based importance scores for pruning

Syntax
prunableNet_new = updateScore(prunableNet,pruningActivations,
pruningGradients)

Description
prunableNet_new = updateScore(prunableNet,pruningActivations,
pruningGradients) computes and accumulates Taylor-based importance scores of convolution
filters in prunable layers. This function returns another TaylorPrunableNetwork object whose
state contains these updated scores.

To get robust estimates of the importance scores of the convolution filters in your network, execute
updateScore several times on the same prunable network for different mini-batches of data.

To prune a deep neural network, you require the Deep Learning Toolbox Model Quantization Library
support package This support package is a free add-on that you can download using the Add-On
Explorer. Alternatively, see Deep Learning Toolbox Model Quantization Library.

Examples

Prune dlnetwork Object to Compress the Model

This example shows how to prune a dlnetwork object by using a custom pruning loop.

Load dlnetwork Object

Load a trained dlnetwork object and the corresponding classes.

s = load("digitsCustom.mat");
dlnet_1 = s.dlnet;
classes = s.classes;

Inspect the layers of the dlnetwork object. The network has three convolution layers at locations 2,
5, and 8 of the Layer array.

layers_1 = dlnet_1.Layers

layers_1 = 
  12x1 Layer array with layers:

     1   'input'     Image Input           28x28x1 images with 'zerocenter' normalization
     2   'conv1'     2-D Convolution       20 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'bn1'       Batch Normalization   Batch normalization with 20 channels
     4   'relu1'     ReLU                  ReLU
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     5   'conv2'     2-D Convolution       20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     6   'bn2'       Batch Normalization   Batch normalization with 20 channels
     7   'relu2'     ReLU                  ReLU
     8   'conv3'     2-D Convolution       20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     9   'bn3'       Batch Normalization   Batch normalization with 20 channels
    10   'relu3'     ReLU                  ReLU
    11   'fc'        Fully Connected       10 fully connected layer
    12   'softmax'   Softmax               softmax

Load Data for Prediction

Load the digits data for prediction.

dataFolder = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");

imds = imageDatastore(dataFolder, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames");

Partition the data into pruning and validation sets. Set aside 10% of the data for validation using the
splitEachLabel function.

[imdsPrune,imdsValidation] = splitEachLabel(imds,0.9,"randomize");

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize
the images, use augmented image datastores.

inputSize = [28 28 1];
augimdsPrune = augmentedImageDatastore(inputSize(1:2),imdsPrune);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Prune dlnetwork Object

Convert the dlnetwork object to a representation that is suitable for pruning by using the
taylorPrunableNetwork function. This function returns a TaylorPrunableNetwork object that
has the NumPrunables property set to 48. This indicates that 48 filters in the original model are
suitable for pruning by using the Taylor pruning algorithm.

prunableNet_1 = taylorPrunableNetwork(dlnet_1)

prunableNet_1 = 
  TaylorPrunableNetwork with properties:

      Learnables: [14x3 table]
           State: [6x3 table]
      InputNames: {'input'}
     OutputNames: {'softmax'}
    NumPrunables: 48

Create a minibatchqueue object that processes and manages mini-batches of images during
pruning. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert the labels to one-hot encoded variables.

• Format the image data with the dimension labels "SSCB" (spatial, spatial, channel, batch). By
default, the minibatchqueue object converts the data to dlarray objects with underlying type
single. Do not format the class labels.
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• Train on a GPU if one is available. By default, the minibatchqueue object converts each output
to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

miniBatchSize = 128;
imds.ReadSize = miniBatchSize;

mbq = minibatchqueue(augimdsPrune, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    MiniBatchFormat=["SSCB" ""]);

Calculate Taylor-based importance scores of the prunable filters in the network by looping over the
mini-batches of data. For each mini-batch:

• Calculate pruning activations and pruning gradients by using the modelLoss function defined at
the end of this example

• Update importance scores of the prunable filters by using the updateScore function

while hasdata(mbq)
    [X,T] = next(mbq);
    [~,pruningActivations,pruningGradients] = dlfeval(@modelLoss,prunableNet_1,X,T);
    prunableNet_1 = updateScore(prunableNet_1,pruningActivations,pruningGradients);
end

Finally, remove filters with the lowest importance scores to create a new TaylorPrunableNetwork
object by using the updatePrunables function. By default, a single call to this function removes 8
filters. Observe that the new network prunableNet_2 has 40 prunable filters remaining.

prunableNet_2 = updatePrunables(prunableNet_1)

prunableNet_2 = 
  TaylorPrunableNetwork with properties:

      Learnables: [14x3 table]
           State: [6x3 table]
      InputNames: {'input'}
     OutputNames: {'softmax'}
    NumPrunables: 40

To further compress the model, run the custom pruning loop and update prunables again.

Extract Pruned dlnetwork Object

Use the dlnetwork function to extract the pruned dlnetwork object from the pruned
TaylorPrunableNetwork object. You can now use this compressed dlnetwork object to perform
inference.

dlnet_2 = dlnetwork(prunableNet_2);

Compare the convolution layers of the original and the pruned dlnetwork objects. Observe that the
three convolution layers in the pruned network have fewer filters. These counts agree with the fact
that, by default, a single call to the updatePrunables function removes 8 filters from the network.

conv_layers_1 = dlnet_1.Layers([2 5 8])
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conv_layers_1 = 
  3x1 Convolution2DLayer array with layers:

     1   'conv1'   2-D Convolution   20 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'conv2'   2-D Convolution   20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'conv3'   2-D Convolution   20 3x3x20 convolutions with stride [1  1] and padding [1  1  1  1]

conv_layers_2 = dlnet_2.Layers([2 5 8])

conv_layers_2 = 
  3x1 Convolution2DLayer array with layers:

     1   'conv1'   2-D Convolution   17 5x5x1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'conv2'   2-D Convolution   18 3x3x17 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'conv3'   2-D Convolution   17 3x3x18 convolutions with stride [1  1] and padding [1  1  1  1]

Supporting Functions

Model Loss Function

The modelLoss function takes a TaylorPrunableNetwork object net, a mini-batch of input data X
with corresponding targets T and returns activations in net and the gradients of the loss with respect
to the activations in net. To compute the gradients automatically, this function uses the dlgradient
function.

function [loss, pruningActivations, pruningGradients] = modelLoss(net,X,T)

% Calculate network output for training.
[out, ~, pruningActivations] = forward(net,X);

% Calculate loss.
loss = crossentropy(out,T);

% Compute pruning gradients.
pruningGradients = dlgradient(loss,pruningActivations);
end

Mini Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of predictors and labels using the
following steps:

1 Preprocess the images using the preprocessMiniBatchPredictors function.
2 Extract the label data from the incoming cell array and concatenate into a categorical array

along the second dimension.
3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension

produces an encoded array that matches the shape of the network output.

function [X,T] = preprocessMiniBatch(dataX,dataT)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(dataX);

% Extract label data from cell and concatenate.
T = cat(2,dataT{1:end});

% One-hot encode labels.
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T = onehotencode(T,1);

end

Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function preprocesses a mini-batch of predictors by
extracting the image data from the input cell array and concatenating into a numeric array. For
grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to
use as a singleton channel dimension.

function X = preprocessMiniBatchPredictors(dataX)

% Concatenate.
X = cat(4,dataX{1:end});

% Normalize the images.
X = X/255;

end

Input Arguments
prunableNet — Network for pruning by using first-order Taylor approximation
TaylorPrunableNetwork object

Network for pruning by using first-order Taylor approximation, specified as a
TaylorPrunableNetwork object.

pruningActivations — Activations of the pruning layers
cell array containing dlarray objects

Activations of the pruning layers, specified as a cell array containing dlarray objects. To retrieve
these values, call the forward function on the prunable network.

pruningGradients — Gradients of loss with respect to activations
cell array containing dlarray objects

Gradients of loss with respect to pruningActivations, specified as a cell array containing
dlarray objects. To calculate pruningGradients, first calculate the loss and then use the
dlgradient function.

Output Arguments
prunableNet_new — Updated network for pruning
TaylorPrunableNetwork object

Network object for pruning that been updated to contain the accumulated Taylor-based importance
scores of the prunable filters, specified as a TaylorPrunableNetwork object.

Version History
Introduced in R2022a
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See Also
taylorPrunableNetwork | updatePrunables | dlnetwork | forward | predict

Topics
“Prune Filters in a Detection Network Using Taylor Scores”
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validate
Quantize and validate a deep neural network

Syntax
valResults = validate(quantObj,valData)
valResults = validate(quantObj,valData,quantOpts)

Description
valResults = validate(quantObj,valData) quantizes the weights, biases, and activations in
the convolution layers of the network, and validates the network specified by dlquantizer object,
quantObj, using the data specified by valData.

valResults = validate(quantObj,valData,quantOpts) quantizes and validates the network
with additional options specified by quantOpts.

This function requires Deep Learning Toolbox Model Quantization Library. To learn about the
products required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Examples

Quantize a Neural Network for GPU Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network for GPU and explore the behavior of the quantized network. In this example, you quantize
the squeezenet neural network after retraining the network to classify new images according to the
Train Deep Learning Network to Classify New Images example. In this example, the memory required
for the network is reduced approximately 75% through quantization while the accuracy of the
network is not affected.

Load the pretrained network. net is the output network of the Train Deep Learning Network to
Classify New Images example.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
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layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
This example uses the hComputeModelAccuracy metric function.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics
    
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    
    % Compare with predicted label with actual ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.

quantOpts = dlquantizationOptions('MetricFcn',{@(x)hComputeModelAccuracy(x, net, aug_valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug_calData)

calResults=121×5 table
        Optimized Layer Name         Network Layer Name     Learnables / Activations    MinValue     MaxValue
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    ____________________________    ____________________    ________________________    _________    ________

    {'conv1_Weights'           }    {'conv1'           }           "Weights"             -0.91985     0.88489
    {'conv1_Bias'              }    {'conv1'           }           "Bias"                -0.07925     0.26343
    {'fire2-squeeze1x1_Weights'}    {'fire2-squeeze1x1'}           "Weights"                -1.38      1.2477
    {'fire2-squeeze1x1_Bias'   }    {'fire2-squeeze1x1'}           "Bias"                -0.11641     0.24273
    {'fire2-expand1x1_Weights' }    {'fire2-expand1x1' }           "Weights"              -0.7406     0.90982
    {'fire2-expand1x1_Bias'    }    {'fire2-expand1x1' }           "Bias"               -0.060056     0.14602
    {'fire2-expand3x3_Weights' }    {'fire2-expand3x3' }           "Weights"             -0.74397     0.66905
    {'fire2-expand3x3_Bias'    }    {'fire2-expand3x3' }           "Bias"               -0.051778    0.074239
    {'fire3-squeeze1x1_Weights'}    {'fire3-squeeze1x1'}           "Weights"              -0.7712     0.68917
    {'fire3-squeeze1x1_Bias'   }    {'fire3-squeeze1x1'}           "Bias"                -0.10138     0.32675
    {'fire3-expand1x1_Weights' }    {'fire3-expand1x1' }           "Weights"             -0.72035      0.9743
    {'fire3-expand1x1_Bias'    }    {'fire3-expand1x1' }           "Bias"               -0.067029     0.30425
    {'fire3-expand3x3_Weights' }    {'fire3-expand3x3' }           "Weights"             -0.61443      0.7741
    {'fire3-expand3x3_Bias'    }    {'fire3-expand3x3' }           "Bias"               -0.053613     0.10329
    {'fire4-squeeze1x1_Weights'}    {'fire4-squeeze1x1'}           "Weights"              -0.7422      1.0877
    {'fire4-squeeze1x1_Bias'   }    {'fire4-squeeze1x1'}           "Bias"                -0.10885     0.13881
      ⋮

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults = struct with fields:
       NumSamples: 20
    MetricResults: [1×1 struct]
       Statistics: [2×2 table]

Examine the validation output to see the performance of the quantized network.

valResults.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}           1      
     {'Quantized'     }           1      

valResults.Statistics

ans=2×2 table
    NetworkImplementation    LearnableParameterMemory(bytes)
    _____________________    _______________________________

     {'Floating-Point'}                2.9003e+06           
     {'Quantized'     }                7.3393e+05           

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.
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The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network and explore the behavior of the quantized network. In this example, you quantize the logo
recognition network (LogoNet). Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

This example uses the products listed under FPGA in “Quantization Workflow Prerequisites”.

Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:
function net = getLogoNetwork()
    data = getLogoData();
    net  = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end

Load the pretrained network.

snet = getLogoNetwork();

snet = 

  SeriesNetwork with properties:

         Layers: [22×1 nnet.cnn.layer.Layer]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an imageDatastore, then
split the data into calibration and validation data sets.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
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 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData,validationData] = splitEachLabel(imageData,0.5,'randomized');

Create a dlquantizer object and specify the network to quantize. Set the execution environment for
the quantized network to FPGA.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

 dlQuantObj.calibrate(calibrationData)

ans = 
        Optimized Layer Name        Network Layer Name    Learnables / Activations     MinValue       MaxValue 
    ____________________________    __________________    ________________________    ___________    __________

    {'conv_1_Weights'          }      {'conv_1'    }           "Weights"                -0.048978      0.039352
    {'conv_1_Bias'             }      {'conv_1'    }           "Bias"                     0.99996        1.0028
    {'conv_2_Weights'          }      {'conv_2'    }           "Weights"                -0.055518      0.061901
    {'conv_2_Bias'             }      {'conv_2'    }           "Bias"                 -0.00061171       0.00227
    {'conv_3_Weights'          }      {'conv_3'    }           "Weights"                -0.045942      0.046927
    {'conv_3_Bias'             }      {'conv_3'    }           "Bias"                  -0.0013998     0.0015218
    {'conv_4_Weights'          }      {'conv_4'    }           "Weights"                -0.045967         0.051
    {'conv_4_Bias'             }      {'conv_4'    }           "Bias"                    -0.00164     0.0037892
    {'fc_1_Weights'            }      {'fc_1'      }           "Weights"                -0.051394      0.054344
    {'fc_1_Bias'               }      {'fc_1'      }           "Bias"                 -0.00052319    0.00084454
    {'fc_2_Weights'            }      {'fc_2'      }           "Weights"                 -0.05016      0.051557
    {'fc_2_Bias'               }      {'fc_2'      }           "Bias"                  -0.0017564     0.0018502
    {'fc_3_Weights'            }      {'fc_3'      }           "Weights"                -0.050706       0.04678
    {'fc_3_Bias'               }      {'fc_3'      }           "Bias"                    -0.02951      0.024855
    {'imageinput'              }      {'imageinput'}           "Activations"                    0           255
    {'imageinput_normalization'}      {'imageinput'}           "Activations"              -139.34        198.72

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer.
hTarget = dlhdl.Target('Intel','Interface','JTAG');

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.
function accuracy = hComputeModelAccuracy(predictionScores,net,dataStore)
%% hComputeModelAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.
    
    % Load ground truth 
    groundTruth = dataStore.Labels;
    
    % Compare predicted label with ground truth 
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:)); 
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function and FPGA execution environment options in a dlquantizationOptions
object.
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options = dlquantizationOptions('MetricFcn', ...
    {@(x)hComputeModelAccuracy(x,snet,validationData)},'Bitstream','arria10soc_int8',...
'Target',hTarget);

Compile and deploy the quantized network. Use the validate function to quantize the learnable
parameters in the convolution layers of the network and exercise the network. This function uses the
output of the compile function to program the FPGA board by using the programming file. It also
downloads the network weights and biases. The deploy function checks for the Intel Quartus tool and
the supported tool version. It then programs the FPGA device using the sof file, displays progress
messages, and the time it takes to deploy the network. The validate function uses the metric
function defined in the dlquantizationOptions object to compare the results of the network
before and after quantization.

prediction = dlQuantObj.validate(validationData,options);

           offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
### Loading weights to FC Processor.
### FC Weights loaded. Current time is 16-Jul-2020 12:45:26
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570959                  0.09047                      30          380609145             11.8
    conv_module           12667786                  0.08445 
        conv_1             3938907                  0.02626 
        maxpool_1          1544560                  0.01030 
        conv_2             2910954                  0.01941 
        maxpool_2           577524                  0.00385 
        conv_3             2552707                  0.01702 
        maxpool_3           676542                  0.00451 
        conv_4              455434                  0.00304 
        maxpool_4            11251                  0.00008 
    fc_module               903173                  0.00602 
        fc_1                536164                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570364                  0.09047                      30          380612682             11.8
    conv_module           12667103                  0.08445 
        conv_1             3939296                  0.02626 
        maxpool_1          1544371                  0.01030 
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        conv_2             2910747                  0.01940 
        maxpool_2           577654                  0.00385 
        conv_3             2551829                  0.01701 
        maxpool_3           676548                  0.00451 
        conv_4              455396                  0.00304 
        maxpool_4            11355                  0.00008 
    fc_module               903261                  0.00602 
        fc_1                536206                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13571561                  0.09048                      30          380608338             11.8
    conv_module           12668340                  0.08446 
        conv_1             3939070                  0.02626 
        maxpool_1          1545327                  0.01030 
        conv_2             2911061                  0.01941 
        maxpool_2           577557                  0.00385 
        conv_3             2552082                  0.01701 
        maxpool_3           676506                  0.00451 
        conv_4              455582                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903221                  0.00602 
        fc_1                536167                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13569862                  0.09047                      30          380613327             11.8
    conv_module           12666756                  0.08445 
        conv_1             3939212                  0.02626 
        maxpool_1          1543267                  0.01029 
        conv_2             2911184                  0.01941 
        maxpool_2           577275                  0.00385 
        conv_3             2552868                  0.01702 
        maxpool_3           676438                  0.00451 
        conv_4              455353                  0.00304 
        maxpool_4            11252                  0.00008 
    fc_module               903106                  0.00602 
        fc_1                536050                  0.00357 
        fc_2                342645                  0.00228 
        fc_3                 24409                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13570823                  0.09047                      30          380619836             11.8
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    conv_module           12667607                  0.08445 
        conv_1             3939074                  0.02626 
        maxpool_1          1544519                  0.01030 
        conv_2             2910636                  0.01940 
        maxpool_2           577769                  0.00385 
        conv_3             2551800                  0.01701 
        maxpool_3           676795                  0.00451 
        conv_4              455859                  0.00304 
        maxpool_4            11248                  0.00007 
    fc_module               903216                  0.00602 
        fc_1                536165                  0.00357 
        fc_2                342643                  0.00228 
        fc_3                 24406                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "48.0 MB"        
    "OutputResultOffset"        "0x03000000"     "4.0 MB"         
    "SystemBufferOffset"        "0x03400000"     "60.0 MB"        
    "InstructionDataOffset"     "0x07000000"     "8.0 MB"         
    "ConvWeightDataOffset"      "0x07800000"     "8.0 MB"         
    "FCWeightDataOffset"        "0x08000000"     "12.0 MB"        
    "EndOffset"                 "0x08c00000"     "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572329                  0.09048                      10          127265075             11.8
    conv_module           12669135                  0.08446 
        conv_1             3939559                  0.02626 
        maxpool_1          1545378                  0.01030 
        conv_2             2911243                  0.01941 
        maxpool_2           577422                  0.00385 
        conv_3             2552064                  0.01701 
        maxpool_3           676678                  0.00451 
        conv_4              455657                  0.00304 
        maxpool_4            11227                  0.00007 
    fc_module               903194                  0.00602 
        fc_1                536140                  0.00357 
        fc_2                342688                  0.00228 
        fc_3                 24364                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

              Deep Learning Processor Profiler Performance Results

                   LastLayerLatency(cycles)   LastLayerLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13572527                  0.09048                      10          127266427             11.8
    conv_module           12669266                  0.08446 
        conv_1             3939776                  0.02627 
        maxpool_1          1545632                  0.01030 
        conv_2             2911169                  0.01941 
        maxpool_2           577592                  0.00385 
        conv_3             2551613                  0.01701 
        maxpool_3           676811                  0.00451 
        conv_4              455418                  0.00304 
        maxpool_4            11348                  0.00008 
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    fc_module               903261                  0.00602 
        fc_1                536205                  0.00357 
        fc_2                342689                  0.00228 
        fc_3                 24365                  0.00016 
 * The clock frequency of the DL processor is: 150MHz

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans = 
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}         0.9875   
     {'Quantized'     }         0.9875   

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

Validate Network Quantized for FPGA Target Using Simulation

This example shows how to quantize learnable parameters in the convolution layers of a neural
network, and validate the quantized network. Rapidly prototype the quantized network by using
simulation to validate the quantized network. Simulation does not require an FPGA board for the
prototyping process. In this example, you quantize the LogoNet neural network.

This example uses the products listed under FPGA in “Quantization Workflow Prerequisites”.

Load the pretrained network and analyze the network architecture.

snet = getLogoNetwork;
analyzeNetwork(snet);
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Define calibration and validation data to use for quantization.

This example uses the logos_dataset data set. The data set consists of 320 images. Each image is
227-by-227 in size and has three color channels (RGB). Create an imageDatastore object to use for
calibration and validation. Expedite the calibration and validation process by reducing the calibration
data set to 20 images. The MATLAB simulation workflow has a maximum limit of five images when
validating the quantized network. Reduce the validation data set sizes to five images.
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir,'f');
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData,0.5,'randomized');
calibrationData_reduced = calibrationData.subset(1:20);
validationData_reduced = validationData.subset(1:5);

Create a dlquantizer object with the FPGA execution environment. To use simulation for validation
of the quantized network, set the 'Simulation' property to 'on'.
dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA','Simulation','on');

Use the calibrate function to exercise the network with sample inputs and collect the range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The calibrate function returns a table. Each row
of the table contains range information for a learnable parameter of the quantized network.

dlQuantObj.calibrate(calibrationData_reduced)
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ans =

  35x5 table

    Optimized Layer Name    Network Layer Name    Learnables / Activations     MinValue      MaxValue
    ____________________    __________________    ________________________    ___________    ________

     {'conv_1_Weights'}      {'conv_1'     }           "Weights"                -0.048978    0.039352
     {'conv_1_Bias'   }      {'conv_1'     }           "Bias"                     0.99996      1.0028
     {'conv_2_Weights'}      {'conv_2'     }           "Weights"                -0.055518    0.061901
     {'conv_2_Bias'   }      {'conv_2'     }           "Bias"                 -0.00061171     0.00227
     {'conv_3_Weights'}      {'conv_3'     }           "Weights"                -0.045942    0.046927

             :                      :                        :                     :            :    

     {'fc_2'          }      {'fc_2'       }           "Activations"              -16.557      17.512
     {'relu_6'        }      {'relu_6'     }           "Activations"                    0      17.512
     {'fc_3'          }      {'fc_3'       }           "Activations"              -13.049      37.204
     {'softmax'       }      {'softmax'    }           "Activations"           1.4971e-22           1
     {'classoutput'   }      {'classoutput'}           "Activations"           1.4971e-22           1

Use the validate function to quantize the learnable parameters in the convolution layers of the
network. The validate function simulates the quantized network in MATLAB. The validate
function uses the default metric function for classification, Top-1 Accuracy, to compare the results of
the single data type network object to the results of the quantized network object.

Note If no custom metric function is specified using a dlquantizationOptions object, the default
metric function will be used for validation. The default metric function uses at most 5 files from the
validation datastore when the simulation option is selected for validation. Custom metric functions do
not have this restriction.

prediction = dlQuantObj.validate(validationData_reduced)

Compiling leg: conv_1>>relu_4 ...
Compiling leg: conv_1>>relu_4 ... complete.
Compiling leg: maxpool_4 ...
Compiling leg: maxpool_4 ... complete.
Compiling leg: fc_1>>fc_3 ...
Compiling leg: fc_1>>fc_3 ... complete.

prediction = 

  struct with fields:

       NumSamples: 5
    MetricResults: [1x1 struct]
       Statistics: []

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

metricFcn = prediction.MetricResults.MetricFunction
validateOut = prediction.MetricResults.Result

metricFcn =

    'Top-1 accuracy'

validateOut =
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  2x2 table

    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}           1      
     {'Quantized'     }           1      

Quantize a Neural Network for CPU Target

This example shows how to quantize and validate a neural network for a CPU target. This workflow is
similar to other execution environments, but before validating you must establish a raspi
connection.

First, load your network. This example uses the pretrained network squeezenet.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Then define your calibration and validation data, calDS and valDS respectively.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227],calData);
aug_valData = augmentedImageDatastore([227 227],valData);

Create the dlquantizer object and specify a CPU execution environment.

dq =  dlquantizer(net,'ExecutionEnvironment','CPU') 

dq = 
  dlquantizer with properties:

           NetworkObject: [1×1 DAGNetwork]
    ExecutionEnvironment: 'CPU'

Calibrate the network.

calResults = calibrate(dq,aug_calData)

Attempt to calibrate with host GPU errored with the message: 
Unable to find a supported GPU device. For more information on GPU support, see GPU Support by Release. 
Reverting to use host CPU. 
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calResults=121×5 table
        Optimized Layer Name         Network Layer Name     Learnables / Activations    MinValue     MaxValue
    ____________________________    ____________________    ________________________    _________    ________

    {'conv1_Weights'           }    {'conv1'           }           "Weights"             -0.91985     0.88489
    {'conv1_Bias'              }    {'conv1'           }           "Bias"                -0.07925     0.26343
    {'fire2-squeeze1x1_Weights'}    {'fire2-squeeze1x1'}           "Weights"                -1.38      1.2477
    {'fire2-squeeze1x1_Bias'   }    {'fire2-squeeze1x1'}           "Bias"                -0.11641     0.24273
    {'fire2-expand1x1_Weights' }    {'fire2-expand1x1' }           "Weights"              -0.7406     0.90982
    {'fire2-expand1x1_Bias'    }    {'fire2-expand1x1' }           "Bias"               -0.060056     0.14602
    {'fire2-expand3x3_Weights' }    {'fire2-expand3x3' }           "Weights"             -0.74397     0.66905
    {'fire2-expand3x3_Bias'    }    {'fire2-expand3x3' }           "Bias"               -0.051778    0.074239
    {'fire3-squeeze1x1_Weights'}    {'fire3-squeeze1x1'}           "Weights"              -0.7712     0.68917
    {'fire3-squeeze1x1_Bias'   }    {'fire3-squeeze1x1'}           "Bias"                -0.10138     0.32675
    {'fire3-expand1x1_Weights' }    {'fire3-expand1x1' }           "Weights"             -0.72035      0.9743
    {'fire3-expand1x1_Bias'    }    {'fire3-expand1x1' }           "Bias"               -0.067029     0.30425
    {'fire3-expand3x3_Weights' }    {'fire3-expand3x3' }           "Weights"             -0.61443      0.7741
    {'fire3-expand3x3_Bias'    }    {'fire3-expand3x3' }           "Bias"               -0.053613     0.10329
    {'fire4-squeeze1x1_Weights'}    {'fire4-squeeze1x1'}           "Weights"              -0.7422      1.0877
    {'fire4-squeeze1x1_Bias'   }    {'fire4-squeeze1x1'}           "Bias"                -0.10885     0.13881
      ⋮

Use the MATLAB Support Package for Raspberry Pi function, raspi, to create a connection to the
Raspberry Pi. In the following code, replace:

• raspiname with the name or address of your Raspberry Pi
• username with your user name
• password with your password

%  r = raspi('raspiname','username','password');

Validate the quantized network with the validate function.

valResults = validate(dq,aug_valData)

### Starting application: 'codegen/lib/validate_predict_int8/pil/validate_predict_int8.elf'
    To terminate execution: clear validate_predict_int8_pil
### Launching application validate_predict_int8.elf...
### Host application produced the following standard output (stdout) and standard error (stderr) messages:

valResults = struct with fields:
       NumSamples: 20
    MetricResults: [1×1 struct]
       Statistics: []

Examine the validation output to see the performance of the quantized network.

valResults.MetricResults.Result

ans=2×2 table
    NetworkImplementation    MetricOutput
    _____________________    ____________

     {'Floating-Point'}          0.95    
     {'Quantized'     }          0.95    
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Input Arguments
quantObj — Network to quantize
dlquantizer object

Network to quantize, specified as a dlquantizer object.

valData — Data to use for validation of quantized network
imageDataStore object | augmentedImageDataStore object | pixelLabelImageDataStore
object | CombinedImageDatastore object

Data to use for validation of quantized network, specified as an imageDatastore object, an
augmentedImageDatastore object, a pixelLabelImageDatastore object, or a
CombinedDatastore object.

quantOpts — Options for quantizing network
dlquantizationOptions object

Options for quantizing the network, specified as a dlquantizationOptions object.

Output Arguments
valResults — Performance of quantized network
struct

Performance of quantized network, returned as a struct. The struct contains these fields.

• NumSamples — The number of sample inputs used to validate the network, specified by valData.
• MetricResults — Struct containing results of the metric function defined in the

dlquantizationOptions object. When more than one metric function is specified in the
dlquantizationOptions object, MetricResults is an array of structs.

MetricResults contains these fields:

Field Description
MetricFunction Metric function used to determine the

performance of the quantized network,
specified in the dlquantizationOptions
object.

Result Table indicating the results of the metric
function before and after quantization.

The first row in the table, 'Floating-
Point', contains information for the original
floating-point implementation. The second
row, 'Quantized', contains information for
the quantized implementation. The output of
the metric function is displayed in the
MetricOutput column.

• Statistics — Table indicating the learnable parameter memory used, in bytes, by the original
floating-point implementation of the network and the quantized implementation.

 validate
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Algorithms
The validate function determines the default metric function to use for the validation based on the
type of network that is being quantized.

Type of Network Metric Function
Classification Top-1 Accuracy — Accuracy of the network
Object Detection Average Precision — Average precision over all

detection results. See
evaluateDetectionPrecision.

Regression MSE — Mean squared error of the network
Semantic Segmentation evaluateSemanticSegmentation — Evaluate

semantic segmentation data set against ground
truth

Single Shot Detector (SSD) WeightedIOU — Average IoU of each class,
weighted by the number of pixels in that class

When the 'Simulation' property of the dlquantizer object is set to 'on', the default metric
function uses at most 5 files from the validation datastore. Custom metric functions, specified using a
dlquantizationOptions object, do not have this restriction.

Version History
Introduced in R2020a

Validate the performance of quantized network for CPU target

You can now use the dlquantizer object and the validate function to quantize a network and
generate code for CPU targets.

See Also
Apps
Deep Network Quantizer

Functions
calibrate | dlquantizer | dlquantizationOptions | quantize | quantizationDetails |
estimateNetworkMetrics

Topics
“Quantization Workflow Prerequisites”
“Quantization of Deep Neural Networks”
“Quantize Residual Network Trained for Image Classification and Generate CUDA Code”
“Deploy INT8 Network to FPGA” (Deep Learning HDL Toolbox)
“Generate int8 Code for Deep Learning Networks” (MATLAB Coder)
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quantize
Quantize deep neural network

Syntax
quantizedNetwork = quantize(quantObj)
quantizedNetwork = quantize(quantObj,Name,Value)

Description
quantizedNetwork = quantize(quantObj) quantizes a deep neural network using a calibrated
dlquantizer object, quantObj. The quantized neural network object, quantizedNetwork, enables
visibility of the quantized layers, weights, and biases of the network, as well as simulatable quantized
inference behavior.

quantizedNetwork = quantize(quantObj,Name,Value) specifies additional options using one
or more name name-value arguments.

This function requires Deep Learning Toolbox Model Quantization Library. To learn about the
products required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Examples

Emulate Target Agnostic Quantized Network

This example shows how to create a target agnostic, simulatable quantized deep neural network in
MATLAB.

Target agnostic quantization allows you to see the effect quantization has on your neural network
without target hardware or target-specific quantization schemes. Creating a target agnostic
quantized network is useful if you:

• Do not have access to your target hardware.
• Want to preview whether or not your network is suitable for quantization.
• Want to find layers that are sensitive to quantization.

Quantized networks emulate quantized behavior for quantization-compatible layers. Network
architecture like layers and connections are the same as the original network, but inference behavior
uses limited precision types. Once you have quantized your network, you can use the
quantizationDetails function to retrieve details on what was quantized.

Load the pretrained network. net is a SqueezeNet network that has been retrained using transfer
learning to classify images in the MerchData data set.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

 quantize
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         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

You can use the quantizationDetails function to see that the network is not quantized.

qDetailsOriginal = quantizationDetails(net)

qDetailsOriginal = struct with fields:
            IsQuantized: 0
          TargetLibrary: ""
    QuantizedLayerNames: [0×0 string]
    QuantizedLearnables: [0×3 table]

Unzip and load the MerchData images as an image datastore.

unzip('MerchData.zip')
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Define calibration and validation data to use for quantization. The output size of the images are
changed for both calibration and validation data according to network requirements.

[calData,valData] = splitEachLabel(imds,0.7,'randomized');
augCalData = augmentedImageDatastore([227 227],calData);
augValData = augmentedImageDatastore([227 227],valData);

Create dlquantizer object and specify the network to quantize. Set the execution environment to
MATLAB. How the network is quantized depends on the execution environment. The MATLAB
execution environment is agnostic to the target hardware and allows you to prototype quantized
behavior.

quantObj = dlquantizer(net,'ExecutionEnvironment','MATLAB');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj,augCalData);

Use the quantize method to quantize the network object and return a simulatable quantized
network.

qNet = quantize(quantObj)  

qNet = 
Quantized DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}

1 Deep Learning Functions

1-1810



    OutputNames: {'new_classoutput'}

Use the quantizationDetails method to extract quantization details.

You can use the quantizationDetails function to see that the network is now quantized.

qDetailsQuantized = quantizationDetails(qNet)

qDetailsQuantized = struct with fields:
            IsQuantized: 1
          TargetLibrary: "none"
    QuantizedLayerNames: [26×1 string]
    QuantizedLearnables: [52×3 table]

Make predictions using the original, single-precision floating-point network, and the quantized INT8
network.

predOriginal = classify(net,augValData);       % Predictions for the non-quantized network
predQuantized = classify(qNet,augValData);     % Predictions for the quantized network 

Compute the relative accuracy of the quantized network as compared to the original network.

ccrQuantized = mean(predQuantized == valData.Labels)*100

ccrQuantized = 100

ccrOriginal = mean(predOriginal == valData.Labels)*100

ccrOriginal = 100

For this validation data set, the quantized network gives the same predictions as the floating-point
network.

Emulate GPU Target Behavior for Quantized Network

This example shows how to emulate the behavior of a quantized network for GPU deployment. Once
you quantize your network for a GPU execution environment, you can emulate the GPU target
behavior without the GPU hardware. Doing so allows you to examine your quantized network
structure and behavior without generating code for deployment.

Emulated quantized networks are not smaller than the original network.

Load the pretrained network. net is a SqueezeNet convolutional neural network that has been
retrained using transfer learning to classify images in the MerchData data set.

load squeezenetmerch
net

net = 
  DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]

 quantize
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     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

Use the calibration data to collect the dynamic ranges of the weights and biases in the convolution
and fully connected layers of the network and the dynamic ranges of the activations in all layers of
the network. For the best quantization results, the calibration data must be representative of inputs
to the network.

Use the validation data to test the network after quantization to understand the effects of the limited
range and precision of the quantized convolution layers in the network.

For this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds,0.7,'randomized');
aug_calData = augmentedImageDatastore([227 227],calData);
aug_valData = augmentedImageDatastore([227 227],valData);

Create a dlquantizer object and specify the network to quantize. How the network is quantized
depends on the execution environment. Set ExecutionEnvironment to GPU to perform quantization
specific to GPU target hardware.

quantObj = dlquantizer(net,'ExecutionEnvironment','GPU');

Use the calibrate function to exercise the network object with sample inputs and collect range
information.

calResults = calibrate(quantObj, aug_calData);

Use the quantize method to quantize the network object and return a simulatable quantized
network.

qNet = quantize(quantObj)

qNet = 
Quantized DAGNetwork with properties:

         Layers: [68×1 nnet.cnn.layer.Layer]
    Connections: [75×2 table]
     InputNames: {'data'}
    OutputNames: {'new_classoutput'}

Use the quantizationDetails method to extract quantization details.

You can use the quantizationDetails method to see that the network is now quantized.

qDetails = quantizationDetails(qNet) 

qDetails = struct with fields:
            IsQuantized: 1
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          TargetLibrary: "cudnn"
    QuantizedLayerNames: [55×1 string]
    QuantizedLearnables: [35×3 table]

The TargetLibrary field shows that the quantized network emulates the CUDA® Deep Neural
Network library (cuDNN).

The QuantizedLayerNames field displays a list of layers that have been quantized.

qDetails.QuantizedLayerNames(1:5)

ans = 5×1 string
    "conv1"
    "relu_conv1"
    "pool1"
    "fire2-squeeze1x1"
    "fire2-relu_squeeze1x1"

The QuantizedLearnables field contains additional details on quantized network learnable
parameters. In this example, the 2-D convolutional layer, conv1, has had the weights scaled and
casted to int8. The bias is scaled and remains in single precision. The values of quantized learnables
are returned as stored integer values.

qDetails.QuantizedLearnables

ans=35×3 table
          Layer           Parameter           Value       
    __________________    _________    ___________________

    "conv1"               "Weights"    {3×3×3×64   int8  }
    "conv1"               "Bias"       {1×1×64     single}
    "fire2-squeeze1x1"    "Weights"    {1×1×64×16  int8  }
    "fire2-squeeze1x1"    "Bias"       {1×1×16     single}
    "fire2-expand1x1"     "Weights"    {1×1×16×64  int8  }
    "fire2-expand3x3"     "Weights"    {3×3×16×64  int8  }
    "fire3-squeeze1x1"    "Weights"    {1×1×128×16 int8  }
    "fire3-squeeze1x1"    "Bias"       {1×1×16     single}
    "fire3-expand1x1"     "Weights"    {1×1×16×64  int8  }
    "fire3-expand3x3"     "Weights"    {3×3×16×64  int8  }
    "fire4-squeeze1x1"    "Weights"    {1×1×128×32 int8  }
    "fire4-squeeze1x1"    "Bias"       {1×1×32     single}
    "fire4-expand1x1"     "Weights"    {1×1×32×128 int8  }
    "fire4-expand3x3"     "Weights"    {3×3×32×128 int8  }
    "fire5-squeeze1x1"    "Weights"    {1×1×256×32 int8  }
    "fire5-squeeze1x1"    "Bias"       {1×1×32     single}
      ⋮

You can use the quantized network to emulate how a network quantized for GPU target hardware
would perform a classification task.

ypred = qNet.classify(valData);
ccr = mean(ypred == valData.Labels)

ccr = 1

The quantized network shows no drop in accuracy.
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Emulate FPGA Target Behavior for Quantized Network

This example shows how to emulate the behavior of a quantized network for FPGA deployment. Once
you quantize your network for an FPGA execution environment, you can emulate the FPGA target
behavior without any FPGA hardware. This action allows you to examine your quantized network
structure and behavior without generating code for deployment.

Load the pretrained network.

if ~isfile('LogoNet.mat')
    url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
    websave('LogoNet.mat',url);
end
data = load('LogoNet.mat');
net  = data.convnet;

Define calibration and validation data to use for quantization.

Use the calibration data to collect the dynamic ranges of the weights and biases in the convolution
and fully connected layers, the dynamic ranges of the activations in all the layers, and the dynamic
ranges of the parameters for some layers. For the best quantization results, the calibration data must
be representative of inputs to the network.

Use the validation data to test the network after quantization. Test the network to determine the
effects of the limited range and precision of the quantized layers and layer parameters in the
network.

This example uses the images in the logos_dataset data set. Create an imageDatastore object,
then split the data into calibration and validation data sets.

curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calData,valData] = splitEachLabel(imageData,0.7,'randomized');

Create a dlquantizer object and specify the network to quantize. Set the execution environment for
the quantized network to FPGA.

quantObj = dlquantizer(net,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information.

calResults = calibrate(quantObj,calData);

Use the quantize function to quantize the network object and return a quantized network for
simulation.

qNet = quantize(quantObj)

qNet = 
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Quantized DAGNetwork with properties:

         Layers: [22×?1 nnet.cnn.layer.Layer]
    Connections: [21×?2 table]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Use the quantizationDetails method to extract quantization details.

You can use the quantizationDetails function to confirm that the network is now quantized. The
TargetLibrary field shows that the quantized network emulates an FPGA target.

qDetails = quantizationDetails(qNet)

qDetails = 

  struct with fields:

            IsQuantized: 1
          TargetLibrary: "fpga"
    QuantizedLayerNames: [17×1 string]
    QuantizedLearnables: [14×3 table]

The QuantizedLayerNames field displays a list of quantized layers.

qDetails.QuantizedLayerNames

ans = 

  17×1 string array

    "conv_1"
    "relu_1"
    "maxpool_1"
    "conv_2"
    "relu_2"
    "maxpool_2"
    "conv_3"
    "relu_3"
    "maxpool_3"
    "conv_4"
    "relu_4"
    "maxpool_4"
    "fc_1"
    "relu_5"
    "fc_2"
    "relu_6"
    "fc_3"

The QuantizedLearnables field contains additional details about the quantized network learnable
parameters. In this example, the 2-D convolutional layers and fully connected layers have their
weights scaled and cast to int8. The bias is scaled and remains in int32. The
quantizationDetails function returns the values of the quantized learnables as stored integer
values.

qDetails.QuantizedLearnables

ans =
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  14×3 table

     Layer      Parameter            Value        
    ________    _________    _____________________

    "conv_1"    "Weights"    {5×5×3×96      int8 }
    "conv_1"    "Bias"       {1×1×96        int32}
    "conv_2"    "Weights"    {3×3×96×128    int8 }
    "conv_2"    "Bias"       {1×1×128       int32}
    "conv_3"    "Weights"    {3×3×128×384   int8 }
    "conv_3"    "Bias"       {1×1×384       int32}
    "conv_4"    "Weights"    {3×3×384×128   int8 }
    "conv_4"    "Bias"       {1×1×128       int32}
    "fc_1"      "Weights"    {5×5×128×2048  int8 }
    "fc_1"      "Bias"       {1×1×2048      int32}
    "fc_2"      "Weights"    {1×1×2048×2048 int8 }
    "fc_2"      "Bias"       {1×1×2048      int32}
    "fc_3"      "Weights"    {1×1×2048×32   int8 }
    "fc_3"      "Bias"       {1×1×32        int32}

You can use the quantized network to emulate a network quantized for FPGA target hardware
performing a classification task. The quantized network shows a small drop in accuracy.

ypred = qNet.classify(valData);
ccr = mean(ypred == valData.Labels)

ccr =

    0.9896

Input Arguments
quantObj — Network to quantize
dlquantizer object

dlquantizer object containing the network to quantize, calibrated using the calibrate object
function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: quantizedNetwork = quantize(quantObj,'ExponentScheme','Histogram')

ExponentScheme — Exponent selection scheme
'MinMax' (default) | 'Histogram'

Exponent selection scheme, specified as one of these values:

• 'MinMax' — Evaluate the exponent based on the range information in the calibration statistics
and avoid overflows.

• 'Histogram' — Distribution-based scaling which evaluates the exponent to best fit the
calibration data.
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Example: 'ExponentScheme','Histogram'

Output Arguments
quantizedNetwork — Quantized neural network
DAGNetwork object | yolov2ObjectDetector object | ssdObjectDetector object

Quantized neural network, returned as a DAGNetwork, yolov2ObjectDetector, or a
ssdObjectDetector object.

Limitations
• quantize does not support quantization of dlquantizer objects which specify a dlnetwork

object as the network to quantize.
• Code generation does not support quantized deep neural networks produced by the quantize

function.

Version History
Introduced in R2022a

Quantize dlquantizer objects calibrated in R2022a and later

The quantize function supports quantization of dlquantizer objects that are calibrated in R2022a
and later.

quantize support for FPGA execution environment

Use the quantize method to create a simulatable quantized network when the
ExecutionEnvironment property of dlquantizer is set to FPGA. The simulatable quantized
network enables visibility of the quantized layers, weights, and biases of the network, as well as
simulatable quantized inference behavior.

See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | dlquantizationOptions | calibrate | validate | quantizationDetails |
estimateNetworkMetrics

Topics
“Quantization of Deep Neural Networks”
“Quantize Layers in Object Detectors and Generate CUDA Code”
“Classify Images on an FPGA Using a Quantized DAG Network” (Deep Learning HDL Toolbox)
“Generate INT8 Code for Deep Learning Network on Raspberry Pi” (MATLAB Coder)

 quantize
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vgg16
VGG-16 convolutional neural network

Syntax
net = vgg16
net = vgg16('Weights','imagenet')

layers = vgg16('Weights','none')

Description
VGG-16 is a convolutional neural network that is 16 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the VGG-16 network. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with VGG-16.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load VGG-16 instead of GoogLeNet.

net = vgg16 returns a VGG-16 network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for VGG-16 Network support package. If this
support package is not installed, then the function provides a download link.

net = vgg16('Weights','imagenet') returns a VGG-16 network trained on the ImageNet data
set. This syntax is equivalent to net = vgg16.

layers = vgg16('Weights','none') returns the untrained VGG-16 network architecture. The
untrained model does not require the support package.

Examples

Download VGG-16 Support Package

Download and install Deep Learning Toolbox Model for VGG-16 Network support package.

Type vgg16 at the command line.

vgg16

If Deep Learning Toolbox Model for VGG-16 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
typing vgg16 at the command line.
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vgg16

ans = 

  SeriesNetwork with properties:

    Layers: [41×1 nnet.cnn.layer.Layer]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(vgg16)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Load Pretrained VGG-16 Convolutional Neural Network

Load a pretrained VGG-16 convolutional neural network and examine the layers and classes.

Use vgg16 to load the pretrained VGG-16 network. The output net is a SeriesNetwork object.

net = vgg16

net = 
  SeriesNetwork with properties:

 vgg16
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    Layers: [41×1 nnet.cnn.layer.Layer]

View the network architecture using the Layers property. The network has 41 layers. There are 16
layers with learnable weights: 13 convolutional layers, and 3 fully connected layers.

net.Layers

ans = 
  41x1 Layer array with layers:

     1   'input'     Image Input             224x224x3 images with 'zerocenter' normalization
     2   'conv1_1'   Convolution             64 3x3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'relu1_1'   ReLU                    ReLU
     4   'conv1_2'   Convolution             64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     5   'relu1_2'   ReLU                    ReLU
     6   'pool1'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     7   'conv2_1'   Convolution             128 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     8   'relu2_1'   ReLU                    ReLU
     9   'conv2_2'   Convolution             128 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'relu2_2'   ReLU                    ReLU
    11   'pool2'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    12   'conv3_1'   Convolution             256 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu3_1'   ReLU                    ReLU
    14   'conv3_2'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu3_2'   ReLU                    ReLU
    16   'conv3_3'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    17   'relu3_3'   ReLU                    ReLU
    18   'pool3'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    19   'conv4_1'   Convolution             512 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    20   'relu4_1'   ReLU                    ReLU
    21   'conv4_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    22   'relu4_2'   ReLU                    ReLU
    23   'conv4_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    24   'relu4_3'   ReLU                    ReLU
    25   'pool4'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    26   'conv5_1'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    27   'relu5_1'   ReLU                    ReLU
    28   'conv5_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    29   'relu5_2'   ReLU                    ReLU
    30   'conv5_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    31   'relu5_3'   ReLU                    ReLU
    32   'pool5'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    33   'fc6'       Fully Connected         4096 fully connected layer
    34   'relu6'     ReLU                    ReLU
    35   'drop6'     Dropout                 50% dropout
    36   'fc7'       Fully Connected         4096 fully connected layer
    37   'relu7'     ReLU                    ReLU
    38   'drop7'     Dropout                 50% dropout
    39   'fc8'       Fully Connected         1000 fully connected layer
    40   'prob'      Softmax                 softmax
    41   'output'    Classification Output   crossentropyex with 'tench' and 999 other classes

To view the names of the classes learned by the network, you can view the Classes property of the
classification output layer (the final layer). View the first 10 classes by specifying the first 10
elements.

net.Layers(end).Classes(1:10)
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ans = 10×1 categorical array
     tench 
     goldfish 
     great white shark 
     tiger shark 
     hammerhead 
     electric ray 
     stingray 
     cock 
     hen 
     ostrich 

Output Arguments
net — Pretrained VGG-16 convolutional neural network
SeriesNetwork object

Pretrained VGG-16 convolutional neural network returned as a SeriesNetwork object.

layers — Untrained VGG-16 convolutional neural network architecture
Layer array

Untrained VGG-16 convolutional neural network architecture, returned as a Layer array.

Version History
Introduced in R2017a

References
[1] ImageNet. http://www.image-net.org

[2] Russakovsky, O., Deng, J., Su, H., et al. “ImageNet Large Scale Visual Recognition Challenge.”
International Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, pp. 211–252

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014).

[4] Very Deep Convolutional Networks for Large-Scale Visual Recognition http://www.robots.ox.ac.uk/
~vgg/research/very_deep/

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = vgg16 or by passing the
vgg16 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg16')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).
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The syntax vgg16('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = vgg16 or by passing
the vgg16 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg16')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax vgg16('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | alexnet | vgg19 | googlenet | densenet201 | resnet18 | resnet50 |
resnet101 | inceptionresnetv2 | squeezenet

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”
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vgg19
VGG-19 convolutional neural network

Syntax
net = vgg19
net = vgg19('Weights','imagenet')

layers = vgg19('Weights','none')

Description
VGG-19 is a convolutional neural network that is 19 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the VGG-19 network. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with VGG-19.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load VGG-19 instead of GoogLeNet.

net = vgg19 returns a VGG-19 network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for VGG-19 Network support package. If this
support package is not installed, then the function provides a download link.

net = vgg19('Weights','imagenet') returns a VGG-19 network trained on the ImageNet data
set. This syntax is equivalent to net = vgg19.

layers = vgg19('Weights','none') returns the untrained VGG-19 network architecture. The
untrained model does not require the support package.

Examples

Download VGG-19 Support Package

This example shows how to download and install Deep Learning Toolbox Model for VGG-19 Network
support package.

Type vgg19 at the command line.

vgg19

If Deep Learning Toolbox Model for VGG-19 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
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support package, click the link, and then click Install. Check that the installation is successful by
typing vgg19 at the command line.

vgg19

ans = 

  SeriesNetwork with properties:

    Layers: [47×1 nnet.cnn.layer.Layer]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(vgg19)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Load Pretrained VGG-19 Convolutional Neural Network

Load a pretrained VGG-19 convolutional neural network and examine the layers and classes.

Use vgg19 to load a pretrained VGG-19 network. The output net is a SeriesNetwork object.

net = vgg19
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net = 
  SeriesNetwork with properties:

    Layers: [47×1 nnet.cnn.layer.Layer]

View the network architecture using the Layers property. The network has 47 layers. There are 19
layers with learnable weights: 16 convolutional layers, and 3 fully connected layers.

net.Layers

ans = 
  47x1 Layer array with layers:

     1   'input'     Image Input             224x224x3 images with 'zerocenter' normalization
     2   'conv1_1'   Convolution             64 3x3x3 convolutions with stride [1  1] and padding [1  1  1  1]
     3   'relu1_1'   ReLU                    ReLU
     4   'conv1_2'   Convolution             64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     5   'relu1_2'   ReLU                    ReLU
     6   'pool1'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     7   'conv2_1'   Convolution             128 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
     8   'relu2_1'   ReLU                    ReLU
     9   'conv2_2'   Convolution             128 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
    10   'relu2_2'   ReLU                    ReLU
    11   'pool2'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    12   'conv3_1'   Convolution             256 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
    13   'relu3_1'   ReLU                    ReLU
    14   'conv3_2'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    15   'relu3_2'   ReLU                    ReLU
    16   'conv3_3'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    17   'relu3_3'   ReLU                    ReLU
    18   'conv3_4'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    19   'relu3_4'   ReLU                    ReLU
    20   'pool3'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    21   'conv4_1'   Convolution             512 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
    22   'relu4_1'   ReLU                    ReLU
    23   'conv4_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    24   'relu4_2'   ReLU                    ReLU
    25   'conv4_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    26   'relu4_3'   ReLU                    ReLU
    27   'conv4_4'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    28   'relu4_4'   ReLU                    ReLU
    29   'pool4'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    30   'conv5_1'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    31   'relu5_1'   ReLU                    ReLU
    32   'conv5_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    33   'relu5_2'   ReLU                    ReLU
    34   'conv5_3'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    35   'relu5_3'   ReLU                    ReLU
    36   'conv5_4'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
    37   'relu5_4'   ReLU                    ReLU
    38   'pool5'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    39   'fc6'       Fully Connected         4096 fully connected layer
    40   'relu6'     ReLU                    ReLU
    41   'drop6'     Dropout                 50% dropout
    42   'fc7'       Fully Connected         4096 fully connected layer
    43   'relu7'     ReLU                    ReLU
    44   'drop7'     Dropout                 50% dropout
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    45   'fc8'       Fully Connected         1000 fully connected layer
    46   'prob'      Softmax                 softmax
    47   'output'    Classification Output   crossentropyex with 'tench' and 999 other classes

To view the names of the classes learned by the network, you can view the Classes property of the
classification output layer (the final layer). View the first 10 classes by specifying the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical array
     tench 
     goldfish 
     great white shark 
     tiger shark 
     hammerhead 
     electric ray 
     stingray 
     cock 
     hen 
     ostrich 

Output Arguments
net — Pretrained VGG-19 convolutional neural network
SeriesNetwork object

Pretrained VGG-19 convolutional neural network returned as a SeriesNetwork object.

layers — Untrained VGG-19 convolutional neural network architecture
Layer array

Untrained VGG-19 convolutional neural network architecture, returned as a Layer array.

Version History
Introduced in R2017a

References
[1] ImageNet. http://www.image-net.org

[2] Russakovsky, O., Deng, J., Su, H., et al. “ImageNet Large Scale Visual Recognition Challenge.”
International Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, pp. 211–252

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale
image recognition." arXiv preprint arXiv:1409.1556 (2014).

[4] Very Deep Convolutional Networks for Large-Scale Visual Recognition http://www.robots.ox.ac.uk/
~vgg/research/very_deep/
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = vgg19 or by passing the
vgg19 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg19')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax vgg19('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = vgg19 or by passing
the vgg19 function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('vgg19')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax vgg19('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | alexnet | vgg16 | googlenet | resnet18 | resnet50 | resnet101 |
deepDreamImage | inceptionresnetv2 | squeezenet | densenet201

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”
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vggish
VGGish neural network

Syntax
net = vggish

Description
net = vggish returns a pretrained VGGish model.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download VGGish Network

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggish at the Command Window. If the Audio Toolbox model for VGGish is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the VGGish model to your temporary
directory.

downloadFolder = fullfile(tempdir,'VGGishDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/vggish.zip');
VGGishLocation = tempdir;
unzip(loc,VGGishLocation)
addpath(fullfile(VGGishLocation,'vggish'))

Check that the installation is successful by typing vggish at the Command Window. If the network is
installed, then the function returns a SeriesNetwork object.

vggish

ans = 
  SeriesNetwork with properties:

         Layers: [24×1 nnet.cnn.layer.Layer]
     InputNames: {'InputBatch'}
    OutputNames: {'regressionoutput'}

Load Pretrained VGGish Network

Load a pretrained VGGish convolutional neural network and examine the layers and classes.

1 Deep Learning Functions

1-1828



Use vggish to load the pretrained VGGish network. The output net is a SeriesNetwork object.

net = vggish

net = 
  SeriesNetwork with properties:

         Layers: [24×1 nnet.cnn.layer.Layer]
     InputNames: {'InputBatch'}
    OutputNames: {'regressionoutput'}

View the network architecture using the Layers property. The network has 24 layers. There are nine
layers with learnable weights, of which six are convolutional layers and three are fully connected
layers.

net.Layers

ans = 
  24×1 Layer array with layers:

     1   'InputBatch'         Image Input         96×64×1 images
     2   'conv1'              Convolution         64 3×3×1 convolutions with stride [1  1] and padding 'same'
     3   'relu'               ReLU                ReLU
     4   'pool1'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
     5   'conv2'              Convolution         128 3×3×64 convolutions with stride [1  1] and padding 'same'
     6   'relu2'              ReLU                ReLU
     7   'pool2'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
     8   'conv3_1'            Convolution         256 3×3×128 convolutions with stride [1  1] and padding 'same'
     9   'relu3_1'            ReLU                ReLU
    10   'conv3_2'            Convolution         256 3×3×256 convolutions with stride [1  1] and padding 'same'
    11   'relu3_2'            ReLU                ReLU
    12   'pool3'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
    13   'conv4_1'            Convolution         512 3×3×256 convolutions with stride [1  1] and padding 'same'
    14   'relu4_1'            ReLU                ReLU
    15   'conv4_2'            Convolution         512 3×3×512 convolutions with stride [1  1] and padding 'same'
    16   'relu4_2'            ReLU                ReLU
    17   'pool4'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
    18   'fc1_1'              Fully Connected     4096 fully connected layer
    19   'relu5_1'            ReLU                ReLU
    20   'fc1_2'              Fully Connected     4096 fully connected layer
    21   'relu5_2'            ReLU                ReLU
    22   'fc2'                Fully Connected     128 fully connected layer
    23   'EmbeddingBatch'     ReLU                ReLU
    24   'regressionoutput'   Regression Output   mean-squared-error

Use analyzeNetwork to visually explore the network.

analyzeNetwork(net)
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Extract Features Using VGGish

Read in an audio signal to extract feature embeddings from it.

[audioIn,fs] = audioread( );

Plot and listen to the audio signal.

t = (0:numel(audioIn)-1)/fs;
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Ampltiude")
axis tight
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% To play the sound, call soundsc(audioIn,fs)

VGGish requires you to preprocess the audio signal to match the input format used to train the
network. The preprocesssing steps include resampling the audio signal and computing an array of
mel spectrograms. To learn more about mel spectrograms, see melSpectrogram (Audio Toolbox).
Use vggishPreprocess to preprocess the signal and extract the mel spectrograms to be passed to
VGGish. Visualize one of these spectrograms chosen at random.

spectrograms = vggishPreprocess(audioIn,fs);

arbitrarySpect = spectrograms(:,:,1,randi(size(spectrograms,4)));
surf(arbitrarySpect,EdgeColor="none")
view(90,-90)
xlabel("Mel Band")
ylabel("Frame")
title("Mel Spectrogram for VGGish")
axis tight
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Create a VGGish neural network. Using the vggish function requires installing the pretrained
VGGish network. If the network is not installed, the function provides a link to download the
pretrained model.

net = vggish;

Call predict with the network on the preprocessed mel spectrogram images to extract feature
embeddings. The feature embeddings are returned as a numFrames-by-128 matrix, where
numFrames is the number of individual spectrograms and 128 is the number of elements in each
feature vector.

features = predict(net,spectrograms);
[numFrames,numFeatures] = size(features)

numFrames = 24

numFeatures = 128

Visualize the VGGish feature embeddings.

surf(features,EdgeColor="none")
view([90 -90])
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xlabel("Feature")
ylabel("Frame")
title("VGGish Feature Embeddings")
axis tight

Transfer Learning Using VGGish

In this example, you transfer the learning in the VGGish regression model to an audio classification
task.

Download and unzip the environmental sound classification data set. This data set consists of
recordings labeled as one of 10 different audio sound classes (ESC-10).

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","ESC-10.zip");
unzip(downloadFolder,tempdir)
dataLocation = fullfile(tempdir,"ESC-10");
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Create an audioDatastore (Audio Toolbox) object to manage the data and split it into train and
validation sets. Call countEachLabel (Audio Toolbox) to display the distribution of sound classes
and the number of unique labels.

ads = audioDatastore(dataLocation,IncludeSubfolders=true,LabelSource="foldernames");
labelTable = countEachLabel(ads)

labelTable=10×2 table
        Label         Count
    ______________    _____

    chainsaw           40  
    clock_tick         40  
    crackling_fire     40  
    crying_baby        40  
    dog                40  
    helicopter         40  
    rain               40  
    rooster            38  
    sea_waves          40  
    sneezing           40  

Determine the total number of classes.

numClasses = height(labelTable);

Call splitEachLabel (Audio Toolbox) to split the data set into train and validation sets. Inspect the
distribution of labels in the training and validation sets.

[adsTrain, adsValidation] = splitEachLabel(ads,0.8);

countEachLabel(adsTrain)

ans=10×2 table
        Label         Count
    ______________    _____

    chainsaw           32  
    clock_tick         32  
    crackling_fire     32  
    crying_baby        32  
    dog                32  
    helicopter         32  
    rain               32  
    rooster            30  
    sea_waves          32  
    sneezing           32  

countEachLabel(adsValidation)

ans=10×2 table
        Label         Count
    ______________    _____

    chainsaw            8  
    clock_tick          8  
    crackling_fire      8  
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    crying_baby         8  
    dog                 8  
    helicopter          8  
    rain                8  
    rooster             8  
    sea_waves           8  
    sneezing            8  

The VGGish network expects audio to be preprocessed into log mel spectrograms. Use
vggishPreprocess (Audio Toolbox) to extract the spectrograms from the train set. There are
multiple spectrograms for each audio signal. Replicate the labels so that they are in one-to-one
correspondence with the spectrograms.

overlapPercentage = ;

trainFeatures = [];
trainLabels = [];
while hasdata(adsTrain)
    [audioIn,fileInfo] = read(adsTrain);
    features = vggishPreprocess(audioIn,fileInfo.SampleRate,OverlapPercentage=overlapPercentage);
    numSpectrograms = size(features,4);
    trainFeatures = cat(4,trainFeatures,features);
    trainLabels = cat(2,trainLabels,repelem(fileInfo.Label,numSpectrograms));
end

Extract spectrograms from the validation set and replicate the labels.

validationFeatures = [];
validationLabels = [];
segmentsPerFile = zeros(numel(adsValidation.Files), 1);
idx = 1;
while hasdata(adsValidation)
    [audioIn,fileInfo] = read(adsValidation);
    features = vggishPreprocess(audioIn,fileInfo.SampleRate,OverlapPercentage=overlapPercentage);
    numSpectrograms = size(features,4);
    validationFeatures = cat(4,validationFeatures,features);
    validationLabels = cat(2,validationLabels,repelem(fileInfo.Label,numSpectrograms));

    segmentsPerFile(idx) = numSpectrograms;
    idx = idx + 1;
end

Load the VGGish model and convert it to a layerGraph object.

net = vggish;

lgraph = layerGraph(net.Layers);

Use removeLayers to remove the final regression output layer from the graph. After you remove the
regression layer, the new final layer of the graph is a ReLU layer named 'EmbeddingBatch'.

lgraph = removeLayers(lgraph,"regressionoutput");
lgraph.Layers(end)

ans = 
  ReLULayer with properties:
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    Name: 'EmbeddingBatch'

Use addLayers to add a fullyConnectedLayer, a softmaxLayer, and a classificationLayer
to the graph. Set the WeightLearnRateFactor and BiasLearnRateFactor of the new fully
connected layer to 10 so that learning is faster in the new layer than in the transferred layers.

lgraph = addLayers(lgraph,[ ...
    fullyConnectedLayer(numClasses,Name="FCFinal",WeightLearnRateFactor=10,BiasLearnRateFactor=10)
    softmaxLayer(Name="softmax")
    classificationLayer(Name="classOut")]);

Use connectLayers to append the fully connected, softmax, and classification layers to the layer
graph.

lgraph = connectLayers(lgraph,"EmbeddingBatch","FCFinal");

To define training options, use trainingOptions.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    MaxEpochs=5, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    ValidationData={validationFeatures,validationLabels}, ...
    ValidationFrequency=50, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.5, ...
    LearnRateDropPeriod=2, ...
    OutputNetwork="best-validation-loss", ...
    Verbose=false, ...
    Plots="training-progress");

To train the network, use trainNetwork.

[trainedNet, netInfo] = trainNetwork(trainFeatures,trainLabels,lgraph,options);
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Each audio file was split into several segments to feed into the VGGish network. Combine the
predictions for each file in the validation set using a majority-rule decision.

validationPredictions = classify(trainedNet,validationFeatures);

idx = 1;
validationPredictionsPerFile = categorical;
for ii = 1:numel(adsValidation.Files)
    validationPredictionsPerFile(ii,1) = mode(validationPredictions(idx:idx+segmentsPerFile(ii)-1));
    idx = idx + segmentsPerFile(ii);
end

Use confusionchart to evaluate the performance of the network on the validation set.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5]);
confusionchart(adsValidation.Labels,validationPredictionsPerFile, ...
    Title=sprintf("Confusion Matrix for Validation Data \nAccuracy = %0.2f %%",mean(validationPredictionsPerFile==adsValidation.Labels)*100), ...
    ColumnSummary="column-normalized", ...
    RowSummary="row-normalized")
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Output Arguments
net — Pretrained VGGish neural network
SeriesNetwork object

Pretrained VGGish neural network, returned as a SeriesNetwork object.

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState, and resetState
object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
audioFeatureExtractor | classifySound | melSpectrogram | vggishEmbeddings |
vggishPreprocess | yamnet | yamnetGraph | yamnetPreprocess
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xception
Xception convolutional neural network

Syntax
net = xception
net = xception('Weights','imagenet')

lgraph = xception('Weights','none')

Description
Xception is a convolutional neural network that is 71 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 299-by-299. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Xception model. Follow the steps of “Classify
Image Using GoogLeNet” and replace GoogLeNet with Xception.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load Xception instead of GoogLeNet.

net = xception returns an Xception network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for Xception Network support package. If
this support package is not installed, then the function provides a download link.

net = xception('Weights','imagenet') returns an Xception network trained on the ImageNet
data set. This syntax is equivalent to net = xception.

lgraph = xception('Weights','none') returns the untrained Xception network architecture.
The untrained model does not require the support package.

Examples

Download Xception Support Package

Download and install the Deep Learning Toolbox Model for Xception Network support package.

Type xception at the command line.

xception

If the Deep Learning Toolbox Model for Xception Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click Install. Check that the installation is successful by
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typing xception at the command line. If the required support package is installed, then the function
returns a DAGNetwork object.

xception

ans = 

  DAGNetwork with properties:

         Layers: [171×1 nnet.cnn.layer.Layer]
    Connections: [182×2 table]

Visualize the network using Deep Network Designer.

deepNetworkDesigner(xception)

Explore other pretrained networks in Deep Network Designer by clicking New.

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Output Arguments
net — Pretrained Xception convolutional neural network
DAGNetwork object

Pretrained Xception convolutional neural network, returned as a DAGNetwork object.
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lgraph — Untrained Xception convolutional neural network architecture
LayerGraph object

Untrained Xception convolutional neural network architecture, returned as a LayerGraph object.

Version History
Introduced in R2019a

References
[1] ImageNet. http://www.image-net.org

[2] Chollet, F., 2017. "Xception: Deep Learning with Depthwise Separable Convolutions." arXiv
preprint, pp.1610-02357.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = xception or by passing
the xception function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('xception')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax xception('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = xception or by
passing the xception function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('xception')

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax xception('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | vgg16 | vgg19 | googlenet | trainNetwork | layerGraph |
DAGNetwork | resnet50 | resnet101 | inceptionresnetv2 | squeezenet | densenet201

Topics
“Transfer Learning with Deep Network Designer”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
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“Train Residual Network for Image Classification”
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yamnet
YAMNet neural network

Syntax
net = yamnet

Description
net = yamnet returns a pretrained YAMNet model.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download YAMNet

Download and unzip the Audio Toolbox™ model for YAMNet.

Type yamnet at the Command Window. If the Audio Toolbox model for YAMNet is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Check that the installation is successful by typing yamnet at the Command Window. If the network is
installed, then the function returns a SeriesNetwork object.

yamnet

ans = 
  SeriesNetwork with properties:

         Layers: [86×1 nnet.cnn.layer.Layer]
     InputNames: {'input_1'}
    OutputNames: {'Sound'}

Load Pretrained YAMNet

Load a pretrained YAMNet convolutional neural network and examine the layers and classes.
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Use yamnet to load the pretrained YAMNet network. The output net is a SeriesNetwork object.

net = yamnet

net = 
  SeriesNetwork with properties:

         Layers: [86×1 nnet.cnn.layer.Layer]
     InputNames: {'input_1'}
    OutputNames: {'Sound'}

View the network architecture using the Layers property. The network has 86 layers. There are 28
layers with learnable weights: 27 convolutional layers, and 1 fully connected layer.

net.Layers

ans = 
  86x1 Layer array with layers:

     1   'input_1'                    Image Input              96×64×1 images
     2   'conv2d'                     Convolution              32 3×3×1 convolutions with stride [2  2] and padding 'same'
     3   'b'                          Batch Normalization      Batch normalization with 32 channels
     4   'activation'                 ReLU                     ReLU
     5   'depthwise_conv2d'           Grouped Convolution      32 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
     6   'L11'                        Batch Normalization      Batch normalization with 32 channels
     7   'activation_1'               ReLU                     ReLU
     8   'conv2d_1'                   Convolution              64 1×1×32 convolutions with stride [1  1] and padding 'same'
     9   'L12'                        Batch Normalization      Batch normalization with 64 channels
    10   'activation_2'               ReLU                     ReLU
    11   'depthwise_conv2d_1'         Grouped Convolution      64 groups of 1 3×3×1 convolutions with stride [2  2] and padding 'same'
    12   'L21'                        Batch Normalization      Batch normalization with 64 channels
    13   'activation_3'               ReLU                     ReLU
    14   'conv2d_2'                   Convolution              128 1×1×64 convolutions with stride [1  1] and padding 'same'
    15   'L22'                        Batch Normalization      Batch normalization with 128 channels
    16   'activation_4'               ReLU                     ReLU
    17   'depthwise_conv2d_2'         Grouped Convolution      128 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    18   'L31'                        Batch Normalization      Batch normalization with 128 channels
    19   'activation_5'               ReLU                     ReLU
    20   'conv2d_3'                   Convolution              128 1×1×128 convolutions with stride [1  1] and padding 'same'
    21   'L32'                        Batch Normalization      Batch normalization with 128 channels
    22   'activation_6'               ReLU                     ReLU
    23   'depthwise_conv2d_3'         Grouped Convolution      128 groups of 1 3×3×1 convolutions with stride [2  2] and padding 'same'
    24   'L41'                        Batch Normalization      Batch normalization with 128 channels
    25   'activation_7'               ReLU                     ReLU
    26   'conv2d_4'                   Convolution              256 1×1×128 convolutions with stride [1  1] and padding 'same'
    27   'L42'                        Batch Normalization      Batch normalization with 256 channels
    28   'activation_8'               ReLU                     ReLU
    29   'depthwise_conv2d_4'         Grouped Convolution      256 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    30   'L51'                        Batch Normalization      Batch normalization with 256 channels
    31   'activation_9'               ReLU                     ReLU
    32   'conv2d_5'                   Convolution              256 1×1×256 convolutions with stride [1  1] and padding 'same'
    33   'L52'                        Batch Normalization      Batch normalization with 256 channels
    34   'activation_10'              ReLU                     ReLU
    35   'depthwise_conv2d_5'         Grouped Convolution      256 groups of 1 3×3×1 convolutions with stride [2  2] and padding 'same'
    36   'L61'                        Batch Normalization      Batch normalization with 256 channels
    37   'activation_11'              ReLU                     ReLU
    38   'conv2d_6'                   Convolution              512 1×1×256 convolutions with stride [1  1] and padding 'same'

 yamnet

1-1845



    39   'L62'                        Batch Normalization      Batch normalization with 512 channels
    40   'activation_12'              ReLU                     ReLU
    41   'depthwise_conv2d_6'         Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    42   'L71'                        Batch Normalization      Batch normalization with 512 channels
    43   'activation_13'              ReLU                     ReLU
    44   'conv2d_7'                   Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    45   'L72'                        Batch Normalization      Batch normalization with 512 channels
    46   'activation_14'              ReLU                     ReLU
    47   'depthwise_conv2d_7'         Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    48   'L81'                        Batch Normalization      Batch normalization with 512 channels
    49   'activation_15'              ReLU                     ReLU
    50   'conv2d_8'                   Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    51   'L82'                        Batch Normalization      Batch normalization with 512 channels
    52   'activation_16'              ReLU                     ReLU
    53   'depthwise_conv2d_8'         Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    54   'L91'                        Batch Normalization      Batch normalization with 512 channels
    55   'activation_17'              ReLU                     ReLU
    56   'conv2d_9'                   Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    57   'L92'                        Batch Normalization      Batch normalization with 512 channels
    58   'activation_18'              ReLU                     ReLU
    59   'depthwise_conv2d_9'         Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    60   'L101'                       Batch Normalization      Batch normalization with 512 channels
    61   'activation_19'              ReLU                     ReLU
    62   'conv2d_10'                  Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    63   'L102'                       Batch Normalization      Batch normalization with 512 channels
    64   'activation_20'              ReLU                     ReLU
    65   'depthwise_conv2d_10'        Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    66   'L111'                       Batch Normalization      Batch normalization with 512 channels
    67   'activation_21'              ReLU                     ReLU
    68   'conv2d_11'                  Convolution              512 1×1×512 convolutions with stride [1  1] and padding 'same'
    69   'L112'                       Batch Normalization      Batch normalization with 512 channels
    70   'activation_22'              ReLU                     ReLU
    71   'depthwise_conv2d_11'        Grouped Convolution      512 groups of 1 3×3×1 convolutions with stride [2  2] and padding 'same'
    72   'L121'                       Batch Normalization      Batch normalization with 512 channels
    73   'activation_23'              ReLU                     ReLU
    74   'conv2d_12'                  Convolution              1024 1×1×512 convolutions with stride [1  1] and padding 'same'
    75   'L122'                       Batch Normalization      Batch normalization with 1024 channels
    76   'activation_24'              ReLU                     ReLU
    77   'depthwise_conv2d_12'        Grouped Convolution      1024 groups of 1 3×3×1 convolutions with stride [1  1] and padding 'same'
    78   'L131'                       Batch Normalization      Batch normalization with 1024 channels
    79   'activation_25'              ReLU                     ReLU
    80   'conv2d_13'                  Convolution              1024 1×1×1024 convolutions with stride [1  1] and padding 'same'
    81   'L132'                       Batch Normalization      Batch normalization with 1024 channels
    82   'activation_26'              ReLU                     ReLU
    83   'global_average_pooling2d'   Global Average Pooling   Global average pooling
    84   'dense'                      Fully Connected          521 fully connected layer
    85   'softmax'                    Softmax                  softmax
    86   'Sound'                      Classification Output    crossentropyex with 'Speech' and 520 other classes

To view the names of the classes learned by the network, you can view the Classes property of the
classification output layer (the final layer). View the first 10 classes by specifying the first 10
elements.

net.Layers(end).Classes(1:10)

ans = 10×1 categorical
     Speech 
     Child speech, kid speaking 
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     Conversation 
     Narration, monologue 
     Babbling 
     Speech synthesizer 
     Shout 
     Bellow 
     Whoop 
     Yell 

Use analyzeNetwork to visually explore the network.

analyzeNetwork(net)

YAMNet was released with a corresponding sound class ontology, which you can explore using the
yamnetGraph (Audio Toolbox) object.

ygraph = yamnetGraph;
p = plot(ygraph);
layout(p,'layered')
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The ontology graph plots all 521 possible sound classes. Plot a subgraph of the sounds related to
respiratory sounds.

allRespiratorySounds = dfsearch(ygraph,"Respiratory sounds");
ygraphSpeech = subgraph(ygraph,allRespiratorySounds);
plot(ygraphSpeech)
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Classify Sounds Using YAMNet

Read in an audio signal to classify it.

[audioIn,fs] = audioread( );

Plot and listen to the audio signal.

t = (0:numel(audioIn)-1)/fs;
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Ampltiude")
axis tight
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% To play the sound, call soundsc(audioIn,fs)

YAMNet requires you to preprocess the audio signal to match the input format used to train the
network. The preprocesssing steps include resampling the audio signal and computing an array of
mel spectrograms. To learn more about mel spectrograms, see melSpectrogram (Audio Toolbox).
Use yamnetPreprocess to preprocess the signal and extract the mel spectrograms to be passed to
YAMNet. Visualize one of these spectrograms chosen at random.

spectrograms = yamnetPreprocess(audioIn,fs);

arbitrarySpect = spectrograms(:,:,1,randi(size(spectrograms,4)));
surf(arbitrarySpect,EdgeColor="none")
view([90 -90])
xlabel("Mel Band")
ylabel("Frame")
title("Mel Spectrogram for YAMNet")
axis tight
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Create a YAMNet neural network. Using the yamnet function requires installing the pretrained
YAMNet network. If the network is not installed, the function provides a link to download the
pretrained model. Call classify with the network on the preprocessed mel spectrogram images.

net = yamnet;
classes = classify(net,spectrograms);

Calling classify returns a label for each of the spectrogram images in the input. Classify the sound
as the most frequently occurring label in the output of classify.

mySound = mode(classes)

mySound = categorical
     Whistle 
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Transfer Learning Using YAMNet

Download and unzip the air compressor data set [1] on page 1-1855. This data set consists of
recordings from air compressors in a healthy state or one of 7 faulty states.

url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'aircompressordataset');
datasetLocation = tempdir;

if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
    loc = websave(downloadFolder,url);
    unzip(loc,fullfile(tempdir,'AirCompressorDataSet'))
end

Create an audioDatastore (Audio Toolbox) object to manage the data and split it into train and
validation sets.

ads = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);

Read an audio file from the datastore and save the sample rate for later use. Reset the datastore to
return the read pointer to the beginning of the data set. Listen to the audio signal and plot the signal
in the time domain.

[x,fileInfo] = read(adsTrain);
fs = fileInfo.SampleRate;

reset(adsTrain)

sound(x,fs)

figure
t = (0:size(x,1)-1)/fs;
plot(t,x)
xlabel('Time (s)')
title('State = ' + string(fileInfo.Label))
axis tight
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Extract Mel spectrograms from the train set using yamnetPreprocess. There are multiple
spectrograms for each audio signal. Replicate the labels so that they are in one-to-one
correspondence with the spectrograms.

emptyLabelVector = adsTrain.Labels;
emptyLabelVector(:) = [];

trainFeatures = [];
trainLabels = emptyLabelVector;
while hasdata(adsTrain)
    [audioIn,fileInfo] = read(adsTrain);
    features = yamnetPreprocess(audioIn,fileInfo.SampleRate);
    numSpectrums = size(features,4);
    trainFeatures = cat(4,trainFeatures,features);
    trainLabels = cat(2,trainLabels,repmat(fileInfo.Label,1,numSpectrums));
end

Extract features from the validation set and replicate the labels.

validationFeatures = [];
validationLabels = emptyLabelVector;
while hasdata(adsValidation)
    [audioIn,fileInfo] = read(adsValidation);
    features = yamnetPreprocess(audioIn,fileInfo.SampleRate);
    numSpectrums = size(features,4);
    validationFeatures = cat(4,validationFeatures,features);
    validationLabels = cat(2,validationLabels,repmat(fileInfo.Label,1,numSpectrums));
end
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The air compressor data set has only eight classes.

Read in YAMNet and convert it to a layerGraph.

If YAMNet pretrained network is not installed on your machine, execute the following commands to
download and unzip the YAMNet model to your temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

After you read in YAMNet and convert it to a layerGraph, replace the final fullyConnectedLayer
and the final classificationLayer to reflect the new task.

uniqueLabels = unique(adsTrain.Labels);
numLabels = numel(uniqueLabels);

net = yamnet;

lgraph = layerGraph(net.Layers);

newDenseLayer = fullyConnectedLayer(numLabels,"Name","dense");
lgraph = replaceLayer(lgraph,"dense",newDenseLayer);

newClassificationLayer = classificationLayer("Name","Sounds","Classes",uniqueLabels);
lgraph = replaceLayer(lgraph,"Sound",newClassificationLayer);

To define training options, use trainingOptions.

miniBatchSize = 128;
validationFrequency = floor(numel(trainLabels)/miniBatchSize);
options = trainingOptions('adam', ...
    'InitialLearnRate',3e-4, ...
    'MaxEpochs',2, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ValidationData',{single(validationFeatures),validationLabels}, ...
    'ValidationFrequency',validationFrequency);

To train the network, use trainNetwork.

airCompressorNet = trainNetwork(trainFeatures,trainLabels,lgraph,options);
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Save the trained network to airCompressorNet.mat. You can now use this pre-trained network by
loading the airCompressorNet.mat file.

save airCompressorNet.mat airCompressorNet 

References

[1] Verma, Nishchal K., et al. “Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors.” IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

Output Arguments
net — Pretrained YAMNet neural network
SeriesNetwork object

Pretrained YAMNet neural network, returned as a SeriesNetwork object.

Version History
Introduced in R2020b
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References
[1] Gemmeke, Jort F., et al. “Audio Set: An Ontology and Human-Labeled Dataset for Audio Events.”

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2017, pp. 776–80. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952261.

[2] Hershey, Shawn, et al. “CNN Architectures for Large-Scale Audio Classification.” 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017,
pp. 131–35. DOI.org (Crossref), doi:10.1109/ICASSP.2017.7952132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only the activations and predict object functions are supported.
• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code

Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Only the activations, classify, predict, predictAndUpdateState, and resetState
object functions are supported.

• To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code
Generation” (GPU Coder).

See Also
Apps
Signal Labeler

Blocks
Sound Classifier | VGGish Embeddings | VGGish Preprocess | VGGish | YAMNet | YAMNet Preprocess

Functions
audioFeatureExtractor | classifySound | designAuditoryFilterBank | melSpectrogram |
vggish | vggishPreprocess | yamnetGraph | yamnetPreprocess
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Approximation, Clustering, and Control
Functions

2



adapt
Adapt neural network to data as it is simulated

Syntax
[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai)

To Get Help
Type help network/adapt.

Description
This function calculates network outputs and errors after each presentation of an input.

[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai) takes

net Network
P Network inputs
T Network targets (default = zeros)
Pi Initial input delay conditions (default = zeros)
Ai Initial layer delay conditions (default = zeros)

and returns the following after applying the adapt function net.adaptFcn with the adaption
parameters net.adaptParam:

net Updated network
Y Network outputs
E Network errors
Pf Final input delay conditions
Af Final layer delay conditions
tr Training record (epoch and perf)

Note that T is optional and is only needed for networks that require targets. Pi and Pf are also
optional and only need to be used for networks that have input or layer delays.

adapt’s signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks with multiple inputs
and outputs, and allows sequences of inputs to be presented,

P Ni-by-TS cell array Each element P{i,ts} is an Ri-by-Q
matrix.

T Nt-by-TS cell array Each element T{i,ts} is a Vi-by-Q matrix.
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Pi Ni-by-ID cell array Each element Pi{i,k} is an Ri-by-Q
matrix.

Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q
matrix.

Y No-by-TS cell array Each element Y{i,ts} is a Ui-by-Q matrix.
E No-by-TS cell array Each element E{i,ts} is a Ui-by-Q matrix.
Pf Ni-by-ID cell array Each element Pf{i,k} is an Ri-by-Q

matrix.
Af Nl-by-LD cell array Each element Af{i,k} is an Si-by-Q

matrix.

where

Ni = net.numInputs
Nl = net.numLayers
No = net.numOutputs
ID = net.numInputDelays
LD = net.numLayerDelays
TS = Number of time steps
Q = Batch size
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Ui = net.outputs{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to most recent:

Pi{i,k} = Input i at time ts = k - ID
Pf{i,k} = Input i at time ts = TS + k - ID
Ai{i,k} = Layer output i at time ts = k - LD
Af{i,k} = Layer output i at time ts = TS + k - LD

The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient for
networks with only one input and output, but can be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a
single matrix:

P (sum of Ri)-by-Q matrix
T (sum of Vi)-by-Q matrix
Pi (sum of Ri)-by-(ID*Q) matrix
Ai (sum of Si)-by-(LD*Q) matrix
Y (sum of Ui)-by-Q matrix
E (sum of Ui)-by-Q matrix
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Pf (sum of Ri)-by-(ID*Q) matrix
Af (sum of Si)-by-(LD*Q) matrix

Examples
Here two sequences of 12 steps (where T1 is known to depend on P1) are used to define the
operation of a filter.

p1 = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
t1 = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};

Here linearlayer is used to create a layer with an input range of [-1 1], one neuron, input delays
of 0 and 1, and a learning rate of 0.1. The linear layer is then simulated.

net = linearlayer([0 1],0.1);

Here the network adapts for one pass through the sequence.

The network’s mean squared error is displayed. (Because this is the first call to adapt, the default Pi
is used.)

[net,y,e,pf] = adapt(net,p1,t1);
mse(e)

Note that the errors are quite large. Here the network adapts to another 12 time steps (using the
previous Pf as the new initial delay conditions).

p2 = {1 -1 -1 1 1 -1  0 0 0 1 -1 -1};
t2 = {2  0 -2 0 2  0 -1 0 0 1  0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)

Here the network adapts for 100 passes through the entire sequence.

p3 = [p1 p2];
t3 = [t1 t2];
for i = 1:100
  [net,y,e] = adapt(net,p3,t3);
end
mse(e)

The error after 100 passes through the sequence is very small. The network has adapted to the
relationship between the input and target signals.

Algorithms
adapt calls the function indicated by net.adaptFcn, using the adaption parameter values indicated
by net.adaptParam.

Given an input sequence with TS steps, the network is updated as follows: Each step in the sequence
of inputs is presented to the network one at a time. The network’s weight and bias values are updated
after each step, before the next step in the sequence is presented. Thus the network is updated TS
times.
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Version History
Introduced before R2006a

See Also
sim | init | train | revert
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adaptwb
Adapt network with weight and bias learning rules

Syntax
[net,ar,Ac] = adapt(net,Pd,T,Ai)

Description
This function is normally not called directly, but instead called indirectly through the function adapt
after setting a network’s adaption function (net.adaptFcn) to this function.

[net,ar,Ac] = adapt(net,Pd,T,Ai) takes these arguments,

net Neural network
Pd Delayed processed input states and inputs
T Targets
Ai Initial layer delay states

and returns

net Neural network after adaption
ar Adaption record
Ac Combined initial layer states and layer outputs

Examples
Linear layers use this adaption function. Here a linear layer with input delays of 0 and 1, and a
learning rate of 0.5, is created and adapted to produce some target data t when given some input
data x. The response is then plotted, showing the network’s error going down over time.

x = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
t = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};
net = linearlayer([0 1],0.5);
net.adaptFcn
[net,y,e,xf] = adapt(net,x,t);
plotresponse(t,y)

Version History
Introduced in R2010b

See Also
adapt
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adddelay
Add delay to neural network response

Syntax
net = adddelay(net,n)

Description
net = adddelay(net,n) takes these arguments,

net Neural network
n Number of delays

and returns the network with input delay connections increased, and output feedback delays
decreased, by the specified number of delays n. The result is a network that behaves identically,
except that outputs are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples

Remove and Add Delay to Network

This example shows how to create, train, and simulate a time delay network in its original form, on an
input time series X and target series T. Then the delay is removed and later added back. The first and
third outputs will be identical, while the second result will include a new prediction for the following
step.

Time Delay

[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);

 adddelay
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y1 = net1(Xs,Xi);
view(net1)
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Remove Delay

net2 = removedelay(net1);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi);
view(net2)

 adddelay
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Add Delay

net3 = adddelay(net2);
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi);
view(net3)
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Version History
Introduced in R2010b

See Also
closeloop | openloop | removedelay
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boxdist
Distance between two position vectors

Syntax
d = boxdist(pos)

Description
boxdist is a layer distance function that is used to find the distances between the layer’s neurons,
given their positions.

d = boxdist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

boxdist is most commonly used with layers whose topology function is gridtop.

Examples
Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and
then find their distances.

pos = rand(3,10);
d = boxdist(pos)

Network Use
To change a network so that a layer’s topology uses boxdist, set net.layers{i}.distanceFcn to
'boxdist'.

In either case, call sim to simulate the network with boxdist.

Algorithms
The box distance D between two position vectors Pi and Pj from a set of S vectors is

Dij = max(abs(Pi-Pj))

Version History
Introduced before R2006a

See Also
dist | linkdist | mandist | sim
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bttderiv
Backpropagation through time derivative function

Syntax
bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
bttderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the chain rule from a network’s performance back through
the network, and in the case of dynamic networks, back through time.

bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (and N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs elements,
and TS is the number of timesteps).

bttderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = bttderiv('dperf_dwb',net,x,t)
jwb = bttderiv('de_dwb',net,x,t)

Version History
Introduced in R2010b
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See Also
defaultderiv | fpderiv | num2deriv | num5deriv | staticderiv
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cascadeforwardnet
Generate cascade-forward neural network

Syntax
net = cascadeforwardnet(hiddenSizes,trainFcn)

Description
net = cascadeforwardnet(hiddenSizes,trainFcn) returns a cascade-forward neural network
with a hidden layer size of hiddenSizes and training function, specified by trainFcn.

Cascade-forward networks are similar to feed-forward networks, but include a connection from the
input and every previous layer to following layers.

As with feed-forward networks, a two-or more layer cascade-network can learn any finite input-output
relationship arbitrarily well given enough hidden neurons.

Examples

Construct and Train a Cascade-Forward Neural Network

This example shows how to use a cascade-forward neural network to solve a simple problem.

Load the training data.

[x,t] = simplefit_dataset;

The 1-by-94 matrix x contains the input values and the 1-by-94 matrix t contains the associated
target output values.

Construct a cascade-forward network with one hidden layer of size 10.

net = cascadeforwardnet(10);

Train the network net using the training data.

net = train(net,x,t);

 cascadeforwardnet
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View the trained network.

view(net)
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Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared
error.

perf = perform(net,y,t)

perf = 1.9372e-05

Input Arguments
hiddenSizes — Size of the hidden layers
10 (default) | row vector

Size of the hidden layers in the network, specified as a row vector. The length of the vector
determines the number of hidden layers in the network.

 cascadeforwardnet
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Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer
size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training
according to the training data.
Data Types: single | double

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

Output Arguments
net — Cascade-forward network
network object

Cascade-forward neural network, returned as a network object.

Version History
Introduced in R2010b

See Also
feedforwardnet | network
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Topics
“Create, Configure, and Initialize Multilayer Shallow Neural Networks”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

 cascadeforwardnet
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catelements
Concatenate neural network data elements

Syntax
catelements(x1,x2,...,xn)
[x1; x2; ... xn]

Description
catelements(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the element dimension (i.e., the matrix row dimension).

If all arguments are matrices, this operation is the same as [x1; x2; ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then
the matrices in the same positions in each argument are concatenated.

Examples
This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6; 2 9 1]
y = catelements(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3] [4 5 6]; [2 5 4] [9 7 5]}
y = catelements(x1,x2)

Version History
Introduced in R2010b

See Also
nndata | numelements | getelements | setelements | catsignals | catsamples |
cattimesteps
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catsamples
Concatenate neural network data samples

Syntax
catsamples(x1,x2,...,xn)
[x1 x2 ... xn]
catsamples(x1,x2,...,xn,'pad',v)

Description
catsamples(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the samples dimension (i.e., the matrix column dimension).

If all arguments are matrices, this operation is the same as [x1 x2 ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then
the matrices in the same positions in each argument are concatenated.

catsamples(x1,x2,...,xn,'pad',v) allows samples with varying numbers of timesteps
(columns of cell arrays) to be concatenated by padding the shorter time series with the value v, until
they are the same length as the longest series. If v is not specified, then the value NaN is used, which
is often used to represent unknown or don't-care inputs or targets.

Examples
This code concatenates the samples of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsamples(x1,x2)

This code concatenates the samples of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsamples(x1,x2)

Here the samples of two cell array data values, with unequal numbers of timesteps, are concatenated.

x1 = {1 2 3 4 5};
x2 = {10 11 12};
y = catsamples(x1,x2,'pad')

Version History
Introduced in R2010b
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See Also
nndata | numsamples | getsamples | setsamples | catelements | catsignals | cattimesteps
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catsignals
Concatenate neural network data signals

Syntax
catsignals(x1,x2,...,xn)
{x1; x2; ...; xn}

Description
catsignals(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the element dimension (i.e., the cell row dimension).

If all arguments are matrices, this operation is the same as {x1; x2; ...; xn}.

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and the
cell arrays are concatenated as [x1; x2; ...; xn].

Examples
This code concatenates the signals of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsignals(x1,x2)

This code concatenates the signals of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsignals(x1,x2)

Version History
Introduced in R2010b

See Also
nndata | numsignals | getsignals | setsignals | catelements | catsamples | cattimesteps
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cattimesteps
Concatenate neural network data timesteps

Syntax
cattimesteps(x1,x2,...,xn)
{x1 x2 ... xn}

Description
cattimesteps(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the element dimension (i.e., the cell column dimension).

If all arguments are matrices, this operation is the same as {x1 x2 ... xn}.

If any argument is a cell array, all non-cell array arguments are enclosed in cell arrays, and the cell
arrays are concatenated as [x1 x2 ... xn].

Examples
This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = cattimesteps(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = cattimesteps(x1,x2)

Version History
Introduced in R2010b

See Also
nndata | numtimesteps | gettimesteps | settimesteps | catelements | catsignals |
catsamples

2 Approximation, Clustering, and Control Functions

2-24



cellmat
Create cell array of matrices

Syntax
cellmat(A,B,C,D,v)

Description
cellmat(A,B,C,D,v) takes four integer values and one scalar value v, and returns an A-by-B cell
array of C-by-D matrices of value v. If the value v is not specified, zero is used.

Examples
Here two cell arrays of matrices are created.

cm1 = cellmat(2,3,5,4)
cm2 = cellmat(3,4,2,2,pi)

Version History
Introduced in R2010b

See Also
nndata
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closeloop
Convert neural network open-loop feedback to closed loop

Syntax
net = closeloop(net)
[net,xi,ai] = closeloop(net,xi,ai)

Description
net = closeloop(net) takes a neural network and closes any open-loop feedback. For each
feedback output i whose property net.outputs{i}.feedbackMode is 'open', it replaces its
associated feedback input and their input weights with layer weight connections coming from the
output. The net.outputs{i}.feedbackMode property is set to 'closed', and the
net.outputs{i}.feedbackInput property is set to an empty matrix. Finally, the value of
net.outputs{i}.feedbackDelays is added to the delays of the feedback layer weights (i.e., to the
delays values of the replaced input weights).

[net,xi,ai] = closeloop(net,xi,ai) converts an open-loop network and its current input
delay states xi and layer delay states ai to closed-loop form.

Examples
Convert NARX Network to Closed-Loop Form

This example shows how to design a NARX network in open-loop form, then convert it to closed-loop
form.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
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view(net)
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Yopen = net(Xs,Xi,Ai);
net = closeloop(net);
view(net)
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[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yclosed = net(Xs,Xi,Ai);

Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet
and narnet.

Version History
Introduced in R2010b

See Also
narnet | narxnet | noloop | openloop
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combvec
Create all combinations of vectors

Syntax
A = combvec(A1,A2,...)

Description
A = combvec(A1,A2,...) takes any number of inputs A, where each input Ai has Ni columns, and
returns a matrix of (N1*N2*...) column vectors, where the columns consist of all combinations
found by combining one column vector from each input Ai.

Examples

Generate All Combinations of Vectors Using the combvec Function

This example shows how to generate a matrix that contains all combinations of two matrices, a1 and
a2.

Create the two input matrices, a1 and a2. Then call the combvec function to generate all possible
combinations.

a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)

a3 =

     1     2     3     1     2     3
     4     5     6     4     5     6
     7     7     7     8     8     8
     9     9     9    10    10    10

Input Arguments
A1 — Input matrix 1
matrix

Input matrix of which you want to calculate all combinations, specified as a matrix with N1 column
vectors.

A2 — Input matrix 2
matrix

Input matrix of which you want to calculate all combinations, specified as a matrix with N2 column
vectors.
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Output Arguments
A — Output matrix
matrix

Output matrix, returned as a matrix of (N1*N2*...) column vectors, where the columns consist of
all combinations found by combining one column vector from each input Ai.

Version History
Introduced before R2006a
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compet
Competitive transfer function

Graph and Symbol

Syntax
A = compet(N,FP)
info = compet('code')

Description
compet is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = compet(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns the S-by-Q matrix A with a 1 in each column where the same column of N has its
maximum value, and 0 elsewhere.

info = compet('code') returns information according to the code string specified:

compet('name') returns the name of this function.

compet('output',FP) returns the [min max] output range.

compet('active',FP) returns the [min max] active input range.

compet('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

compet('fpnames') returns the names of the function parameters.

compet('fpdefaults') returns the default function parameters.

Examples
Here you define a net input vector N, calculate the output, and plot both with bar graphs.

n = [0; 1; -0.5; 0.5];
a = compet(n);
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subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'compet';

Version History
Introduced before R2006a

See Also
sim | softmax
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competlayer
Competitive layer

Syntax
competlayer(numClasses,kohonenLR,conscienceLR)

Description
Competitive layers learn to classify input vectors into a given number of classes, according to
similarity between vectors, with a preference for equal numbers of vectors per class.

competlayer(numClasses,kohonenLR,conscienceLR) takes these arguments,

numClasses Number of classes to classify inputs (default = 5)
kohonenLR Learning rate for Kohonen weights (default = 0.01)
conscienceLR Learning rate for conscience bias (default = 0.001)

and returns a competitive layer with numClasses neurons.

Examples

Create and Train a Competitive Layer

This example shows how to train a competitive layer to classify 150 iris flowers into 6 classes.

inputs = iris_dataset;
net = competlayer(6);
net = train(net,inputs);
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view(net)
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outputs = net(inputs);
classes = vec2ind(outputs);

Version History
Introduced in R2010b

See Also
selforgmap | patternnet | lvqnet

2 Approximation, Clustering, and Control Functions

2-36



con2seq
Convert concurrent vectors to sequential vectors

Syntax
S = con2seq(b)
S = con2seq(b,TS)

Description
Deep Learning Toolbox software arranges concurrent vectors with a matrix, and sequential vectors
with a cell array (where the second index is the time step).

con2seq and seq2con allow concurrent vectors to be converted to sequential vectors, and back
again.

S = con2seq(b) takes one input,

b R-by-TS matrix

and returns one output,

S 1-by-TS cell array of R-by-1 vectors

S = con2seq(b,TS) can also convert multiple batches,

b N-by-1 cell array of matrices with M*TS columns
TS Time steps

and returns

S N-by-TS cell array of matrices with M columns

Examples
Here a batch of three values is converted to a sequence.

p1 = [1 4 2]
p2 = con2seq(p1)

Here, two batches of vectors are converted to two sequences with two time steps.

p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
p2 = con2seq(p1,2)

Version History
Introduced before R2006a
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See Also
seq2con | concur
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concur
Create concurrent bias vectors

Syntax
concur(B,Q)

Description
concur(B,Q)

B S-by-1 bias vector (or an Nl-by-1 cell array of vectors)
Q Concurrent size

and returns an S-by-B matrix of copies of B (or an Nl-by-1 cell array of matrices).

Examples
Here concur creates three copies of a bias vector.

b = [1; 3; 2; -1];
concur(b,3)

Network Use
To calculate a layer’s net input, the layer’s weighted inputs must be combined with its biases. The
following expression calculates the net input for a layer with the netsum net input function, two input
weights, and a bias:

n = netsum(z1,z2,b)

The above expression works if Z1, Z2, and B are all S-by-1 vectors. However, if the network is being
simulated by sim (or adapt or train) in response to Q concurrent vectors, then Z1 and Z2 will be S-
by-Q matrices. Before B can be combined with Z1 and Z2, you must make Q copies of it.

n = netsum(z1,z2,concur(b,q))

Version History
Introduced before R2006a

See Also
con2seq | netprod | netsum | seq2con | sim
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configure
Configure network inputs and outputs to best match input and target data

Syntax
net = configure(net,x,t)
net = configure(net,x)
net = configure(net,'inputs',x,i)
net = configure(net,'outputs',t,i)

Description
net = configure(net,x,t) takes input data x and target data t, and configures the network’s
inputs and outputs to match.

Configuration is the process of setting network input and output sizes and ranges, input
preprocessing settings and output postprocessing settings, and weight initialization settings to match
input and target data.

Configuration must happen before a network’s weights and biases can be initialized. Unconfigured
networks are automatically configured and initialized the first time train is called. Alternately, a
network can be configured manually either by calling this function or by setting a network’s input and
output sizes, ranges, processing settings, and initialization settings properties manually.

net = configure(net,x) configures only inputs.

net = configure(net,'inputs',x,i) configures the inputs specified with the index vector i. If
i is not specified all inputs are configured.

net = configure(net,'outputs',t,i) configures the outputs specified with the index vector i.
If i is not specified all targets are configured.

Examples

Configure Network with configure

This example shows how to manually configure a network for a simple fitting problem instead of
using the train function.

[x,t] = simplefit_dataset;
net = feedforwardnet(20); 
view(net)
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net = configure(net,x,t); 
view(net)
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Input Arguments
net — Network to configure
network object

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

x — Input data
matrix

Network inputs, specified as a matrix.

t — Target data
matrix

Network targets, specified as a matrix.
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i — Index vector
vector

Indexes of the inputs or outputs you want to configure, specified as a vector.

Output Arguments
net — Configured network
network object

Configured network, returned as a network object.

Version History
Introduced in R2010b

See Also
isconfigured | unconfigure | init | train
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confusion
Classification confusion matrix

Syntax
[c,cm,ind,per] = confusion(targets,outputs)

Description

Tip To plot a confusion chart for a deep learning workflow, use the confusionchart function.

[c,cm,ind,per] = confusion(targets,outputs) takes target and output matrices, targets
and outputs, and returns the confusion value, c, the confusion matrix, cm, a cell array, ind, that
contains the sample indices of class i targets classified as class j, and a matrix of percentages, per,
where each row summarizes four percentages associated with the i-th class.

Examples

Generate the Confusion Matrix of the simpleclass Dataset Using the confusion Function

This example shows how to generate the confusion matrix of the simpleclass_dataset dataset
using the confusion function.

Load the simpleclass_dataset dataset. Define a network and then train it.

[x,t] = simpleclass_dataset;
net = patternnet(10);
net = train(net,x,t);
y = net(x);
[c,cm,ind,per] = confusion(t,y)

a3 =

     1     2     3     1     2     3
     4     5     6     4     5     6
     7     7     7     8     8     8
     9     9     9    10    10    10

Input Arguments
targets — Matrix of targets
matrix

Matrix of targets, specified as an S-by-Q matrix, where each column vector contains a single 1 value,
with all other elements equal to 0. The index of the value equal to 1 indicates which of the S
categories that vector represents.
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outputs — Matrix of outputs
matrix

Matrix of outputs, specified as an S-by-Q matrix, where each column contains values in the range
[0,1]. The index of the largest element in the column indicates which of the S categories that vector
represents.

Output Arguments
c — Confusion value
scalar

Fraction of misclassified samples, returned as a scalar.

cm — Confusion matrix
matrix

Confusion matrix, returned as an S-by-S confusion matrix, where cm(i,j) is the number of samples
whose target is the i-th class that was classified as j.

ind — Array of indices
cell array

Array of indices, returned as an S-by-S cell array, where ind{i,j} contains the indices of samples
with the i-th target class, but j-th output class.

per — Matrix of percentages
matrix

Matrix of percentages, returned as an S-by-4 matrix, where each row summarizes four percentages
associated with the i-th class:

per(i,1) false negative rate
          = (false negatives)/(all output negatives)
per(i,2) false positive rate
          = (false positives)/(all output positives)
per(i,3) true positive rate
          = (true positives)/(all output positives)
per(i,4) true negative rate
          = (true negatives)/(all output negatives)

Version History
Introduced in R2006a

See Also
plotconfusion | roc
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convwf
Convolution weight function

Syntax
Z = convwf(W,P)
dim = convwf('size',S,R,FP)
dw = convwf('dw',W,P,Z,FP)
info = convwf('code')

Description
Weight functions apply weights to an input to get weighted inputs.

Z = convwf(W,P) returns the convolution of a weight matrix W and an input P.

dim = convwf('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size.

dw = convwf('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

info = convwf('code') returns information about this function. The following codes are defined:

'deriv' Name of derivative function
'fullderiv' Reduced derivative = 2, full derivative = 1, linear derivative = 0
'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear derivative =

0
'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear derivative

= 0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,1);
P = rand(8,1);
Z = convwf(W,P)

Network Use
To change a network so an input weight uses convwf, set net.inputWeights{i,j}.weightFcn to
'convwf'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'convwf'.
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In either case, call sim to simulate the network with convwf.

Version History
Introduced in R2006a
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crossentropy
Neural network performance

Syntax
perf = crossentropy(net,targets,outputs,perfWeights)
perf = crossentropy( ___ ,Name,Value)

Description
perf = crossentropy(net,targets,outputs,perfWeights) calculates a network
performance given targets and outputs, with optional performance weights and other parameters.
The function returns a result that heavily penalizes outputs that are extremely inaccurate (y near 1-
t), with very little penalty for fairly correct classifications (y near t). Minimizing cross-entropy leads
to good classifiers.

The cross-entropy for each pair of output-target elements is calculated as: ce = -t .* log(y).

The aggregate cross-entropy performance is the mean of the individual values: perf =
sum(ce(:))/numel(ce).

Special case (N = 1): If an output consists of only one element, then the outputs and targets are
interpreted as binary encoding. That is, there are two classes with targets of 0 and 1, whereas in 1-of-
N encoding, there are two or more classes. The binary cross-entropy expression is: ce = -t .*
log(y) - (1-t) .* log(1-y) .

perf = crossentropy( ___ ,Name,Value) supports customization according to the specified
name-value pair arguments.

Examples

Calculate Network Performance

This example shows how to design a classification network with cross-entropy and 0.1 regularization,
then calculate performance on the whole dataset.

[x,t] = iris_dataset;
net = patternnet(10);
net.performParam.regularization = 0.1;
net = train(net,x,t);
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y = net(x);
perf = crossentropy(net,t,y,{1},'regularization',0.1)

perf = 0.0267

 crossentropy

2-49



Set crossentropy as Performance Function

This example shows how to set up the network to use the crossentropy during training.

net = feedforwardnet(10);
net.performFcn = 'crossentropy';
net.performParam.regularization = 0.1;
net.performParam.normalization = 'none';

Input Arguments
net — neural network
network object

Neural network, specified as a network object.
Example: net = feedforwardnet(10);

targets — neural network target values
matrix or cell array of numeric values

Neural network target values, specified as a matrix or cell array of numeric values. Network target
values define the desired outputs, and can be specified as an N-by-Q matrix of Q N-element vectors, or
an M-by-TS cell array where each element is an Ni-by-Q matrix.  In each of these cases, N or Ni
indicates a vector length, Q the number of samples, M the number of signals for neural networks with
multiple outputs, and TS is the number of time steps for time series data.  targets must have the
same dimensions as outputs.

The target matrix columns consist of all zeros and a single 1 in the position of the class being
represented by that column vector. When N = 1, the software uses cross entropy for binary encoding,
otherwise it uses cross entropy for 1-of-N encoding. NaN values are allowed to indicate unknown or
don't-care output values.  The performance of NaN target values is ignored.
Data Types: double | cell

outputs — neural network output values
matrix or cell array of numeric values

Neural network output values, specified as a matrix or cell array of numeric values. Network output
values can be specified as an N-by-Q matrix of Q N-element vectors, or an M-by-TS cell array where
each element is an Ni-by-Q matrix. In each of these cases, N or Ni indicates a vector length, Q the
number of samples, M the number of signals for neural networks with multiple outputs and TS is the
number of time steps for time series data. outputs must have the same dimensions as targets.

Outputs can include NaN to indicate unknown output values, presumably produced as a result of NaN
input values (also representing unknown or don't-care values). The performance of NaN output values
is ignored.

General case (N>=2): The columns of the output matrix represent estimates of class membership,
and should sum to 1. You can use the softmax transfer function to produce such output values. Use
patternnet to create networks that are already set up to use cross-entropy performance with a
softmax output layer.
Data Types: double | cell
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perfWeights — performance weights
{1} (default) | vector or cell array of numeric values

Performance weights, specified as a vector or cell array of numeric values. Performance weights are
an optional argument defining the importance of each performance value, associated with each target
value, using values between 0 and 1. Performance values of 0 indicate targets to ignore, values of 1
indicate targets to be treated with normal importance. Values between 0 and 1 allow targets to be
treated with relative importance.

Performance weights have many uses. They are helpful for classification problems, to indicate which
classifications (or misclassifications) have relatively greater benefits (or costs). They can be useful in
time series problems where obtaining a correct output on some time steps, such as the last time step,
is more important than others. Performance weights can also be used to encourage a neural network
to best fit samples whose targets are known most accurately, while giving less importance to targets
which are known to be less accurate.

perfWeights can have the same dimensions as targets and outputs. Alternately, each dimension
of the performance weights can either match the dimension of targets and outputs, or be 1. For
instance, if targets is an N-by-Q matrix defining Q samples of N-element vectors, the performance
weights can be N-by-Q indicating a different importance for each target value, or N-by-1 defining a
different importance for each row of the targets, or 1-by-Q indicating a different importance for each
sample, or be the scalar 1 (i.e. 1-by-1) indicating the same importance for all target values.

Similarly, if outputs and targets are cell arrays of matrices, the perfWeights can be a cell array
of the same size, a row cell array (indicating the relative importance of each time step), a column cell
array (indicating the relative importance of each neural network output), or a cell array of a single
matrix or just the matrix (both cases indicating that all matrices have the same importance values).

For any problem, a perfWeights value of {1} (the default) or the scalar 1 indicates all performances
have equal importance.
Data Types: double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'normalization','standard' specifies the inputs and targets to be normalized to the
range (-1,+1).

regularization — proportion of performance attributed to weight/bias values
0 (default) | numeric value in the range (0,1)

Proportion of performance attributed to weight/bias values, specified as a double between 0 (the
default) and 1. A larger value penalizes the network for large weights, and the more likely the
network function will avoid overfitting.
Example: 'regularization',0
Data Types: single | double

normalization — Normalization mode for outputs, targets, and errors
'none' (default) | 'standard' | 'percent'
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Normalization mode for outputs, targets, and errors, specified as 'none', 'standard', or
'percent'. 'none' performs no normalization. 'standard' results in outputs and targets being
normalized to (-1, +1), and therefore errors in the range (-2, +2).'percent' normalizes outputs and
targets to (-0.5, 0.5) and errors to (-1, 1).
Example: 'normalization','standard'
Data Types: char

Output Arguments
perf — network performance
double

Network performance, returned as a double in the range (0,1).

Version History
Introduced in R2013b

See Also
mae | mse | patternnet | sae | softmax | sse
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defaultderiv
Default derivative function

Syntax
defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
defaultderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function chooses the recommended derivative algorithm for the type of network whose
derivatives are being calculated. For static networks, defaultderiv calls staticderiv; for
dynamic networks it calls bttderiv to calculate the gradient and fpderiv to calculate the Jacobian.

defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (or N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs
elements, and TS is the number of timesteps).

defaultderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = defaultderiv('dperf_dwb',net,x,t)

Version History
Introduced in R2010b
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See Also
bttderiv | fpderiv | num2deriv | num5deriv | staticderiv
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dist
Euclidean distance weight function

Syntax
Z = dist(W,P)
dim = dist('size',S,R,FP)
dw = dist('dw',W,P,Z,FP)
D = dist(pos)
info = dist(code)

Description
Z = dist(W,P) takes an S-by-R weight matrix, W, and an R-by-Q matrix of Q input (column) vectors,
P, and returns the S-by-Q matrix of vector distances, Z.

Weight functions apply weights to an input to get weighted inputs.

dim = dist('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, FP, and returns the weight size [S-by-R].

dw = dist('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

dist is also a layer distance function which can be used to find the distances between neurons in a
layer.

D = dist(pos) takes N-by-S matrix of neuron positions, pos and returns the S-by-S matrix of
distances, D.

info = dist(code) returns information about this function. For more information, see the code
argument description.

Examples

Calculate the Weighted Input By Using the dist Function

This example shows how to calculate the corresponding weighted input Z, given a random weight
matrix W and input vector P.

W = rand(4,3);
P = rand(3,1);
Z = dist(W,P)

Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and
find their distances.

 dist
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pos = rand(3,10);
D = dist(pos)

Input Arguments
W — Weight matrix
matrix

Weight matrix, specified as an S-by-R matrix.

P — Input matrix
matrix

Input matrix, specified as an R-by-Q matrix of Q input (column) vectors.

S — Layer dimension
scalar

Layer dimension, specified as a scalar.

R — Input dimension
scalar

Input dimension, specified as a scalar.

pos — Neuron positions
matrix

Matrix of neuron positions, specified as an N-by-S matrix.

code — Information option
'name' | 'output' | 'active' | 'fullderiv' | 'fpnames' | 'fpdefaults'

Information you want to retrieve from the function, specified as one of the following:

• 'name' returns the name of this function.
• 'deriv' returns the name of the derivative function
• 'fullderiv' returns 1 for full derivative and 0 for linear derivative.
• 'pfullderiv' returns 2 for reduced derivative, 1 for full derivative, and 0 for linear derivative.
• 'fpnames' returns the names of the function parameters.
• 'fpdefaults' returns the default function parameters.

Output Arguments
Z — Vector distances
matrix

Vector distances, returned as an S-by-Q matrix.

dim — Weight size
row vector

Weight size, returned as a row vector.
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dw — Derivative of w
cell array

Derivative of Z with respect to W, returned as a cell array.

D — Distances
matrix

Distances, returned as an S-by-S matrix.

More About
Network Use

You can create a standard network that uses dist by calling newpnn or newgrnn.

To change a network so an input weight uses dist, set net.inputWeights{i,j}.weightFcn to
'dist'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'dist'.

To change a network so that a layer’s topology uses dist, set net.layers{i}.distanceFcn to
'dist'.

In either case, call sim to simulate the network with dist.

See newpnn or newgrnn for simulation examples.

Algorithms
The Euclidean distance d between two vectors X and Y is

d = sum((x-y).^2).^0.5

Version History
Introduced before R2006a

See Also
sim | dotprod | negdist | normprod | mandist | linkdist
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distdelaynet
Distributed delay network

Syntax
distdelaynet(delays,hiddenSizes,trainFcn)

Description
Distributed delay networks are similar to feedforward networks, except that each input and layer
weights has a tap delay line associated with it. This allows the network to have a finite dynamic
response to time series input data. This network is also similar to the time delay neural network
(timedelaynet), which only has delays on the input weight.

distdelaynet(delays,hiddenSizes,trainFcn) takes these arguments,

delays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns a distributed delay neural network.

Examples

Distributed Delay Network

This example shows how to train a distributed delay neural network to solve a simple time series
problem.

[X,T] = simpleseries_dataset;
net = distdelaynet({1:2,1:2},10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
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view(net)
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Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)

perf = 0.0323

Version History
Introduced in R2010b

See Also
preparets | removedelay | timedelaynet | narnet | narxnet
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divideblock
Divide targets into three sets using blocks of indices

Syntax
[trainInd,valInd,testInd] = divideblock(Q,trainRatio,valRatio,testRatio)

Description
[trainInd,valInd,testInd] = divideblock(Q,trainRatio,valRatio,testRatio)
separates targets into three sets: training, validation, and testing. It takes the following inputs:

Q Number of targets to divide up.
trainRatio Ratio of targets for training. Default = 0.7.
valRatio Ratio of targets for validation. Default = 0.15.
testRatio Ratio of targets for testing. Default = 0.15.

and returns

trainInd Training indices
valInd Validation indices
testInd Test indices

Examples
[trainInd,valInd,testInd] = divideblock(3000,0.6,0.2,0.2);

Network Use
Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

Version History
Introduced in R2008a

See Also
divideind | divideint | dividerand | dividetrain
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divideind
Divide targets into three sets using specified indices

Syntax
[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd)

Description
[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd) separates targets
into three sets: training, validation, and testing, according to indices provided. It actually returns the
same indices it receives as arguments; its purpose is to allow the indices to be used for training,
validation, and testing for a network to be set manually.

The indices are returned after removing any indices greater than Q. Note that some indices in the
range 1:Q may not be assigned to any of the three sets, and the same indices should not be used in
more than one set.

Examples

Divide Samples into Three Sets Using Specified Indices

This example shows how to divide samples into three sets using specified indices for a network.

Divide 20 samples into training, validation and test indices, so that only 16 are actually used.

[trainInd,valInd,testInd] = divideind(20,1:8,9:12,14:16)

This code shows you how to ensure a network performs the same kind of data division when it is
trained:

net.divideFcn = 'divideind';
net.divideParam.trainInd = 1:8;
net.divideParam.valInd = 9:12;
net.divideParam.testInd= 14:16;

Input Arguments
Q — Number of targets
scalar

Number of targets to divide up, specified as a scalar.

trainInd — Training indices
vector

Training indices, specified as a 1-by-Q vector.

valInd — Validation indices
vector
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Validation indices, specified as a 1-by-Q vector.

testInd — Testing indices
vector

Testing indices, specified as a 1-by-Q vector.

Output Arguments
trainInd — Training indices
vector

Training indices, returned as a vector.

valInd — Validation indices
vector

Validation indices, returned as a vector.

testInd — Testing indices
vector

Testing indices, returned as a vector.

More About
Network Use

These are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

Version History
Introduced in R2008a

See Also
divideblock | divideint | dividerand | dividetrain
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divideint
Divide targets into three sets using interleaved indices

Syntax
[trainInd,valInd,testInd] = divideint(Q,trainRatio,valRatio,testRatio)

Description
[trainInd,valInd,testInd] = divideint(Q,trainRatio,valRatio,testRatio)
separates targets into three sets: training, validation, and testing. It takes the following inputs,

Q Number of targets to divide up.
trainRatio Ratio of vectors for training. Default = 0.7.
valRatio Ratio of vectors for validation. Default = 0.15.
testRatio Ratio of vectors for testing. Default = 0.15.

and returns

trainInd Training indices
valInd Validation indices
testInd Test indices

Examples
[trainInd,valInd,testInd] = divideint(3000,0.6,0.2,0.2);

Network Use
Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

Version History
Introduced in R2008a

See Also
divideblock | divideind | dividerand | dividetrain
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dividerand
Divide targets into three sets using random indices

Syntax
[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)

Description
[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio) takes
the number of targets to divide up, the ratio of vectors for training, the ratio of vectors for validation,
and the ratio of vectors for testing, and returns the training indices, the validation indices, and the
test indices.

Examples

Obtain Training, Validation, and Test Indices Using 'dividerand' Function

This example shows how to obtain the training, validation, and test indices using the dividerand
function.

Divide 3000 samples into 60% for training, 20% for validation, and 20% for testing.

[trainInd,valInd,testInd] = dividerand(3000,0.6,0.2,0.2)

Input Arguments
Q — Targets number
scalar

Number of targets to divide up, specified as a scalar.

trainRatio — Training ratio
0.7 (default) | scalar

Ratio of vectors for training, specified as a scalar.

valRatio — Validation ratio
0.15 (default) | scalar

Ratio of vectors for validation, specified as a scalar.

testRatio — Testing ratio
0.15 (default) | scalar

Ratio of vectors for testing, specified as a scalar.
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Output Arguments
trainInd — Training indices
vector

Training indices, returned as a row vector.

valInd — Validation indices
vector

Validation indices, returned as a row vector.

testInd — Testing indices
vector

Testing indices, returned as a row vector.

More About
Network Use

Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

Version History
Introduced in R2008a

See Also
divideblock | divideind | divideint | dividetrain
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dividetrain
Assign all targets to training set

Syntax
[trainInd,valInd,testInd] = dividetrain(Q)

Description
[trainInd,valInd,testInd] = dividetrain(Q) assigns all targets to the training set and no
targets to the validation or test sets. It takes the following inputs:

Q Number of targets to divide up.

and returns

trainInd Training indices equal to 1:Q
valInd Empty validation indices, []
testInd Empty test indices, []

Examples
[trainInd,valInd,testInd] = dividetrain(250);

Network Use
Here are the network properties that define which data division function to use, what its parameters
are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

Version History
Introduced in R2010b

See Also
divideblock | divideind | divideint | dividerand

 dividetrain

2-67



dotprod
Dot product weight function

Syntax
Z = dotprod(W,P,FP)
dim = dotprod('size',S,R,FP)
dw = dotprod('dw',W,P,Z,FP)
info = dotprod('code')

Description
Weight functions apply weights to an input to get weighted inputs.

Z = dotprod(W,P,FP) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Struct of function parameters (optional, ignored)

and returns the S-by-Q dot product of W and P.

dim = dotprod('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [S-by-R].

dw = dotprod('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

info = dotprod('code') returns information about this function. The following codes are
defined:

'deriv' Name of derivative function
'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear derivative =

0
'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear derivative

= 0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dotprod(W,P)
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Network Use
You can create a standard network that uses dotprod by calling feedforwardnet.

To change a network so an input weight uses dotprod, set net.inputWeights{i,j}.weightFcn
to 'dotprod'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

Version History
Introduced before R2006a

See Also
sim | dist | feedforwardnet | negdist | normprod
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elliotsig
Elliot symmetric sigmoid transfer function

Syntax
A = elliotsig(N)

Description
Transfer functions convert a neural network layer’s net input into its net output.

A = elliotsig(N) takes an S-by-Q matrix of net input (column) vectors, N, and returns an S-by-Q
matrix, A, of output vectors, where each element of N is squashed from the interval [-inf inf] to
the interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple
computing hardware as it does not require any exponential or trigonometric functions. Its
disadvantage is that it only flattens out for large inputs, so its effect is not as local as other sigmoid
functions. This might result in more training iterations, or require more neurons to achieve the same
accuracy.

Examples
Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];
a = elliotsig(n);

Plot the transfer function:

n = -5:0.01:5;
plot(n, elliotsig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function for layer i:

 net.layers{i}.transferFcn = 'elliotsig';

Version History
Introduced in R2012b

See Also
elliot2sig | logsig | tansig
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elliot2sig
Elliot 2 symmetric sigmoid transfer function

Syntax
A = elliot2sig(N)

Description
Transfer functions convert a neural network layer’s net input into its net output. This function is a
variation on the original Elliot sigmoid function. It has a steeper slope, closer to tansig, but is not as
smooth at the center.

A = elliot2sig(N) takes an S-by-Q matrix of S N-element net input column vectors and returns an
S-by-Q matrix A of output vectors, where each element of N is squashed from the interval [-inf
inf] to the interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple
computing hardware as it does not require any exponential or trigonometric functions. Its
disadvantage is that it departs from the classic sigmoid shape around zero.

Examples
Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];
a = elliot2sig(n);

Plot the transfer function:

n = -5:0.01:5;
plot(n, elliot2sig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function for layer i:

 net.layers{i}.transferFcn = 'elliot2sig';

Version History
Introduced in R2012b

See Also
elliotsig | logsig | tansig
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elmannet
Elman neural network

Syntax
elmannet(layerdelays,hiddenSizes,trainFcn)

Description
Elman networks are feedforward networks (feedforwardnet) with the addition of layer recurrent
connections with tap delays.

With the availability of full dynamic derivative calculations (fpderiv and bttderiv), the Elman
network is no longer recommended except for historical and research purposes. For more accurate
learning try time delay (timedelaynet), layer recurrent (layrecnet), NARX (narxnet), and NAR
(narnet) neural networks.

Elman networks with one or more hidden layers can learn any dynamic input-output relationship
arbitrarily well, given enough neurons in the hidden layers. However, Elman networks use simplified
derivative calculations (using staticderiv, which ignores delayed connections) at the expense of
less reliable learning.

elmannet(layerdelays,hiddenSizes,trainFcn) takes these arguments,

layerdelays Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes Row vector of one or more hidden layer sizes (default = 10)
trainFcn Training function (default = 'trainlm')

and returns an Elman neural network.

Examples

Train Elman Neural Network

This example shows how to train an Elman neural network to solve a simple time series problem.

[X,T] = simpleseries_dataset;
net = elmannet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
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view(net)
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Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

perf = 9.0122e-04

Version History
Introduced in R2010b

See Also
preparets | removedelay | timedelaynet | layrecnet | narnet | narxnet
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errsurf
Error surface of single-input neuron

Syntax
errsurf(P,T,WV,BV,F)

Description
errsurf(P,T,WV,BV,F) takes these arguments,

P 1-by-Q matrix of input vectors
T 1-by-Q matrix of target vectors
WV Row vector of values of W
BV Row vector of values of B
F Transfer function (string)

and returns a matrix of error values over WV and BV.

Examples
p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,es,[60 30])

Version History
Introduced before R2006a

See Also
plotes
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extendts
Extend time series data to given number of timesteps

Syntax
extendts(x,ts,v)

Description
extendts(x,ts,v) takes these values,

x Neural network time series data
ts Number of timesteps
v Value

and returns the time series data either extended or truncated to match the specified number of
timesteps. If the value v is specified, then extended series are filled in with that value, otherwise they
are extended with random values.

Examples
Here, a 20-timestep series is created and then extended to 25 timesteps with the value zero.

x = nndata(5,4,20);
y = extendts(x,25,0)

Version History
Introduced in R2010b

See Also
nndata | catsamples | preparets
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feedforwardnet
Generate feedforward neural network

Syntax
net = feedforwardnet(hiddenSizes,trainFcn)

Description
net = feedforwardnet(hiddenSizes,trainFcn) returns a feedforward neural network with a
hidden layer size of hiddenSizes and training function, specified by trainFcn.

Feedforward networks consist of a series of layers. The first layer has a connection from the network
input. Each subsequent layer has a connection from the previous layer. The final layer produces the
network’s output.

You can use feedforward networks for any kind of input to output mapping. A feedforward network
with one hidden layer and enough neurons in the hidden layers can fit any finite input-output
mapping problem.

Specialized versions of the feedforward network include fitting and pattern recognition networks. For
more information, see the fitnet and patternnet functions.

A variation on the feedforward network is the cascade forward network, which has additional
connections from the input to every layer, and from each layer to all following layers. For more
information on cascade forward networks, see the cascadeforwardnet function.

Examples

Construct and Train a Feedforward Neural Network

This example shows how to use a feedforward neural network to solve a simple problem.

Load the training data.

[x,t] = simplefit_dataset;

The 1-by-94 matrix x contains the input values and the 1-by-94 matrix t contains the associated
target output values.

Construct a feedforward network with one hidden layer of size 10.

net = feedforwardnet(10);

Train the network net using the training data.

net = train(net,x,t);
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View the trained network.

view(net)
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Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared
error.

perf = perform(net,y,t)

perf = 1.4639e-04

Input Arguments
hiddenSizes — Size of the hidden layers
10 (default) | row vector

Size of the hidden layers in the network, specified as a row vector. The length of the vector
determines the number of hidden layers in the network.
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Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer
size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training
according to the training data.
Data Types: single | double

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

Output Arguments
net — Feedforward network
network object

Feedforward neural network, returned as a network object.

Version History
Introduced in R2010b

See Also
fitnet | network | patternnet | cascadeforwardnet
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Topics
“Neural Network Object Properties”
“Neural Network Subobject Properties”
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fixunknowns
Process data by marking rows with unknown values

Syntax
[y,ps] = fixunknowns(X)
[y,ps] = fixunknowns(X,FP)
Y = fixunknowns('apply',X,PS)
X = fixunknowns('reverse',Y,PS)
name = fixunknowns('name')
fp = fixunknowns('pdefaults')
pd = fixunknowns('pdesc')
fixunknowns('pcheck',fp)

Description
fixunknowns processes matrices by replacing each row containing unknown values (represented by
NaN) with two rows of information.

The first row contains the original row, with NaN values replaced by the row’s mean. The second row
contains 1 and 0 values, indicating which values in the first row were known or unknown,
respectively.

[y,ps] = fixunknowns(X) takes these inputs,

X N-by-Q matrix

and returns

Y M-by-Q matrix with M - N rows added
PS Process settings that allow consistent processing of values

[y,ps] = fixunknowns(X,FP) takes an empty struct FP of parameters.

Y = fixunknowns('apply',X,PS) returns Y, given X and settings PS.

X = fixunknowns('reverse',Y,PS) returns X, given Y and settings PS.

name = fixunknowns('name') returns the name of this process method.

fp = fixunknowns('pdefaults') returns the default process parameter structure.

pd = fixunknowns('pdesc') returns the process parameter descriptions.

fixunknowns('pcheck',fp) throws an error if any parameter is illegal.

Examples
Here is how to format a matrix with a mixture of known and unknown values in its second row:

2 Approximation, Clustering, and Control Functions

2-82



x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]
[y1,ps] = fixunknowns(x1)

Next, apply the same processing settings to new values:

x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]
y2 = fixunknowns('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = fixunknowns('reverse',y1,ps)

More About
Recode Data with NaNs Using fixunknowns

If you have input data with unknown values, you can represent them with NaN values. For example,
here are five 2-element vectors with unknown values in the first element of two of the vectors:

p1 = [1 NaN 3 2 NaN; 3 1 -1 2 4];

The network will not be able to process the NaN values properly. Use the function fixunknowns to
transform each row with NaN values (in this case only the first row) into two rows that encode that
same information numerically.

[p2,ps] = fixunknowns(p1);

Here is how the first row of values was recoded as two rows.

p2 =
   1  2  3  2  2
   1  0  1  1  0
   3  1 -1  2  4

The first new row is the original first row, but with the mean value for that row (in this case 2)
replacing all NaN values. The elements of the second new row are now either 1, indicating the
original element was a known value, or 0 indicating that it was unknown. The original second row is
now the new third row. In this way both known and unknown values are encoded numerically in a way
that lets the network be trained and simulated.

Whenever supplying new data to the network, you should transform the inputs in the same way, using
the settings ps returned by fixunknowns when it was used to transform the training input data.

p2new = fixunknowns('apply',p1new,ps);

The function fixunkowns is only recommended for input processing. Unknown targets represented
by NaN values can be handled directly by the toolbox learning algorithms. For instance, performance
functions used by backpropagation algorithms recognize NaN values as unknown or unimportant
values.

Version History
Introduced in R2006a
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See Also
mapminmax | mapstd | processpca
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formwb
Form bias and weights into single vector

Syntax
formwb(net,b,IW,LW)

Description
formwb(net,b,IW,LW) takes a neural network and bias b, input weight IW, and layer weight LW
values, and combines the values into a single vector.

Examples
Here a network is created, configured, and its weights and biases formed into a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = configure(net,x,t);
wb = formwb(net,net.b,net.IW,net.LW)

Version History
Introduced in R2010b

See Also
getwb | setwb | separatewb
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fpderiv
Forward propagation derivative function

Syntax
fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
fpderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the chain rule from inputs to outputs, and in the case of
dynamic networks, forward through time.

fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (or N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs
elements, and TS is the number of timesteps).

fpderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = fpderiv('dperf_dwb',net,x,t)
jwb = fpderiv('de_dwb',net,x,t)

Version History
Introduced in R2010b
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See Also
bttderiv | defaultderiv | num2deriv | num5deriv | staticderiv
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fromnndata
Convert data from standard neural network cell array form

Syntax
fromnndata(x,toMatrix,columnSample,cellTime)

Description
fromnndata(x,toMatrix,columnSample,cellTime) takes these arguments,

net Neural network
toMatrix True if result is to be in matrix form
columnSample True if samples are to be represented as columns, false if rows
cellTime True if time series are to be represented as a cell array, false if

represented with a matrix

and returns the original data reformatted accordingly.

Examples
Here time-series data is converted from a matrix representation to standard cell array
representation, and back. The original data consists of a 5-by-6 matrix representing one time-series
sample consisting of a 5-element vector over 6 timesteps arranged in a matrix with the samples as
columns.

x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false;     % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

Here data is defined in standard neural network data cell form. Converting this data does not change
it. The data consists of three time series samples of 2-element signals over 3 timesteps.

x = {rands(2,3);rands(2,3);rands(2,3)}
columnSamples = true;
cellTime = true;
[y,wasMatrix] = tonndata(x)
x2 = fromnndata(y,wasMatrix,columnSamples)

Version History
Introduced in R2010b

See Also
tonndata
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gadd
Generalized addition

Syntax
gadd(a,b)

Description
gadd(a,b) takes two matrices or cell arrays, and adds them in an element-wise manner.

Examples
Add Matrix and Cell Array Values

This example shows how to add matrix and cell array values.

gadd([1 2 3; 4 5 6],[10;20])

ans = 2×3

    11    12    13
    24    25    26

gadd({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
    {[2]}    {[5]}
    {[8]}    {[6]}

gadd({1 2 3 4},{10;20;30})

ans=3×4 cell array
    {[11]}    {[12]}    {[13]}    {[14]}
    {[21]}    {[22]}    {[23]}    {[24]}
    {[31]}    {[32]}    {[33]}    {[34]}

Version History
Introduced in R2010b

See Also
gsubtract | gmultiply | gdivide | gnegate | gsqrt
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gdivide
Generalized division

Syntax
gdivide(a,b)

Description
gdivide(a,b) takes two matrices or cell arrays, and divides them in an element-wise manner.

Examples
Divide Matrix and Cell Array Values

This example shows how to divide matrix and cell array values.

gdivide([1 2 3; 4 5 6],[10;20])

ans = 2×3

    0.1000    0.2000    0.3000
    0.2000    0.2500    0.3000

gdivide({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
    {[     1]}    {[0.6667]}
    {[0.6000]}    {[     2]}

gdivide({1 2 3 4},{10;20;30})

ans=3×4 cell array
    {[0.1000]}    {[0.2000]}    {[0.3000]}    {[0.4000]}
    {[0.0500]}    {[0.1000]}    {[0.1500]}    {[0.2000]}
    {[0.0333]}    {[0.0667]}    {[0.1000]}    {[0.1333]}

Version History
Introduced in R2010b

See Also
gadd | gsubtract | gmultiply | gnegate | gsqrt
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gensim
Generate Simulink block for shallow neural network simulation

Syntax
gensim(net,st)

Description
gensim(net,st) creates a Simulink system containing a block that simulates neural network net
with a sampling time of st.

If net has no input or layer delays (net.numInputDelays and net.numLayerDelays are both 0),
you can use –1 for st to get a network that samples continuously.

gensim does not support deep learning networks such as convolutional or LSTM networks. For more
information on code generation for deep learning, see “Deep Learning Code Generation”.

For more information on gensim, at the MATLAB command prompt, enter help network/gensim.

Examples

Generate a Simulink Block for a Feedforward Network

This example shows how to generate a Simulink block for a feedforward network.

Create a feed-forward network using the data from the simple fit data set and generate the Simulink
block.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t)
gensim(net)

Generate a Simulink Block for a NARX Network

This example shows how to generate a Simulink block for a NARX network.

Create a NARX network.

[x,t] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
net = train(net,xs,ts,xi,ai);
y = net(xs,xi,ai);

Convert the network to closed loop.
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net = closeloop(net);
view(net)

Prepare the data and simulate the network’s closed loop response.

[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Convert the network to a Simulink system with workspace input and output ports.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');

Initialize the delay states. Note that this is an important step to obtain the same output as in
MATLAB.

setsiminit(sysName,netName,net,xi,ai,1);

Define the model input X1 in the workspace, simulate the system programmatically.

x1 = nndata2sim(xs,1,1);
out = sim(sysName,'ReturnWorkspaceOutputs','on','StopTime',num2str(x1.time(end)));
ysim = sim2nndata(out.y1);

Input Arguments
net — Input network
network

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

st — Sample time
-1 (default) | scalar | vector

Specify the sample time as a value other than -1. For more information, see “Specify Sample Time”
(Simulink).

Version History
Introduced before R2006a

See Also
preparets
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genFunction
Generate MATLAB function for simulating shallow neural network

Syntax
genFunction(net,pathname)
genFunction( ___ ,'MatrixOnly','yes')
genFunction( ___ ,'ShowLinks','no')

Description
This function generates a MATLAB function for simulating a shallow neural network. genFunction
does not support deep learning networks such as convolutional or LSTM networks. For more
information on code generation for deep learning, see “Deep Learning Code Generation”.

genFunction(net,pathname) generates a complete stand-alone MATLAB function for simulating a
neural network including all settings, weight and bias values, module functions, and calculations in
one file. The result is a standalone MATLAB function file. You can also use this function with MATLAB
Compiler and MATLAB Coder tools.

genFunction( ___ ,'MatrixOnly','yes') overrides the default cell/matrix notation and instead
generates a function that uses only matrix arguments compatible with MATLAB Coder tools. For
static networks, the matrix columns are interpreted as independent samples. For dynamic networks,
the matrix columns are interpreted as a series of time steps. The default value is 'no'.

genFunction( ___ ,'ShowLinks','no') disables the default behavior of displaying links to
generated help and source code. The default is 'yes'.

Examples

Create Functions from Static Neural Network

This example shows how to create a MATLAB function and a MEX-function from a static neural
network.

First, train a static network and calculate its outputs for the training data.

[x,t] = bodyfat_dataset;
bodyfatNet = feedforwardnet(10);
bodyfatNet = train(bodyfatNet,x,t);
y = bodyfatNet(x);

Next, generate and test a MATLAB function. Then the new function is compiled to a shared/
dynamically linked library with mcc.

genFunction(bodyfatNet,'bodyfatFcn');
y2 = bodyfatFcn(x);
accuracy2 = max(abs(y-y2))
mcc -W lib:libBodyfat -T link:lib bodyfatFcn
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Next, generate another version of the MATLAB function that supports only matrix arguments (no cell
arrays), and test the function. Use the MATLAB Coder tool codegen to generate a MEX-function,
which is also tested.
genFunction(bodyfatNet,'bodyfatFcn','MatrixOnly','yes');
y3 = bodyfatFcn(x);
accuracy3 = max(abs(y-y3))
 
x1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1
codegen bodyfatFcn.m -config:mex -o bodyfatCodeGen -args {x1Type}
y4 = bodyfatodeGen(x);
accuracy4 = max(abs(y-y4))

Create Functions from Dynamic Neural Network

This example shows how to create a MATLAB function and a MEX-function from a dynamic neural
network.

First, train a dynamic network and calculate its outputs for the training data.

[x,t] = maglev_dataset;
maglevNet = narxnet(1:2,1:2,10);
[X,Xi,Ai,T] = preparets(maglevNet,x,{},t);
maglevNet = train(maglevNet,X,T,Xi,Ai);
[y,xf,af] = maglevNet(X,Xi,Ai);

Next, generate and test a MATLAB function. Use the function to create a shared/dynamically linked
library with mcc.

genFunction(maglevNet,'maglevFcn');
[y2,xf,af] = maglevFcn(X,Xi,Ai);
accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))
mcc -W lib:libMaglev -T link:lib maglevFcn

Next, generate another version of the MATLAB function that supports only matrix arguments (no cell
arrays), and test the function. Use the MATLAB Coder tool codegen to generate a MEX-function,
which is also tested.
genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');
x1 = cell2mat(X(1,:)); % Convert each input to matrix
x2 = cell2mat(X(2,:));
xi1 = cell2mat(Xi(1,:)); % Convert each input state to matrix
xi2 = cell2mat(Xi(2,:));
[y3,xf1,xf2] = maglevFcn(x1,x2,xi1,xi2);
accuracy3 = max(abs(cell2mat(y)-y3))
 
x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1
x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2
xi1Type = coder.typeof(double(0),[1 2]); % Coder type of input 1 states
xi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states
codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args {x1Type x2Type xi1Type xi2Type}
[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,xi1,xi2);
dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))

Input Arguments
net — neural network
network object

Neural network, specified as a network object.

2 Approximation, Clustering, and Control Functions

2-94



Example: net = feedforwardnet(10);

pathname — location and name of generated function file
character string

Location and name of generated function file, specified as a character string. If you do not specify a
file name extension of .m, it is automatically appended. If you do not specify a path to the file, the
default location is the current working folder.
Example: 'myFcn.m'
Data Types: char

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can use genFunction in the Deep Learning Toolbox to generate a standalone MATLAB
function for a trained neural network. You can generate C/C++ code from this standalone
MATLAB function. To generate Simulink blocks, use the genSim function. See “Deploy Shallow
Neural Network Functions”.

See Also
gensim

Topics
“Deploy Shallow Neural Network Functions”
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getelements
Get neural network data elements

Syntax
getelements(x,ind)

Description
getelements(x,ind) returns the elements of neural network data x indicated by the indices ind.
The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind rows of x.

If x is a cell array, the result is a cell array with as many columns as x, whose elements (1,i) are
matrices containing the ind rows of [x{:,i}].

Examples
This code gets elements 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]
y = getelements(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getelements(x,[1 3])

Version History
Introduced in R2010b

See Also
nndata | numelements | setelements | catelements | getsamples | gettimesteps |
getsignals
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getsamples
Get neural network data samples

Syntax
getsamples(x,ind)

Description
getsamples(x,ind) returns the samples of neural network data x indicated by the indices ind.
The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind columns of x.

If x is a cell array, the result is a cell array the same size as x, whose elements are the ind columns of
the matrices in x.

Examples
This code gets samples 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]
y = getsamples(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsamples(x,[1 3])

Version History
Introduced in R2010b

See Also
nndata | numsamples | setsamples | catsamples | getelements | gettimesteps | getsignals
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getsignals
Get neural network data signals

Syntax
getsignals(x,ind)

Description
getsignals(x,ind) returns the signals of neural network data x indicated by the indices ind. The
neural network data may be in matrix or cell array form.

If x is a matrix, ind may only be 1, which will return x, or [] which will return an empty matrix.

If x is a cell array, then the result is the rows of x with indices specified by ind.

Examples
This code gets signal 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsignals(x,2)

Version History
Introduced in R2010b

See Also
nndata | numsignals | setsignals | catsignals | getelements | getsamples | gettimesteps
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getsiminit
Get Simulink neural network block initial input and layer delays states

Syntax
[xi,ai] = getsiminit(sysName,netName,net)

Description
[xi,ai] = getsiminit(sysName,netName,net) takes these arguments,

sysName The name of the Simulink system containing the neural network block
netName The name of the Simulink neural network block
net The original neural network

and returns,

xi Initial input delay states
ai Initial layer delay states

Examples
Here a NARX network is designed. The NARX network has a standard input and an open-loop
feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;
     net = narxnet(1:2,1:2,20);
     view(net)
     [xs,xi,ai,ts] = preparets(net,x,{},t);
     net = train(net,xs,ts,xi,ai);
     y = net(xs,xi,ai);

Now the network is converted to closed-loop, and the data is reformatted to simulate the network’s
closed-loop response.

net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace input and output ports. Its delay
states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical
to the values set with setsiminit.)

 getsiminit
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[xi,ai] = getsiminit(sysName,netName,net);

Version History
Introduced in R2010b

See Also
gensim | setsiminit | nndata2sim | sim2nndata
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gettimesteps
Get neural network data timesteps

Syntax
gettimesteps(x,ind)

Description
gettimesteps(x,ind) returns the timesteps of neural network data x indicated by the indices ind.
The neural network data may be in matrix or cell array form.

If x is a matrix, ind can only be 1, which will return x; or [], which will return an empty matrix.

If x is a cell array, then the result is the columns of x with indices specified by ind.

Examples
This code gets timestep 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = gettimesteps(x,2)

Version History
Introduced in R2010b

See Also
nndata | numtimesteps | settimesteps | cattimesteps | getelements | getsamples |
getsignals
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getwb
Get network weight and bias values as single vector

Syntax
getwb(net)

Description
getwb(net) returns a neural network’s weight and bias values as a single vector.

Examples
Here a feedforward network is trained to fit some data, then its bias and weight values are formed
into a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = getwb(net)

Version History
Introduced in R2010b

See Also
setwb | formwb | separatewb
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gmultiply
Generalized multiplication

Syntax
gmultiply(a,b)

Description
gmultiply(a,b) takes two matrices or cell arrays, and multiplies them in an element-wise manner.

Examples
Multiply Matrix and Cell Array Values

This example shows how to multiply matrix and cell array values.

gmultiply([1 2 3; 4 5 6],[10;20])

ans = 2×3

    10    20    30
    80   100   120

gmultiply({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
    {[ 1]}    {[6]}
    {[15]}    {[8]}

gmultiply({1 2 3 4},{10;20;30})

ans=3×4 cell array
    {[10]}    {[20]}    {[30]}    {[ 40]}
    {[20]}    {[40]}    {[60]}    {[ 80]}
    {[30]}    {[60]}    {[90]}    {[120]}

Version History
Introduced in R2010b

See Also
gadd | gsubtract | gdivide | gnegate | gsqrt
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gnegate
Generalized negation

Syntax
gnegate(x)

Description
gnegate(x) takes a matrix or cell array of matrices, and negates their element values.

Examples
Negate a Cell Array

This example shows how to negate a cell array:

x = {[1 2; 3 4],[1 -3; -5 2]};
y = gnegate(x);
y{1}, y{2}

ans = 2×2

    -1    -2
    -3    -4

ans = 2×2

    -1     3
     5    -2

Version History
Introduced in R2010b

See Also
gadd | gsubtract | gdivide | gmultiply | gsqrt
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gpu2nndata
Reformat neural data back from GPU

Syntax
X = gpu2nndata(Y,Q)
X = gpu2nndata(Y)
X = gpu2nndata(Y,Q,N,TS)

Description
Training and simulation of neural networks require that matrices be transposed. But they do not
require (although they are more efficient with) padding of column length so that each column is
memory aligned. This function copies data back from the current GPU and reverses this transform. It
can be used on data formatted with nndata2gpu or on the results of network simulation.

X = gpu2nndata(Y,Q) copies the QQ-by-N gpuArray Y into RAM, takes the first Q rows and
transposes the result to get an N-by-Q matrix representing Q N-element vectors.

X = gpu2nndata(Y) calculates Q as the index of the last row in Y that is not all NaN values (those
rows were added to pad Y for efficient GPU computation by nndata2gpu). Y is then transformed as
before.

X = gpu2nndata(Y,Q,N,TS) takes a QQ-by-(N*TS) gpuArray where N is a vector of signal sizes, Q is
the number of samples (less than or equal to the number of rows after alignment padding QQ), and TS
is the number of time steps.

The gpuArray Y is copied back into RAM, the first Q rows are taken, and then it is partitioned and
transposed into an M-by-TS cell array, where M is the number of elements in N. Each Y{i,ts} is an
N(i)-by-Q matrix.

Examples
Copy a matrix to the GPU and back:

x = rand(5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)

Copy from the GPU a neural network cell array data representing four time series, each consisting of
five time steps of 2-element and 3-element signals.

x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)

Version History
Introduced in R2012b
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See Also
nndata2gpu
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gridtop
Grid layer topology function

Syntax
gridtop(dimensions)

Description
pos = gridtop calculates neuron positions for layers whose neurons are arranged in an N-
dimensional grid.

gridtop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors where N is the number of dimensions and S is
the product of dimensions.

Examples

Display Layer with Grid Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5
grid pattern.

pos = gridtop([8 5]);
plotsom(pos)
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Version History
Introduced before R2006a

See Also
hextop | randtop | tritop
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gsqrt
Generalized square root

Syntax
gsqrt(x)

Description
gsqrt(x) takes a matrix or cell array of matrices, and generates the element-wise square root of the
matrices.

Examples
Compute Element-Wise Square Root

This example shows how to get the element-wise square root of a cell array:

gsqrt({1 2; 3 4})

ans=2×2 cell array
    {[     1]}    {[1.4142]}
    {[1.7321]}    {[     2]}

Version History
Introduced in R2010b

See Also
gadd | gsubtract | gdivide | gmultiply | gnegate
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gsubtract
Generalized subtraction

Syntax
gsubtract(a,b)

Description
gsubtract(a,b) takes two matrices or cell arrays, and subtracts them in an element-wise manner.

Examples
Subtract Matrix and Cell Array Values

This example shows how to subtract matrix and cell array values.

gsubtract([1 2 3; 4 5 6],[10;20])

ans = 2×3

    -9    -8    -7
   -16   -15   -14

gsubtract({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
    {[ 0]}    {[-1]}
    {[-2]}    {[ 2]}

gsubtract({1 2 3 4},{10;20;30})

ans=3×4 cell array
    {[ -9]}    {[ -8]}    {[ -7]}    {[ -6]}
    {[-19]}    {[-18]}    {[-17]}    {[-16]}
    {[-29]}    {[-28]}    {[-27]}    {[-26]}

Version History
Introduced in R2010b

See Also
gadd | gmultiply | gdivide | gnegate | gsqrt
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hardlim
Hard-limit transfer function

Syntax
A = hardlim(N)
info = hardlim('code')

Description
A = hardlim(N) takes an S-by-Q matrix of net input (column) vectors, N, and returns A, the S-by-Q
Boolean matrix with elements equal to 1 where the corresponding elements in N are greater than or
equal to 0.

hardlim is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

info = hardlim('code') returns useful information for each code character vector:

• hardlim('name') returns the name of this function.
• hardlim('output') returns the [min max] output range.
• hardlim('active') returns the [min max] active input range.
• hardlim('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
• hardlim('fpnames') returns the names of the function parameters.
• hardlim('fpdefaults') returns the default function parameters.

Examples

Create a Plot of the hardlim Transfer Function

This example shows how to create a plot of the hardlim transfer function.

Create the input matrix, n. Then call the hardlim function and plot the results.

n = -5:0.1:5;
a = hardlim(n);
plot(n,a)

Assign this transfer function to layer i of a network.
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net.layers{i}.transferFcn = 'hardlim';

Input Arguments
N — Input matrix
matrix

Net input column vectors, specified as an S-by-Q matrix.

Output Arguments
A — Output matrix
matrix

Output matrix, returned as an S-by-Q Boolean matrix with elements equal to 1 where the
corresponding elements in N are greater than or equal to 0.

Algorithms
hardlim(n) = 1 if n ≥ 0

                         0 otherwise

Version History
Introduced before R2006a

See Also
sim | hardlims
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hardlims
Symmetric hard-limit transfer function

Graph and Symbol

Syntax
A = hardlims(N,FP)

Description
hardlims is a neural transfer function. Transfer functions calculate a layer’s output from its net
input.

A = hardlims(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q +1/–1 matrix with +1s where N ≥ 0.

info = hardlims('code') returns information according to the code string specified:

hardlims('name') returns the name of this function.

hardlims('output',FP) returns the [min max] output range.

hardlims('active',FP) returns the [min max] active input range.

hardlims('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

hardlims('fpnames') returns the names of the function parameters.

hardlims('fpdefaults') returns the default function parameters.

Examples
Here is how to create a plot of the hardlims transfer function.
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n = -5:0.1:5;
a = hardlims(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlims';

Algorithms
hardlims(n) = 1 if n ≥ 0, –1 otherwise.

Version History
Introduced before R2006a

See Also
sim | hardlim
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hextop
Hexagonal layer topology function

Syntax
hextop(dimensions)

Description
hextop calculates the neuron positions for layers whose neurons are arranged in an N-dimensional
hexagonal pattern.

hextop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors where N is the number of dimensions and S is
the product of dimensions.

Examples

Display Layer with Hexagonal Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5
hexagonal pattern.

pos = hextop([8 5]);
plotsom(pos)
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Version History
Introduced before R2006a

See Also
gridtop | randtop | tritop
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ind2vec
Convert indices to vectors

Syntax
vec = ind2vec(ind)
vec = ind2vec(ind,N)

Description
vec = ind2vec(ind) takes a row vector of indices, ind, and returns a sparse matrix of vectors,
vec, containing a 1 in the row of the index they represent, as indicated by ind.

ind2vec and vec2ind allow indices to be represented either by themselves, or as vectors containing
a 1 in the row of the index they represent.

vec = ind2vec(ind,N) returns an N-by-M sparse matrix, where N can be equal to or greater than
the maximum index.

Examples

Convert Indices into Vector Representation

This example shows how to convert indices to vector representation using the ind2vec function.

Define four indices and then convert them to vector representation.

ind = [1 3 2 3];
vec = ind2vec(ind)

vec =
   (1,1)        1
   (3,2)        1
   (2,3)        1
   (3,4)        1

Convert a Vector to Indices and Back

This example shows how to convert a vector to indices and back, using both the ind2vec and
vec2ind functions.

Define a vector with all zeros in the last row and convert it to indices.

vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'
[ind,n] = vec2ind(vec)

vec =
     0     1     0
     0     0     1
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     1     0     0
     0     0     0
ind =
     3     1     2

n =
     4

Convert the indices to vector, while preserving the number of rows.

vec2 = full(ind2vec(ind,n))

vec2 =
     0     1     0
     0     0     1
     1     0     0
     0     0     0

Input Arguments
ind — Indices
row vector

Indices, specified as a row vector.

N — Number of rows
scalar

Number of rows of the output matrix, specified as a scalar.

Output Arguments
vec — Converted vector of indices
matrix

Vector representation of the indices, returned as an N-by-M sparse matrix.

Version History
Introduced before R2006a

See Also
vec2ind | sub2ind | ind2sub
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init
Initialize neural network

Syntax
init_net = init(net)

Description
init_net = init(net) returns a neural network net with weight and bias values updated
according to the network initialization function, specified by net.initFcn, and the parameter
values, specified by net.initParam.

For more information on this function, at the MATLAB command prompt, type help network/init.

Examples

Reinitialize a Perceptron with 'init' Function

This example shows how to reinitialize a perceptron network by using the init function.

Create a perceptron and configure it so that its input, output, weight, and bias dimensions match the
input and target data.

x = [0 1 0 1; 0 0 1 1];
t = [0 0 0 1];
net = perceptron;
net = configure(net,x,t);
net.iw{1,1}
net.b{1}

Train the perceptron to alter its weight and bias values.

net = train(net,x,t);
net.iw{1,1}
net.b{1}

init reinitializes those weight and bias values.

net = init(net);
net.iw{1,1}
net.b{1}

The weights and biases are zeros again, which are the initial values used by perceptron networks.

Input Arguments
net — Input network
network

 init
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Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Output Arguments
init_net — Reinitialized network
network

Network after the init reinitialization, returned as a network object.

Algorithms
init calls net.initFcn to initialize the weight and bias values according to the parameter values
net.initParam.

Typically, net.initFcn is set to 'initlay', which initializes each layer’s weights and biases
according to its net.layers{i}.initFcn.

Backpropagation networks have net.layers{i}.initFcn set to 'initnw', which calculates the
weight and bias values for layer i using the Nguyen-Widrow initialization method.

Other networks have net.layers{i}.initFcn set to 'initwb', which initializes each weight and
bias with its own initialization function. The most common weight and bias initialization function is
rands, which generates random values between –1 and 1.

Version History
Introduced before R2006a

See Also
sim | adapt | train | initlay | initnw | initwb | rands | revert
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initcon
Conscience bias initialization function

Syntax
initcon (S,PR)

Description
initcon is a bias initialization function that initializes biases for learning with the learncon
learning function.

initcon (S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-2 matrix of R = [Pmin Pmax] (default = [1 1])

and returns an S-by-1 bias vector.

Note that for biases, R is always 1. initcon could also be used to initialize weights, but it is not
recommended for that purpose.

Examples
Here initial bias values are calculated for a five-neuron layer.

b = initcon(5)

Network Use
You can create a standard network that uses initcon to initialize weights by calling competlayer.

To prepare the bias of layer i of a custom network to initialize with initcon,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay’s default
parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set net.biases{i}.initFcn to 'initcon'.

To initialize the network, call init.

Algorithms
learncon updates biases so that each bias value b(i) is a function of the average output c(i) of
the neuron i associated with the bias.

initcon gets initial bias values by assuming that each neuron has responded to equal numbers of
vectors in the past.
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Version History
Introduced before R2006a

See Also
competlayer | init | initlay | initwb | learncon
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initlay
Layer-by-layer network initialization function

Syntax
net = initlay(net)
info = initlay('code')

Description
initlay is a network initialization function that initializes each layer i according to its own
initialization function net.layers{i}.initFcn.

net = initlay(net) takes

net Neural network

and returns the network with each layer updated.

info = initlay('code') returns useful information for each supported code character vector:

'pnames' Names of initialization parameters
'pdefaults' Default initialization parameters

initlay does not have any initialization parameters.

Network Use
You can create a standard network that uses initlay by calling feedforwardnet,
cascadeforwardnet, and many other network functions.

To prepare a custom network to be initialized with initlay,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because
initlay has no initialization parameters.

2 Set each net.layers{i}.initFcn to a layer initialization function. (Examples of such
functions are initwb and initnw.)

To initialize the network, call init.

Algorithms
The weights and biases of each layer i are initialized according to net.layers{i}.initFcn.

Version History
Introduced before R2006a
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See Also
cascadeforwardnet | feedforwardnet | init | initnw | initwb
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initlvq
LVQ weight initialization function

Syntax
initlvq('configure',x)
initlvq('configure',net,'IW',i,j,settings)
initlvq('configure',net,'LW',i,j,settings)
initlvq('configure',net,'b',i,)

Description
initlvq('configure',x) takes input data x and returns initialization settings for an LVQ weights
associated with that input.

initlvq('configure',net,'IW',i,j,settings) takes a network, and indices indicating an
input weight to layer i from input j, and that weights settings, and returns new weight values.

initlvq('configure',net,'LW',i,j,settings) takes a network, and indices indicating a
layer weight to layer i from layer j, and that weights settings, and returns new weight values.

initlvq('configure',net,'b',i,) takes a network, and an index indicating a bias for layer i,
and returns new bias values.

Version History
Introduced in R2010b

See Also
lvqnet | init
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initnw
Nguyen-Widrow layer initialization function

Syntax
net = initnw(net,i)

Description
initnw is a layer initialization function that initializes a layer’s weights and biases according to the
Nguyen-Widrow initialization algorithm. This algorithm chooses values in order to distribute the
active region of each neuron in the layer approximately evenly across the layer’s input space. The
values contain a degree of randomness, so they are not the same each time this function is called.

initnw requires that the layer it initializes have a transfer function with a finite active input range.
This includes transfer functions such as tansig and satlin, but not purelin, whose active input
range is the infinite interval [-inf, inf]. Transfer functions, such as tansig, will return their
active input range as follows:

activeInputRange = tansig('active')
activeInputRange =
    -2     2

net = initnw(net,i) takes two arguments,

net Neural network
i Index of a layer

and returns the network with layer i’s weights and biases updated.

There is a random element to Nguyen-Widrow initialization. Unless the default random generator is
set to the same seed before each call to initnw, it will generate different weight and bias values
each time.

Network Use
You can create a standard network that uses initnw by calling feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be initialized with initnw,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because
initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initnw'.

To initialize the network, call init.
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Algorithms
The Nguyen-Widrow method generates initial weight and bias values for a layer so that the active
regions of the layer’s neurons are distributed approximately evenly over the input space.

Advantages over purely random weights and biases are

• Few neurons are wasted (because all the neurons are in the input space).
• Training works faster (because each area of the input space has neurons). The Nguyen-Widrow

method can only be applied to layers

• With a bias
• With weights whose weightFcn is dotprod
• With netInputFcn set to netsum
• With transferFcn whose active region is finite

If these conditions are not met, then initnw uses rands to initialize the layer’s weights and biases.

Version History
Introduced before R2006a

See Also
cascadeforwardnet | feedforwardnet | init | initlay | initwb
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initwb
By weight and bias layer initialization function

Syntax
initwb(net,i)

Description
initwb is a layer initialization function that initializes a layer’s weights and biases according to their
own initialization functions.

initwb(net,i) takes two arguments,

net Neural network
i Index of a layer

and returns the network with layer i’s weights and biases updated.

Network Use
You can create a standard network that uses initwb by calling perceptron or linearlayer.

To prepare a custom network to be initialized with initwb,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because
initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to a weight initialization function. Set each

net.layerWeights{i,j}.initFcn to a weight initialization function. Set each
net.biases{i}.initFcn to a bias initialization function. Examples of initialization functions
are rands (for weights and biases) and midpoint (for weights only).

To initialize the network, call init.

Algorithms
Each weight (bias) in layer i is set to new values calculated according to its weight (bias)
initialization function.

Version History
Introduced before R2006a

See Also
init | initlay | initnw | linearlayer | perceptron
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initzero
Zero weight and bias initialization function

Syntax
W = initzero(S,PR)
b = initzero(S,[1 1])

Description
W = initzero(S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R weight matrix of zeros.

b = initzero(S,[1 1]) returns an S-by-1 bias vector of zeros.

Examples
Here initial weights and biases are calculated for a layer with two inputs ranging over [0 1] and
[-2 2] and four neurons.

W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])

Version History
Introduced before R2006a

See Also
initwb | initlay | init
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isconfigured
Indicate if network inputs and outputs are configured

Syntax
[flag,inputflags,outputflags] = isconfigured(net)

Description
[flag,inputflags,outputflags] = isconfigured(net) takes a neural network and returns
three values,

flag True if all network inputs and outputs are configured (have non-zero
sizes)

inputflags Vector of true/false values for each configured/unconfigured input
outputflags Vector of true/false values for each configured/unconfigured output

Examples
Here are the flags returned for a new network before and after being configured:

net = feedforwardnet;
[flag,inputFlags,outputFlags] = isconfigured(net)
[x,t] = simplefit_dataset;
net = configure(net,x,t);
[flag,inputFlags,outputFlags] = isconfigured(net)

Version History
Introduced in R2010b

See Also
configure | unconfigure
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layrecnet
Layer recurrent neural network

Syntax
layrecnet(layerDelays,hiddenSizes,trainFcn)

Description
layrecnet(layerDelays,hiddenSizes,trainFcn) takes these arguments:

• Row vector of increasing 0 or positive delays, layerDelays
• Row vector of one or more hidden layer sizes, hiddenSizes
• Backpropagation training function, trainFcn

and returns a layer recurrent neural network.

Layer recurrent neural networks are similar to feedforward networks, except that each layer has a
recurrent connection with a tap delay associated with it. This allows the network to have an infinite
dynamic response to time series input data. This network is similar to the time delay
(timedelaynet) and distributed delay (distdelaynet) neural networks, which have finite input
responses.

Examples

Recurrent Neural Network

This example shows how to use a layer recurrent neural network to solve a simple time series
problem.

[X,T] = simpleseries_dataset;
net = layrecnet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
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view(net)
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Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)

perf = 6.1239e-11

Input Arguments
layerDelays — Input delays
[1:2] (default) | row vector

Zero or positive input delays, specified as an increasing row vector.

hiddenSizes — Hidden sizes
10 (default) | row vector

Sizes of the hidden layers, specified as a row vector of one or more elements.

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...
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Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

Version History
Introduced in R2010b

See Also
preparets | removedelay | distdelaynet | timedelaynet | narnet | narxnet
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learncon
Conscience bias learning function

Syntax
[dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learncon('code')

Description
learncon is the conscience bias learning function used to increase the net input to neurons that
have the lowest average output until each neuron responds approximately an equal percentage of the
time.

[dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

B S-by-1 bias vector
P 1-by-Q ones vector
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dB S-by-1 weight (or bias) change matrix
LS New learning state

Learning occurs according to learncon’s learning parameter, shown here with its default value.

LP.lr - 0.001 Learning rate

info = learncon('code') returns useful information for each supported code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

 learncon

2-135



Deep Learning Toolbox 2.0 compatibility: The LP.lr described above equals 1 minus the bias time
constant used by trainc in the Deep Learning Toolbox 2.0 software.

Examples
Here you define a random output A and bias vector W for a layer with three neurons. You also define
the learning rate LR.

a = rand(3,1);
b = rand(3,1);
lp.lr = 0.5;

Because learncon only needs these values to calculate a bias change (see “Algorithm” below), use
them to do so.

dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the bias of layer i of a custom network to learn with learncon,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set net.inputWeights{i}.learnFcn to 'learncon'
4 Set each net.layerWeights{i,j}.learnFcn to 'learncon'. .(Each weight learning

parameter property is automatically set to learncon’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learncon calculates the bias change db for a given neuron by first updating each neuron’s
conscience, i.e., the running average of its output:

c = (1-lr)*c + lr*a

The conscience is then used to compute a bias for the neuron that is greatest for smaller conscience
values.

b = exp(1-log(c)) - b

(learncon recovers C from the bias values each time it is called.)

Version History
Introduced before R2006a
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See Also
learnk | learnos | adapt | train
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learngd
Gradient descent weight and bias learning function

Syntax
[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngd('code')

Description
learngd is the gradient descent weight and bias learning function.

[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs:

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q output gradient with respect to performance x Q weighted input

vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learngd’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learngd('code') returns useful information for each supported code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random gradient gW for a weight going to a layer with three neurons from an input
with two elements. Also define a learning rate of 0.5.

gW = rand(3,2);
lp.lr = 0.5;

Because learngd only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])

Algorithms
learngd calculates the weight change dW for a given neuron from the neuron’s input P and error E,
and the weight (or bias) learning rate LR, according to the gradient descent dw = lr*gW.

Version History
Introduced before R2006a

See Also
adapt | learngdm | train
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learngdm
Gradient descent with momentum weight and bias learning function

Syntax
[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngdm('code')

Description
learngdm is the gradient descent with momentum weight and bias learning function.

[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learngdm’s learning parameters, shown here with their default values.

LP.lr - 0.01 Learning rate
LP.mc - 0.9 Momentum constant

info = learngdm('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random gradient G for a weight going to a layer with three neurons from an input
with two elements. Also define a learning rate of 0.5 and momentum constant of 0.8:

gW = rand(3,2);
lp.lr = 0.5;
lp.mc = 0.8;

Because learngdm only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so. Use the default initial learning state.

ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)

learngdm returns the weight change and a new learning state.

Algorithms
learngdm calculates the weight change dW for a given neuron from the neuron’s input P and error E,
the weight (or bias) W, learning rate LR, and momentum constant MC, according to gradient descent
with momentum:

dW = mc*dWprev + (1-mc)*lr*gW

The previous weight change dWprev is stored and read from the learning state LS.

Version History
Introduced before R2006a

See Also
adapt | learngd | train
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learnh
Hebb weight learning rule

Syntax
[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnh('code')

Description
learnh is the Hebb weight learning function.

[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnh’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnh('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

2 Approximation, Clustering, and Control Functions

2-142



Examples
Here you define a random input P and output A for a layer with a two-element input and three
neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
lp.lr = 0.5;

Because learnh only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights and the bias of layer i of a custom network to learn with learnh,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnh'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnh'. (Each weight learning parameter

property is automatically set to learnh’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms
learnh calculates the weight change dW for a given neuron from the neuron’s input P, output A, and
learning rate LR according to the Hebb learning rule:

dw = lr*a*p'

Version History
Introduced before R2006a

References
Hebb, D.O., The Organization of Behavior, New York, Wiley, 1949

See Also
learnhd | adapt | train
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learnhd
Hebb with decay weight learning rule

Syntax
[dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnhd('code')

Description
learnhd is the Hebb weight learning function.

[dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnhd’s learning parameters, shown here with default values.

LP.dr - 0.01 Decay rate
LP.lr - 0.1 Learning rate

info = learnhd('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, and weights W for a layer with a two-element input and
three neurons. Also define the decay and learning rates.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;

Because learnhd only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights and the bias of layer i of a custom network to learn with learnhd,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnhd'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnhd'. (Each weight learning

parameter property is automatically set to learnhd’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms
learnhd calculates the weight change dW for a given neuron from the neuron’s input P, output A,
decay rate DR, and learning rate LR according to the Hebb with decay learning rule:

dw = lr*a*p' - dr*w

Version History
Introduced before R2006a

See Also
learnh | adapt | train
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learnis
Instar weight learning function

Syntax
[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnis('code')

Description
learnis is the instar weight learning function.

[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnis’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnis('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, and weight matrix W for a layer with a two-element input
and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnis only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights and the bias of layer i of a custom network so that it can learn with learnis,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnis'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnis'. (Each weight learning

parameter property is automatically set to learnis’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms
learnis calculates the weight change dW for a given neuron from the neuron’s input P, output A, and
learning rate LR according to the instar learning rule:

dw = lr*a*(p'-w)

Version History
Introduced before R2006a

References
Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also
learnk | learnos | adapt | train
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learnk
Kohonen weight learning function

Syntax
[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnk('code')

Description
learnk is the Kohonen weight learning function.

[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnk’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnk('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, and weight matrix W for a layer with a two-element input
and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnk only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights of layer i of a custom network to learn with learnk,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnk'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnk'. (Each weight learning parameter

property is automatically set to learnk’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learnk calculates the weight change dW for a given neuron from the neuron’s input P, output A, and
learning rate LR according to the Kohonen learning rule:

dw = lr*(p'-w), if a ~= 0; = 0, otherwise

Version History
Introduced before R2006a

References
Kohonen, T., Self-Organizing and Associative Memory, New York, Springer-Verlag, 1984

See Also
learnis | learnos | adapt | train
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learnlv1
LVQ1 weight learning function

Syntax
[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv1('code')

Description
learnlv1 is the LVQ1 weight learning function.

[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnlv1’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnlv1('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, weight matrix W, and output gradient gA for a layer with
a two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;

Because learnlv1 only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])

Network Use
You can create a standard network that uses learnlv1 with lvqnet. To prepare the weights of layer
i of a custom network to learn with learnlv1,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv1'. (Each weight learning

parameter property is automatically set to learnlv1’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learnlv1 calculates the weight change dW for a given neuron from the neuron’s input P, output A,
output gradient gA, and learning rate LR, according to the LVQ1 rule, given i, the index of the neuron
whose output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0;= -lr*(p-w(i,:)) if gA(i) = -1

Version History
Introduced before R2006a

See Also
learnlv2 | adapt | train
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learnlv2
LVQ2.1 weight learning function

Syntax
[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv2('code')

Description
learnlv2 is the LVQ2 weight learning function.

[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnlv2’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate
LP.window - 0.25 Window size (0 to 1, typically 0.2 to 0.3)

info = learnlv2('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

2 Approximation, Clustering, and Control Functions

2-152



Examples
Here you define a sample input P, output A, weight matrix W, and output gradient gA for a layer with a
two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;

Because learnlv2 only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])

Network Use
You can create a standard network that uses learnlv2 with lvqnet.

To prepare the weights of layer i of a custom network to learn with learnlv2,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv2'. (Each weight learning

parameter property is automatically set to learnlv2’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learnlv2 implements Learning Vector Quantization 2.1, which works as follows:

For each presentation, if the winning neuron i should not have won, and the runnerup j should have,
and the distance di between the winning neuron and the input p is roughly equal to the distance dj
from the runnerup neuron to the input p according to the given window,

min(di/dj, dj/di) > (1-window)/(1+window)

then move the winning neuron i weights away from the input vector, and move the runnerup neuron
j weights toward the input according to

dw(i,:) = - lp.lr*(p'-w(i,:))
dw(j,:) = + lp.lr*(p'-w(j,:))
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Version History
Introduced before R2006a

See Also
learnlv1 | adapt | train
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learnos
Outstar weight learning function

Syntax
[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnos('code')

Description
learnos is the outstar weight learning function.

[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnos’s learning parameter, shown here with its default value.

LP.lr - 0.01 Learning rate

info = learnos('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P, output A, and weight matrix W for a layer with a two-element input
and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnos only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use
To prepare the weights and the bias of layer i of a custom network to learn with learnos,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default
parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default
parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnos'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnos'. (Each weight learning

parameter property is automatically set to learnos’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

Algorithms
learnos calculates the weight change dW for a given neuron from the neuron’s input P, output A, and
learning rate LR according to the outstar learning rule:

dw = lr*(a-w)*p'

Version History
Introduced before R2006a

References
Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also
learnis | learnk | adapt | train
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learnp
Perceptron weight and bias learning function

Syntax
[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnp('code')

Description
learnp is the perceptron weight/bias learning function.

[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or b, and S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

info = learnp('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples
Here you define a random input P and error E for a layer with a two-element input and three neurons.

p = rand(2,1);
e = rand(3,1);
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Because learnp only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])

Algorithms
learnp calculates the weight change dW for a given neuron from the neuron’s input P and error E
according to the perceptron learning rule:

dw = 0, if e = 0
     = p', if e = 1
     = -p', if e = -1

This can be summarized as

dw = e*p'

Version History
Introduced before R2006a

References
Rosenblatt, F., Principles of Neurodynamics, Washington, D.C., Spartan Press, 1961

See Also
adapt | learnpn | train
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learnpn
Normalized perceptron weight and bias learning function

Syntax
[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnpn('code')

Description
learnpn is a weight and bias learning function. It can result in faster learning than learnp when
input vectors have widely varying magnitudes.

[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

info = learnpn('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples
Here you define a random input P and error E for a layer with a two-element input and three neurons.
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p = rand(2,1);
e = rand(3,1);

Because learnpn only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])

Limitations
Perceptrons do have one real limitation. The set of input vectors must be linearly separable if a
solution is to be found. That is, if the input vectors with targets of 1 cannot be separated by a line or
hyperplane from the input vectors associated with values of 0, the perceptron will never be able to
classify them correctly.

Algorithms
learnpn calculates the weight change dW for a given neuron from the neuron’s input P and error E
according to the normalized perceptron learning rule:

pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw = 0,  if e = 0
     = pn', if e = 1
     = -pn', if e = -1

The expression for dW can be summarized as

dw = e*pn'

Version History
Introduced before R2006a

See Also
adapt | learnp | train

2 Approximation, Clustering, and Control Functions

2-160



learnsom
Self-organizing map weight learning function

Syntax
[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsom('code')

Description
learnsom is the self-organizing map weight learning function.

[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnsom’s learning parameters, shown here with their default values.

LP.order_lr 0.9 Ordering phase learning rate
LP.order_steps 1000 Ordering phase steps
LP.tune_lr 0.02 Tuning phase learning rate
LP.tune_nd 1 Tuning phase neighborhood distance

info = learnsom('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
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'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA

Examples
Here you define a random input P, output A, and weight matrix W for a layer with a two-element input
and six neurons. You also calculate positions and distances for the neurons, which are arranged in a
2-by-3 hexagonal pattern. Then you define the four learning parameters.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;

Because learnsom only needs these values to calculate a weight change (see “Algorithm” below), use
them to do so.

ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

Algorithms
learnsom calculates the weight change dW for a given neuron from the neuron’s input P, activation
A2, and learning rate LR:

dw = lr*a2*(p'-w)

where the activation A2 is found from the layer output A, neuron distances D, and the current
neighborhood size ND:

a2(i,q) = 1,  if a(i,q) = 1
         = 0.5, if a(j,q) = 1 and D(i,j) <= nd
         = 0, otherwise

The learning rate LR and neighborhood size NS are altered through two phases: an ordering phase
and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During this phase LR is adjusted from
LP.order_lr down to LP.tune_lr, and ND is adjusted from the maximum neuron distance down to
1. It is during this phase that neuron weights are expected to order themselves in the input space
consistent with the associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr, and ND is always set to
LP.tune_nd. During this phase the weights are expected to spread out relatively evenly over the
input space while retaining their topological order, determined during the ordering phase.

Version History
Introduced before R2006a
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See Also
adapt | train
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learnsomb
Batch self-organizing map weight learning function

Syntax
[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsomb('code')

Description
learnsomb is the batch self-organizing map weight learning function.

[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs:

W S-by-R weight matrix (or S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns the following:

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to learnsomb’s learning parameter, shown here with its default value:

LP.init_neighborhood 3 Initial neighborhood size
LP.steps 100 Ordering phase steps

info = learnsomb('code') returns useful information for each code character vector:

'pnames' Returns names of learning parameters.
'pdefaults' Returns default learning parameters.
'needg' Returns 1 if this function uses gW or gA.
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Examples
This example defines a random input P, output A, and weight matrix W for a layer with a 2-element
input and 6 neurons. This example also calculates the positions and distances for the neurons, which
appear in a 2-by-3 hexagonal pattern.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp = learnsomb('pdefaults');

Because learnsom only needs these values to calculate a weight change (see Algorithm).

ls = [];
[dW,ls] = learnsomb(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network Use
You can create a standard network that uses learnsomb with selforgmap. To prepare the weights
of layer i of a custom network to learn with learnsomb:

1 Set NET.trainFcn to 'trainr'. (NET.trainParam automatically becomes trainr’s default
parameters.)

2 Set NET.adaptFcn to 'trains'. (NET.adaptParam automatically becomes trains’s default
parameters.)

3 Set each NET.inputWeights{i,j}.learnFcn to 'learnsomb'.
4 Set each NET.layerWeights{i,j}.learnFcn to 'learnsomb'. (Each weight learning

parameter property is automatically set to learnsomb’s default parameters.)

To train the network (or enable it to adapt):

1 Set NET.trainParam (or NET.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms
learnsomb calculates the weight changes so that each neuron’s new weight vector is the weighted
average of the input vectors that the neuron and neurons in its neighborhood responded to with an
output of 1.

The ordering phase lasts as many steps as LP.steps.

During this phase, the neighborhood is gradually reduced from a maximum size of
LP.init_neighborhood down to 1, where it remains from then on.

Version History
Introduced in R2008a
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See Also
adapt | selforgmap | train
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learnwh
Widrow-Hoff weight/bias learning function

Syntax
[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnwh('code')

Description
learnwh is the Widrow-Hoff weight/bias learning function, and is also known as the delta or least
mean squared (LMS) rule.

[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W S-by-R weight matrix (or b, and S-by-1 bias vector)
P R-by-Q input vectors (or ones(1,Q))
Z S-by-Q weighted input vectors
N S-by-Q net input vectors
A S-by-Q output vectors
T S-by-Q layer target vectors
E S-by-Q layer error vectors
gW S-by-R weight gradient with respect to performance
gA S-by-Q output gradient with respect to performance
D S-by-S neuron distances
LP Learning parameters, none, LP = []
LS Learning state, initially should be = []

and returns

dW S-by-R weight (or bias) change matrix
LS New learning state

Learning occurs according to the learnwh learning parameter, shown here with its default value.

LP.lr — 0.01 Learning rate

info = learnwh('code') returns useful information for each code character vector:

'pnames' Names of learning parameters
'pdefaults' Default learning parameters
'needg' Returns 1 if this function uses gW or gA
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Examples
Here you define a random input P and error E for a layer with a two-element input and three neurons.
You also define the learning rate LR learning parameter.

p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;

Because learnwh needs only these values to calculate a weight change (see “Algorithm” below), use
them to do so.

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Network Use
You can create a standard network that uses learnwh with linearlayer.

To prepare the weights and the bias of layer i of a custom network to learn with learnwh,

1 Set net.trainFcn to 'trainb'. net.trainParam automatically becomes trainb’s default
parameters.

2 Set net.adaptFcn to 'trains'. net.adaptParam automatically becomes trains’s default
parameters.

3 Set each net.inputWeights{i,j}.learnFcn to 'learnwh'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnwh'.
5 Set net.biases{i}.learnFcn to 'learnwh'. Each weight and bias learning parameter

property is automatically set to the learnwh default parameters.

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (or adapt).

Algorithms
learnwh calculates the weight change dW for a given neuron from the neuron’s input P and error E,
and the weight (or bias) learning rate LR, according to the Widrow-Hoff learning rule:

dw = lr*e*pn'

Version History
Introduced before R2006a

References
Widrow, B., and M.E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON Convention Record,
New York IRE, pp. 96–104, 1960

Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York, Prentice-Hall, 1985
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See Also
adapt | linearlayer | train
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linearlayer
Create linear layer

Syntax
layer = linearlayer(inputDelays,widrowHoffLR)

Description
layer = linearlayer(inputDelays,widrowHoffLR) takes a row vector of increasing 0 or
positive delays and the Widrow-Hoff learning rate, and returns a linear layer.

Linear layers are single layers of linear neurons. They are static, with input delays of 0, or dynamic,
with input delays greater than 0. You can train them on simple linear time series problems, but often
are used adaptively to continue learning while deployed so they can adjust to changes in the
relationship between inputs and outputs while being used.

If the learning rate is too small, learning happens very slowly. However, a greater danger is that it
might be too large and learning becomes unstable resulting in large changes to weight vectors and
errors increasing instead of decreasing. If a data set is available which characterizes the relationship
the layer is to learn, you can calculate the maximum stable learning rate with the maxlinlr function.

If you need a network to solve a nonlinear time series relationship, see timedelaynet, narxnet,
and narnet.

Examples

Create and Train a Linear Layer

This example shows how to create and train a linear layer.

Create a linear layer and train it on a simple time series problem.

x = {0 -1 1 1 0 -1 1 0 0 1};
t = {0 -1 0 2 1 -1 0 1 0 1};
net = linearlayer(1:2,0.01);
[Xs,Xi,Ai,Ts] = preparets(net,x,t);
net = train(net,Xs,Ts,Xi,Ai);

2 Approximation, Clustering, and Control Functions

2-170



view(net)
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Y = net(Xs,Xi);
perf = perform(net,Ts,Y)

perf = 0.2396

Input Arguments
inputDelays — Input delays
row vector

Increasing 0 or positive delays, specified as a row vector.

widrowHoffLR — Widrow-Hoff learning rate
0.01 (default) | scalar

Widrow-Hoff learning rate, specified as a scalar.
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Output Arguments
layer — Network layer
network

Linear layer of a network, returned as a network object.

Version History
Introduced in R2010b

See Also
preparets | removedelay | timedelaynet | narnet | narxnet
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linkdist
Link distance function

Syntax
d = linkdist(pos)

Description
linkdist is a layer distance function used to find the distances between the layer’s neurons given
their positions.

d = linkdist(pos) takes one argument,

pos N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples
Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and
find their distances.

pos = rand(3,10);
D = linkdist(pos)

Network Use
You can create a standard network that uses linkdist as a distance function by calling
selforgmap.

To change a network so that a layer’s topology uses linkdist, set net.layers{i}.distanceFcn
to 'linkdist'.

In either case, call sim to simulate the network with dist.

Algorithms
The link distance D between two position vectors Pi and Pj from a set of S vectors is

Dij = 0, if i == j
     = 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
     = 2, if k exists, Dik = Dkj = 1
     = 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1
     = N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
     = S, if none of the above conditions apply

2 Approximation, Clustering, and Control Functions

2-174



Version History
Introduced before R2006a

See Also
dist | mandist | selforgmap | sim
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logsig
Log-sigmoid transfer function

Syntax
A = logsig(N)
dA_dN = logsig('dn',N,A,FP)
info = logsig(code)

Description

Tip To use a logistic sigmoid activation for deep learning, use sigmoidLayer or the dlarray
method sigmoid.

A = logsig(N) takes a matrix of net input vectors, N and returns the S-by-Q matrix, A, of the
elements of N squashed into [0, 1].

logsig is a transfer function. Transfer functions calculate a layer’s output from its net input.

dA_dN = logsig('dn',N,A,FP) returns the S-by-Q derivative of A with respect to N. If A or FP are
not supplied or are set to [], FP reverts to the default parameters, and A is calculated from N.

info = logsig(code) returns information about this function. For more information, see the code
argument description.

Examples

Create a Plot of the logsig Transfer Function

This example shows how to calculate and plot the log-sigmoid transfer function of an input matrix.

Create the input matrix, n. Then call the logsig function and plot the results.

n = -5:0.1:5;
a = logsig(n);
plot(n,a)

Assign this transfer function to layer i of a network.
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net.layers{i}.transferFcn = 'logsig';

Input Arguments
N — Input matrix
matrix

Net input column vectors, specified as an S-by-Q matrix.

code — Information option
'name' | 'output' | 'active' | 'fullderiv' | 'fpnames' | 'fpdefaults'

Information you want to retrieve from the function, specified as one of the following:

• 'name' returns the name of this function.
• 'output' returns the [min max] output range.
• 'active' returns the [min max] active input range.
• 'fullderiv' returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
• 'fpnames' returns the names of the function parameters.
• 'fpdefaults' returns the default function parameters.

Output Arguments
A — Output matrix
matrix

Output vectors, returned as an S-by-Q matrix, where each element of N is squashed from the interval
[-inf inf] to the interval [0 1] with an "S-shaped" function.

Algorithms
logsig(n) = 1 / (1 + exp(-n))

Version History
Introduced before R2006a

See Also
sim | tansig
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lvqnet
Learning vector quantization neural network

Syntax
lvqnet(hiddenSize,lvqLR,lvqLF)

Description
LVQ (learning vector quantization) neural networks consist of two layers. The first layer maps input
vectors into clusters that are found by the network during training. The second layer merges groups
of first layer clusters into the classes defined by the target data.

The total number of first layer clusters is determined by the number of hidden neurons. The larger
the hidden layer the more clusters the first layer can learn, and the more complex mapping of input
to target classes can be made. The relative number of first layer clusters assigned to each target class
are determined according to the distribution of target classes at the time of network initialization.
This occurs when the network is automatically configured the first time train is called, or manually
configured with the function configure, or manually initialized with the function init is called.

lvqnet(hiddenSize,lvqLR,lvqLF) takes these arguments,

hiddenSize Size of hidden layer (default = 10)
lvqLR LVQ learning rate (default = 0.01)
lvqLF LVQ learning function (default = 'learnlv1')

and returns an LVQ neural network.

The other option for the lvq learning function is learnlv2.

Examples

Train a Learning Vector Quantization Network

This example shows how to train an LVQ network to classify iris flowers.

[x,t] = iris_dataset;
net = lvqnet(10);
net.trainParam.epochs = 50;
net = train(net,x,t);
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view(net)
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y = net(x);
perf = perform(net,y,t)

perf = 0.0489

classes = vec2ind(y);

Version History
Introduced in R2010b

See Also
competlayer | patternnet | selforgmap
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lvqoutputs
LVQ outputs processing function

Syntax
[X,settings] = lvqoutputs(X)
X = lvqoutputs('apply',X,PS)
X = lvqoutputs('reverse',X,PS)
dx_dy = lvqoutputs('dx_dy',X,X,PS)

Description
[X,settings] = lvqoutputs(X) returns its argument unchanged, but stores the ratio of target
classes in the settings for use by initlvq to initialize weights.

X = lvqoutputs('apply',X,PS) returns X.

X = lvqoutputs('reverse',X,PS) returns X.

dx_dy = lvqoutputs('dx_dy',X,X,PS) returns the identity derivative.

Version History
Introduced in R2010b

See Also
lvqnet | initlvq
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mae
Mean absolute error performance function

Syntax
perf = mae(E,Y,X)
dPerf_dx = mae('dx',E,Y,X,perf)
info = mae('code')

Description
perf = mae(E,Y,X) takes a matrix or cell array of error vectors, E, and optionally a matrix or cell
array of output vectors, Y, a vector of all weight and bias values, X, and returns network performance
as the mean of absolute errors, perf.

dPerf_dx = mae('dx',E,Y,X,perf) returns the derivative of perf with respect to X.

info = mae('code') returns useful information for each code character vector:

• mae('name') returns the name of this function.
• mae('pnames') returns the names of the training parameters.
• mae('pdefaults') returns the default function parameters.

Examples

Calculate Network Performance with 'mae'

This example shows how to calculate the network performance as the mean of absolute errors.

Create and configure a perceptron to have one input and one neuron:

net = perceptron;
net = configure(net,0,0);

The network is given a batch of inputs P. The error is calculated by subtracting the output A from
target T. Then the mean absolute error is calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = net(p)
e = t-y
perf = mae(e)
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Note that mae can be called with only one argument because the other arguments are ignored. mae
supports those arguments to conform to the standard performance function argument list.

Input Arguments
E — Errors
vector | matrix | cell array

Errors, specified as a vector, a matrix, or a cell array.

Y — Outputs
vector | matrix | cell array

Network outputs, specified as a vector, a matrix, or a cell array.

X — Weight and bias
vector

Weight and bias values, specified as a vector.

Output Arguments
perf — Network performance
scalar

Network performance as the mean of absolute errors, returned as a scalar.

dPerf_dx — Derivative of network performance
scalar

Derivative of perf with respect to X, returned as a scalar.

More About
Network Use

You can create a standard network that uses mae with perceptron.

To prepare a custom network to be trained with mae, set net.performFcn to 'mae'. This
automatically sets net.performParam to the empty matrix [], because mae has no performance
parameters.

In either case, calling train or adapt, results in mae being used to calculate performance.

Version History
Introduced before R2006a

See Also
mse | perceptron
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mandist
Manhattan distance weight function

Syntax
Z = mandist(W,P)
D = mandist(pos)

Description
Z = mandist(W,P) takes an S-by-R weight matrix, W, and an R-by-Q matrix of Q input (column)
vectors, P, and returns the S-by-Q matrix of vector distances, Z.

mandist is the Manhattan distance weight function. Weight functions apply weights to an input to
get weighted inputs.

mandist is also a layer distance function, which can be used to find the distances between neurons
in a layer.

D = mandist(pos) takes the N-by-S matrix of neuron positions, pos, and returns the S-by-S matrix
of distances, D.

Examples

Calculate the Weighted Input Matrix

This example shows how to calculate the weighted input matrix.

Define a random weight matrix W and input vector P and calculate the corresponding weighted input
Z.

W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)

Find the Distances of 10 Neurons

This example shows how to calculate the distances of 10 neurons arranged in a three-dimensional
space.

Define a random matrix of positions for 10 neurons arranged in three-dimensional space and then
find their distances.
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pos = rand(3,10);
D = mandist(pos)

Input Arguments
W — Weight matrix
matrix

Weight matrix, specified as an S-by-R matrix.

P — Input matrix
matrix

Input matrix, specified as an R-by-Q matrix of Q input (column) vectors.

pos — Neuron positions
row matrix

Matrix of neuron positions, specified as an N-by-S matrix.

Output Arguments
Z — Vector distances
matrix

Matrix of vector distances, returned as an S-by-Q matrix.

D — Distances
matrix

Matrix of distances, returned as an S-by-S matrix.

More About
Network Use

To change a network so an input weight uses mandist, set net.inputWeights{i,j}.weightFcn
to 'mandist'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'mandist'.

To change a network so a layer’s topology uses mandist, set net.layers{i}.distanceFcn to
'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or newgrnn for simulation
examples.

Algorithms
The Manhattan distance D between two vectors X and Y is

D = sum(abs(x-y))
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Version History
Introduced before R2006a

See Also
dist | linkdist | sim
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mapminmax
Process matrices by mapping row minimum and maximum values to [-1 1]

Syntax
[Y,PS] = mapminmax(X,YMIN,YMAX)
[Y,PS] = mapminmax(X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse',Y,PS)
dx_dy = mapminmax('dx_dy',X,Y,PS)

Description

Tip To rescale data for deep learning workflows, use the Normalization name value pair for the input
layer.

[Y,PS] = mapminmax(X,YMIN,YMAX) takes a N-by-Q matrix, X and optionally a minimum and a
maximum value for each row of Y, YMIN and YMAX, and returns a N-by-Q matrix, Y, and a process
settings that allow consistent processing of values, PS.

mapminmax processes matrices by normalizing the minimum and maximum values of each row to
[YMIN, YMAX].

[Y,PS] = mapminmax(X,FP) takes parameters as a struct: FP.ymin, FP.ymax.

Y = mapminmax('apply',X,PS) returns Y, given X and settings PS.

X = mapminmax('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapminmax('dx_dy',X,Y,PS) returns the reverse derivative.

Examples

Format a Matrix With the mapminmax Function

This example shows how to format a matrix so that the minimum and maximum values of each row
are mapped to default interval [-1,+1].

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapminmax(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapminmax('apply',x2,PS)

Reverse the processing of y1 to get x1 again.
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x1_again = mapminmax('reverse',y1,PS)

Input Arguments
X — Input matrix
matrix

Matrix you want to process, specified as an N-by-Q matrix.

YMIN — Minimum value
-1 (default) | scalar

Minimum value for each row of the output matrix Y, specified as a scalar.

YMAX — Maximum value
-1 (default) | scalar

Maximum value for each row of the output matrix Y, specified as a scalar.

Output Arguments
Y — Output matrix
matrix

Processed matrix, returned as an N-by-Q matrix.

PS — Process settings
structure

Process settings that allow consistent processing of values, returned as a structure.

More About
Normalize Inputs and Targets Using mapminmax

Before training, it is often useful to scale the inputs and targets so that they always fall within a
specified range. The function mapminmax scales inputs and targets so that they fall in the range [–
1,1]. The following code illustrates how to use this function.

[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
net = train(net,pn,tn);

The original network inputs and targets are given in the matrices p and t. The normalized inputs and
targets pn and tn that are returned will all fall in the interval [–1,1]. The structures ps and ts
contain the settings, in this case the minimum and maximum values of the original inputs and targets.
After the network has been trained, the ps settings should be used to transform any future inputs
that are applied to the network. They effectively become a part of the network, just like the network
weights and biases.

If mapminmax is used to scale the targets, then the output of the network will be trained to produce
outputs in the range [–1,1]. To convert these outputs back into the same units that were used for the
original targets, use the settings ts. The following code simulates the network that was trained in the
previous code, and then converts the network output back into the original units.
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an = sim(net,pn);
a = mapminmax('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The unnormalized network output
a is in the same units as the original targets t.

If mapminmax is used to preprocess the training set data, then whenever the trained network is used
with new inputs they should be preprocessed with the minimum and maximums that were computed
for the training set stored in the settings ps. The following code applies a new set of inputs to the
network already trained.

pnewn = mapminmax('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapminmax('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done automatically, so that you only
need to use the sim command.

Algorithms
It is assumed that X has only finite real values, and that the elements of each row are not all equal. (If
xmax=xmin or if either xmax or xmin are non-finite, then y=x and no change occurs.)

y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;

Version History
Introduced in R2006a

See Also
fixunknowns | mapstd | processpca
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mapstd
Process matrices by mapping each row’s means to 0 and deviations to 1

Syntax
[Y,PS] = mapstd(X,ymean,ystd)
[Y,PS] = mapstd(X,FP)
Y = mapstd('apply',X,PS)
X = mapstd('reverse',Y,PS)
dx_dy = mapstd('dx_dy',X,Y,PS)

Description
mapstd processes matrices by transforming the mean and standard deviation of each row to ymean
and ystd.

[Y,PS] = mapstd(X,ymean,ystd) takes X and optional parameters,

X N-by-Q matrix
ymean Mean value for each row of Y (default is 0)
ystd Standard deviation for each row of Y (default is 1)

and returns

Y N-by-Q matrix
PS Process settings that allow consistent processing of values

[Y,PS] = mapstd(X,FP) takes parameters as a struct: FP.ymean, FP.ystd.

Y = mapstd('apply',X,PS) returns Y, given X and settings PS.

X = mapstd('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapstd('dx_dy',X,Y,PS) returns the reverse derivative.

Examples
Here you format a matrix so that the minimum and maximum values of each row are mapped to
default mean and STD of 0 and 1.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapstd(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapstd('apply',x2,PS)

Reverse the processing of y1 to get x1 again.
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x1_again = mapstd('reverse',y1,PS)

More About
Normalize Network Inputs and Targets Using mapstd

Another approach for scaling network inputs and targets is to normalize the mean and standard
deviation of the training set. The function mapstd normalizes the inputs and targets so that they will
have zero mean and unity standard deviation. The following code illustrates the use of mapstd.

[pn,ps] = mapstd(p);
[tn,ts] = mapstd(t);

The original network inputs and targets are given in the matrices p and t. The normalized inputs and
targets pn and tn that are returned will have zero means and unity standard deviation. The settings
structures ps and ts contain the means and standard deviations of the original inputs and original
targets. After the network has been trained, you should use these settings to transform any future
inputs that are applied to the network. They effectively become a part of the network, just like the
network weights and biases.

If mapstd is used to scale the targets, then the output of the network is trained to produce outputs
with zero mean and unity standard deviation. To convert these outputs back into the same units that
were used for the original targets, use ts. The following code simulates the network that was trained
in the previous code, and then converts the network output back into the original units.

an = sim(net,pn);
a = mapstd('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The unnormalized network output
a is in the same units as the original targets t.

If mapstd is used to preprocess the training set data, then whenever the trained network is used with
new inputs, you should preprocess them with the means and standard deviations that were computed
for the training set using ps. The following commands apply a new set of inputs to the network
already trained:

pnewn = mapstd('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapstd('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done automatically, so that you only
need to use the sim command.

Algorithms
It is assumed that X has only finite real values, and that the elements of each row are not all equal.

y = (x-xmean)*(ystd/xstd) + ymean;

Version History
Introduced in R2006a
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See Also
fixunknowns | mapminmax | processpca
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maxlinlr
Maximum learning rate for linear layer

Syntax
lr = maxlinlr(P)
lr = maxlinlr(P,'bias')

Description
maxlinlr is used to calculate learning rates for linearlayer.

lr = maxlinlr(P) takes one argument,

P R-by-Q matrix of input vectors

and returns the maximum learning rate for a linear layer without a bias that is to be trained only on
the vectors in P.

lr = maxlinlr(P,'bias') returns the maximum learning rate for a linear layer with a bias.

Examples
Here you define a batch of four two-element input vectors and find the maximum learning rate for a
linear layer with a bias.

P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')

Version History
Introduced before R2006a

See Also
learnwh | linearlayer
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meanabs
Mean of absolute elements of matrix or matrices

Syntax
[m,n] = meanabs(x)

Description
[m,n] = meanabs(x) takes a matrix or cell array of matrices and returns,

m Mean value of all absolute finite values
n Number of finite values

If x contains no finite values, the mean returned is 0.

Examples
m = meanabs([1 2;3 4])
[m,n] = meanabs({[1 2; NaN 4], [4 5; 2 3]})

Version History
Introduced in R2010b

See Also
meansqr | sumabs | sumsqr
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meansqr
Mean of squared elements of matrix or matrices

Syntax
[m,n] = meansqr(x)

Description
[m,n] = meansqr(x) takes a matrix or cell array of matrices and returns,

m Mean value of all squared finite values
n Number of finite values

If x contains no finite values, the mean returned is 0.

Examples
m = meansqr([1 2;3 4])
[m,n] = meansqr({[1 2; NaN 4], [4 5; 2 3]})

Version History
Introduced in R2010b

See Also
meanabs | sumabs | sumsqr
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midpoint
Midpoint weight initialization function

Syntax
W = midpoint(S,PR)

Description
midpoint is a weight initialization function that sets weight (row) vectors to the center of the input
ranges.

W = midpoint(S,PR) takes two arguments,

S Number of rows (neurons)
PR R-by-Q matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R matrix with rows set to (Pmin+Pmax)'/2.

Examples
Here initial weight values are calculated for a five-neuron layer with input elements ranging over [0
1] and [-2 2].

W = midpoint(5,[0 1; -2 2])

Version History
Introduced before R2006a

See Also
initwb | initlay | init
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minmax
Ranges of matrix rows

Syntax
pr = minmax(P)

Description
pr = minmax(P) takes one argument,

P R-by-Q matrix

and returns the R-by-2 matrix pr of minimum and maximum values for each row of P.

Alternatively, P can be an M-by-N cell array of matrices. Each matrix P{i,j} should have Ri rows and
Q columns. In this case, minmax returns an M-by-1 cell array where the mth element is an Ri-by-2
matrix of the minimum and maximum values of elements for the matrix on the ith row of P.

Examples
x = rands(4,5)
mm = minmax(x)
x = nndata([1;2],3,4)
mm = minmax(x)

Version History
Introduced before R2006a
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mse
Mean squared normalized error performance function

Syntax
perf = mse(net,t,y,ew)

Description

Tip To use mean squared error with deep learning, use regressionLayer, or use the dlarray
method mse.

perf = mse(net,t,y,ew) takes a neural network, net, a matrix or cell array of targets, t, a
matrix or cell array of outputs, y, and error weights, ew, and returns the mean squared error.

This function has two optional parameters, which are associated with networks whose
net.trainFcn is set to this function:

• 'regularization' can be set to any value between 0 and 1. The greater the regularization
value, the more squared weights and biases are included in the performance calculation relative
to errors. The default is 0, corresponding to no regularization.

• 'normalization' can be set to 'none' (the default); 'standard', which normalizes errors
between -2 and 2, corresponding to normalizing outputs and targets between -1 and 1; and
'percent', which normalizes errors between -1 and 1. This feature is useful for networks with
multi-element outputs. It ensures that the relative accuracy of output elements with differing
target value ranges are treated as equally important, instead of prioritizing the relative accuracy
of the output element with the largest target value range.

You can create a standard network that uses mse with feedforwardnet or cascadeforwardnet.
To prepare a custom network to be trained with mse, set net.performFcn to 'mse'. This
automatically sets net.performParam to a structure with the default optional parameter values.

mse is a network performance function. It measures the network’s performance according to the
mean of squared errors.

Examples

Train Neural Network Using mse Performance Function

This example shows how to train a neural network using the mse performance function.

Here a two-layer feedforward network is created and trained to estimate body fat percentage using
the mse performance function and a regularization value of 0.01.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10);
net.performParam.regularization = 0.01;
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MSE is the default performance function for feedforwardnet.

net.performFcn

Train the network and evaluate performance.

net = train(net, x, t);
y = net(x);
perf = perform(net, t, y)

Alternatively, you can call mse directly.

perf = mse(net, t, y, 'regularization', 0.01)

Input Arguments
net — Input matrix
matrix

Network you want to calculate the performance of, specified as a SeriesNetwork or a DAGNetwork
object.

t — Targets
matrix | cell array

Targets, specified as a matrix or a cell array.

y — Outputs
matrix | cell array

Outputs, specified as a matrix or a cell array.

ew — Error weights
1 (default) | scalar

Error weights, specified as a scalar.

Output Arguments
perf — Network performance
scalar

Performance of the network as the mean squared errors.

Version History
Introduced before R2006a

See Also
mae
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narnet
Nonlinear autoregressive neural network

Syntax
narnet(feedbackDelays,hiddenSizes,feedbackMode,trainFcn)

Description
narnet(feedbackDelays,hiddenSizes,feedbackMode,trainFcn) takes these arguments:

• Row vector of increasing 0 or positive feedback delays, feedbackDelays
• Row vector of one or more hidden layer sizes, hiddenSizes
• Type of feedback, feedbackMode
• Training function, trainFcn

and returns a NAR neural network.

You can train NAR (nonlinear autoregressive) neural networks to predict a time series from the past
values of that series.

Examples

Train NAR Network and Predict on New Data

Train a nonlinear autoregressive (NAR) neural network and predict on new time series data.
Predicting a sequence of values in a time series is also known as multistep prediction. Closed-loop
networks can perform multistep predictions. When external feedback is missing, closed-loop
networks can continue to predict by using internal feedback. In NAR prediction, the future values of a
time series are predicted only from past values of that series.

Load the simple time series prediction data.

T = simplenar_dataset;

Create a NAR network. Define the feedback delays and size of the hidden layers.

net = narnet(1:2,10);

Prepare the time series data using preparets. This function automatically shifts input and target
time series by the number of steps needed to fill the initial input and layer delay states.

[Xs,Xi,Ai,Ts] = preparets(net,{},{},T);

A recommended practice is to fully create the network in an open loop, and then transform the
network to a closed loop for multistep-ahead prediction. Then, the closed-loop network can predict as
many future values as you want. If you simulate the neural network in closed-loop mode only, the
network can perform as many predictions as the number of time steps in the input series.
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Train the NAR network. The train function trains the network in an open loop (series-parallel
architecture), including the validation and testing steps.

net = train(net,Xs,Ts,Xi,Ai);

Display the trained network.

view(net)
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Calculate the network output Y, final input states Xf, and final layer states Af of the open-loop
network from the network input Xs, initial input states Xi, and initial layer states Ai.

[Y,Xf,Af] = net(Xs,Xi,Ai);

Calculate the network performance.

perf = perform(net,Ts,Y)

perf = 1.0100e-09

To predict the output for the next 20 time steps, first simulate the network in closed-loop mode. The
final input states Xf and layer states Af of the open-loop network net become the initial input states
Xic and layer states Aic of the closed-loop network netc.

[netc,Xic,Aic] = closeloop(net,Xf,Af);

Display the closed-loop network. The network has only one input. In closed-loop mode, this input
connects to the output. A direct delayed output connection replaces the delayed target input.

view(netc)
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To simulate the network 20 time steps ahead, input an empty cell array of length 20. The network
requires only the initial conditions given in Xic and Aic.

Yc = netc(cell(0,20),Xic,Aic)

Yc=1×20 cell array
  Columns 1 through 5

    {[0.8346]}    {[0.3329]}    {[0.9084]}    {[1.0000]}    {[0.3190]}

  Columns 6 through 10

    {[0.7329]}    {[0.9801]}    {[0.6409]}    {[0.5146]}    {[0.9746]}

  Columns 11 through 15

    {[0.9077]}    {[0.2807]}    {[0.8651]}    {[0.9897]}    {[0.4093]}

  Columns 16 through 20
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    {[0.6838]}    {[0.9976]}    {[0.7007]}    {[0.4311]}    {[0.9660]}

Input Arguments
feedbackDelays — Feedback delays
[1:2] (default) | row vector

Zero or positive feedback delays, specified as an increasing row vector.

hiddenSizes — Hidden sizes
10 (default) | row vector

Sizes of the hidden layers, specified as a row vector of one or more elements.

feedbackMode — Feedback mode
'open' (default) | 'closed' | 'none'

Type of feedback, specified as either 'open', 'closed', or 'none'.

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char
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Version History
Introduced in R2010b

See Also
preparets | removedelay | timedelaynet | narxnet | closeloop | network | train |
openloop

Topics
“Multistep Neural Network Prediction”
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narxnet
Nonlinear autoregressive neural network with external input

Syntax
narxnet(inputDelays,feedbackDelays,hiddenSizes,feedbackMode,trainFcn)

Description
narxnet(inputDelays,feedbackDelays,hiddenSizes,feedbackMode,trainFcn) takes
these arguments:

• Row vector of increasing 0 or positive input delays, inputDelays
• Row vector of increasing 0 or positive feedback delays, feedbackDelays
• Row vector of one or more hidden layer sizes, hiddenSizes
• Type of feedback, feedbackMode
• Backpropagation training function, trainFcn

and returns a NARX neural network.

NARX (Nonlinear autoregressive with external input) networks can learn to predict one time series
given past values of the same time series, the feedback input, and another time series called the
external (or exogenous) time series.

Examples

Train NARX Network and Predict on New Data

Train a nonlinear autoregressive with external input (NARX) neural network and predict on new time
series data. Predicting a sequence of values in a time series is also known as multistep prediction.
Closed-loop networks can perform multistep predictions. When external feedback is missing, closed-
loop networks can continue to predict by using internal feedback. In NARX prediction, the future
values of a time series are predicted from past values of that series, the feedback input, and an
external time series.

Load the simple time series prediction data.

[X,T] = simpleseries_dataset;

Partition the data into training data XTrain and TTrain, and data for prediction XPredict. Use
XPredict to perform prediction after you create the closed-loop network.

XTrain = X(1:80);
TTrain = T(1:80);
XPredict = X(81:100);

Create a NARX network. Define the input delays, feedback delays, and size of the hidden layers.

net = narxnet(1:2,1:2,10);

2 Approximation, Clustering, and Control Functions

2-206



Prepare the time series data using preparets. This function automatically shifts input and target
time series by the number of steps needed to fill the initial input and layer delay states.

[Xs,Xi,Ai,Ts] = preparets(net,XTrain,{},TTrain);

A recommended practice is to fully create the network in an open loop, and then transform the
network to a closed loop for multistep-ahead prediction. Then, the closed-loop network can predict as
many future values as you want. If you simulate the neural network in closed-loop mode only, the
network can perform as many predictions as the number of time steps in the input series.

Train the NARX network. The train function trains the network in an open loop (series-parallel
architecture), including the validation and testing steps.

net = train(net,Xs,Ts,Xi,Ai);
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Display the trained network.

view(net)
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Calculate the network output Y, final input states Xf, and final layer states Af of the open-loop
network from the network input Xs, initial input states Xi, and initial layer states Ai.

[Y,Xf,Af] = net(Xs,Xi,Ai);

Calculate the network performance.

perf = perform(net,Ts,Y)

perf = 0.0153

To predict the output for the next 20 time steps, first simulate the network in closed-loop mode. The
final input states Xf and layer states Af of the open-loop network net become the initial input states
Xic and layer states Aic of the closed-loop network netc.

[netc,Xic,Aic] = closeloop(net,Xf,Af);

Display the closed-loop network.

view(netc)
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Run the prediction for 20 time steps ahead in closed-loop mode.

Yc = netc(XPredict,Xic,Aic)

Yc=1×20 cell array
  Columns 1 through 5

    {[-0.0156]}    {[0.1133]}    {[-0.1472]}    {[-0.0706]}    {[0.0355]}

  Columns 6 through 10

    {[-0.2829]}    {[0.2047]}    {[-0.3809]}    {[-0.2836]}    {[0.1886]}

  Columns 11 through 15

    {[-0.1813]}    {[0.1373]}    {[0.2189]}    {[0.3122]}    {[0.2346]}

  Columns 16 through 20
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    {[-0.0156]}    {[0.0724]}    {[0.3395]}    {[0.1940]}    {[0.0757]}

Input Arguments
inputDelays — Input delays
[1:2] (default) | row vector

Zero or positive input delays, specified as an increasing row vector.

feedbackDelays — Feedback delays
[1:2] (default) | row vector

Zero or positive feedback delays, specified as an increasing row vector.

hiddenSizes — Hidden sizes
10 (default) | row vector

Sizes of the hidden layers, specified as a row vector of one or more elements.

feedbackMode — Feedback mode
'open' (default) | 'closed' | 'none'

Type of feedback, specified as either 'open', 'closed', or 'none'.

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
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Data Types: char

Version History
Introduced in R2010b

See Also
closeloop | narnet | openloop | preparets | removedelay | timedelaynet | network | train

Topics
“Multistep Neural Network Prediction”
“Design Time Series NARX Feedback Neural Networks”
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nctool
Open Neural Net Clustering app

Syntax
nctool
nctool("close")

Description
nctool opens the Neural Net Clustering app. For more information and an example of its usage,
see “Cluster Data with a Self-Organizing Map”.

nctool("close") closes the Neural Net Clustering app.

Algorithms
The Neural Net Clustering app leads you through solving a clustering problem using a self-
organizing map. The map forms a compressed representation of the inputs space, reflecting both the
relative density of input vectors in that space, and a two-dimensional compressed representation of
the input-space topology.

Version History
Introduced in R2008a

See Also
Neural Net Clustering | nftool | nprtool | ntstool

Topics
“Cluster Data with a Self-Organizing Map”
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negdist
Negative distance weight function

Syntax
Z = negdist(W,P)
dim = negdist('size',S,R,FP)
dw = negdist('dz_dw',W,P,Z,FP)

Description
negdist is a weight function. Weight functions apply weights to an input to get weighted inputs.

Z = negdist(W,P) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of negative vector distances.

dim = negdist('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [S-by-R].

dw = negdist('dz_dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = negdist(W,P)

Network Use
You can create a standard network that uses negdist by calling competlayer or selforgmap.

To change a network so an input weight uses negdist, set net.inputWeights{i,j}.weightFcn
to 'negdist'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist.

Algorithms
negdist returns the negative Euclidean distance:

z = -sqrt(sum(w-p)^2)
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Version History
Introduced before R2006a

See Also
competlayer | dist | dotprod | selforgmap | sim
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netinv
Inverse transfer function

Syntax
A = netinv(N,FP)

Description
netinv is a transfer function. Transfer functions calculate a layer’s output from its net input.

A = netinv(N,FP) takes inputs

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns 1/N.

info = netinv('code') returns information about this function. The following codes are
supported:

netinv('name') returns the name of this function.

netinv('output',FP) returns the [min max] output range.

netinv('active',FP) returns the [min max] active input range.

netinv('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

netinv('fpnames') returns the names of the function parameters.

netinv('fpdefaults') returns the default function parameters.

Examples
Here you define 10 five-element net input vectors N and calculate A.

n = rand(5,10);
a = netinv(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'netinv';

Version History
Introduced in R2006a
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See Also
tansig | logsig

 netinv
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netprod
Product net input function

Syntax
N = netprod({Z1,Z2,...,Zn})
info = netprod('code')

Description
netprod is a net input function. Net input functions calculate a layer’s net input by combining its
weighted inputs and biases.

N = netprod({Z1,Z2,...,Zn}) takes

Zi S-by-Q matrices in a row cell array

and returns an element-wise product of Z1 to Zn.

info = netprod('code') returns information about this function. The following codes are
supported:

'deriv' Name of derivative function
'fullderiv' Full N-by-S-by-Q derivative = 1, element-wise S-by-Q derivative =

0
'name' Full name
'fpnames' Returns names of function parameters
'fpdefaults' Returns default function parameters

Examples
Here netprod combines two sets of weighted input vectors (user-defined).

Z1 = [1 2 4;3 4 1];
Z2 = [-1 2 2; -5 -6 1];
Z = {Z1,Z2};
N = netprod({Z})

Here netprod combines the same weighted inputs with a bias vector. Because Z1 and Z2 each
contain three concurrent vectors, three concurrent copies of B must be created with concur so that
all sizes match.

B = [0; -1];
Z = {Z1, Z2, concur(B,3)};
N = netprod(Z)
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Network Use
You can create a standard network that uses netprod by calling newpnn or newgrnn.

To change a network so that a layer uses netprod, set net.layers{i}.netInputFcn to
'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or newgrnn for
simulation examples.

Version History
Introduced before R2006a

See Also
sim | netsum | concur
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netsum
Sum net input function

Syntax
N = netsum({Z1,Z2,...,Zn},FP)
info = netsum('code')

Description
netsum is a net input function. Net input functions calculate a layer’s net input by combining its
weighted inputs and biases.

N = netsum({Z1,Z2,...,Zn},FP) takes Z1 to Zn and optional function parameters,

Zi S-by-Q matrices in a row cell array
FP Row cell array of function parameters (ignored)

and returns the elementwise sum of Z1 to Zn.

info = netsum('code') returns information about this function. The following codes are
supported:

netsum('name') returns the name of this function.

netsum('type') returns the type of this function.

netsum('fpnames') returns the names of the function parameters.

netsum('fpdefaults') returns default function parameter values.

netsum('fpcheck', FP) throws an error for illegal function parameters.

netsum('fullderiv') returns 0 or 1, depending on whether the derivative is S-by-Q or N-by-S-by-Q.

Examples
Here netsum combines two sets of weighted input vectors and a bias. You must use concur to make
b the same dimensions as z1 and z2.

z1 = [1, 2, 4; 3, 4, 1]
z2 = [-1, 2, 2; -5, -6, 1]
b = [0; -1]
n = netsum({z1, z2, concur(b, 3)})

Assign this net input function to the first layer of a network.

net = feedforwardnet(); 
net.layers{1}.netInputFcn = 'netsum';
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Version History
Introduced before R2006a

See Also
cascadeforwardnet | feedforwardnet | netprod | netinv
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network
Create custom shallow neural network

Syntax
net = network
net =
network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConne
ct)

To Get Help
Type help network/network.

Tip To learn how to create a deep learning network, see “Specify Layers of Convolutional Neural
Network”.

Description
network creates new custom networks. It is used to create networks that are then customized by
functions such as feedforwardnet and narxnet.

net = network without arguments returns a new neural network with no inputs, layers or outputs.

net =
network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConne
ct) takes these optional arguments (shown with default values):

numInputs Number of inputs, 0
numLayers Number of layers, 0
biasConnect numLayers-by-1 Boolean vector, zeros
inputConnect numLayers-by-numInputs Boolean matrix, zeros
layerConnect numLayers-by-numLayers Boolean matrix, zeros
outputConnect 1-by-numLayers Boolean vector, zeros

and returns

net New network with the given property values

Properties
Architecture Properties

net.numInputs 0 or a positive integer Number of inputs.
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net.numLayers 0 or a positive integer Number of layers.
net.biasConnect numLayer-by-1

Boolean vector
If net.biasConnect(i) is 1, then layer i has
a bias, and net.biases{i} is a structure
describing that bias.

net.inputConnect numLayer-by-
numInputs Boolean
vector

If net.inputConnect(i,j) is 1, then layer i
has a weight coming from input j, and
net.inputWeights{i,j} is a structure
describing that weight.

net.layerConnect numLayer-by-
numLayers Boolean
vector

If net.layerConnect(i,j) is 1, then layer i
has a weight coming from layer j, and
net.layerWeights{i,j} is a structure
describing that weight.

net.outputConnect 1-by-numLayers
Boolean vector

If net.outputConnect(i) is 1, then the
network has an output from layer i, and
net.outputs{i} is a structure describing
that output.

net.numOutputs 0 or a positive integer
(read only)

Number of network outputs according to
net.outputConnect.

net.numInputDelays 0 or a positive integer
(read only)

Maximum input delay according to all
net.inputWeights{i,j}.delays.

net.numLayerDelays 0 or a positive
number (read only)

Maximum layer delay according to all
net.layerWeights{i,j}.delays.

Subobject Structure Properties

net.inputs numInputs-by-1 cell
array

net.inputs{i} is a structure defining input i.

net.layers numLayers-by-1 cell
array

net.layers{i} is a structure defining layer i.

net.biases numLayers-by-1 cell
array

If net.biasConnect(i) is 1, then
net.biases{i} is a structure defining the bias
for layer i.

net.inputWeights numLayers-by-
numInputs cell
array

If net.inputConnect(i,j) is 1, then
net.inputWeights{i,j} is a structure
defining the weight to layer i from input j.

net.layerWeights numLayers-by-
numLayers cell
array

If net.layerConnect(i,j) is 1, then
net.layerWeights{i,j} is a structure
defining the weight to layer i from layer j.

net.outputs 1-by-numLayers cell
array

If net.outputConnect(i) is 1, then
net.outputs{i} is a structure defining the
network output from layer i.

Function Properties

net.adaptFcn Name of a network adaption function or ''
net.initFcn Name of a network initialization function or ''
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net.performFcn Name of a network performance function or ''
net.trainFcn Name of a network training function or ''

Parameter Properties

net.adaptParam Network adaption parameters
net.initParam Network initialization parameters
net.performParam Network performance parameters
net.trainParam Network training parameters

Weight and Bias Value Properties

net.IW numLayers-by-numInputs cell array of input
weight values

net.LW numLayers-by-numLayers cell array of layer
weight values

net.b numLayers-by-1 cell array of bias values

Other Properties

net.userdata Structure you can use to store useful values

Examples
Create Network with One Input and Two Layers

This example shows how to create a network without any inputs and layers, and then set its numbers
of inputs and layers to 1 and 2 respectively.

net = network
net.numInputs = 1
net.numLayers = 2

Alternatively, you can create the same network with one line of code.

net = network(1,2)

Create Feedforward Network and View Properties

This example shows how to create a one-input, two-layer, feedforward network. Only the first layer
has a bias. An input weight connects to layer 1 from input 1. A layer weight connects to layer 2 from
layer 1. Layer 2 is a network output and has a target.

net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1])

You can view the network subobjects with the following code.

net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}
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You can alter the properties of any of the network subobjects. This code changes the transfer
functions of both layers:

net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';

You can view the weights for the connection from the first input to the first layer as follows. The
weights for a connection from an input to a layer are stored in net.IW. If the values are not yet set,
these result is empty.

net.IW{1,1}

You can view the weights for the connection from the first layer to the second layer as follows.
Weights for a connection from a layer to a layer are stored in net.LW. Again, if the values are not yet
set, the result is empty.

net.LW{2,1}

You can view the bias values for the first layer as follows.

net.b{1}

To change the number of elements in input 1 to 2, set each element’s range:

net.inputs{1}.range = [0 1; -1 1];

To simulate the network for a two-element input vector, the code might look like this:

p = [0.5; -0.1];
y = sim(net,p)

Version History
Introduced before R2006a

See Also
sim

Topics
“Neural Network Object Properties”
“Neural Network Subobject Properties”
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newgrnn
Design generalized regression neural network

Syntax
net = newgrnn(P,T,spread)

Description
Generalized regression neural networks (grnns) are a kind of radial basis network that is often used
for function approximation. grnns can be designed very quickly.

net = newgrnn(P,T,spread) takes three inputs,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
spread Spread of radial basis functions (default = 1.0)

and returns a new generalized regression neural network.

The larger the spread, the smoother the function approximation. To fit data very closely, use a
spread smaller than the typical distance between input vectors. To fit the data more smoothly, use a
larger spread.

Properties
newgrnn creates a two-layer network. The first layer has radbas neurons, and calculates weighted
inputs with dist and net input with netprod. The second layer has purelin neurons, calculates
weighted input with normprod, and net inputs with netsum. Only the first layer has biases.

newgrnn sets the first layer weights to P', and the first layer biases are all set to 0.8326/spread,
resulting in radial basis functions that cross 0.5 at weighted inputs of +/– spread. The second layer
weights W2 are set to T.

Examples
Here you design a radial basis network, given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newgrnn(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)
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Version History
Introduced before R2006a

References
Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand Reinhold, 1993,
pp. 155–61

See Also
sim | newrb | newrbe | newpnn
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newlind
Design linear layer

Syntax
net = newlind(P,T,Pi)

Description
net = newlind(P,T,Pi) takes these input arguments,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
Pi 1-by-ID cell array of initial input delay states

where each element Pi{i,k} is an Ri-by-Q matrix, and the default = []; and returns a linear layer
designed to output T (with minimum sum square error) given input P.

newlind(P,T,Pi) can also solve for linear networks with input delays and multiple inputs and
layers by supplying input and target data in cell array form:

P Ni-by-TS cell array Each element P{i,ts} is an Ri-by-Q input matrix
T Nt-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix
Pi Ni-by-ID cell array Each element Pi{i,k} is an Ri-by-Q matrix,

default = []

and returns a linear network with ID input delays, Ni network inputs, and Nl layers, designed to
output T (with minimum sum square error) given input P.

Examples
You want a linear layer that outputs T given P for the following definitions:

P = [1 2 3];
T = [2.0 4.1 5.9];

Use newlind to design such a network and check its response.

net = newlind(P,T);
Y = sim(net,P)

You want another linear layer that outputs the sequence T given the sequence P and two initial input
delay states Pi.

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)
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You want a linear network with two outputs Y1 and Y2 that generate sequences T1 and T2, given the
sequences P1 and P2, with three initial input delay states Pi1 for input 1 and three initial delays
states Pi2 for input 2.

P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};
P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
T1 = {5.0 6.1 4.0 6.0 6.9 8.0};
T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)

Algorithms
newlind calculates weight W and bias B values for a linear layer from inputs P and targets T by
solving this linear equation in the least squares sense:

[W b] * [P; ones] = T

Version History
Introduced before R2006a

See Also
sim
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newpnn
Design probabilistic neural network

Syntax
net = newpnn(P,T,spread)

Description
Probabilistic neural networks (PNN) are a kind of radial basis network suitable for classification
problems.

net = newpnn(P,T,spread) takes two or three arguments,

P R-by-Q matrix of Q input vectors
T S-by-Q matrix of Q target class vectors
spread Spread of radial basis functions (default = 0.1)

and returns a new probabilistic neural network.

If spread is near zero, the network acts as a nearest neighbor classifier. As spread becomes larger,
the designed network takes into account several nearby design vectors.

Examples
Here a classification problem is defined with a set of inputs P and class indices Tc.

P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];

The class indices are converted to target vectors, and a PNN is designed and tested.

T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Algorithms
newpnn creates a two-layer network. The first layer has radbas neurons, and calculates its weighted
inputs with dist and its net input with netprod. The second layer has compet neurons, and
calculates its weighted input with dotprod and its net inputs with netsum. Only the first layer has
biases.

newpnn sets the first-layer weights to P', and the first-layer biases are all set to 0.8326/spread,
resulting in radial basis functions that cross 0.5 at weighted inputs of +/– spread. The second-layer
weights W2 are set to T.
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Version History
Introduced before R2006a

References
Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand Reinhold, 1993,
pp. 35–55

See Also
sim | ind2vec | vec2ind | newrb | newrbe | newgrnn
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newrb
Design radial basis network

Syntax
net = newrb(P,T,goal,spread,MN,DF)

Description
net = newrb(P,T,goal,spread,MN,DF) takes two of these arguments:

• P — R-by-Q matrix of Q input vectors
• T — S-by-Q matrix of Q target class vectors
• goal — Mean squared error goal
• spread — Spread of radial basis functions
• MN — Maximum number of neurons
• DF — Number of neurons to add between displays

Radial basis networks can be used to approximate functions. newrb adds neurons to the hidden layer
of a radial basis network until it meets the specified mean squared error goal.

The larger spread is, the smoother the function approximation. Too large a spread means a lot of
neurons are required to fit a fast-changing function. Too small a spread means many neurons are
required to fit a smooth function, and the network might not generalize well. Call newrb with
different spreads to find the best value for a given problem.

Examples

Design a Radial Basis Network

This example shows how to design a radial basis network.

Design a radial basis network with inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);

Simulate the network for a new input.

P = 1.5;
Y = sim(net,P)

Input Arguments
P — Input matrix
matrix
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Input vectors, specified as an R-by-Q matrix.

T — Target class matrix
matrix

Target class vectors, specified as an S-by-Q matrix.

goal — Error goal
0.0 (default) | scalar

Mean squared error goal, specified as a scalar.

spread — Spread of basis functions
1 (default) | scalar

Spread of radial basis functions, specified as a scalar.

MN — Neurons maximum number
Q (default) | scalar

Maximum number of neurons, specified as a scalar.

DF — Neurons between displays
25 (default) | scalar

Number of neurons to add between displays, specified as a scalar.

Output Arguments
net — Radial basis network
network

New radial basis network, returned as a network object

Algorithms
newrb creates a two-layer network. The first layer has radbas neurons, and calculates its weighted
inputs with dist and its net input with netprod. The second layer has purelin neurons, and
calculates its weighted input with dotprod and its net inputs with netsum. Both layers have biases.

Initially the radbas layer has no neurons. The following steps are repeated until the network’s mean
squared error falls below goal.

1 The network is simulated.
2 The input vector with the greatest error is found.
3 A radbas neuron is added with weights equal to that vector.
4 The purelin layer weights are redesigned to minimize error.

Version History
Introduced before R2006a

 newrb

2-233



See Also
sim | newrbe | newgrnn | newpnn
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newrbe
Design exact radial basis network

Syntax
net = newrbe(P,T,spread)

Description
Radial basis networks can be used to approximate functions. newrbe very quickly designs a radial
basis network with zero error on the design vectors.

net = newrbe(P,T,spread) takes two or three arguments,

P RxQ matrix of Q R-element input vectors
T SxQ matrix of Q S-element target class vectors
spread Spread of radial basis functions (default = 1.0)

and returns a new exact radial basis network.

The larger the spread is, the smoother the function approximation will be. Too large a spread can
cause numerical problems.

Examples
Here you design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithms
newrbe creates a two-layer network. The first layer has radbas neurons, and calculates its weighted
inputs with dist and its net input with netprod. The second layer has purelin neurons, and
calculates its weighted input with dotprod and its net inputs with netsum. Both layers have biases.

newrbe sets the first-layer weights to P', and the first-layer biases are all set to 0.8326/spread,
resulting in radial basis functions that cross 0.5 at weighted inputs of +/– spread.

The second-layer weights IW{2,1} and biases b{2} are found by simulating the first-layer outputs
A{1} and then solving the following linear expression:

[W{2,1} b{2}] * [A{1}; ones] = T
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Version History
Introduced before R2006a

See Also
sim | newrb | newgrnn | newpnn
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nftool
Open Neural Net Fitting app

Syntax
nftool
nftool("close")

Description
nftool opens the Neural Net Fitting app. For more information and an example of its usage, see
“Fit Data with a Shallow Neural Network”.

nftool("close") closes the Neural Net Fitting app.

Algorithms
The Neural Net Fitting app leads you through solving a data fitting problem, solving it with a two-
layer feed-forward network trained with Levenberg-Marquardt.

Version History
Introduced in R2006a

See Also
Neural Net Fitting | nctool | nprtool | ntstool

Topics
“Fit Data with a Shallow Neural Network”
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nncell2mat
Combine neural network cell data into matrix

Syntax
[y,i,j] nncell2mat(x)

Description
[y,i,j] nncell2mat(x) takes a cell array of matrices and returns,

y Cell array formed by concatenating matrices
i Array of row sizes
ji Array of column sizes

The row and column sizes returned by nncell2mat can be used to convert the returned matrix back
into a cell of matrices with mat2cell.

Examples
Here neural network data is converted to a matrix and back.

c = {rands(2,3) rands(2,3); rands(5,3) rands(5,3)};
[m,i,j] = nncell2mat(c)
c3 = mat2cell(m,i,j)

Version History
Introduced in R2010b

See Also
nndata | nnsize
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nncorr
Cross correlation between neural network time series

Syntax
nncorr(a,b,maxlag,'flag')

Description
nncorr(a,b,maxlag,'flag') takes these arguments,

a Matrix or cell array, with columns interpreted as timesteps, and having
a total number of matrix rows of N.

b Matrix or cell array, with columns interpreted as timesteps, and having
a total number of matrix rows of M.

maxlag Maximum number of time lags
flag Type of normalization (default = 'none')

and returns an N-by-M cell array where each {i,j} element is a 2*maxlag+1 length row vector
formed from the correlations of a elements (i.e., matrix row) i and b elements (i.e., matrix column) j.

If a and b are specified with row vectors, the result is returned in matrix form.

The options for the normalization flag are:

• 'biased' — scales the raw cross-correlation by 1/N.
• 'unbiased' — scales the raw correlation by 1/(N-abs(k)), where k is the index into the result.
• 'coeff' — normalizes the sequence so that the correlations at zero lag are 1.0.
• 'none' — no scaling. This is the default.

Examples
Here the autocorrelation of a random 1-element, 1-sample, 20-timestep signal is calculated with a
maximum lag of 10.

a = nndata(1,1,20)
aa = nncorr(a,a,10)

Here the cross-correlation of the first signal with another random 2-element signal are found, with a
maximum lag of 8.

b = nndata(2,1,20)
ab = nncorr(a,b,8)

Version History
Introduced in R2010b
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See Also
confusion | regression

2 Approximation, Clustering, and Control Functions

2-240



nndata
Create neural network data

Syntax
nndata(N,Q,TS,v)

Description
nndata(N,Q,TS,v) takes these arguments,

N Vector of M element sizes
Q Number of samples
TS Number of timesteps
v Scalar value

and returns an M-by-TS cell array where each row i has N(i)-by-Q sized matrices of value v. If v is
not specified, random values are returned.

You can access subsets of neural network data with getelements, getsamples, gettimesteps,
and getsignals.

You can set subsets of neural network data with setelements, setsamples, settimesteps, and
setsignals.

You can concatenate subsets of neural network data with catelements, catsamples,
cattimesteps, and catsignals.

Examples
Here four samples of five timesteps, for a 2-element signal consisting of zero values is created:

x = nndata(2,4,5,0)

To create random data with the same dimensions:

x = nndata(2,4,5)

Here static (1 timestep) data of 12 samples of 4 elements is created.

x = nndata(4,12)

Version History
Introduced in R2010b

See Also
nnsize | tonndata | fromnndata | nndata2sim | sim2nndata
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nndata2gpu
Format neural data for efficient GPU training or simulation

Syntax
nndata2gpu(x)
[Y,Q,N,TS] = nndata2gpu(X)
nndata2gpu(X,PRECISION)

Description
nndata2gpu requires Parallel Computing Toolbox.

nndata2gpu(x) takes an N-by-Q matrix X of Q N-element column vectors, and returns it in a form for
neural network training and simulation on the current GPU device.

The N-by-Q matrix becomes a QQ-by-N gpuArray where QQ is Q rounded up to the next multiple of 32.
The extra rows (Q+1):QQ are filled with NaN values. The gpuArray has the same precision
('single' or 'double') as X.

[Y,Q,N,TS] = nndata2gpu(X) can also take an M-by-TS cell array of M signals over TS time steps.
Each element of X{i,ts} should be an Ni-by-Q matrix of Q Ni-element vectors, representing the ith
signal vector at time step ts, across all Q time series. In this case, the gpuArray Y returned is QQ-by-
(sum(Ni)*TS). Dimensions Ni, Q, and TS are also returned so they can be used with gpu2nndata to
perform the reverse formatting.

nndata2gpu(X,PRECISION) specifies the default precision of the gpuArray, which can be
'double' or 'single'.

Examples
Copy a matrix to the GPU and back:

x = rand(5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)

Copy neural network cell array data, representing four time series, each consisting of five time steps
of 2-element and 3-element signals:

x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)

Version History
Introduced in R2012b
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See Also
gpu2nndata
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nndata2sim
Convert neural network data to Simulink time series

Syntax
nndata2sim(x,i,q)

Description
nndata2sim(x,i,q) takes these arguments,

x Neural network data
i Index of signal (default = 1)
q Index of sample (default = 1)

and returns time series q of signal i as a Simulink time series structure.

Examples
Here random neural network data is created with two signals having 4 and 3 elements respectively,
over 10 timesteps. Three such series are created.

x = nndata([4;3],3,10);

Now the second signal of the first series is converted to Simulink form.

y_2_1 = nndata2sim(x,2,1)

Version History
Introduced in R2010b

See Also
nndata | sim2nndata | nnsize
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nnsize
Number of neural data elements, samples, timesteps, and signals

Syntax
[N,Q,TS,M] = nnsize(X)

Description
[N,Q,TS,M] = nnsize(X) takes neural network data x and returns,

N Vector containing the number of element sizes for each of M signals
Q Number of samples
TS Number of timesteps
M Number of signals

If X is a matrix, N is the number of rows of X, Q is the number of columns, and both TS and M are 1.

If X is a cell array, N is an Sx1 vector, where M is the number of rows in X, and N(i) is the number of
rows in X{i,1}. Q is the number of columns in the matrices in X.

Examples
This code gets the dimensions of matrix data:

x = [1 2 3; 4 7 4]
[n,q,ts,s] = nnsize(x)

This code gets the dimensions of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
[n,q,ts,s] = nnsize(x)

Version History
Introduced in R2010b

See Also
nndata | numelements | numsamples | numsignals | numtimesteps
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nnstart
Open Neural Network Start app

Syntax
nnstart
nnstart("close")

Description
nnstart opens a window with launch buttons for Neural Net Fitting app, Neural Net Pattern
Recognition app, Neural Net Clustering app, and Neural Net Time Series app. It also provides
links to lists of data sets, examples, and other useful information for getting started.

nnstart("close") closes the Neural Network Start app.

Version History
Introduced in R2010b

See Also
nctool | nftool | nprtool | ntstool

2 Approximation, Clustering, and Control Functions

2-246



nntool
(Removed) Open Network/Data Manager

Note nntool has been removed. Use nnstart instead. For more information, see “Compatibility
Considerations”.

Syntax
nntool

Description
nntool opens the Network/Data Manager window, which allows you to import, create, use, and
export neural networks and data.

Version History
Introduced before R2006a

nntool has been removed
Errors starting in R2022a

nntool has been removed. Use nnstart instead. nnstart provides graphical interfaces that allow
you to design and deploy fitting, pattern recognition, clustering, and time-series neural networks.

See Also
nnstart
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nntraintool
(Removed) Neural network training tool

Note nntraintool has been removed. To train a network and open the training window, use train
instead.

Syntax
nntraintool
nntraintool close
nntraintool('close')

Description
nntraintool opens the neural network training GUI.

This function can be called to make the training GUI visible before training has occurred, after
training if the window has been closed, or just to bring the training GUI to the front.

To access additional useful plots, related to the current or last network trained, during or after
training, click their respective buttons in the training window.

nntraintool close or nntraintool('close') closes the training window.

Version History
Introduced in R2008a

nntraintool has been removed
Errors starting in R2022a

nntraintool has been removed. To train a network and open the training window, use train
instead.

See Also
train
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noloop
Remove neural network open- and closed-loop feedback

Syntax
net = noloop(net)

Description
net = noloop(net) takes a neural network and returns the network with open- and closed-loop
feedback removed.

For outputs i, where net.outputs{i}.feedbackMode is 'open', the feedback mode is set to
'none', outputs{i}.feedbackInput is set to the empty matrix, and the associated network input
is deleted.

For outputs i, where net.outputs{i}.feedbackMode is 'closed', the feedback mode is set to
'none'.

Examples

Convert NARX Network to No Loop Form

This example shows how to create and train a NARX network. The NARX network has a standard
input and an open-loop feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);

 noloop

2-249



view(net)
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Y = net(Xs,Xi,Ai);

Now the network is converted to no loop form. The output and second input are no longer associated.

net = noloop(net);
view(net)

 noloop
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[Xs,Xi,Ai] = preparets(net,X,T);
Y = net(Xs,Xi,Ai);

Version History
Introduced in R2010b

See Also
closeloop | openloop
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normc
Normalize columns of matrix

Syntax
normc(M)

Description
normc(M) normalizes the columns of M to a length of 1.

Examples

Normalize the Columns of a Matrix by Using the normc Function

This example shows how to use the normc function to normalize the columns of a matrix to a length
of 1.

Create the matrix, m, of which you want to normalize the columns. Then call the normc function on
this matrix.

m = [1 2; 3 4];
normc(m)

ans =
     0.3162     0.4472
     0.9487     0.8944

Input Arguments
M — Input matrix
matrix | cell array of matrices

Matrix of which you want to normalize the columns to a length of 1, specified as a matrix or a cell
array of matrices.

Version History
Introduced before R2006a

See Also
normr
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normprod
Normalized dot product weight function

Syntax
Z = normprod(W,P,FP)
dim = normprod('size',S,R,FP)
dw = normprod('dz_dw',W,P,Z,FP)

Description
normprod is a weight function. Weight functions apply weights to an input to get weighted inputs.

Z = normprod(W,P,FP) takes these inputs,

W S-by-R weight matrix
P R-by-Q matrix of Q input (column) vectors
FP Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of normalized dot products.

dim = normprod('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [S-by-R].

dw = normprod('dz_dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = normprod(W,P)

Network Use
You can create a standard network that uses normprod by calling newgrnn.

To change a network so an input weight uses normprod, set net.inputWeights{i,j}.weightFcn
to 'normprod'. For a layer weight, set net.layerWeights{i,j}.weightFcn to 'normprod'.

In either case, call sim to simulate the network with normprod. See newgrnn for simulation
examples.

Algorithms
normprod returns the dot product normalized by the sum of the input vector elements.
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z = w*p/sum(p)

Version History
Introduced before R2006a

See Also
dotprod

 normprod
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normr
Normalize rows of matrix

Syntax
normalized_M = normr(M)

Description
normalized_M = normr(M) takes a single matrix or cell array of matrices, M, and returns the
matrices with rows normalized to a length of one.

Examples

Normalize rows of a matrix

This example shows how to use the normr function to normalize the rows of a matrix.

Create a 2x2 matrix and call the normr function to normalize its rows to a length of 1.

m = [1 2; 3 4];
normr(m)
ans =
      0.4472     0.8944
      0.6000     0.8000

ans =
      0.4472     0.8944
      0.6000     0.8000

Input Arguments
M — Matrix to normalize
matrix | cell array of matrices

Matrix to normalize, specified as a matrix or a cell array of matrices.

Output Arguments
normalized_M — Normalized matrix
matrix | cell array of matrices

Normalized matrix, returned as a matrix or a cell array of matrices.

Version History
Introduced before R2006a
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See Also
normc
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nprtool
Open Neural Net Pattern Recognition app

Syntax
nprtool
nprtool("close")

Description
nprtool opens the Neural Net Pattern Recognition app. For more information and an example of
its usage, see “Classify Patterns with a Shallow Neural Network”.

nprtool("close") closes the Neural Net Pattern Recognition app.

Algorithms
The Neural Net Pattern Recognition app leads you through solving a pattern-recognition
classification problem using a two-layer feed-forward patternnet network with sigmoid output
neurons.

Version History
Introduced in R2008a

See Also
Neural Net Pattern Recognition | nctool | nftool | ntstool

Topics
“Classify Patterns with a Shallow Neural Network”
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ntstool
Open Neural Net Time Series app

Syntax
ntstool
ntstool("close")

Description
ntstool opens the Neural Net Time Series app and leads you through solving a fitting problem
using a two-layer feed-forward network. For more information and an example of its usage, see
“Shallow Neural Network Time-Series Prediction and Modeling”.

ntstool("close") closes the Neural Net Time Series app.

Version History
Introduced in R2010b

See Also
Neural Net Time Series | nctool | nftool | nprtool

Topics
“Shallow Neural Network Time-Series Prediction and Modeling”

 ntstool

2-259



num2deriv
Numeric two-point network derivative function

Syntax
num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num2deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the two-point numeric derivative rule.

dy
dx = y(x + dx) − y(x)

dx

This function is much slower than the analytical (non-numerical) derivative functions, but is provided
as a means of checking the analytical derivative functions. The other numerical function, num5deriv,
is slower but more accurate.

num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (and N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs elements,
and TS is the number of timesteps).

num2deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num2deriv('dperf_dwb',net,x,t)
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Version History
Introduced in R2010b

See Also
bttderiv | defaultderiv | fpderiv | num5deriv | staticderiv

 num2deriv
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num5deriv
Numeric five-point stencil neural network derivative function

Syntax
num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num5deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the five-point numeric derivative rule.

y1 = y(x + 2dx)
y2 = y(x + dx)
y3 = y(x− dx)
y4 = y(x− 2dx)

dy
dx =

−y1 + 8y2− 8y3 + y4
12dx

This function is much slower than the analytical (non-numerical) derivative functions, but is provided
as a means of checking the analytical derivative functions. The other numerical function, num2deriv,
is faster but less accurate.

num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (and N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs elements,
and TS is the number of timesteps).

num5deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
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net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num5deriv('dperf_dwb',net,x,t)

Version History
Introduced in R2010b

See Also
bttderiv | defaultderiv | fpderiv | num2deriv | staticderiv
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numelements
Number of elements in neural network data

Syntax
numelements(x)

Description
numelements(x) takes neural network data x in matrix or cell array form, and returns the number
of elements in each signal.

If x is a matrix the result is the number of rows of x.

If x is a cell array the result is an S-by-1 vector, where S is the number of signals (i.e., rows of X), and
each element S(i) is the number of elements in each signal i (i.e., rows of x{i,1}).

Examples
This code calculates the number of elements represented by matrix data:

x = [1 2 3; 4 7 4]
n = numelements(x)

This code calculates the number of elements represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numelements(x)

Version History
Introduced in R2010b

See Also
nndata | nnsize | getelements | setelements | catelements | numsamples | numsignals |
numtimesteps
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numfinite
Number of finite values in neural network data

Syntax
numfinite(x)

Description
numfinite(x) takes a matrix or cell array of matrices and returns the number of finite elements in
it.

Examples
x = [1 2; 3 NaN]
n = numfinite(x)
 
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numfinite(x)

Version History
Introduced in R2010b

See Also
numnan | nndata | nnsize
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numnan
Number of NaN values in neural network data

Syntax
numnan(x)

Description
numnan(x) takes a matrix or cell array of matrices and returns the number of NaN elements in it.

Examples
x = [1 2; 3 NaN]
n = numnan(x)
 
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numnan(x)

Version History
Introduced in R2010b

See Also
numnan | nndata | nnsize
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numsamples
Number of samples in neural network data

Syntax
numsamples(x)

Description
numsamples(x) takes neural network data x in matrix or cell array form, and returns the number of
samples.

If x is a matrix, the result is the number of columns of x.

If x is a cell array, the result is the number of columns of the matrices in x.

Examples
This code calculates the number of samples represented by matrix data:

x = [1 2 3; 4 7 4]
n = numsamples(x)

This code calculates the number of samples represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsamples(x)

Version History
Introduced in R2010b

See Also
nndata | nnsize | getsamples | setsamples | catsamples | numelements | numsignals |
numtimesteps
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numsignals
Number of signals in neural network data

Syntax
numsignals(x)

Description
numsignals(x) takes neural network data x in matrix or cell array form, and returns the number of
signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of rows in x.

Examples
This code calculates the number of signals represented by matrix data:

x = [1 2 3; 4 7 4]
n = numsignals(x)

This code calculates the number of signals represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsignals(x)

Version History
Introduced in R2010b

See Also
nndata | nnsize | getsignals | setsignals | catsignals | numelements | numsamples |
numtimesteps
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numtimesteps
Number of time steps in neural network data

Syntax
numtimesteps(x)

Description
numtimesteps(x) takes neural network data x in matrix or cell array form, and returns the number
of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of columns in x.

Examples
This code calculates the number of time steps represented by matrix data:

x = [1 2 3; 4 7 4]
n = numtimesteps(x)

This code calculates the number of time steps represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numtimesteps(x)

Version History
Introduced in R2010b

See Also
nndata | nnsize | gettimesteps | settimesteps | cattimesteps | numelements | numsamples
| numsignals
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openloop
Convert neural network closed-loop feedback to open loop

Syntax
net = openloop(net)
[net,xi,ai] = openloop(net,xi,ai)

Description
net = openloop(net) takes a neural network and opens any closed-loop feedback. For each
feedback output i whose property net.outputs{i}.feedbackMode is 'closed', it replaces its
associated feedback layer weights with a new input and input weight connections. The
net.outputs{i}.feedbackMode property is set to 'open', and the
net.outputs{i}.feedbackInput property is set to the index of the new input. Finally, the value of
net.outputs{i}.feedbackDelays is subtracted from the delays of the feedback input weights
(i.e., to the delays values of the replaced layer weights).

[net,xi,ai] = openloop(net,xi,ai) converts a closed-loop network and its current input
delay states xi and layer delay states ai to open-loop form.

Examples
Convert NARX Network to Open-Loop Form

This example shows how to create a NARX network in open-loop form, convert it to closed-loop form,
and then convert it back.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
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view(net)
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Yopen = net(Xs,Xi,Ai);
net = closeloop(net);
view(net)
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[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yclosed = net(Xs,Xi,Ai);
net = openloop(net);
view(net)
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[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yopen = net(Xs,Xi,Ai);

Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet
and narnet.

Version History
Introduced in R2010b

See Also
closeloop | narnet | narxnet | noloop
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patternnet
Generate pattern recognition network

Syntax
net = patternnet(hiddenSizes,trainFcn,performFcn)

Description
net = patternnet(hiddenSizes,trainFcn,performFcn) returns a pattern recognition neural
network with a hidden layer size of hiddenSizes, a training function, specified by trainFcn, and a
performance function, specified by performFcn.

Pattern recognition networks are feedforward networks that can be trained to classify inputs
according to target classes. The target data for pattern recognition networks should consist of
vectors of all zero values except for a 1 in element i, where i is the class they are to represent.

Examples

Construct and Train a Pattern Recognition Neural Network

This example shows how to design a pattern recognition network to classify iris flowers.

Load the training data.

[x,t] = iris_dataset;

Construct a pattern network with one hidden layer of size 10.

net = patternnet(10);

Train the network net using the training data.

net = train(net,x,t);

 patternnet
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View the trained network.

view(net)
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Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared
error.

perf = perform(net,t,y)

perf = 0.0302

classes = vec2ind(y);

Input Arguments
hiddenSizes — Size of the hidden layers
10 (default) | row vector

 patternnet
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Size of the hidden layers in the network, specified as a row vector. The length of the vector
determines the number of hidden layers in the network.
Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer
size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training
according to the training data.
Data Types: single | double

trainFcn — Training function name
'trainscg' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainlm' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

performFcn — Performance function
character vector

Performance function. The default value is 'crossentropy'.

This argument defines the function used to measure the network’s performance. The performance
function is used to calculate network performance during training.

For a list of functions, in the MATLAB command window, type help nnperformance.
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Output Arguments
net — Pattern recognition network
network object

Pattern recognition neural network, returned as a network object.

Version History
Introduced in R2010b

See Also
competlayer | lvqnet | network | nprtool | selforgmap

Topics
“Classify Patterns with a Shallow Neural Network”
“Neural Network Object Properties”
“Neural Network Subobject Properties”
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perceptron
Simple single-layer binary classifier

Syntax
perceptron(hardlimitTF,perceptronLF)

Description

Note Deep Learning Toolbox supports perceptrons for historical interest. For better results, you
should instead use patternnet, which can solve nonlinearly separable problems. Sometimes the
term “perceptrons” refers to feed-forward pattern recognition networks; but the original perceptron,
described here, can solve only simple problems.

perceptron(hardlimitTF,perceptronLF) takes a hard limit transfer function, hardlimitTF,
and a perceptron learning rule, perceptronLF, and returns a perceptron.

In addition to the default hard limit transfer function, perceptrons can be created with the hardlims
transfer function. The other option for the perceptron learning rule is learnpn.

Perceptrons are simple single-layer binary classifiers, which divide the input space with a linear
decision boundary.

Perceptrons can learn to solve a narrow range of classification problems. They were one of the first
neural networks to reliably solve a given class of problem, and their advantage is a simple learning
rule.

Examples

Solve Simple Classification Problem Using Perceptron

This example shows how to use a perceptron to solve a simple classification logical-OR problem.

x = [0 0 1 1; 0 1 0 1];
t = [0 1 1 1];
net = perceptron;
net = train(net,x,t);
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view(net)
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y = net(x);

Input Arguments
hardlimitTF — Hard limit transfer function
'hardlim' (default)

Hard limit transfer function.

perceptronLF — Perceptron learning rule
'learnp' (default)

Perceptron learning rule.

Version History
Introduced in R2010b
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See Also
preparets | removedelay | patternnet | timedelaynet | narnet | narxnet
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perform
Calculate network performance

Syntax
perf = perform(net,t,y,ew)

Description
perf = perform(net,t,y,ew) takes a network net, targets T, outputs Y, and optionally error
weights EW, and returns network performance calculated according to the net.performFcn and
net.performParam property values.

The target and output data must have the same dimensions. The error weights may be the same
dimensions as the targets, in the most general case, but may also have any of its dimensions be 1.
This gives the flexibility of defining error weights across any dimension desired.

Examples

Calculate Network Performance with 'perform' Function

This example shows how to calculate the performance of a feed-forward network with the perform
function.

Create a feed-forward network using the data from the simple fit data set and calculate its
performance.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y)

perf =

   2.3654e-06

Input Arguments
net — Input network
network

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

t — Network targets
matrix | cell array

Network targets, specified as a matrix or cell array.
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y — Network outputs
matrix | cell array

Network outputs, specified as a matrix or cell array.

ew — Error weights
vector | matrix | cell array

Error weights, specified as a vector, matrix, or cell array.

Error weights can be defined by sample, output element, time step, or network output:

ew = [1.0 0.5 0.7 0.2]; % Across 4 samples
ew = [0.1; 0.5; 1.0]; % Across 3 elements
ew = {0.1 0.2 0.3 0.5 1.0}; % Across 5 timesteps
ew = {1.0; 0.5}; % Across 2 outputs

The error weights can also be defined across any combination, such as across two time-series (i.e.,
two samples) over four timesteps.

ew = {[0.5 0.4],[0.3 0.5],[1.0 1.0],[0.7 0.5]};

In the general case, error weights may have exactly the same dimensions as targets, in which case
each target value will have an associated error weight.

The default error weight treats all errors the same.

ew = {1}

Output Arguments
perf — Network performance
scalar

Network performance, returned as a scalar.

Version History
Introduced in R2010b

See Also
train | configure | init
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2-285



plotconfusion
Plot classification confusion matrix

Syntax
plotconfusion(targets,outputs)
plotconfusion(targets,outputs,name)
plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,targetsn,ou
tputsn,namen)

Description
plotconfusion(targets,outputs) plots a confusion matrix for the true labels targets and
predicted labels outputs. Specify the labels as categorical vectors, or in one-of-N (one-hot) form.

Tip plotconfusion is not recommended for categorical labels. Use confusionchart instead.

On the confusion matrix plot, the rows correspond to the predicted class (Output Class) and the
columns correspond to the true class (Target Class). The diagonal cells correspond to observations
that are correctly classified. The off-diagonal cells correspond to incorrectly classified observations.
Both the number of observations and the percentage of the total number of observations are shown in
each cell.

The column on the far right of the plot shows the percentages of all the examples predicted to belong
to each class that are correctly and incorrectly classified. These metrics are often called the precision
(or positive predictive value) and false discovery rate, respectively. The row at the bottom of the plot
shows the percentages of all the examples belonging to each class that are correctly and incorrectly
classified. These metrics are often called the recall (or true positive rate) and false negative rate,
respectively. The cell in the bottom right of the plot shows the overall accuracy.

plotconfusion(targets,outputs,name) plots a confusion matrix and adds name to the
beginning of the plot title.

plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,targetsn,ou
tputsn,namen) plots multiple confusion matrices in one figure and adds the name arguments to the
beginnings of the titles of the corresponding plots.

Examples

Plot Confusion Matrix Using Categorical Labels

Load the data consisting of synthetic images of handwritten digits. XTrain is a 28-by-28-by-1-
by-5000 array of images and YTrain is a categorical vector containing the image labels.

[XTrain,YTrain] = digitTrain4DArrayData;  
whos YTrain
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  Name           Size            Bytes  Class          Attributes

  YTrain      5000x1              6062  categorical              

Define the architecture of a convolutional neural network.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer    
    convolution2dLayer(3,16,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Specify training options and train the network.

options = trainingOptions('sgdm', ...
    'MaxEpochs',5, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,layers,options);

Load and classify test data using the trained network.

 plotconfusion
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[XTest,YTest] = digitTest4DArrayData;
YPredicted = classify(net,XTest);

Plot the confusion matrix of the true test labels YTest and the predicted labels YPredicted.

plotconfusion(YTest,YPredicted)

The rows correspond to the predicted class (Output Class) and the columns correspond to the true
class (Target Class). The diagonal cells correspond to observations that are correctly classified. The
off-diagonal cells correspond to incorrectly classified observations. Both the number of observations
and the percentage of the total number of observations are shown in each cell.

The column on the far right of the plot shows the percentages of all the examples predicted to belong
to each class that are correctly and incorrectly classified. These metrics are often called the precision
(or positive predictive value) and false discovery rate, respectively. The row at the bottom of the plot
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shows the percentages of all the examples belonging to each class that are correctly and incorrectly
classified. These metrics are often called the recall (or true positive rate) and false negative rate,
respectively. The cell in the bottom right of the plot shows the overall accuracy.

Close all figures.

close(findall(groot,'Type','figure'))

Plot Confusion Matrix Using One-of-N Labels

Load sample data using the cancer_dataset function. XTrain is a 9-by-699 matrix defining nine
attributes of 699 biopsies. YTrain is a 2-by-699 matrix where each column indicates the correct
category of the corresponding observation. Each column of YTrain has one element that equals one
in either the first or second row, corresponding to the cancer being benign or malignant, respectively.
For more information on this dataset, type help cancer_dataset at the command line.

rng default
[XTrain,YTrain] = cancer_dataset;
YTrain(:,1:10)

ans = 2×10

     1     1     1     0     1     1     0     0     0     1
     0     0     0     1     0     0     1     1     1     0

Create a pattern recognition network and train it using the sample data.

net = patternnet(10);
net = train(net,XTrain,YTrain);
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Estimate the cancer status using the trained network. Each column of the matrix YPredicted
contains the predicted probabilities of each observation belonging to class 1 and class 2, respectively.

YPredicted = net(XTrain);
YPredicted(:,1:10)

ans = 2×10
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    0.9980    0.9979    0.9894    0.0578    0.9614    0.9960    0.0026    0.0023    0.0084    0.9944
    0.0020    0.0021    0.0106    0.9422    0.0386    0.0040    0.9974    0.9977    0.9916    0.0056

Plot the confusion matrix. To create the plot, plotconfusion labels each observation according to
the highest class probability.

plotconfusion(YTrain,YPredicted)

In this figure, the first two diagonal cells show the number and percentage of correct classifications
by the trained network. For example, 446 biopsies are correctly classified as benign. This
corresponds to 63.8% of all 699 biopsies. Similarly, 236 cases are correctly classified as malignant.
This corresponds to 33.8% of all biopsies.

 plotconfusion
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5 of the malignant biopsies are incorrectly classified as benign and this corresponds to 0.7% of all
699 biopsies in the data. Similarly, 12 of the benign biopsies are incorrectly classified as malignant
and this corresponds to 1.7% of all data.

Out of 451 benign predictions, 98.9% are correct and 1.1% are wrong. Out of 248 malignant
predictions, 95.2% are correct and 4.8% are wrong. Out of 458 benign cases, 97.4% are correctly
predicted as benign and 2.6% are predicted as malignant. Out of 241 malignant cases, 97.9% are
correctly classified as malignant and 2.1% are classified as benign.

Overall, 97.6% of the predictions are correct and 2.4% are wrong.

Input Arguments
targets — True class labels
categorical vector | matrix

True class labels, specified one of the following:

• A categorical vector, where each element is the class label of one observation. The outputs and
targets arguments must have the same number of elements. If the categorical vectors define
underlying classes, then plotconfusion displays all the underlying classes, even if there are no
observations of some of the underlying classes. If the arguments are ordinal categorical vectors,
then they must both define the same underlying categories, in the same order.

• An N-by-M matrix, where N is the number of classes and M is the number of observations. Each
column of the matrix must be in one-of-N (one-hot) form, where a single element equal to 1
indicates the true label and all other elements equal 0.

outputs — Predicted class labels
categorical vector | matrix

Predicted class labels, specified one of the following:

• A categorical vector, where each element is the class label of one observation. The outputs and
targets arguments must have the same number of elements. If the categorical vectors define
underlying classes, then plotconfusion displays all the underlying classes, even if there are no
observations of some of the underlying classes. If the arguments are ordinal categorical vectors,
then they must both define the same underlying categories, in the same order.

• An N-by-M matrix, where N is the number of classes and M is the number of observations. Each
column of the matrix can be in one-of-N (one-hot) form, where a single element equal to 1
indicates the predicted label, or in the form of probabilities that sum to one.

name — Name of the confusion matrix
character array

Name of the confusion matrix, specified as a character array. plotconfusion adds the specified
name to the beginning of the plot title.
Data Types: char

Version History
Introduced in R2008a
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See Also
trainNetwork | trainingOptions
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plotep
Plot weight-bias position on error surface

Syntax
H = plotep(W,B,E)
H = plotep(W,B,E,H)

Description
plotep is used to show network learning on a plot created by plotes.

H = plotep(W,B,E) takes these arguments,

W Current weight value
B Current bias value
E Current error

and returns a cell array H, containing information for continuing the plot.

H = plotep(W,B,E,H) continues plotting using the cell array H returned by the last call to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted next time; as well as
points on the error contour, so they can be connected.

Version History
Introduced before R2006a

See Also
errsurf | plotes
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ploterrcorr
Plot autocorrelation of error time series

Syntax
ploterrcorr(error)
ploterrcorr(errors,'outputIndex',outIdx)

Description
ploterrcorr(error) takes an error time series and plots the autocorrelation of errors across
varying lags.

ploterrcorr(errors,'outputIndex',outIdx) uses the optional property name/value pair to
define which output error autocorrelation is plotted. The default is 1.

Examples
Plot Autocorrelation of Errors

Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
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Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)
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Version History
Introduced in R2010b

See Also
plotinerrcorr | plotresponse
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ploterrhist
Plot error histogram

Syntax
ploterrhist(e)
ploterrhist(e1,'name1',e2,'name2',...)
ploterrhist(...,'bins',bins)

Description
ploterrhist(e) plots a histogram of error values e.

ploterrhist(e1,'name1',e2,'name2',...) takes any number of errors and names and plots
each pair.

ploterrhist(...,'bins',bins) takes an optional property name-value pair which defines the
number of bins to use in the histogram plot. The default is 20.

Examples

Plot Histogram of Error Values

This example shows how to plot the histogram of error values of a trained feed-forward network.

Create a feed-forward network and train it using the data from the simple fit data set. Then plot the
histogram of error values.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
e = t - y;
ploterrhist(e,'bins',30)
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Input Arguments
e — Errors
vector | matrix

Errors to plot, specified as a vector or a matrix.

'bins',bins — Number of bins
20 (default) | integer

Number of bins to use in the histogram plot, specified as the comma-separated pair consisting of
'bins' and an integer.

Version History
Introduced in R2010b

See Also
plotconfusion | ploterrcorr | plotinerrcorr
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plotes
Plot error surface of single-input neuron

Syntax
plotes(WV,BV,ES,V)

Description
plotes(WV,BV,ES,V) takes these arguments,

WV 1-by-N row vector of values of W
BV 1-by-M row vector of values of B
ES M-by-N matrix of error vectors
V View (default = [-37.5, 30])

and plots the error surface with a contour underneath.

Calculate the error surface ES with errsurf.

Examples
Plot Error Surface of Single-Input Neuron

p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4;
bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])
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Version History
Introduced before R2006a

See Also
errsurf

 plotes
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plotfit
Plot function fit

Syntax
plotfit(net,inputs,targets)
plotfit(net,inputs1,targets1,name1,inputs2,targets2,name2,...)
plotfit(...,'outputIndex',outputIndex)

Description
plotfit(net,inputs,targets) plots the output function of a network across the range of the
inputs inputs and also plots target targets and output data points associated with values in
inputs. Error bars show the difference between outputs and targets.

The plot appears only for networks with one input.

Only the first output/targets appear if the network has more than one output.

plotfit(net,inputs1,targets1,name1,inputs2,targets2,name2,...) plots multiple sets
of data.

plotfit(...,'outputIndex',outputIndex) plots using an optional parameter that overrides
the default index of the output element.

Examples

Plot Output and Target Values

This example shows how to use a feed-forward network to solve a simple fitting problem.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
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plotfit(net,x,t)
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Input Arguments
net — Input network
network object

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

inputs — Network inputs
matrix | cell array

Network inputs, specified as a matrix or cell array.

targets — Network targets
matrix | cell array

Network targets, specified as a matrix or cell array.
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Version History
Introduced in R2008a

See Also
plottrainstate

 plotfit
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plotinerrcorr
Plot input to error time-series cross-correlation

Syntax
plotinerrcorr(x,e)
plotinerrcorr(...,'inputIndex',inputIndex)
plotinerrcorr(...,'outputIndex',outputIndex)

Description
plotinerrcorr(x,e) takes an input time series x and an error time series e, and plots the cross-
correlation of inputs to errors across varying lags.

plotinerrcorr(...,'inputIndex',inputIndex) optionally defines which input element is
being correlated and plotted. The default is 1.

plotinerrcorr(...,'outputIndex',outputIndex) optionally defines which error element is
being correlated and plotted. The default is 1.

Examples
Plot Cross-Correlation of Inputs to Errors

Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
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Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
plotinerrcorr(Xs,E)
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Version History
Introduced in R2010b

See Also
ploterrcorr | plotresponse | ploterrhist

2 Approximation, Clustering, and Control Functions

2-308



plotpc
Plot classification line on perceptron vector plot

Syntax
plotpc(W,B)
plotpc(W,B,H)

Description
plotpc(W,B) takes these inputs,

W S-by-R weight matrix (R must be 3 or less)
B S-by-1 bias vector

and returns a handle to a plotted classification line.

plotpc(W,B,H) takes an additional input,

H Handle to last plotted line

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be called after plotpv.

Examples
Plot Classification Line

The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
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The following code creates a perceptron, assigns values to its weights and biases, and plots the
resulting classification line.

net = perceptron;
net = configure(net,p,t);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})
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Version History
Introduced before R2006a

See Also
plotpv

 plotpc
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plotperform
Plot network performance

Syntax
plotperform(TR)

Description
plotperform(TR) plots error vs. epoch for the training, validation, and test performances of the
training record TR returned by the function train.

Examples

Plot Validation Performance of Network

This example shows how to use plotperform to obtain a plot of training record error values against
the number of training epochs.

[x,t] = bodyfat_dataset;
net = feedforwardnet(10);
[net,tr] = train(net,x,t);
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plotperform(tr)
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Generally, the error reduces after more epochs of training, but might start to increase on the
validation data set as the network starts overfitting the training data. In the default setup, the
training stops after six consecutive increases in validation error, and the best performance is taken
from the epoch with the lowest validation error.

Input Arguments
TR — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch)
• A list of training state names (states)
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)
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Version History
Introduced in R2008a

See Also
plottrainstate

 plotperform
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plotpv
Plot perceptron input/target vectors

Syntax
plotpv(P,T)
plotpv(P,T,V)

Description
plotpv(P,T) takes these inputs,

P R-by-Q matrix of input vectors (R must be 3 or less)
T S-by-Q matrix of binary target vectors (S must be 3 or less)

and plots column vectors in P with markers based on T.

plotpv(P,T,V) takes an additional input,

V Graph limits = [x_min x_max y_min y_max]

and plots the column vectors with limits set by V.

Examples
Plot Inputs and Targets for Perceptron

This example shows how to define and plot the inputs and targets for a perceptron.

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
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Version History
Introduced before R2006a

See Also
plotpc
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plotregression
Plot linear regression

Syntax
plotregression(targets,outputs)
plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)

Description
plotregression(targets,outputs) plots the linear regression of targets relative to outputs.

plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)generates multiple
plots.

Examples

Plot Regression

This example shows how to plot the linear regression of a feedforward net.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
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y = net(x);
plotregression(t,y,'Regression')
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Input Arguments
targets — Network targets
matrix | cell array

Network targets, specified as a matrix or cell array.

outputs — Network outputs
matrix | cell array

Network outputs, specified as a matrix or cell array.

Version History
Introduced in R2008a
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See Also
plottrainstate
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plotresponse
Plot dynamic network time series response

Syntax
plotresponse(t,y)
plotresponse(t1,'name',t2,'name2',...,y)
plotresponse(...,'outputIndex',outputIndex)

Description
plotresponse(t,y) takes a target time series t and an output time series y, and plots them on the
same axis showing the errors between them.

plotresponse(t1,'name',t2,'name2',...,y) takes multiple target/name pairs, typically
defining training, validation and testing targets, and the output. It plots the responses with colors
indicating the different target sets.

plotresponse(...,'outputIndex',outputIndex) optionally defines which error element is
being correlated and plotted. The default is 1.

Examples
Plot Target and Output Time Series Data

This example shows how to use a NARX network to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
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Y = net(Xs,Xi,Ai);
plotresponse(Ts,Y)
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Version History
Introduced in R2010b

See Also
ploterrcorr | plotinerrcorr | ploterrhist
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plotroc
Plot receiver operating characteristic

Syntax
plotroc(targets,outputs)
plotroc(targets1,outputs2,'name1',...)

Description
plotroc(targets,outputs) plots the receiver operating characteristic for each output class. The
more each curve hugs the left and top edges of the plot, the better the classification.

Tip plotroc does not support categorical targets. To plot ROC metrics for categorical targets, use
rocmetrics.

plotroc(targets1,outputs2,'name1',...) generates multiple plots.

Examples

Plot Receiver Operating Characteristic

This example shows how to plot the receiver operating characteristic for each output class in a
pattern network.

load simplecluster_dataset
net = patternnet(20);
net = train(net,simpleclusterInputs,simpleclusterTargets);
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simpleclusterOutputs = sim(net,simpleclusterInputs);
plotroc(simpleclusterTargets,simpleclusterOutputs)
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Input Arguments
targets — Network targets
matrix | cell array

Network targets, specified as a matrix or cell array.

 plotroc

2-327



outputs — Network outputs
matrix | cell array

Network outputs, specified as a matrix or cell array.

Version History
Introduced in R2008a

See Also
roc
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plotsom
Plot self-organizing map

Syntax
plotsom(pos)
plotsom(W,D,ND)

Description
plotsom(pos) takes one argument,

POS N-by-S matrix of S N-dimension neural positions

and plots the neuron positions with red dots, linking the neurons within a Euclidean distance of 1.

plotsom(W,D,ND) takes three arguments,

W S-by-R weight matrix
D S-by-S distance matrix
ND Neighborhood distance (default = 1)

and plots the neuron’s weight vectors with connections between weight vectors whose neurons are
within a distance of 1.

Examples
Plot Self-Organizing Maps

These examples generate plots of various layer topologies.

pos = hextop([5 6]); 
plotsom(pos)
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pos = gridtop([4 5]); 
plotsom(pos)
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pos = randtop([18 12]); 
plotsom(pos)
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pos = gridtop([4 5 2]); 
plotsom(pos)
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pos = hextop([4 4 3]); 
plotsom(pos)
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See plotsompos for an example of plotting a layer’s weight vectors with the input vectors they map.

Version History
Introduced before R2006a

See Also
learnsom
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plotsomhits
Plot self-organizing map sample hits

Syntax
plotsomhits(net,inputs)

Description
plotsomhits(net,inputs) plots a SOM layer, with each neuron showing the number of input
vectors that it classifies. The relative number of vectors for each neuron is shown via the size of a
colored patch.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Sample Hits

x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);

 plotsomhits
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plotsomhits(net,x)
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Version History
Introduced in R2008a

See Also
plotsomplanes
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plotsomnc
Plot self-organizing map neighbor connections

Syntax
plotsomnc(net)

Description
plotsomnc(net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor
relations with red lines.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Neighbor Connections

x = iris_dataset;
net = selforgmap([8 8]);
net = train(net,x);
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plotsomnc(net)
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Version History
Introduced in R2008a

See Also
plotsomnd | plotsomplanes | plotsomhits
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plotsomnd
Plot self-organizing map neighbor distances

Syntax
plotsomnd(net)

Description
plotsomnd(net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor
relations with red lines. The neighbor patches are colored from black to yellow to show how close
each neuron’s weight vector is to its neighbors.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Neighbor Distances

x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
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plotsomnd(net)
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Version History
Introduced in R2008a

See Also
plotsomhits | plotsomnc | plotsomplanes
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plotsomplanes
Plot self-organizing map weight planes

Syntax
plotsomplanes(net)

Description
plotsomplanes(net) generates a set of subplots. Each ith subplot shows the weights from the ith
input to the layer’s neurons, with the most negative connections shown as black, zero connections as
red, and the strongest positive connections as yellow.

The plot is only shown for layers organized in one or two dimensions.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

This function can also be called with standardized plotting function arguments used by the function
train.

Examples
Plot SOM Weight Planes

x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
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plotsomplanes(net)
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Version History
Introduced in R2008a

See Also
plotsomhits | plotsomnc | plotsomnd
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plotsompos
Plot self-organizing map weight positions

Syntax
plotsompos(net)
plotsompos(net,inputs)

Description
plotsompos(net) plots the input vectors as green dots and shows how the SOM classifies the input
space by showing blue-gray dots for each neuron’s weight vector and connecting neighboring
neurons with red lines.

plotsompos(net,inputs) plots the input data alongside the weights.

Examples
Plot SOM Weight Positions

x = iris_dataset;
net = selforgmap([10 10]);
net = train(net,x);
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plotsompos(net,x)
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Version History
Introduced in R2008a

See Also
plotsomnd | plotsomplanes | plotsomhits
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plotsomtop
Plot self-organizing map topology

Syntax
plotsomtop(net)

Description
plotsomtop(net) plots the topology of a SOM layer.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Topology

x = iris_dataset;
net = selforgmap([8 8]);
plotsomtop(net)
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Version History
Introduced in R2008a

See Also
plotsomnd | plotsomplanes | plotsomhits
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plottrainstate
Plot training state values

Syntax
plottrainstate(tr)

Description
plottrainstate(tr) plots the training state from a training record tr returned by train.

Examples

Plot Training State Values

This example shows how to plot training state values using plottrainstate.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10);
[net, tr] = train(net, x, t);
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plottrainstate(tr)
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Version History
Introduced in R2008a

See Also
plotfit | plotperform | plotregression
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plotv
Plot vectors as lines from origin

Syntax
plotv(M,T)

Description
plotv(M,T) takes a matrix of column vectors, M, and the line plotting type, T, and plots the column
vectors of M.

Examples

Plot Vectors Using the plotv Function

This example shows how to plot three 2-element vectors.

M = [-0.4 0.7 0.2 ;
     -0.5 0.1 0.5];
plotv(M,'-')
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Input Arguments
M — Matrix to plot
matrix

Matrix of column vectors to plot, specified as a R-by-Q matrix of Q column vectors with R elements.

R must be 2 or greater. If R is greater than 2, this function only uses the first two rows of M for the
plot.

T — Line plotting type
character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The
symbols can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the nodes and no edges between them.
Example: '--or' is a red dashed line with circle markers.

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y Yellow
m Magenta
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Color Description
c Cyan
r Red
g Green
b Blue
w White
k Black

Version History
Introduced before R2006a

See Also
plotvec | plotfit
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plotvec
Plot vectors with different colors

Syntax
plotvec(X,C,M)

Description
plotvec(X,C,M) takes these inputs,

X Matrix of (column) vectors
C Row vector of color coordinates
M Marker (default = '+')

and plots each ith vector in X with a marker M, using the ith value in C as the color coordinate.

plotvec(X) only takes a matrix X and plots each ith vector in X with marker '+' using the index i
as the color coordinate.

Examples
Plot Vectors with Different Colors

This example shows how to plot four 2-element vectors.

x = [ 0 1 0.5 0.7 ; ...
     -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)
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Version History
Introduced before R2006a
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plotwb
Plot Hinton diagram of weight and bias values

Syntax
plotwb(net)
plotwb(IW,LW,B)
plotwb(...,'toLayers',toLayers)
plotwb(...,'fromInputs',fromInputs)
plotwb(...,'fromLayers',fromLayers)
plotwb(...,'root',root)

Description
plotwb(net) takes a neural network and plots all its weights and biases.

plotwb(IW,LW,B) takes a neural networks input weights, layer weights and biases and plots them.

plotwb(...,'toLayers',toLayers) optionally defines which destination layers whose input
weights, layer weights and biases will be plotted.

plotwb(...,'fromInputs',fromInputs) optionally defines which inputs will have their weights
plotted.

plotwb(...,'fromLayers',fromLayers) optionally defines which layers will have weights
coming from them plotted.

plotwb(...,'root',root) optionally defines the root used to scale the weight/bias patch sizes.
The default is 2, which makes the 2-dimensional patch sizes scale directly with absolute weight and
bias sizes. Larger values of root magnify the relative patch sizes of smaller weights and biases,
making differences in smaller values easier to see.

Examples
Plot Weights and Biases

Here a cascade-forward network is configured for particular data and its weights and biases are
plotted in several ways.

[x,t] = simplefit_dataset;
net = cascadeforwardnet([15 5]);
net = configure(net,x,t);
plotwb(net)
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plotwb(net,'root',3)
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plotwb(net,'root',4)
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plotwb(net,'toLayers',2)
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plotwb(net,'fromLayers',1)
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plotwb(net,'toLayers',2,'fromInputs',1)
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Version History
Introduced in R2010b

See Also
plotsomplanes
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pnormc
Pseudonormalize columns of matrix

Syntax
pnormc(X,R)

Description
pnormc(X,R) takes these arguments,

X M-by-N matrix
R (Optional) radius to normalize columns to (default = 1)

and returns X with an additional row of elements, which results in new column vector lengths of R.

Caution For this function to work properly, the columns of X must originally have vector lengths less
than R.

Examples
x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)

Version History
Introduced before R2006a

See Also
normc | normr
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poslin
Positive linear transfer function

Graph and Symbol

Syntax
A = poslin(N,FP)
info = poslin('code')

Description
poslin is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = poslin(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [0, inf].

info = poslin('code') returns information about this function. The following codes are
supported:

poslin('name') returns the name of this function.

poslin('output',FP) returns the [min max] output range.

poslin('active',FP) returns the [min max] active range.

poslin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

poslin('fpnames') returns the names of the function parameters.

poslin('fpdefaults') returns the default function parameters.

Examples
Here is the code to create a plot of the poslin transfer function.
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n = -5:0.1:5;
a = poslin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'poslin';

Network Use
To change a network so that a layer uses poslin, set net.layers{i}.transferFcn to 'poslin'.

Call sim to simulate the network with poslin.

Algorithms
The transfer function poslin returns the output n if n is greater than or equal to zero and 0 if n is
less than or equal to zero.

poslin(n) = n, if n >= 0
          = 0, if n <= 0

Version History
Introduced before R2006a

See Also
sim | purelin | satlin | satlins
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preparets
Prepare input and target time series data for network simulation or training

Syntax
[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW)

Description
[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW) takes these arguments:

• net — Neural network
• Xnf — Non-feedback inputs
• Tnf — Non-feedback targets
• Tf — Feedback targets
• EW — Error weights (optional)

and returns these arguments:

• Xs — Shifted inputs
• Xi — Initial input delay states
• Ai — Initial layer delay states
• Ts — Shifted targets
• EWs — Shifted error weights
• shift — The number of timesteps truncated from the front of X and T in order to properly fill Xi

and Ai.

This function simplifies the normally complex and error prone task of reformatting input and target
time series. It automatically shifts input and target time series as many steps as are needed to fill the
initial input and layer delay states. If the network has open-loop feedback, then it copies feedback
targets into the inputs as needed to define the open-loop inputs.

Each time a new network is designed, with different numbers of delays or feedback settings,
preparets can reformat input and target data accordingly. Also, each time a network is transformed
with openloop, closeloop, removedelay or adddelay, this function can reformat the data
accordingly.

Examples

Prepare Data for Open- and Closed-Loop Networks

This example shows how to prepare data for open-loop and closed-loop networks.

Create a time-delay network with 20 hidden neurons, then train and simulate it.

[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
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[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts);
view(net)

Y = net(Xs,Xi,Ai);

Design a NARX network. The NARX network has a standard input and an open-loop feedback output
to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
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view(net)
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y = net(Xs,Xi,Ai);

Now convert the network to closed loop, and reformat the data to simulate the network’s closed-loop
response.

net = closeloop(net);
view(net)

 preparets

2-373



[Xs,Xi,Ai] = preparets(net,X,{},T);
y = net(Xs,Xi,Ai);

Input Arguments
net — Input network
network

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Xnf — Non-feedback inputs
cell array

Non-feedback input data (inputs not associated with an open loop feedback output), specified as cell
array.

2 Approximation, Clustering, and Control Functions

2-374



Tnf — Non-feedback targets
cell array

Target data for non-feedback outputs, specified as a cell array.

Tf — Feedback targets
cell array

Target data for outputs with feedback, specified as a cell array.

EW — Error weights
cell array

Error weights, specified as a cell array.

Output Arguments
Xs — Shifted inputs
cell array

Shifted inputs, returned as a cell array.

Xi — Initial input delay states
cell array

Initial input delay states, returned as cell array.

Ai — Initial layer delay states
cell array

Initial layer delay states, returned as a cell array.

Ts — Shifted targets
cell array

Shifted targets, returned as a cell array.

EWs — Shifted error weights
cell array

Shifted error weights, returned as a cell array.

shift — Timesteps
scalar

Number of timesteps truncated from the front of X and T in order to properly fill Xi and Ai, returned
as a scalar.

Version History
Introduced in R2010b
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See Also
adddelay | closeloop | narnet | narxnet | openloop | removedelay | timedelaynet
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processpca
Process columns of matrix with principal component analysis

Syntax
[Y,PS] = processpca(X,maxfrac)
[Y,PS] = processpca(X,FP)
Y = processpca('apply',X,PS)
X = processpca('reverse',Y,PS)
name = processpca('name')
fp = processpca('pdefaults')
names = processpca('pdesc')
processpca('pcheck',fp);

Description
processpca processes matrices using principal component analysis so that each row is
uncorrelated, the rows are in the order of the amount they contribute to total variation, and rows
whose contribution to total variation are less than maxfrac are removed.

[Y,PS] = processpca(X,maxfrac) takes X and an optional parameter,

X N-by-Q matrix
maxfrac Maximum fraction of variance for removed rows (default is 0)

and returns

Y M-by-Q matrix with N - M rows deleted
PS Process settings that allow consistent processing of values

[Y,PS] = processpca(X,FP) takes parameters as a struct: FP.maxfrac.

Y = processpca('apply',X,PS) returns Y, given X and settings PS.

X = processpca('reverse',Y,PS) returns X, given Y and settings PS.

name = processpca('name') returns the name of this process method.

fp = processpca('pdefaults') returns default process parameter structure.

names = processpca('pdesc') returns the process parameter descriptions.

processpca('pcheck',fp); throws an error if any parameter is illegal.

Examples
Here is how to format a matrix with an independent row, a correlated row, and a completely
redundant row so that its rows are uncorrelated and the redundant row is dropped.
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x1_independent = rand(1,5)
x1_correlated = rand(1,5) + x1_independent;
x1_redundant = x1_independent + x1_correlated
x1 = [x1_independent; x1_correlated; x1_redundant]
[y1,ps] = processpca(x1)

Next, apply the same processing settings to new values.

x2_independent = rand(1,5)
x2_correlated = rand(1,5) + x1_independent;
x2_redundant = x1_independent + x1_correlated
x2 = [x2_independent; x2_correlated; x2_redundant];
y2 = processpca('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = processpca('reverse',y1,ps)

More About
Reduce Input Dimensionality Using processpca

In some situations, the dimension of the input vector is large, but the components of the vectors are
highly correlated (redundant). It is useful in this situation to reduce the dimension of the input
vectors. An effective procedure for performing this operation is principal component analysis. This
technique has three effects: it orthogonalizes the components of the input vectors (so that they are
uncorrelated with each other), it orders the resulting orthogonal components (principal components)
so that those with the largest variation come first, and it eliminates those components that contribute
the least to the variation in the data set. The following code illustrates the use of processpca, which
performs a principal-component analysis using the processing setting maxfrac of 0.02.

[pn,ps1] = mapstd(p);
[ptrans,ps2] = processpca(pn,0.02);

The input vectors are first normalized, using mapstd, so that they have zero mean and unity variance.
This is a standard procedure when using principal components. In this example, the second argument
passed to processpca is 0.02. This means that processpca eliminates those principal components
that contribute less than 2% to the total variation in the data set. The matrix ptrans contains the
transformed input vectors. The settings structure ps2 contains the principal component
transformation matrix. After the network has been trained, these settings should be used to transform
any future inputs that are applied to the network. It effectively becomes a part of the network, just
like the network weights and biases. If you multiply the normalized input vectors pn by the
transformation matrix transMat, you obtain the transformed input vectors ptrans.

If processpca is used to preprocess the training set data, then whenever the trained network is
used with new inputs, you should preprocess them with the transformation matrix that was computed
for the training set, using ps2. The following code applies a new set of inputs to a network already
trained.

pnewn = mapstd('apply',pnew,ps1);
pnewtrans = processpca('apply',pnewn,ps2);
a = sim(net,pnewtrans);

Principal component analysis is not reliably reversible. Therefore it is only recommended for input
processing. Outputs require reversible processing functions.
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Principal component analysis is not part of the default processing for feedforwardnet. You can add
this with the following command:

net.inputs{1}.processFcns{end+1} = 'processpca';

Algorithms
Values in rows whose elements are not all the same value are set to

y = 2*(x-minx)/(maxx-minx) - 1;

Values in rows with all the same value are set to 0.

Version History
Introduced in R2006a

See Also
fixunknowns | mapminmax | mapstd
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prune
Delete neural inputs, layers, and outputs with sizes of zero

Syntax
[net,pi,pl,po] = prune(net)

Description
This function removes zero-sized inputs, layers, and outputs from a network. This leaves a network
which may have fewer inputs and outputs, but which implements the same operations, as zero-sized
inputs and outputs do not convey any information.

One use for this simplification is to prepare a network with zero sized subobjects for Simulink, where
zero sized signals are not supported.

The companion function prunedata can prune data to remain consistent with the transformed
network.

[net,pi,pl,po] = prune(net) takes a neural network and returns

net The same network with zero-sized subobjects removed
pi Indices of pruned inputs
pl Indices of pruned layers
po Indices of pruned outputs

Examples
Here a NARX dynamic network is created which has one external input and a second input which
feeds back from the output.

net = narxnet(20);
view(net)

The network is then trained on a single random time-series problem with 50 timesteps. The external
input happens to have no elements.

X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink diagram and initializing its input
and layer states.

[net2,pi,pl,po] = prune(net);
view(net2)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts);
[sysName,netName] = gensim(net2);
setsiminit(sysName,netName,net2,Xi2,Ai2);
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Version History
Introduced in R2010b

See Also
prunedata | gensim
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prunedata
Prune data for consistency with pruned network

Syntax
[Xp,Xip,Aip,Tp] = prunedata(net,pi,pl,po,X,Xi,Ai,T)

Description
This function prunes data to be consistent with a network whose zero-sized inputs, layers, and
outputs have been removed with prune.

One use for this simplification is to prepare a network with zero-sized subobjects for Simulink, where
zero-sized signals are not supported.

[Xp,Xip,Aip,Tp] = prunedata(net,pi,pl,po,X,Xi,Ai,T) takes these arguments,

net Pruned neural network
pi Indices of pruned inputs
pl Indices of pruned layers
po Indices of pruned outputs
X Input data
Xi Initial input delay states
Ai Initial layer delay states
T Target data

and returns the pruned inputs, input and layer delay states, and targets.

Examples
Here a NARX dynamic network is created which has one external input and a second input which
feeds back from the output.

net = narxnet(20);
view(net)

The network is then trained on a single random time-series problem with 50 timesteps. The external
input happens to have no elements.

X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink diagram and initializing its input
and layer states.

[net2,pi,pl,po] = prune(net);
view(net2)
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[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts);
[sysName,netName] = gensim(net2);
setsiminit(sysName,netName,net2,Xi2,Ai2);

Version History
Introduced in R2010b

See Also
prune | gensim
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purelin
Linear transfer function

Syntax
A = purelin(N)
info = purelin('code')

Description
A = purelin(N) takes an S-by-Q matrix of net input (column) vectors, N, and returns an S-by-Q
matrix equal to N, A.

info = purelin('code') returns useful information for each code character vector:

• purelin('name') returns the name of this function.
• purelin('output') returns the [min max] output range.
• purelin('active') returns the [min max] active input range.
• purelin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
• purelin('fpnames') returns the names of the function parameters.
• purelin('fpdefaults') returns the default function parameters.

Examples

Create a purelin Transfer Function and Assign It to a Layer in a Network

This example shows how to create and plot a purelin transfer function and assign it to layer i in a
network.

Create a plot of the purelin transfer function:

n = -5:0.1:5;
a = purelin(n);
plot(n,a)

Assign this transfer function to layer i in a network.
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net.layers{i}.transferFcn = 'purelin';

Input Arguments
N — Net inputs
matrix

Net column vector inputs, specified as anS-by-Q matrix.

Output Arguments
A — Linear transfer function
matrix

Linear transfer function, returned as an S-by-Q matrix.

Algorithms
a = purelin(n) = n

Version History
Introduced before R2006a

See Also
sim | satlin | satlins
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quant
Discretize values as multiples of quantity

Syntax
quant(X,Q)

Description
quant(X,Q) takes two inputs,

X Matrix, vector, or scalar
Q Minimum value

and returns values from X rounded to nearest multiple of Q.

Examples
x = [1.333 4.756 -3.897];
y = quant(x,0.1)

Version History
Introduced before R2006a
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radbas
Radial basis transfer function

Graph and Symbol

Syntax
A = radbas(N,FP)

Description
radbas is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = radbas(N,FP) takes one or two inputs,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N.

Examples
Here you create a plot of the radbas transfer function.

n = -5:0.1:5;
a = radbas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbas';

Algorithms
a = radbas(n) = exp(-n^2)

Version History
Introduced before R2006a
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See Also
sim | radbasn | tribas
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radbasn
Normalized radial basis transfer function

Graph and Symbol

Syntax
A = radbasn(N,FP)

Description
radbasn is a neural transfer function. Transfer functions calculate a layer’s output from its net input.
This function is equivalent to radbas, except that output vectors are normalized by dividing by the
sum of the pre-normalized values.

A = radbasn(N,FP) takes one or two inputs,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N.

Examples
Here six random 3-element vectors are passed through the radial basis transform and normalized.

n = rand(3,6)
a = radbasn(n)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbasn';

Algorithms
a = radbasn(n) = exp(-n^2) / sum(exp(-n^2))
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Version History
Introduced in R2010b

See Also
sim | radbas | tribas
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randnc
Normalized column weight initialization function

Syntax
W = randnc(S,PR)

Description
randnc is a weight initialization function.

W = randnc(S,PR) takes two inputs,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized columns.

You can also call this in the form randnc(S,R).

Examples
A random matrix of four normalized three-element columns is generated:

M = randnc(3,4)
M =
    -0.6007   -0.4715   -0.2724    0.5596
    -0.7628   -0.6967   -0.9172    0.7819
    -0.2395    0.5406   -0.2907    0.2747

Version History
Introduced before R2006a

See Also
randnr
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randnr
Normalized row weight initialization function

Syntax
W = randnr(S,PR)

Description
randnr is a weight initialization function.

W = randnr(S,PR) takes two inputs,

S Number of rows (neurons)
PR R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized rows.

You can also call this in the form randnr(S,R).

Examples
A matrix of three normalized four-element rows is generated:

M = randnr(3,4)
M =
    0.9713    0.0800   -0.1838   -0.1282
    0.8228    0.0338    0.1797    0.5381
   -0.3042   -0.5725    0.5436    0.5331

Version History
Introduced before R2006a

See Also
randnc
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rands
Symmetric random weight/bias initialization function

Syntax
W = rands(S,PR)
M = rands(S,R)
v = rands(S)

Description
rands is a weight/bias initialization function.

W = rands(S,PR) takes

S Number of neurons
PR R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of random values between –1 and 1.

M = rands(S,R) returns an S-by-R matrix of random values. v = rands(S) returns an S-by-1
vector of random values.

Examples
Here, three sets of random values are generated with rands.

rands(4,[0 1; -2 2])
rands(4)
rands(2,3)

Network Use
To prepare the weights and the bias of layer i of a custom network to be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay’s default
parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to 'rands'.
4 Set each net.layerWeights{i,j}.initFcn to 'rands'.
5 Set each net.biases{i}.initFcn to 'rands'.

To initialize the network, call init.

Version History
Introduced before R2006a
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See Also
randsmall | randnr | randnc | initwb | initlay | init

2 Approximation, Clustering, and Control Functions

2-394



randsmall
Small random weight/bias initialization function

Syntax
W = randsmall(S,PR)
M = rands(S,R)
v = rands(S)

Description
randsmall is a weight/bias initialization function.

W = randsmall(S,PR) takes

S Number of neurons
PR R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of small random values between –0.1 and 0.1.

M = rands(S,R) returns an S-by-R matrix of random values. v = rands(S) returns an S-by-1
vector of random values.

Examples
Here three sets of random values are generated with rands.

randsmall(4,[0 1; -2 2])
randsmall(4)
randsmall(2,3)

Network Use
To prepare the weights and the bias of layer i of a custom network to be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay’s default
parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.
3 Set each net.inputWeights{i,j}.initFcn to 'randsmall'.
4 Set each net.layerWeights{i,j}.initFcn to 'randsmall'.
5 Set each net.biases{i}.initFcn to 'randsmall'.

To initialize the network, call init.

Version History
Introduced in R2010b
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See Also
rands | randnr | randnc | initwb | initlay | init
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randtop
Random layer topology function

Syntax
pos = randtop(dimensions)

Description
randtop calculates the neuron positions for layers whose neurons are arranged in an N-dimensional
random pattern.

pos = randtop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors, where N is the number of dimensions and S is
the product of dimensions.

Examples

Display Layer with Random Pattern

This shows how to display a two-dimensional layer with neurons arranged in a random pattern.

pos = randtop([18 12]);
plotsom(pos)
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Version History
Introduced before R2006a

See Also
gridtop | hextop | tritop
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regression
(Not recommended) Perform linear regression of shallow network outputs on targets

Note regression is not recommended. Use fitlm instead. For more information, see
“Compatibility Considerations”.

Syntax
[r,m,b] = regression(t,y)
[r,m,b] = regression(t,y,'one')

Description
[r,m,b] = regression(t,y) calculates the linear regression between each element of the
network response and the corresponding target.

This function takes cell array or matrix target t and output y, each with total matrix rows of N, and
returns the regression values, r, the slopes of regression fit, m, and the y-intercepts, b, for each of the
N matrix rows.

[r,m,b] = regression(t,y,'one') combines all matrix rows before regressing, and returns
single scalar regression, slope, and offset values.

Examples

Fit Regression Model and Plot Fitted Values versus Targets

This example shows how to train a feedforward network and calculate and plot the regression
between its targets and outputs.

Load the training data.

[x,t] = simplefit_dataset;

The 1-by-94 matrix x contains the input values and the 1-by-94 matrix t contains the associated
target output values.

Construct a feedforward neural network with one hidden layer of size 20.

net = feedforwardnet(20);

Train the network net using the training data.

net = train(net,x,t);
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Estimate the targets using the trained network.

y = net(x);

Calculate and plot the regression between its targets and outputs.

[r,m,b] = regression(t,y)

r = 1.0000
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m = 1.0000

b = 1.0878e-04

plotregression(t,y)

Input Arguments
t — Target
matrix | cell array

Network targets, specified as a matrix or cell array.

y — Output
scalar

Network outputs, specified as a matrix or cell array.

 regression
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Output Arguments
r — Regression value
scalar

Regression value, returned as a scalar.

m — Slope
scalar

Slope of regression fit, returned as a scalar.

b — Offset
scalar

Offset of regression fit, returned as a scalar.

Version History
Introduced in R2010b

regression is not recommended
Not recommended starting in R2020b

regression is not recommended. To fit a linear regression model, use fitlm instead.

See Also
plotregression | confusion | fitlm
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removeconstantrows
Process matrices by removing rows with constant values

Syntax
[Y,PS] = removeconstantrows(X,max_range)
[Y,PS] = removeconstantrows(X,FP)
Y = removeconstantrows('apply',X,PS)
X = removeconstantrows('reverse',Y,PS)

Description
removeconstantrows processes matrices by removing rows with constant values.

[Y,PS] = removeconstantrows(X,max_range) takes X and an optional parameter,

X N-by-Q matrix
max_range Maximum range of values for row to be removed (default is 0)

and returns

Y M-by-Q matrix with N - M rows deleted
PS Process settings that allow consistent processing of values

[Y,PS] = removeconstantrows(X,FP) takes parameters as a struct: FP.max_range.

Y = removeconstantrows('apply',X,PS) returns Y, given X and settings PS.

X = removeconstantrows('reverse',Y,PS) returns X, given Y and settings PS.

Any NaN values in the input matrix are treated as missing data, and are not considered as unique
values. So, for example, removeconstantrows removes the first row from the matrix [1 1 1 NaN;
1 1 1 2].

Examples
Format a matrix so that the rows with constant values are removed.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0];
[y1,PS] = removeconstantrows(x1);

y1 =
     1     2     4
     3     2     2

PS = 
    max_range: 0
         keep: [1 3]
       remove: [2 4]
        value: [2x1 double]
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        xrows: 4
        yrows: 2
    constants: [2x1 double]
    no_change: 0

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0];
y2 = removeconstantrows('apply',x2,PS)

5     2     3
6     7     3

Reverse the processing of y1 to get the original x1 matrix.

x1_again = removeconstantrows('reverse',y1,PS)

1     2     4
1     1     1
3     2     2
0     0     0

Version History
Introduced in R2006a

See Also
fixunknowns | mapminmax | mapstd | processpca
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removedelay
Remove delay to neural network’s response

Syntax
net = removedelay(net,n)

Description
net = removedelay(net,n) takes these arguments,

net Neural network
n Number of delays

and returns the network with input delay connections decreased, and output feedback delays
increased, by the specified number of delays n. The result is a network which behaves identically,
except that outputs are produced n timesteps earlier.

If the number of delays n is not specified, a default of one delay is used.

Examples

Remove and Add Delay to Network

This example shows how to create, train, and simulate a time delay network in its original form, on an
input time series X and target series T. Then the delay is removed and later added back. The first and
third outputs will be identical, while the second result will include a new prediction for the following
step.

Time Delay

[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
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y1 = net1(Xs,Xi);
view(net1)
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Remove Delay

net2 = removedelay(net1);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi);
view(net2)
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Add Delay

net3 = adddelay(net2);
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi);
view(net3)
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Version History
Introduced in R2010b

See Also
adddelay | closeloop | openloop
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removerows
Process matrices by removing rows with specified indices

Syntax
[Y,PS] = removerows(X,'ind',ind)
[Y,PS] = removerows(X,FP)
Y = removerows('apply',X,PS)
X = removerows('reverse',Y,PS)
dx_dy = removerows('dx',X,Y,PS)
dx_dy = removerows('dx',X,[],PS)
name = removerows('name')
fp = removerows('pdefaults')
names = removerows('pdesc')
removerows('pcheck',FP)

Description
removerows processes matrices by removing rows with the specified indices.

[Y,PS] = removerows(X,'ind',ind) takes X and an optional parameter,

X N-by-Q matrix
ind Vector of row indices to remove (default is [])

and returns

Y M-by-Q matrix, where M == N-length(ind)
PS Process settings that allow consistent processing of values

[Y,PS] = removerows(X,FP) takes parameters as a struct: FP.ind.

Y = removerows('apply',X,PS) returns Y, given X and settings PS.

X = removerows('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = removerows('dx',X,Y,PS) returns the M-by-N-by-Q derivative of Y with respect to X.

dx_dy = removerows('dx',X,[],PS) returns the derivative, less efficiently.

name = removerows('name') returns the name of this process method.

fp = removerows('pdefaults') returns the default process parameter structure.

names = removerows('pdesc') returns the process parameter descriptions.

removerows('pcheck',FP) throws an error if any parameter is illegal.
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Examples
Here is how to format a matrix so that rows 2 and 4 are removed:

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,ps] = removerows(x1,'ind',[2 4])

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = removerows('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = removerows('reverse',y1,ps)

Algorithms
In the reverse calculation, the unknown values of replaced rows are represented with NaN values.

Version History
Introduced in R2006a

See Also
fixunknowns | mapminmax | mapstd | processpca
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revert
Change network weights and biases to previous initialization values

Syntax
net = revert (net)

Description
net = revert (net) returns neural network net with weight and bias values restored to the
values generated the last time the network was initialized.

If the network is altered so that it has different weight and bias connections or different input or layer
sizes, then revert cannot set the weights and biases to their previous values and they are set to
zeros instead.

Examples
Here a perceptron is created with input size set to 2 and number of neurons to 1.

net = perceptron;
net.inputs{1}.size = 2;
net.layers{1}.size = 1;

The initial network has weights and biases with zero values.

net.iw{1,1}, net.b{1}

Change these values as follows:

net.iw{1,1} = [1 2]; 
net.b{1} = 5;
net.iw{1,1}, net.b{1}

You can recover the network’s initial values as follows:

net = revert(net);
net.iw{1,1}, net.b{1}

Version History
Introduced before R2006a

See Also
init | sim | adapt | train
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roc
Receiver operating characteristic

Syntax
[tpr,fpr,thresholds] = roc(targets,outputs)

Description
[tpr,fpr,thresholds] = roc(targets,outputs) takes a matrix of targets and a matrix of
outputs, and returns the true-positive/positive ratios, the false-positive/negative ratios and the
thresholds over interval [0,1].

Tip roc does not support categorical targets. To compute ROC metrics for categorical targets, use
rocmetrics.

For a single class problem, the function takes a matrix of boolean values indicating class membership
and a matrix of outputs values in the range [0,1].

The receiver operating characteristic is a metric used to check the quality of classifiers. For each
class of a classifier, roc applies threshold values across the interval [0,1] to outputs. For each
threshold, two values are calculated, the True Positive Ratio (TPR) and the False Positive Ratio (FPR).
For a particular class i, TPR is the number of outputs whose actual and predicted class is class i,
divided by the number of outputs whose predicted class is class i. FPR is the number of outputs
whose actual class is not class i, but predicted class is class i, divided by the number of outputs
whose predicted class is not class i.

You can visualize the results of this function with plotroc.

Examples

Calculate and Plot the ROC of a Network Trained to Recognize Iris Flowers

This example shows how to calculate and plot the ROC of a network trained to recognize Iris flowers.

load iris_dataset
net = patternnet(20);
net = train(net,irisInputs,irisTargets);
irisOutputs = sim(net,irisInputs);
[tpr,fpr,thresholds] = roc(irisTargets,irisOutputs)

Input Arguments
targets — Targets
matrix
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Targets, specified as an S-by-Q matrix, where each column vector contains a single 1 value, with all
other elements 0. The index of the 1 indicates which of S categories that vector represents.

For a single class problem, this argument is specified as a 1-by-Q matrix of boolean values indicating
class membership.

outputs — Outputs
matrix

Outputs, specified as an S-by-Q matrix, where each column contains values in the range [0,1]. The
index of the largest element in the column indicates which of S categories that vector presents.
Alternately, 1-by-Q vector, where values greater or equal to 0.5 indicate class membership, and
values below 0.5, nonmembership.

Output Arguments
tpr — True-positive ratios
cell array

Proportion of the targets that are greater than or equal to the threshold that actually have a target
value of 1, returned as a 1-by-S cell array of 1-by-N vectors.

For a single class problem, this output argument is returned as a 1-by-N vector.

fpr — False-positive ratios
cell array

Proportion of the targets that are greater than or equal to the threshold that actually have a target
value of zero, returned as a 1-by-S cell array of 1-by-N vectors.

For a single class problem, this output argument is returned as a 1-by-N vector.

thresholds — Thresholds
cell array

Thresholds, returned as a 1-by-S cell array of 1-by-N vectors over interval [0,1].

For a single class problem, this output argument is returned as a 1-by-N vector.

Version History
Introduced before R2006a

See Also
plotroc | confusion
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sae
Sum absolute error performance function

Syntax
perf = sae(net,t,y,ew)
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,FP)

Description
sae is a network performance function. It measures performance according to the sum of squared
errors.

perf = sae(net,t,y,ew) takes these input arguments and optional function parameters,

net Neural network
t Matrix or cell array of target vectors
y Matrix or cell array of output vectors
ew Error weights (default = {1})

and returns the sum squared error.

This function has two optional function parameters that can be defined with parameter name/pair
arguments, or as a structure FP argument with fields having the parameter name and assigned the
parameter values:

[...] = sae(...,'regularization',regularization)

[...] = sae(...,'normalization',normalization)

[...] = sae(...,FP)

• regularization — can be set to any value between the default of 0 and 1. The greater the
regularization value, the more squared weights and biases are taken into account in the
performance calculation.

• normalization

• 'none' — performs no normalization, the default.
• 'standard' — normalizes outputs and targets to [-1, +1], and therefore normalizes errors

to [-2, +2].
• 'percent' — normalizes outputs and targets to [-0.5, +0.5], and therefore normalizes

errors to [-1, +1].

Examples
Here a network is trained to fit a simple data set and its performance calculated
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[x,t] = simplefit_dataset;
net = fitnet(10,'trainscg');
net.performFcn = 'sae';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sae(net,t,y)

Network Use
To prepare a custom network to be trained with sae, set net.performFcn to 'sae'. This
automatically sets net.performParam to the default function parameters.

Then calling train, adapt or perform will result in sae being used to calculate performance.

Version History
Introduced in R2010b
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satlin
Saturating linear transfer function

Graph and Symbol

Syntax
A = satlin(N,FP)

Description
satlin is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = satlin(N,FP) takes two inputs,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [0, 1].

info = satlin('code') returns useful information for each supported code character vector:

satlin('name') returns the name of this function.

satlin('output',FP) returns the [min max] output range.

satlin('active',FP) returns the [min max] active input range.

satlin('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

satlin('fpnames') returns the names of the function parameters.

satlin('fpdefaults') returns the default function parameters.

Examples
Here is the code to create a plot of the satlin transfer function.
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n = -5:0.1:5;
a = satlin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'satlin';

Algorithms
a = satlin(n) = 0, if n <= 0
n, if 0 <= n <= 1
1, if 1 <= n

Version History
Introduced before R2006a

See Also
sim | poslin | satlins | purelin
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satlins
Symmetric saturating linear transfer function

Graph and Symbol

Syntax
A = satlins(N,FP)

Description
satlins is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = satlins(N,FP) takes N and an optional argument,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (optional, ignored)

and returns A, the S-by-Q matrix of N’s elements clipped to [-1, 1].

info = satlins('code') returns useful information for each supported code character vector:

satlins('name') returns the name of this function.

satlins('output',FP) returns the [min max] output range.

satlins('active',FP) returns the [min max] active input range.

satlins('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

satlins('fpnames') returns the names of the function parameters.

satlins('fpdefaults') returns the default function parameters.

Examples
Here is the code to create a plot of the satlins transfer function.
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n = -5:0.1:5;
a = satlins(n);
plot(n,a)

Algorithms
satlins(n) = -1, if n <= -1
n, if -1 <= n <= 1
1, if 1 <= n

Version History
Introduced before R2006a

See Also
sim | satlin | poslin | purelin

2 Approximation, Clustering, and Control Functions

2-420



scalprod
Scalar product weight function

Syntax
Z = scalprod(W,P)
dim = scalprod('size',S,R,FP)
dw = scalprod('dw',W,P,Z,FP)

Description
scalprod is the scalar product weight function. Weight functions apply weights to an input to get
weighted inputs.

Z = scalprod(W,P) takes these inputs,

W 1-by-1 weight matrix
P R-by-Q matrix of Q input (column) vectors

and returns the R-by-Q scalar product of W and P defined by Z = w*P.

dim = scalprod('size',S,R,FP) takes the layer dimension S, input dimension R, and function
parameters, and returns the weight size [1-by-1].

dw = scalprod('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples
Here you define a random weight matrix W and input vector P and calculate the corresponding
weighted input Z.

W = rand(1,1);
P = rand(3,1);
Z = scalprod(W,P)

Network Use
To change a network so an input weight uses scalprod, set net.inputWeights{i,j}.weightFcn
to 'scalprod'.

For a layer weight, set net.layerWeights{i,j}.weightFcn to 'scalprod'.

In either case, call sim to simulate the network with scalprod.

Version History
Introduced in R2006a
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See Also
dotprod | sim | dist | negdist | normprod
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selforgmap
Self-organizing map

Syntax
selfOrgMap = selforgmap(dimensions)
selfOrgMap = selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,
distanceFcn)

Description
Self-organizing maps learn to cluster data based on similarity, topology, with a preference (but no
guarantee) of assigning the same number of instances to each class.

You can use self-organizing maps to cluster data and to reduce the dimensionality of data. They are
inspired by the sensory and motor mappings in the mammal brain, which also appear to automatically
organizing information topologically.

selfOrgMap = selforgmap(dimensions) takes a row vector of dimension sizes and returns a
self-organizing map.

selfOrgMap = selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,
distanceFcn) takes a row vector of dimension sizes and also a number of training steps for initial
covering, an initial neighborhood size, a layer topology function, and a neuron distance function, and
returns a self-organizing map.

Examples

Use Self-Organizing Map to Cluster Data

This example shows how to use a self-organizing map to cluster a simple set of data.

x = simplecluster_dataset;
net = selforgmap([8 8]);
net = train(net,x);
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view(net)
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y = net(x);
classes = vec2ind(y);

Input Arguments
dimensions — Dimension sizes
[8 8] (default) | row vector

Dimension sizes, specified as a row vector.

coverSteps — Initial covering steps
100 (default) | scalar

Number of training steps for initial covering of the input space, specified as a scalar.

initNeighbor — Initial neighborhood size
3 (default) | scalar

Initial neighborhood size, specified as a scalar.
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topologyFcn — Topology function
'hextop' (default) | 'randtop' | 'gridtop' | 'tritop'

Layer topology function, specified as a topology function.

distanceFcn — Distance function
'linkdist' (default) | 'dist' | 'mandist'

Neuron distance function, specified as a distance function.

Output Arguments
selfOrgMap — Self-organizing map
network object

Self-organizing map, returned as a network object.

Version History
Introduced in R2010b

See Also
lvqnet | competlayer | nctool
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separatewb
Separate biases and weight values from weight/bias vector

Syntax
[b,IW,LW] = separatewb(net,wb)

Description
[b,IW,LW] = separatewb(net,wb) takes two arguments,

net Neural network
wb Weight/bias vector

and returns

b Cell array of bias vectors
IW Cell array of input weight matrices
LW Cell array of layer weight matrices

Examples
Here a feedforward network is trained to fit some data, then its bias and weight values formed into a
vector. The single vector is then redivided into the original biases and weights.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = formwb(net,net.b,net.iw,net.lw)
[b,iw,lw] = separatewb(net,wb)

Version History
Introduced in R2010b

See Also
getwb | formwb | setwb
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seq2con
Convert sequential vectors to concurrent vectors

Syntax
b = seq2con(s)

Description
Deep Learning Toolbox software represents batches of vectors with a matrix, and sequences of
vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to sequential vectors, and back
again.

b = seq2con(s) takes one input,

s N-by-TS cell array of matrices with M columns

and returns

b N-by-1 cell array of matrices with M*TS columns

Examples
Here three sequential values are converted to concurrent values.

p1 = {1 4 2}
p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to concurrent vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)

Version History
Introduced before R2006a

See Also
con2seq | concur
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setelements
Set neural network data elements

Syntax
setelements(x,i,v)

Description
setelements(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the elements indicated by the indices i.

Examples
This code sets elements 1 and 3 of matrix data:

x = [1 2; 3 4; 7 4]
v = [10 11; 12 13];
y = setelements(x,[1 3],v)

This code sets elements 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21 22; 23 24 25] [26 27 28; 29 30 31]}
y = setelements(x,[1 3],v)

Version History
Introduced in R2010b

See Also
nndata | numelements | getelements | catelements | setsamples | setsignals |
settimesteps
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setsamples
Set neural network data samples

Syntax
setsamples(x,i,v)

Description
setsamples(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the samples indicated by the indices i.

Examples
This code sets samples 1 and 3 of matrix data:

x = [1 2 3; 4 7 4]
v = [10 11; 12 13];
y = setsamples(x,[1 3],v)

This code sets samples 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21; 22 23] [24 25; 26 27]; [28 29] [30 31]}
y = setsamples(x,[1 3],v)

Version History
Introduced in R2010b

See Also
nndata | numsamples | getsamples | catsamples | setelements | setsignals | settimesteps
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setsignals
Set neural network data signals

Syntax
setsignals(x,i,v)

Description
setsignals(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the signals indicated by the indices i.

Examples
This code sets signal 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22] [23:25]}
y = setsignals(x,2,v)

Version History
Introduced in R2010b

See Also
nndata | numsignals | getsignals | catsignals | setelements | setsamples | settimesteps
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setsiminit
Set neural network Simulink block initial conditions

Syntax
setsiminit(sysName,netName,net,xi,ai,Q)

Description
setsiminit(sysName,netName,net,xi,ai,Q) takes these arguments,

sysName The name of the Simulink system containing the neural network block
netName The name of the Simulink neural network block
net The original neural network
xi Initial input delay states
ai Initial layer delay states
Q Sample number (default is 1)

and sets the Simulink neural network blocks initial conditions as specified.

Examples
Here a NARX network is designed. The NARX network has a standard input and an open loop
feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;
     net = narxnet(1:2,1:2,20);
     view(net)
     [xs,xi,ai,ts] = preparets(net,x,{},t);
     net = train(net,xs,ts,xi,ai);
     y = net(xs,xi,ai);

Now the network is converted to closed loop, and the data is reformatted to simulate the network’s
closed loop response.

net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace input and output ports. Its delay
states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical
to the values set with setsiminit.)
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[xi,ai] = getsiminit(sysName,netName,net);

Version History
Introduced in R2010b

See Also
gensim | getsiminit | nndata2sim | sim2nndata
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settimesteps
Set neural network data timesteps

Syntax
settimesteps(x,i,v)

Description
settimesteps(x,i,v) takes these arguments,

x Neural network matrix or cell array data
i Indices
v Neural network data to store into x

and returns the original data x with the data v stored in the timesteps indicated by the indices i.

Examples
This code sets timestep 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22; 23:25]; [25:27]}
y = settimesteps(x,2,v)

Version History
Introduced in R2010b

See Also
nndata | numtimesteps | gettimesteps | cattimesteps | setelements | setsamples |
setsignals
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setwb
Set all network weight and bias values with single vector

Syntax
net = setwb(net,wb)

Description
This function sets a network’s weight and biases to a vector of values.

net = setwb(net,wb) takes the following inputs:

net Neural network
wb Vector of weight and bias values

Examples
Set Network's Weights and Biases

This example shows how to set and view a network’s weight and bias values.

Create and configure a network.

[x,t] = simplefit_dataset;
net = feedforwardnet(3);
net = configure(net,x,t);
view(net)
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This network has three weights and three biases in the first layer, and three weights and one bias in
the second layer. So, the total number of weight and bias values in the network is 10. Set the weights
and biases to random values.

net = setwb(net,rand(10,1));

View the weight and bias values

net.IW{1,1}
net.b{1}

ans =

    0.1576
    0.9706
    0.9572

ans =
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    0.5469
    0.9575
    0.9649

Version History
Introduced in R2010b

See Also
getwb | formwb | separatewb
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sim
Simulate neural network

Syntax
[Y,Xf,Af] = sim(net,X,Xi,Ai,T)
[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai)
[Y,...] = sim(net,...,'useParallel',...)
[Y,...] = sim(net,...,'useGPU',...)
[Y,...] = sim(net,...,'showResources',...)
[Ycomposite,...] = sim(net,Xcomposite,...)
[Ygpu,...] = sim(net,Xgpu,...)

To Get Help
Type help network/sim.

Description
sim simulates neural networks.

[Y,Xf,Af] = sim(net,X,Xi,Ai,T) takes

net Network
X Network inputs
Xi Initial input delay conditions (default = zeros)
Ai Initial layer delay conditions (default = zeros)
T Network targets (default = zeros)

and returns

Y Network outputs
Xf Final input delay conditions
Af Final layer delay conditions

sim is usually called implicitly by calling the neural network as a function. For instance, these two
expressions return the same result:

y = sim(net,x,xi,ai)
y = net(x,xi,ai)

Note that arguments Xi, Ai, Xf, and Af are optional and need only be used for networks that have
input or layer delays.

The signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks with multiple inputs
and outputs, and allows sequences of inputs to be presented:
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X Ni-by-TS cell array Each element X{i,ts} is an Ri-by-Q matrix.
Xi Ni-by-ID cell array Each element Xi{i,k} is an Ri-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.
T No-by-TS cell array Each element X{i,ts} is a Ui-by-Q matrix.
Y No-by-TS cell array Each element Y{i,ts} is a Ui-by-Q matrix.
Xf Ni-by-ID cell array Each element Xf{i,k} is an Ri-by-Q matrix.
Af Nl-by-LD cell array Each element Af{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
No = net.numOutputs
ID = net.numInputDelays
LD = net.numLayerDelays
TS = Number of time steps
Q = Batch size
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Ui = net.outputs{i}.size

The columns of Xi, Ai, Xf, and Af are ordered from oldest delay condition to most recent:

Xi{i,k} = Input i at time ts = k - ID
Xf{i,k} = Input i at time ts = TS + k - ID
Ai{i,k} = Layer output i at time ts = k - LD
Af{i,k} = Layer output i at time ts = TS + k - LD

The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient for
networks with only one input and output, but can also be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a
single matrix:

X (sum of Ri)-by-Q matrix
Xi (sum of Ri)-by-(ID*Q) matrix
Ai (sum of Si)-by-(LD*Q) matrix
T (sum of Ui)-by-Q matrix
Y (sum of Ui)-by-Q matrix
Xf (sum of Ri)-by-(ID*Q) matrix
Af (sum of Si)-by-(LD*Q) matrix

[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai) is used for networks that do not have an input when cell
array notation is used.
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[Y,...] = sim(net,...,'useParallel',...), [Y,...] = sim(net,...,'useGPU',...),
or [Y,...] = sim(net,...,'showResources',...) (or the network called as a function)
accepts optional name/value pair arguments to control how calculations are performed. Two of these
options allow training to happen faster or on larger datasets using parallel workers or GPU devices if
Parallel Computing Toolbox is available. These are the optional name/value pairs:

'useParallel','no' Calculations occur on normal MATLAB thread. This is the default
'useParallel' setting.

'useParallel','yes' Calculations occur on parallel workers if a parallel pool is open. Otherwise
calculations occur on the normal MATLAB thread.

'useGPU','no' Calculations occur on the CPU. This is the default 'useGPU' setting.
'useGPU','yes' Calculations occur on the current gpuDevice if it is a supported GPU (See

Parallel Computing Toolbox for GPU requirements.) If the current gpuDevice is
not supported, calculations remain on the CPU. If 'useParallel' is also
'yes' and a parallel pool is open, then each worker with a unique GPU uses
that GPU, other workers run calculations on their respective CPU cores.

'useGPU','only' If no parallel pool is open, then this setting is the same as 'yes'. If a parallel
pool is open, then only workers with unique GPUs are used. However, if a
parallel pool is open, but no supported GPUs are available, then calculations
revert to performing on all worker CPUs.

'showResources','no' Do not display computing resources used at the command line. This is the
default setting.

'showResources','yes' Show at the command line a summary of the computing resources actually
used. The actual resources may differ from the requested resources, if parallel
or GPU computing is requested but a parallel pool is not open or a supported
GPU is not available. When parallel workers are used, each worker’s
computation mode is described, including workers in the pool that are not
used.

[Ycomposite,...] = sim(net,Xcomposite,...) takes Composite data and returns Composite
results. If Composite data is used, then 'useParallel' is automatically set to 'yes'.

[Ygpu,...] = sim(net,Xgpu,...) takes gpuArray data and returns gpuArray results. If
gpuArray data is used, then 'useGPU' is automatically set to 'yes'.

Examples
In the following examples, the sim function is called implicitly by calling the neural network object
(net) as a function.

Simulate Feedforward Networks

This example loads a dataset that maps anatomical measurements x to body fat percentages t. A
feedforward network with 10 neurons is created and trained on that data, then simulated.

[x,t] =  bodyfat_dataset;  
net = feedforwardnet(10);
net = train(net,x,t);
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y = net(x);

Simulate NARX Time Series Networks

This example trains an open-loop nonlinear-autoregressive network with external input, to model a
levitated magnet system defined by a control current x and the magnet’s vertical position response t,
then simulates the network. The function preparets prepares the data before training and
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simulation. It creates the open-loop network’s combined inputs xo, which contains both the external
input x and previous values of position t. It also prepares the delay states xi.

[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)

This same system can also be simulated in closed-loop form.

netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);

Simulate in Parallel on a Parallel Pool

With Parallel Computing Toolbox you can simulate and train networks faster and on larger datasets
than can fit on one PC. Here training and simulation happens across parallel MATLAB workers.

parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X,'useParallel','yes');

Simulate on GPUs

Use Composite values to distribute the data manually, and get back the results as a Composite value.
If the data is loaded as it is distributed, then while each piece of the dataset must fit in RAM, the
entire dataset is limited only by the total RAM of all the workers.

Xc = Composite;
for i=1:numel(Xc)
    Xc{i} = X+rand(size(X))*0.1;  % Use real data instead of random
end
Yc = net(Xc,'showResources','yes');

Networks can be simulated using the current GPU device, if it is supported by Parallel Computing
Toolbox.

gpuDevice % Check if there is a supported GPU
Y = net(X,'useGPU','yes','showResources','yes');

To put the data on a GPU manually, and get the results on the GPU:

Xgpu = gpuArray(X);
Ygpu = net(Xgpu,'showResources','yes');
Y = gather(Ygpu);

To run in parallel, with workers associated with unique GPUs taking advantage of that hardware,
while the rest of the workers use CPUs:

Y = net(X,'useParallel','yes','useGPU','yes','showResources','yes');

Using only workers with unique GPUs might result in higher speeds, as CPU workers might not keep
up.
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Y = net(X,'useParallel','yes','useGPU','only','showResources','yes');

Algorithms
sim uses these properties to simulate a network net.

net.numInputs, net.numLayers
net.outputConnect, net.biasConnect
net.inputConnect, net.layerConnect

These properties determine the network’s weight and bias values and the number of delays
associated with each weight:

net.IW{i,j}
net.LW{i,j}
net.b{i}
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias values to inputs to get each
layer’s output:

net.inputWeights{i,j}.weightFcn
net.layerWeights{i,j}.weightFcn
net.layers{i}.netInputFcn
net.layers{i}.transferFcn

Version History
Introduced before R2006a

See Also
init | adapt | train | revert
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sim2nndata
Convert Simulink time series to neural network data

Syntax
sim2nndata(x)

Description
sim2nndata(x) takes either a column vector of values or a Simulink time series structure and
converts it to a neural network data time series.

Examples
Here a random Simulink 20-step time series is created and converted.

simts = rands(20,1);
nnts = sim2nndata(simts)

Here a similar time series is defined with a Simulink structure and converted.

simts.time = 0:19
simts.signals.values = rands(20,1);
simts.dimensions = 1;
nnts = sim2nndata(simts)

Version History
Introduced in R2010b

See Also
nndata | nndata2sim
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softmax
Soft max transfer function

Syntax
A = softmax(N)
info = softmax(code)

Description

Tip To use a softmax activation for deep learning, use softmaxLayer or the dlarray method
softmax.

A = softmax(N) takes a S-by-Q matrix of net input (column) vectors, N, and returns the S-by-Q
matrix, A, of the softmax competitive function applied to each column of N.

softmax is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

info = softmax(code) returns information about this function. For more information, see the
code argument description.

Examples

Create and Plot the softmax Transfer Function

This example shows how to calculate and plot the softmax transfer function of an input matrix.

Create the input matrix, n. Then call the softmax function and plot the results.

n = [0; 1; -0.5; 0.5];
a = softmax(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.
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net.layers{i}.transferFcn = 'softmax';

Input Arguments
N — Input matrix
matrix

Net input column vectors, specified as an S-by-Q matrix.

code — Information option
'name' | 'output' | 'active' | 'fullderiv' | 'fpnames' | 'fpdefaults'

Information you want to retrieve from the function, specified as one of the following:

• 'name' returns the name of this function.
• 'output' returns the [min max] output range.
• 'active' returns the [min max] active input range.
• 'fullderiv' returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
• 'fpnames' returns the names of the function parameters.
• 'fpdefaults' returns the default function parameters.

Output Arguments
A — Output matrix
matrix

Output matrix, returned as an S-by-Q matrix of the softmax competitive function applied to each
column of N.

info — Information output
string | vector | scalar

Specific information about the function, according to the option specified in the code argument,
returned as either a string, a vector, or a scalar.

Algorithms
a = softmax(n) = exp(n)/sum(exp(n))

Version History
Introduced before R2006a

See Also
sim | compet
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srchbac
1-D minimization using backtracking

Syntax
[a,gX,perf,retcode,delta,tol] =
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)

Description
srchbac is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique called backtracking.

[a,gX,perf,retcode,delta,tol] =
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two elements

correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.
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 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the backstepping algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
low_lim Lower limit on change in step size
up_lim Upper limit on change in step size
maxstep Maximum step length
minstep Minimum step length
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
V Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Backtracking Search

The backtracking search routine srchbac is best suited to use with the quasi-Newton optimization
algorithms. It begins with a step multiplier of 1 and then backtracks until an acceptable reduction in
the performance is obtained. On the first step it uses the value of performance at the current point
and a step multiplier of 1. It also uses the value of the derivative of performance at the current point
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to obtain a quadratic approximation to the performance function along the search direction. The
minimum of the quadratic approximation becomes a tentative optimum point (under certain
conditions) and the performance at this point is tested. If the performance is not sufficiently reduced,
a cubic interpolation is obtained and the minimum of the cubic interpolation becomes the new
tentative optimum point. This process is continued until a sufficient reduction in the performance is
obtained.

The backtracking algorithm is described in Dennis and Schnabel. It is used as the default line search
for the quasi-Newton algorithms, although it might not be the best technique for all problems.

Algorithms
srchbac locates the minimum of the performance function in the search direction dX, using the
backtracking algorithm described on page 126 and 328 of Dennis and Schnabel’s book, noted below.

Version History
Introduced before R2006a

References
Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Englewood Cliffs, NJ, Prentice-Hall, 1983

See Also
srchcha | srchgol | srchhyb
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srchbre
1-D interval location using Brent’s method

Syntax
[a,gX,perf,retcode,delta,tol] =
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchbre is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique called Brent’s technique.

[a,gX,perf,retcode,delta,tol] =
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two elements

correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.
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 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the Brent algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Brent’s Search

Brent’s search is a linear search that is a hybrid of the golden section search and a quadratic
interpolation. Function comparison methods, like the golden section search, have a first-order rate of
convergence, while polynomial interpolation methods have an asymptotic rate that is faster than
superlinear. On the other hand, the rate of convergence for the golden section search starts when the
algorithm is initialized, whereas the asymptotic behavior for the polynomial interpolation methods
can take many iterations to become apparent. Brent’s search attempts to combine the best features
of both approaches.
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For Brent’s search, you begin with the same interval of uncertainty used with the golden section
search, but some additional points are computed. A quadratic function is then fitted to these points
and the minimum of the quadratic function is computed. If this minimum is within the appropriate
interval of uncertainty, it is used in the next stage of the search and a new quadratic approximation is
performed. If the minimum falls outside the known interval of uncertainty, then a step of the golden
section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has the advantage that it
does not require computation of the derivative. The derivative computation requires a
backpropagation through the network, which involves more computation than a forward pass.
However, the algorithm can require more performance evaluations than algorithms that use
derivative information.

Algorithms
srchbre brackets the minimum of the performance function in the search direction dX, using Brent’s
algorithm, described on page 46 of Scales (see reference below). It is a hybrid algorithm based on the
golden section search and the quadratic approximation.

Version History
Introduced before R2006a

References
Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
srchbac | srchcha | srchgol | srchhyb
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srchcha
1-D minimization using Charalambous' method

Syntax
[a,gX,perf,retcode,delta,tol] =
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchcha is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique based on Charalambous’ method.

[a,gX,perf,retcode,delta,tol] =
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two elements

correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.
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 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the Charalambous algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
gama Parameter to avoid small reductions in performance, usually set to 0.1
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Charalambous’ Search

The method of Charalambous, srchcha, was designed to be used in combination with a conjugate
gradient algorithm for neural network training. Like srchbre and srchhyb, it is a hybrid search. It
uses a cubic interpolation together with a type of sectioning.

See [Char92] for a description of Charalambous' search. This routine is used as the default search for
most of the conjugate gradient algorithms because it appears to produce excellent results for many
different problems. It does require the computation of the derivatives (backpropagation) in addition
to the computation of performance, but it overcomes this limitation by locating the minimum with
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fewer steps. This is not true for all problems, and you might want to experiment with other line
searches.

Algorithms
srchcha locates the minimum of the performance function in the search direction dX, using an
algorithm based on the method described in Charalambous (see reference below).

Version History
Introduced before R2006a

References
Charalambous, C., “Conjugate gradient algorithm for efficient training of artificial neural networks,”
IEEE Proceedings, Vol. 139, No. 3, June, 1992, pp. 301–310.

See Also
srchbac | srchbre | srchgol | srchhyb
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srchgol
1-D minimization using golden section search

Syntax
[a,gX,perf,retcode,delta,tol] =
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchgol is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique called the golden section search.

[a,gX,perf,retcode,delta,tol] =
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
retcode Return code that has three elements. The first two elements

correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.

2 Approximation, Clustering, and Control Functions

2-456



 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the golden section algorithm are

alpha Scale factor that determines sufficient reduction in perf
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Golden Section Search

The golden section search srchgol is a linear search that does not require the calculation of the
slope. This routine begins by locating an interval in which the minimum of the performance function
occurs. This is accomplished by evaluating the performance at a sequence of points, starting at a
distance of delta and doubling in distance each step, along the search direction. When the
performance increases between two successive iterations, a minimum has been bracketed. The next
step is to reduce the size of the interval containing the minimum. Two new points are located within
the initial interval. The values of the performance at these two points determine a section of the
interval that can be discarded, and a new interior point is placed within the new interval. This
procedure is continued until the interval of uncertainty is reduced to a width of tol, which is equal to
delta/scale_tol.
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See [HDB96], starting on page 12-16, for a complete description of the golden section search. Try the
Neural Network Design demonstration nnd12sd1 [HDB96] for an illustration of the performance of
the golden section search in combination with a conjugate gradient algorithm.

Algorithms
srchgol locates the minimum of the performance function in the search direction dX, using the
golden section search. It is based on the algorithm as described on page 33 of Scales (see reference
below).

Version History
Introduced before R2006a

References
Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
srchbac | srchbre | srchcha | srchhyb
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srchhyb
1-D minimization using a hybrid bisection-cubic search

Syntax
[a,gX,perf,retcode,delta,tol] =
srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description
srchhyb is a linear search routine. It searches in a given direction to locate the minimum of the
performance function in that direction. It uses a technique that is a combination of a bisection and a
cubic interpolation.

[a,gX,perf,retcode,delta,tol] =
srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes these
inputs,

net Neural network
X Vector containing current values of weights and biases
Pd Delayed input vectors
Tl Layer target vectors
Ai Initial input delay conditions
Q Batch size
TS Time steps
dX Search direction vector
gX Gradient vector
perf Performance value at current X
dperf Slope of performance value at current X in direction of dX
delta Initial step size
tol Tolerance on search
ch_perf Change in performance on previous step

and returns

a Step size that minimizes performance
gX Gradient at new minimum point
perf Performance value at new minimum point
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retcode Return code that has three elements. The first two elements
correspond to the number of function evaluations in the two
stages of the search. The third element is a return code. These
have different meanings for different search algorithms. Some
might not be used in this function.

 0  Normal
 1  Minimum step taken
 2  Maximum step taken
 3  Beta condition not met
delta New initial step size, based on the current step size
tol New tolerance on search

Parameters used for the hybrid bisection-cubic algorithm are

alpha Scale factor that determines sufficient reduction in perf
beta Scale factor that determines sufficiently large step size
bmax Largest step size
scale_tol Parameter that relates the tolerance tol to the initial step size delta,

usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf,
traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.
Tl Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.
Ai Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

More About
Hybrid Bisection Cubic Search

Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of bisection and cubic
interpolation. For the bisection algorithm, one point is located in the interval of uncertainty, and the
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performance and its derivative are computed. Based on this information, half of the interval of
uncertainty is discarded. In the hybrid algorithm, a cubic interpolation of the function is obtained by
using the value of the performance and its derivative at the two endpoints. If the minimum of the
cubic interpolation falls within the known interval of uncertainty, then it is used to reduce the interval
of uncertainty. Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search. This algorithm does
require derivative information, so it performs more computations at each step of the algorithm than
the golden section search or Brent’s algorithm.

Algorithms
srchhyb locates the minimum of the performance function in the search direction dX, using the
hybrid bisection-cubic interpolation algorithm described on page 50 of Scales (see reference below).

Version History
Introduced before R2006a

References
Scales, L.E., Introduction to Non-Linear Optimization, New York Springer-Verlag, 1985

See Also
srchbac | srchbre | srchcha | srchgol

 srchhyb

2-461



sse
Sum squared error performance function

Syntax
perf = sse(net,t,y,ew)
perf = sse(net,t,y,ew,Name,Value)

Description
perf = sse(net,t,y,ew) takes a network net, targets T, outputs Y, and optionally error weights
EW, and returns network performance calculated as the sum squared error.

sse is a network performance function. It measures performance according to the sum of squared
errors.

perf = sse(net,t,y,ew,Name,Value) has two optional function parameters that set the
regularization of the errors and the normalizations of the outputs and targets.

sse is a network performance function. It measures performance according to the sum of squared
errors.

Examples

Calculate Network Performance with 'sse' Function

This example shows how to calculate the performance of a feed-forward network with the sse
function.

Create a network using the data from the simple fit data set, train it, and calculate its performance.

[x,t] = simplefit_dataset;
net = fitnet(10);
net.performFcn = 'sse';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sse(net,t,y)

Input Arguments
net — Input network
network

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

t — Network targets
matrix | cell array
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Network targets, specified as a matrix or cell array.

y — Network outputs
matrix | cell array

Network outputs, specified as a matrix or cell array.

ew — Network outputs
{1} (default) | vector | matrix | cell array

Error weights, specified as a vector, matrix, or cell array.

Error weights can be defined by sample, output element, time step, or network output:

ew = [1.0 0.5 0.7 0.2]; % Across 4 samples
ew = [0.1; 0.5; 1.0]; % Across 3 elements
ew = {0.1 0.2 0.3 0.5 1.0}; % Across 5 timesteps
ew = {1.0; 0.5}; % Across 2 outputs

The error weights can also be defined across any combination, such as across two time-series (i.e.,
two samples) over four timesteps.

ew = {[0.5 0.4],[0.3 0.5],[1.0 1.0],[0.7 0.5]};

In the general case, error weights may have exactly the same dimensions as targets, in which case
each target value will have an associated error weight.

The default error weight treats all errors the same.

ew = {1}

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'regularization',0.1

regularization — Proportion of performance
0 (default) | integer between 0 and 1

Proportion of performance attributed to weight and bias values, specified as the comma-separated
pair consisting of 'regularization' and an integer between 0 and 1. The larger this value is, the
more the network is penalized for larger weights, and the more likely the network function avoids
overfitting.

normalization — Output and target normalization
'none' (default) | 'standard' | 'percent'

Output and target normalization, specified as the comma-separated pair consisting of
'normalization' and either:

• 'none' — performs no normalization.
• 'standard' — normalizes outputs and targets to [-1, +1], and therefore normalizes errors to

[-2, +2].
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• 'percent' — normalizes outputs and targets to [-0.5, +0.5], and therefore normalizes errors
to [-1, +1].

Output Arguments
perf — Network performance
scalar

Network performance calculated as the sum squared error, returned as a scalar.

More About
Network Use

To prepare a custom network to be trained with sse, set net.performFcn to 'sse'. This
automatically sets net.performParam to the default function parameters.

Then calling train, adapt or perform will result in sse being used to calculate performance.

Version History
Introduced before R2006a

See Also
mse | mae
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staticderiv
Static derivative function

Syntax
staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
staticderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description
This function calculates derivatives using the chain rule from the networks performance or outputs
back to its inputs. For time series data and dynamic networks this function ignores the delay
connections resulting in a approximation (which may be good or not) of the actual derivative. This
function is used by Elman networks (elmannet) which is a dynamic network trained by the static
derivative approximation when full derivative calculations are not available. As full derivatives are
calculated by all the other derivative functions, this function is not recommended for dynamic
networks except for research into training algorithms.

staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

net Neural network
X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi Initial input delay states (optional)
Ai Initial layer delay states (optional)
EW Error weights (optional)

and returns the gradient of performance with respect to the network’s weights and biases, where R
and S are the number of input and output elements and Q is the number of samples (and N and M are
the number of input and output signals, Ri and Si are the number of each input and outputs elements,
and TS is the number of timesteps).

staticderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the
network’s weights and biases.

Examples
Here a feedforward network is trained and both the gradient and Jacobian are calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = staticderiv('dperf_dwb',net,x,t)
jwb = staticderiv('de_dwb',net,x,t)
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Version History
Introduced in R2010b

See Also
bttderiv | defaultderiv | fpderiv | num2deriv

2 Approximation, Clustering, and Control Functions

2-466



sumabs
Sum of absolute elements of matrix or matrices

Syntax
[s,n] = sumabs(x)

Description
[s,n] = sumabs(x) takes a matrix or cell array of matrices and returns,

s Sum of all absolute finite values
n Number of finite values

If x contains no finite values, the sum returned is 0.

Examples
m = sumabs([1 2;3 4])
[m,n] = sumabs({[1 2; NaN 4], [4 5; 2 3]})

Version History
Introduced in R2010b

See Also
meanabs | meansqr | sumsqr
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sumsqr
Sum of squared elements of matrix or matrices

Syntax
[s,n] = sumsqr(x)

Description
[s,n] = sumsqr(x) takes a matrix or cell array of matrices, x, and returns the sum, s, of all
squared finite values in x, and the number of finite values, n.

If x does not contain finite values, the sum returned is 0.

Examples

Calculate the Sum of Squared Elements Using the sumsqr Function

This example shows how to calculate the sum of squared elements of a matrix and a cell array using
the sumsqr function.

m = sumsqr([1 2;3 4])

m = 30

[m,n] = sumsqr({[1 2; NaN 4], [4 5; 2 3]})

m = 75

n = 7

Input Arguments
x — Input matrix
matrix | cell array of matrices

Input elements, specified as a matrix or cell array of matrices.

Output Arguments
s — Sum of squared elements
scalar

Sum of all squared elements in x, returned as a scalar.

n — Number of finite values
scalar

Number of finite values in x, returned as a scalar.
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Version History
Introduced before R2006a

See Also
meanabs | meansqr | sumabs
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tansig
Hyperbolic tangent sigmoid transfer function

Syntax
A = tansig(N)

Description

Tip To use a hyperbolic tangent activation for deep learning, use the tanhLayer function or the
dlarray method tanh.

A = tansig(N) takes a matrix of net input vectors, N and returns the S-by-Q matrix, A, of the
elements of N squashed into [-1 1].

tansig is a neural transfer function. Transfer functions calculate the output of a layer from its net
input.

Examples

Create a Plot of the tansig Transfer Function

This example shows how to calculate and plot the hyperbolic tangent sigmoid transfer function of an
input matrix.

Create the input matrix, n. Then call the tansig function and plot the results.

n = -5:0.1:5;
a = tansig(n);
plot(n,a)

Assign this transfer function to layer i of a network.
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net.layers{i}.transferFcn = 'tansig';

Input Arguments
N — Input matrix
matrix

Net input column vectors, specified as an S-by-Q matrix.

Output Arguments
A — Output matrix
matrix

Output vectors, returned as an S-by-Q matrix, where each element of N is squashed from the interval
[-inf inf] to the interval [-1 1] with an "S-shaped" function.

Algorithms
a = tansig(N) = 2/(1+exp(-2*N))-1

This is mathematically equivalent to tanh(N).

Version History
Introduced before R2006a

References
[1] Vogl, T. P., et al. ‘Accelerating the Convergence of the Back-Propagation Method’. Biological

Cybernetics, vol. 59, no. 4–5, Sept. 1988, pp. 257–63. DOI.org (Crossref), doi:10.1007/
BF00332914.

See Also
sim | logsig
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tapdelay
Shift neural network time series data for tap delay

Syntax
tapdelay(x,i,ts,delays)

Description
tapdelay(x,i,ts,delays) takes these arguments,

x Neural network time series data
i Signal index
ts Timestep index
delays Row vector of increasing zero or positive delays

and returns the tap delay values of signal i at timestep ts given the specified tap delays.

Examples
Here a random signal x consisting of eight timesteps is defined, and a tap delay with delays of [0 1
4] is simulated at timestep 6.

x = num2cell(rand(1,8));
y = tapdelay(x,1,6,[0 1 4])

Version History
Introduced in R2010b

See Also
nndata | extendts | preparets
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timedelaynet
Time delay neural network

Syntax
timedelaynet(inputDelays,hiddenSizes,trainFcn)

Description
timedelaynet(inputDelays,hiddenSizes,trainFcn) takes these arguments:

• Row vector of increasing 0 or positive input delays, inputDelays
• Row vector of one or more hidden layer sizes, hiddenSizes
• Training function, trainFcn

and returns a time delay neural network.

Time delay networks are similar to feedforward networks, except that the input weight has a tap
delay line associated with it. This allows the network to have a finite dynamic response to time series
input data. This network is also similar to the distributed delay neural network (distdelaynet),
which has delays on the layer weights in addition to the input weight.

Examples

Train Time Delay Network and Predict on New Data

This example shows how to train a time delay network.

Partition the training set. Use Xnew to do prediction in closed loop mode later.

[X,T] = simpleseries_dataset;
Xnew = X(81:100);
X = X(1:80);
T = T(1:80);

Train a time delay network, and simulate it on the first 80 observations.

net = timedelaynet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
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view(net)
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Calculate the network performance.

[Y,Xf,Af] = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y);

Run the prediction for 20 timesteps ahead in closed loop mode.

[netc,Xic,Aic] = closeloop(net,Xf,Af);
view(netc)
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y2 = netc(Xnew,Xic,Aic);

Input Arguments
inputDelays — Input delays
[1:2] (default) | row vector

Zero or positive input delays, specified as an increasing row vector.

hiddenSizes — Hidden sizes
10 (default) | row vector

Sizes of the hidden layers, specified as a row vector of one or more elements.

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.

2 Approximation, Clustering, and Control Functions

2-476



Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

Version History
Introduced in R2010b

See Also
preparets | removedelay | distdelaynet | narnet | narxnet
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tonndata
Convert data to standard neural network cell array form

Syntax
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)

Description
[y,wasMatrix] = tonndata(x,columnSamples,cellTime) takes these arguments,

x Matrix or cell array of matrices
columnSamples True if original samples are oriented as columns, false if rows
cellTime True if original samples are columns of a cell array, false if they are

stored in a matrix

and returns

y Original data transformed into standard neural network cell array form
wasMatrix True if original data was a matrix (as opposed to cell array)

If columnSamples is false, then matrix x or matrices in cell array x will be transposed, so row
samples will now be stored as column vectors.

If cellTime is false, then matrix samples will be separated into columns of a cell array so time
originally represented as vectors in a matrix will now be represented as columns of a cell array.

The returned value wasMatrix can be used by fromnndata to reverse the transformation.

Examples
Here data consisting of six timesteps of 5-element vectors, originally represented as a matrix with six
columns, is converted to standard neural network representation and back.

x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false;     % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

Version History
Introduced in R2010b

See Also
nndata | fromnndata | nndata2sim | sim2nndata
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train
Train shallow neural network

Syntax
trainedNet = train(net,X,T,Xi,Ai,EW)
[trainedNet,tr] = train(net,X,T,Xi,Ai,EW)
[trainedNet,tr] = train(net,X,T,Xi,Ai,EW,Name,Value)

Description
This function trains a shallow neural network. For deep learning with convolutional or LSTM neural
networks, see trainNetwork instead.

trainedNet = train(net,X,T,Xi,Ai,EW) trains a network net according to net.trainFcn
and net.trainParam.

[trainedNet,tr] = train(net,X,T,Xi,Ai,EW) also returns a training record.

[trainedNet,tr] = train(net,X,T,Xi,Ai,EW,Name,Value) trains a network with additional
options specified by one or more name-value pair arguments.

Examples

Train and Plot Networks

Here input x and targets t define a simple function that you can plot:

x = [0 1 2 3 4 5 6 7 8];
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(x,t,'o')

Here feedforwardnet creates a two-layer feed-forward network. The network has one hidden layer
with ten neurons.

net = feedforwardnet(10);
net = configure(net,x,t);
y1 = net(x)
plot(x,t,'o',x,y1,'x')

The network is trained and then resimulated.

net = train(net,x,t);
y2 = net(x)
plot(x,t,'o',x,y1,'x',x,y2,'*')

Train NARX Time Series Network

This example trains an open-loop nonlinear-autoregressive network with external input, to model a
levitated magnet system defined by a control current x and the magnet’s vertical position response t,
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then simulates the network. The function preparets prepares the data before training and
simulation. It creates the open-loop network’s combined inputs xo, which contains both the external
input x and previous values of position t. It also prepares the delay states xi.

[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)

This same system can also be simulated in closed-loop form.

netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);

Train a Network in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Deep Learning Toolbox to simulate and train networks faster and
on larger datasets than can fit on one PC. Parallel training is currently supported for backpropagation
training only, not for self-organizing maps.

Here training and simulation happens across parallel MATLAB workers.

parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X);

Use Composite values to distribute the data manually, and get back the results as a Composite value.
If the data is loaded as it is distributed then while each piece of the dataset must fit in RAM, the
entire dataset is limited only by the total RAM of all the workers.

[X,T] = vinyl_dataset;
Q = size(X,2);
Xc = Composite;
Tc = Composite;
numWorkers = numel(Xc);
ind = [0 ceil((1:numWorkers)*(Q/numWorkers))];
for i=1:numWorkers
    indi = (ind(i)+1):ind(i+1);
    Xc{i} = X(:,indi);
    Tc{i} = T(:,indi);
end
net = feedforwardnet;
net = configure(net,X,T);
net = train(net,Xc,Tc);
Yc = net(Xc);

Note in the example above the function configure was used to set the dimensions and processing
settings of the network's inputs. This normally happens automatically when train is called, but when
providing composite data this step must be done manually with non-Composite data.
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Train a Network on GPUs

Networks can be trained using the current GPU device, if it is supported by Parallel Computing
Toolbox. GPU training is currently supported for backpropagation training only, not for self-organizing
maps.

[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useGPU','yes');
y = net(X); 

To put the data on a GPU manually:

[X,T] = vinyl_dataset;
Xgpu = gpuArray(X);
Tgpu = gpuArray(T);
net = configure(net,X,T);
net = train(net,Xgpu,Tgpu);
Ygpu = net(Xgpu);
Y = gather(Ygpu); 

Note in the example above the function configure was used to set the dimensions and processing
settings of the network's inputs. This normally happens automatically when train is called, but when
providing gpuArray data this step must be done manually with non-gpuArray data.

To run in parallel, with workers each assigned to a different unique GPU, with extra workers running
on CPU:

net = train(net,X,T,'useParallel','yes','useGPU','yes');
y = net(X);

Using only workers with unique GPUs might result in higher speed, as CPU workers might not keep
up.

net = train(net,X,T,'useParallel','yes','useGPU','only');
Y = net(X);

Train Network Using Checkpoint Saves

Here a network is trained with checkpoints saved at a rate no greater than once every two minutes.
[x,t] = vinyl_dataset;
net = fitnet([60 30]);
net = train(net,x,t,'CheckpointFile','MyCheckpoint','CheckpointDelay',120);

After a computer failure, the latest network can be recovered and used to continue training from the
point of failure. The checkpoint file includes a structure variable checkpoint, which includes the
network, training record, filename, time, and number.

[x,t] = vinyl_dataset;
load MyCheckpoint
net = checkpoint.net;
net = train(net,x,t,'CheckpointFile','MyCheckpoint');

Another use for the checkpoint feature is when you stop a parallel training session (started with the
'UseParallel' parameter) even though the Neural Network Training Tool is not available during
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parallel training. In this case, set a 'CheckpointFile', use Ctrl+C to stop training any time, then
load your checkpoint file to get the network and training record.

Input Arguments
net — Input network
network object

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

X — Network inputs
matrix | cell array | composite data | gpuArray

Network inputs, specified as an R-by-Q matrix or an Ni-by-TS cell array, where

• R is the input size
• Q is the batch size
• Ni = net.numInputs
• TS is the number of time steps

train arguments can have two formats: matrices, for static problems and networks with single
inputs and outputs, and cell arrays for multiple timesteps and networks with multiple inputs and
outputs.

• The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient
for networks with only one input and output, but can be used with networks that have more. When
the network has multiple inputs, the matrix size is (sum of Ri)-by-Q.

• The cell array format is more general, and more convenient for networks with multiple inputs and
outputs, allowing sequences of inputs to be presented. Each element X{i,ts} is an Ri-by-Q
matrix, where Ri = net.inputs{i}.size.

If Composite data is used, then 'useParallel' is automatically set to 'yes'. The function takes
Composite data and returns Composite results.

If gpuArray data is used, then 'useGPU' is automatically set to 'yes'. The function takes gpuArray
data and returns gpuArray results

Note If a column of X contains at least one NaN, train does not use that column for training,
testing, or validation.

T — Network targets
zeros (default) | matrix | cell array | composite data | gpuArray

Network targets, specified as a U-by-Q matrix or an No-by-TS cell array, where

• U is the output size
• Q is the batch size
• No = net.numOutputs
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• TS is the number of time steps

train arguments can have two formats: matrices, for static problems and networks with single
inputs and outputs, and cell arrays for multiple timesteps and networks with multiple inputs and
outputs.

• The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient
for networks with only one input and output, but can be used with networks that have more. When
the network has multiple inputs, the matrix size is (sum of Ui)-by-Q.

• The cell array format is more general, and more convenient for networks with multiple inputs and
outputs, allowing sequences of inputs to be presented. Each element T{i,ts} is a Ui-by-Q matrix,
where Ui = net.outputs{i}.size.

If Composite data is used, then 'useParallel' is automatically set to 'yes'. The function takes
Composite data and returns Composite results.

If gpuArray data is used, then 'useGPU' is automatically set to 'yes'. The function takes gpuArray
data and returns gpuArray results

Note that T is optional and need only be used for networks that require targets.

Note Any NaN values in the targets T are treated as missing data. If an element of T is NaN, that
element is not used for training, testing, or validation.

Xi — Initial input delay conditions
zeros (default) | cell array | matrix

Initial input delay conditions, specified as an Ni-by-ID cell array or an R-by-(ID*Q) matrix, where

• ID = net.numInputDelays
• Ni = net.numInputs
• R is the input size
• Q is the batch size

For cell array input, the columns of Xi are ordered from the oldest delay condition to the most
recent: Xi{i,k} is the input i at time ts = k - ID.

Xi is also optional and need only be used for networks that have input or layer delays.

Ai — Initial layer delay conditions
zeros (default) | cell array | matrix

Initial layer delay conditions, specified as a Nl-by-LD cell array or a (sum of Si)-by-(LD*Q) matrix,
where

• Nl = net.numLayers
• LD = net.numLayerDelays
• Si = net.layers{i}.size
• Q is the batch size
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For cell array input, the columns of Ai are ordered from the oldest delay condition to the most
recent: Ai{i,k} is the layer output i at time ts = k - LD.

EW — Error weights
cell array

Error weights, specified as a No-by-TS cell array or a (sum of Ui)-by-Q matrix, where

• No = net.numOutputs
• TS is the number of time steps
• Ui = net.outputs{i}.size
• Q is the batch size

For cell array input. each element EW{i,ts} is a Ui-by-Q matrix, where

• Ui = net.outputs{i}.size
• Q is the batch size

The error weights EW can also have a size of 1 in place of all or any of No, TS, Ui or Q. In that case, EW
is automatically dimension extended to match the targets T. This allows for conveniently weighting
the importance in any dimension (such as per sample) while having equal importance across another
(such as time, with TS=1). If all dimensions are 1, for instance if EW = {1}, then all target values are
treated with the same importance. That is the default value of EW.

As noted above, the error weights EW can be of the same dimensions as the targets T, or have some
dimensions set to 1. For instance if EW is 1-by-Q, then target samples will have different importances,
but each element in a sample will have the same importance. If EW is (sum of Ui)-by-1, then each
output element has a different importance, with all samples treated with the same importance.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'useParallel','yes'

useParallel — Option to specify parallel calculations
'no' (default) | 'yes'

Option to specify parallel calculations, specified as 'yes' or 'no'.

• 'no' – Calculations occur on normal MATLAB thread. This is the default 'useParallel' setting.
• 'yes' – Calculations occur on parallel workers if a parallel pool is open. Otherwise calculations

occur on the normal MATLAB thread.

useGPU — Option to specify GPU calculations
'no' (default) | 'yes' | 'only'

Option to specify GPU calculations, specified as 'yes', 'no', or 'only'.

• 'no' – Calculations occur on the CPU. This is the default 'useGPU' setting.
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• 'yes' – Calculations occur on the current gpuDevice if it is a supported GPU (See Parallel
Computing Toolbox for GPU requirements.) If the current gpuDevice is not supported,
calculations remain on the CPU. If 'useParallel' is also 'yes' and a parallel pool is open, then
each worker with a unique GPU uses that GPU, other workers run calculations on their respective
CPU cores.

• 'only' – If no parallel pool is open, then this setting is the same as 'yes'. If a parallel pool is
open then only workers with unique GPUs are used. However, if a parallel pool is open, but no
supported GPUs are available, then calculations revert to performing on all worker CPUs.

showResources — Option to show resources
'no' (default) | 'yes'

Option to show resources, specified as 'yes' or 'no'.

• 'no' – Do not display computing resources used at the command line. This is the default setting.
• 'yes' – Show at the command line a summary of the computing resources actually used. The

actual resources may differ from the requested resources, if parallel or GPU computing is
requested but a parallel pool is not open or a supported GPU is not available. When parallel
workers are used, each worker’s computation mode is described, including workers in the pool
that are not used.

reduction — Memory reduction
1 (default) | positive integer

Memory reduction, specified as a positive integer.

For most neural networks, the default CPU training computation mode is a compiled MEX algorithm.
However, for large networks the calculations might occur with a MATLAB calculation mode. This can
be confirmed using 'showResources'. If MATLAB is being used and memory is an issue, setting the
reduction option to a value N greater than 1, reduces much of the temporary storage required to
train by a factor of N, in exchange for longer training times.

CheckpointFile — Checkpoint file
'' (default) | character vector

Checkpoint file, specified as a character vector.

The value for 'CheckpointFile' can be set to a filename to save in the current working folder, to a
file path in another folder, or to an empty string to disable checkpoint saves (the default value).

CheckpointDelay — Checkpoint delay
60 (default) | nonnegative integer

Checkpoint delay, specified as a nonnegative integer.

The optional parameter 'CheckpointDelay' limits how often saves happen. Limiting the frequency
of checkpoints can improve efficiency by keeping the amount of time saving checkpoints low
compared to the time spent in calculations. It has a default value of 60, which means that checkpoint
saves do not happen more than once per minute. Set the value of 'CheckpointDelay' to 0 if you
want checkpoint saves to occur only once every epoch.
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Output Arguments
trainedNet — Trained network
network object

Trained network, returned as a network object.

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch)
• A list of training state names (states)
• Fields for each state name recording its value throughout training
• Best performances of the network, evaluated at each epoch: best performance on the training set

(best_perf), best performance on the validation set (best_vperf), and best performance on the
test set (best_tperf)

Algorithms
train calls the function indicated by net.trainFcn, using the training parameter values indicated
by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input vectors to the network.
The network is then updated according to the results of all those presentations.

Training occurs until a maximum number of epochs occurs, the performance goal is met, or any other
stopping condition of the function net.trainFcn occurs.

Some training functions depart from this norm by presenting only one input vector (or sequence)
each epoch. An input vector (or sequence) is chosen randomly for each epoch from concurrent input
vectors (or sequences). competlayer returns networks that use trainru, a training function that
does this.

Version History
Introduced before R2006a

See Also
init | revert | sim | adapt
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trainb
Batch training with weight and bias learning rules

Syntax
net.trainFcn = 'trainb'
[net,tr] = train(net,...)

Description
trainb is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trainb', thus:

net.trainFcn = 'trainb' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainb.

trainb trains a network with weight and bias learning rules with batch updates. The weights and
biases are updated at the end of an entire pass through the input data.

Training occurs according to trainb’s training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trainb by calling linearlayer.

To prepare a custom network to be trained with trainb,

1 Set net.trainFcn to 'trainb'. This sets net.trainParam to trainb’s default parameters.
2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each

net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning parameters are
automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
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2 Set weight and bias learning parameters to desired values.
3 Call train.

Algorithms
Each weight and bias is updated according to its learning function after each epoch (one pass
through the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

See Also
linearlayer | train
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trainbfg
BFGS quasi-Newton backpropagation

Syntax
net.trainFcn = 'trainbfg'
[trainedNet,tr] = train(net,...)

Description
net.trainFcn = 'trainbfg' sets the network trainFcn property.

[trainedNet,tr] = train(net,...) trains the network with trainbfg.

trainbfg is a network training function that updates weight and bias values according to the BFGS
quasi-Newton method.

Training occurs according to trainbfg training parameters, shown here with their default values:

• net.trainParam.epochs — Maximum number of epochs to train. The default value is 1000.
• net.trainParam.showWindow — Show training GUI. The default value is true.
• net.trainParam.show — Epochs between displays (NaN for no displays). The default value is

25.
• net.trainParam.showCommandLine — Generate command-line output. The default value is

false.
• net.trainParam.goal — Performance goal. The default value is 0.
• net.trainParam.time — Maximum time to train in seconds. The default value is inf.
• net.trainParam.min_grad — Minimum performance gradient. The default value is 1e-6.
• net.trainParam.max_fail — Maximum validation failures. The default value is 6.
• net.trainParam.searchFcn — Name of line search routine to use. The default value is

'srchbac'.

Parameters related to line search methods (not all used for all methods):

• net.trainParam.scal_tol — Divide into delta to determine tolerance for linear search. The
default value is 20.

• net.trainParam.alpha — Scale factor that determines sufficient reduction in perf. The default
value is 0.001.

• net.trainParam.beta — Scale factor that determines sufficiently large step size. The default
value is 0.1.

• net.trainParam.delta — Initial step size in interval location step. The default value is 0.01.
• net.trainParam.gamma — Parameter to avoid small reductions in performance, usually set to

0.1 (see srch_cha). The default value is 0.1.
• net.trainParam.low_lim — Lower limit on change in step size. The default value is 0.1.
• net.trainParam.up_lim — Upper limit on change in step size. The default value is 0.5.
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• net.trainParam.maxstep — Maximum step length. The default value is 100.
• net.trainParam.minstep — Minimum step length. The default value is 1.0e-6.
• net.trainParam.bmax — Maximum step size. The default value is 26.
• net.trainParam.batch_frag — In case of multiple batches, they are considered independent.

Any nonzero value implies a fragmented batch, so the final layer’s conditions of a previous trained
epoch are used as initial conditions for the next epoch. The default value is 0.

Examples

Train Neural Network Using trainbfg Train Function

This example shows how to train a neural network using the trainbfg train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainbfg');
net = train(net, x, t);

2 Approximation, Clustering, and Control Functions

2-490



y = net(x);

Input Arguments
net — Input network
network
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Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Output Arguments
trainedNet — Trained network
network

Trained network, returned as a network object..

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

More About
Network Use

You can create a standard network that uses trainbfg with feedfowardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainbfg:

1 Set NET.trainFcn to 'trainbfg'. This sets NET.trainParam to trainbfg’s default
parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainbfg.

BFGS Quasi-Newton Backpropagation

Newton’s method is an alternative to the conjugate gradient methods for fast optimization. The basic
step of Newton’s method is

xk + 1 = xk− Ak
−1gk

where Ak
−1 is the Hessian matrix (second derivatives) of the performance index at the current values

of the weights and biases. Newton’s method often converges faster than conjugate gradient methods.
Unfortunately, it is complex and expensive to compute the Hessian matrix for feedforward neural
networks. There is a class of algorithms that is based on Newton’s method, but which does not
require calculation of second derivatives. These are called quasi-Newton (or secant) methods. They
update an approximate Hessian matrix at each iteration of the algorithm. The update is computed as
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a function of the gradient. The quasi-Newton method that has been most successful in published
studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm is implemented
in the trainbfg routine.

The BFGS algorithm is described in [DeSc83]. This algorithm requires more computation in each
iteration and more storage than the conjugate gradient methods, although it generally converges in
fewer iterations. The approximate Hessian must be stored, and its dimension is n x n, where n is
equal to the number of weights and biases in the network. For very large networks it might be better
to use Rprop or one of the conjugate gradient algorithms. For smaller networks, however, trainbfg
can be an efficient training function.

Algorithms
trainbfg can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed according to the following formula:

dX = -H\gX;

where gX is the gradient and H is a approximate Hessian matrix. See page 119 of Gill, Murray, and
Wright (Practical Optimization, 1981) for a more detailed discussion of the BFGS quasi-Newton
method.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

References
[1] Gill, Murray, & Wright, Practical Optimization, 1981
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See Also
cascadeforwardnet | feedforwardnet | traingdm | traingda | traingdx | trainlm | trainrp
| traincgf | traincgb | trainscg | traincgp | trainoss
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trainbr
Bayesian regularization backpropagation

Syntax
net.trainFcn = 'trainbr'
[trainedNet,tr] = train(net,...)

Description
net.trainFcn = 'trainbr' sets the network trainFcn property.

[trainedNet,tr] = train(net,...) trains the network with trainbr.

trainbr is a network training function that updates the weight and bias values according to
Levenberg-Marquardt optimization. It minimizes a combination of squared errors and weights, and
then determines the correct combination so as to produce a network that generalizes well. The
process is called Bayesian regularization.

Training occurs according to trainbr training parameters, shown here with their default values:

• net.trainParam.epochs — Maximum number of epochs to train. The default value is 1000.
• net.trainParam.goal — Performance goal. The default value is 0.
• net.trainParam.mu — Marquardt adjustment parameter. The default value is 0.005.
• net.trainParam.mu_dec — Decrease factor for mu. The default value is 0.1.
• net.trainParam.mu_inc — Increase factor for mu. The default value is 10.
• net.trainParam.mu_max — Maximum value for mu. The default value is 1e10.
• net.trainParam.max_fail — Maximum validation failures. The default value is inf.
• net.trainParam.min_grad — Minimum performance gradient. The default value is 1e-7.
• net.trainParam.show — Epochs between displays (NaN for no displays). The default value is

25.
• net.trainParam.showCommandLine — Generate command-line output. The default value is

false.
• net.trainParam.showWindow — Show training GUI. The default value is true.
• net.trainParam.time — Maximum time to train in seconds. The default value is inf.

Validation stops are disabled by default (max_fail = inf) so that training can continue until an
optimal combination of errors and weights is found. However, some weight/bias minimization can still
be achieved with shorter training times if validation is enabled by setting max_fail to 6 or some
other strictly positive value.

Examples
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Train Network with 'trainbr'

This example shows how to solve a problem consisting of inputs p and targets t by using a network.
It involves fitting a noisy sine wave.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

A feed-forward network is created with a hidden layer of 2 neurons.

net = feedforwardnet(2,'trainbr');

Here the network is trained and tested.

net = train(net,p,t);
a = net(p)

Input Arguments
net — Input network
matrix

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Output Arguments
trainedNet — Trained network
network

Trained network, returned as a network object.

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

Limitations
This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of
squared errors. Therefore networks trained with this function must use either the mse or sse
performance function.
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More About
Network Use

You can create a standard network that uses trainbr with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainbr,

1 Set NET.trainFcn to 'trainbr'. This sets NET.trainParam to trainbr’s default
parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainbr. See
feedforwardnet and cascadeforwardnet for examples.

Algorithms
trainbr can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and weights. It also
modifies the linear combination so that at the end of training the resulting network has good
generalization qualities. See MacKay (Neural Computation, Vol. 4, No. 3, 1992, pp. 415 to 447) and
Foresee and Hagan (Proceedings of the International Joint Conference on Neural Networks, June,
1997) for more detailed discussions of Bayesian regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt algorithm.
Backpropagation is used to calculate the Jacobian jX of performance perf with respect to the weight
and bias variables X. Each variable is adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change shown above results in a reduced
performance value. The change is then made to the network, and mu is decreased by mu_dec.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• mu exceeds mu_max.

Version History
Introduced before R2006a
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References
[1] MacKay, David J. C. "Bayesian interpolation." Neural computation. Vol. 4, No. 3, 1992, pp. 415–

447.

[2] Foresee, F. Dan, and Martin T. Hagan. "Gauss-Newton approximation to Bayesian learning."
Proceedings of the International Joint Conference on Neural Networks, June, 1997.

See Also
cascadeforwardnet | feedforwardnet | traingdm | traingda | traingdx | trainlm | trainrp
| traincgf | traincgb | trainscg | traincgp | trainbfg
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trainbu
Batch unsupervised weight/bias training

Syntax
net.trainFcn = 'trainbu'
[net,tr] = train(net,...)

Description
trainbu trains a network with weight and bias learning rules with batch updates. Weights and
biases updates occur at the end of an entire pass through the input data.

trainbu is not called directly. Instead the train function calls it for networks whose
NET.trainFcn property is set to 'trainbu', thus:

net.trainFcn = 'trainbu' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainbu.

Training occurs according to trainbu training parameters, shown here with the following default
values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Validation and test vectors have no impact on training for this function, but act as independent
measures of network generalization.

Network Use
You can create a standard network that uses trainbu by calling selforgmap. To prepare a custom
network to be trained with trainbu:

1 Set NET.trainFcn to 'trainbu'. (This option sets NET.trainParam to trainbu default
parameters.)

2 Set each NET.inputWeights{i,j}.learnFcn to a learning function.
3 Set each NET.layerWeights{i,j}.learnFcn to a learning function.
4 Set each NET.biases{i}.learnFcn to a learning function. (Weight and bias learning

parameters are automatically set to default values for the given learning function.)

To train the network:

1 Set NET.trainParam properties to desired values.
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2 Set weight and bias learning parameters to desired values.
3 Call train.

See selforgmap for training examples.

Algorithms
Each weight and bias updates according to its learning function after each epoch (one pass through
the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced in R2010b

See Also
train | trainb
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trainc
Cyclical order weight/bias training

Syntax
net.trainFcn = 'trainc'
[net,tr] = train(net,...)

Description
trainc is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trainc', thus:

net.trainFcn = 'trainc' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainc.

trainc trains a network with weight and bias learning rules with incremental updates after each
presentation of an input. Inputs are presented in cyclic order.

Training occurs according to trainc training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trainc by calling competlayer. To prepare a custom
network to be trained with trainc,

1 Set net.trainFcn to 'trainc'. This sets net.trainParam to trainc’s default parameters.
2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each

net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning parameters are
automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.
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See perceptron for training examples.

Algorithms
For each epoch, each vector (or sequence) is presented in order to the network, with the weight and
bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.

Version History
Introduced before R2006a

See Also
competlayer | train
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traincgb
Conjugate gradient backpropagation with Powell-Beale restarts

Syntax
net.trainFcn = 'traincgb'
[net,tr] = train(net,...)

Description
traincgb is a network training function that updates weight and bias values according to the
conjugate gradient backpropagation with Powell-Beale restarts.

net.trainFcn = 'traincgb' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgb.

Training occurs according to traincgb training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchch

a'
Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search.
net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
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net.trainParam.bmax 26 Maximum step size

Network Use
You can create a standard network that uses traincgb with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with traincgb,

1 Set net.trainFcn to 'traincgb'. This sets net.trainParam to traincgb’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincgb.

Examples

Train Neural Network Using traincgb Train Function

This example shows how to train a neural network using the traincgb train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgb');
net = train(net, x, t);
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y = net(x);
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More About
Powell-Beale Algorithm

For all conjugate gradient algorithms, the search direction is periodically reset to the negative of the
gradient. The standard reset point occurs when the number of iterations is equal to the number of
network parameters (weights and biases), but there are other reset methods that can improve the
efficiency of training. One such reset method was proposed by Powell [Powe77], based on an earlier
version proposed by Beale [Beal72]. This technique restarts if there is very little orthogonality left
between the current gradient and the previous gradient. This is tested with the following inequality:

gk− 1
T gk ≥ 0.2 gk

2

If this condition is satisfied, the search direction is reset to the negative of the gradient.

The traincgb routine has somewhat better performance than traincgp for some problems,
although performance on any given problem is difficult to predict. The storage requirements for the
Powell-Beale algorithm (six vectors) are slightly larger than for Polak-Ribiére (four vectors).

Algorithms
traincgb can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed from the new gradient and the previous search direction according to the
formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways. The Powell-
Beale variation of conjugate gradient is distinguished by two features. First, the algorithm uses a test
to determine when to reset the search direction to the negative of the gradient. Second, the search
direction is computed from the negative gradient, the previous search direction, and the last search
direction before the previous reset. See Powell, Mathematical Programming, Vol. 12, 1977, pp. 241 to
254, for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

2 Approximation, Clustering, and Control Functions

2-506



Version History
Introduced before R2006a

References
Powell, M.J.D., “Restart procedures for the conjugate gradient method,” Mathematical Programming,
Vol. 12, 1977, pp. 241–254

See Also
traingdm | traingda | traingdx | trainlm | traincgp | traincgf | trainscg | trainoss |
trainbfg
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traincgf
Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax
net.trainFcn = 'traincgf'
[net,tr] = train(net,...)

Description
traincgf is a network training function that updates weight and bias values according to conjugate
gradient backpropagation with Fletcher-Reeves updates.

net.trainFcn = 'traincgf' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgf.

Training occurs according to traincgf training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchcha

'
Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search.
net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
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net.trainParam.bmax 26 Maximum step size

Network Use
You can create a standard network that uses traincgf with feedforwardnet or
cascadeforwardnet.

To prepare a custom network to be trained with traincgf,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincgf.

Examples

Train Neural Network Using traincgf Train Function

This example shows how to train a neural network using the traincgf train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgf');
net = train(net, x, t);

 traincgf

2-509



y = net(x);
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More About
Conjugate Gradient Algorithms

All the conjugate gradient algorithms start out by searching in the steepest descent direction
(negative of the gradient) on the first iteration.

p0 = − g0

A line search is then performed to determine the optimal distance to move along the current search
direction:

xk + 1 = xkαkpk

Then the next search direction is determined so that it is conjugate to previous search directions. The
general procedure for determining the new search direction is to combine the new steepest descent
direction with the previous search direction:

pk = − gk + βkpk− 1

The various versions of the conjugate gradient algorithm are distinguished by the manner in which
the constant βk is computed. For the Fletcher-Reeves update the procedure is

βk =
gk

Tgk
gk− 1

T gk− 1

This is the ratio of the norm squared of the current gradient to the norm squared of the previous
gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate gradient algorithm.

The conjugate gradient algorithms are usually much faster than variable learning rate
backpropagation, and are sometimes faster than trainrp, although the results vary from one
problem to another. The conjugate gradient algorithms require only a little more storage than the
simpler algorithms. Therefore, these algorithms are good for networks with a large number of
weights.

Try the Neural Network Design demonstration nnd12cg [HDB96] for an illustration of the
performance of a conjugate gradient algorithm.

Algorithms
traincgf can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
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direction is computed from the new gradient and the previous search direction, according to the
formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways. For the
Fletcher-Reeves variation of conjugate gradient it is computed according to

Z = normnew_sqr/norm_sqr;

where norm_sqr is the norm square of the previous gradient and normnew_sqr is the norm square
of the current gradient. See page 78 of Scales (Introduction to Non-Linear Optimization) for a more
detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

References
Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
traingdm | traingda | traingdx | trainlm | traincgb | trainscg | traincgp | trainoss |
trainbfg
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traincgp
Conjugate gradient backpropagation with Polak-Ribiére updates

Syntax
net.trainFcn = 'traincgp'
[net,tr] = train(net,...)

Description
traincgp is a network training function that updates weight and bias values according to conjugate
gradient backpropagation with Polak-Ribiére updates.

net.trainFcn = 'traincgp' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgp.

Training occurs according to traincgp training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.searchFcn 'srchcha

'
Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search.
net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length
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net.trainParam.bmax 26 Maximum step size

Network Use
You can create a standard network that uses traincgp with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traincgp,

1 Set net.trainFcn to 'traincgp'. This sets net.trainParam to traincgp’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincgp.

Examples

Train Neural Network Using traincgp Train Function

This example shows how to train a neural network using the traincgp train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgp');
net = train(net, x, t);
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y = net(x);
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More About
Conjugate Gradient Backpropagation with Polak-Ribiére Updates

Another version of the conjugate gradient algorithm was proposed by Polak and Ribiére. As with the
Fletcher-Reeves algorithm, traincgf, the search direction at each iteration is determined by

pk = − gk + βkpk− 1

For the Polak-Ribiére update, the constant βk is computed by

βk =
Δgk− 1

T gk
gk− 1

T gk− 1

This is the inner product of the previous change in the gradient with the current gradient divided by
the norm squared of the previous gradient. See [FlRe64] or [HDB96] for a discussion of the Polak-
Ribiére conjugate gradient algorithm.

The traincgp routine has performance similar to traincgf. It is difficult to predict which algorithm
will perform best on a given problem. The storage requirements for Polak-Ribiére (four vectors) are
slightly larger than for Fletcher-Reeves (three vectors).

Algorithms
traincgp can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed from the new gradient and the previous search direction according to the
formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different ways. For the Polak-
Ribiére variation of conjugate gradient, it is computed according to

Z = ((gX - gX_old)'*gX)/norm_sqr;

where norm_sqr is the norm square of the previous gradient, and gX_old is the gradient on the
previous iteration. See page 78 of Scales (Introduction to Non-Linear Optimization, 1985) for a more
detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
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• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

References
Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb | trainscg |
trainoss | trainbfg
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traingd
Gradient descent backpropagation

Syntax
net.trainFcn = 'traingd'
[trainedNet,tr] = train(net,...)

Description
net.trainFcn = 'traingd' sets the network trainFcn property.

[trainedNet,tr] = train(net,...) trains the network with traingd.

traingd is a network training function that updates weight and bias values according to gradient
descent.

Training occurs according to traingd training parameters, shown here with their default values:

• net.trainParam.epochs — Maximum number of epochs to train. The default value is 1000.
• net.trainParam.goal — Performance goal. The default value is 0.
• net.trainParam.lr — Learning rate. The default value is 0.01.
• net.trainParam.max_fail — Maximum validation failures. The default value is 6.
• net.trainParam.min_grad — Minimum performance gradient. The default value is 1e-5.
• net.trainParam.show — Epochs between displays (NaN for no displays). The default value is

25.
• net.trainParam.showCommandLine — Generate command-line output. The default value is

false.
• net.trainParam.showWindow — Show training GUI. The default value is true.
• net.trainParam.time — Maximum time to train in seconds. The default value is inf.

Input Arguments
net — Input network
network object

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Output Arguments
trainedNet — Trained network
network object

Trained network, returned as a network object.
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tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

More About
Network Use

You can create a standard network that uses traingd with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingd,

1 Set net.trainFcn to 'traingd'. This sets net.trainParam to traingd’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingd.

See help feedforwardnet and help cascadeforwardnet for examples.

Gradient Descent Backpropagation

The batch steepest descent training function is traingd. The weights and biases are updated in the
direction of the negative gradient of the performance function. If you want to train a network using
batch steepest descent, you should set the network trainFcn to traingd, and then call the function
train. There is only one training function associated with a given network.

There are seven training parameters associated with traingd:

• epochs
• show
• goal
• time
• min_grad
• max_fail
• lr

The learning rate lr is multiplied times the negative of the gradient to determine the changes to the
weights and biases. The larger the learning rate, the bigger the step. If the learning rate is made too
large, the algorithm becomes unstable. If the learning rate is set too small, the algorithm takes a long
time to converge. See page 12-8 of [HDB96] for a discussion of the choice of learning rate.
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The training status is displayed for every show iterations of the algorithm. (If show is set to NaN, then
the training status is never displayed.) The other parameters determine when the training stops. The
training stops if the number of iterations exceeds epochs, if the performance function drops below
goal, if the magnitude of the gradient is less than mingrad, or if the training time is longer than
time seconds. max_fail, which is associated with the early stopping technique, is discussed in
Improving Generalization.

The following code creates a training set of inputs p and targets t. For batch training, all the input
vectors are placed in one matrix.

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];

Create the feedforward network.

net = feedforwardnet(3,'traingd');

In this simple example, turn off a feature that is introduced later.

net.divideFcn = '';

At this point, you might want to modify some of the default training parameters.

net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

If you want to use the default training parameters, the preceding commands are not necessary.

Now you are ready to train the network.

[net,tr] = train(net,p,t);

The training record tr contains information about the progress of training.

Now you can simulate the trained network to obtain its response to the inputs in the training set.

a = net(p)
a =
   -1.0026   -0.9962   1.0010   0.9960

Try the Neural Network Design demonstration nnd12sd1 [HDB96] for an illustration of the
performance of the batch gradient descent algorithm.

Algorithms
traingd can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to gradient descent:

dX = lr * dperf/dX

Training stops when any of these conditions occurs:
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• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

See Also
traingdm | traingda | traingdx | trainlm

 traingd

2-521



traingda
Gradient descent with adaptive learning rate backpropagation

Syntax
net.trainFcn = 'traingda'
[trainedNet,tr] = train(net,...)

Description
net.trainFcn = 'traingda' sets the network trainFcn property.

[trainedNet,tr] = train(net,...) trains the network with traingda.

traingda is a network training function that updates weight and bias values according to gradient
descent with adaptive learning rate.

Training occurs according to traingda training parameters, shown here with their default values:

• net.trainParam.epochs — Maximum number of epochs to train. The default value is 1000.
• net.trainParam.goal — Performance goal. The default value is 0.
• net.trainParam.lr — Learning rate. The default value is 0.01.
• net.trainParam.lr_inc — Ratio to increase learning rate. The default value is 1.05.
• net.trainParam.lr_dec — Ratio to decrease learning rate. The default value is 0.7.
• net.trainParam.max_fail — Maximum validation failures. The default value is 6.
• net.trainParam.max_perf_inc — Maximum performance increase. The default value is 1.04.
• net.trainParam.min_grad — Minimum performance gradient. The default value is 1e-5.
• net.trainParam.show — Epochs between displays (NaN for no displays). The default value is

25.
• net.trainParam.showCommandLine — Generate command-line output. The default value is

false.
• net.trainParam.showWindow — Show training GUI. The default value is true.
• net.trainParam.time — Maximum time to train in seconds. The default value is inf.

Input Arguments
net — Input network
network

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Output Arguments
trainedNet — Trained network
network
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Trained network, returned as a network object..

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

More About
Network Use

You can create a standard network that uses traingda with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingda,

1 Set net.trainFcn to 'traingda'. This sets net.trainParam to traingda’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingda.

See help feedforwardnet and help cascadeforwardnet for examples.

Gradient Descent with Adaptive Learning Rate Backpropagation

With standard steepest descent, the learning rate is held constant throughout training. The
performance of the algorithm is very sensitive to the proper setting of the learning rate. If the
learning rate is set too high, the algorithm can oscillate and become unstable. If the learning rate is
too small, the algorithm takes too long to converge. It is not practical to determine the optimal
setting for the learning rate before training, and, in fact, the optimal learning rate changes during the
training process, as the algorithm moves across the performance surface.

You can improve the performance of the steepest descent algorithm if you allow the learning rate to
change during the training process. An adaptive learning rate attempts to keep the learning step size
as large as possible while keeping learning stable. The learning rate is made responsive to the
complexity of the local error surface.

An adaptive learning rate requires some changes in the training procedure used by traingd. First,
the initial network output and error are calculated. At each epoch new weights and biases are
calculated using the current learning rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a predefined ratio,
max_perf_inc (typically 1.04), the new weights and biases are discarded. In addition, the learning
rate is decreased (typically by multiplying by lr_dec = 0.7). Otherwise, the new weights, etc., are
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kept. If the new error is less than the old error, the learning rate is increased (typically by multiplying
by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the network can learn without
large error increases. Thus, a near-optimal learning rate is obtained for the local terrain. When a
larger learning rate could result in stable learning, the learning rate is increased. When the learning
rate is too high to guarantee a decrease in error, it is decreased until stable learning resumes.

Try the Neural Network Design demonstration nnd12vl [HDB96] for an illustration of the
performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with the function traingda,
which is called just like traingd, except for the additional training parameters max_perf_inc,
lr_dec, and lr_inc. Here is how it is called to train the previous two-layer network:

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net = train(net,p,t);
y = net(p)

Algorithms
traingda can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with respect to the weight
and bias variables X. Each variable is adjusted according to gradient descent:

dX = lr*dperf/dX

At each epoch, if performance decreases toward the goal, then the learning rate is increased by the
factor lr_inc. If performance increases by more than the factor max_perf_inc, the learning rate is
adjusted by the factor lr_dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a
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See Also
traingd | traingdm | traingdx | trainlm
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traingdm
Gradient descent with momentum backpropagation

Syntax
net.trainFcn = 'traingdm'
[net,tr] = train(net,...)

Description
traingdm is a network training function that updates weight and bias values according to gradient
descent with momentum.

net.trainFcn = 'traingdm' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingdm.

Training occurs according to traingdm training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.lr 0.01 Learning rate
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.mc 0.9 Momentum constant
net.trainParam.min_grad 1e-5 Minimum performance gradient
net.trainParam.show 25 Epochs between showing progress
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses traingdm with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingdm,

1 Set net.trainFcn to 'traingdm'. This sets net.trainParam to traingdm’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingdm.

See help feedforwardnet and help cascadeforwardnet for examples.
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More About
Gradient Descent with Momentum

In addition to traingd, there are three other variations of gradient descent.

Gradient descent with momentum, implemented by traingdm, allows a network to respond not only
to the local gradient, but also to recent trends in the error surface. Acting like a lowpass filter,
momentum allows the network to ignore small features in the error surface. Without momentum a
network can get stuck in a shallow local minimum. With momentum a network can slide through such
a minimum. See page 12–9 of [HDB96] for a discussion of momentum.

Gradient descent with momentum depends on two training parameters. The parameter lr indicates
the learning rate, similar to the simple gradient descent. The parameter mc is the momentum
constant that defines the amount of momentum. mc is set between 0 (no momentum) and values close
to 1 (lots of momentum). A momentum constant of 1 results in a network that is completely
insensitive to the local gradient and, therefore, does not learn properly.

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingdm');
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net = train(net,p,t);
y = net(p)

Try the Neural Network Design demonstration nnd12mo [HDB96] for an illustration of the
performance of the batch momentum algorithm.

Algorithms
traingdm can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to gradient descent with momentum,

dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a
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See Also
traingd | traingda | traingdx | trainlm
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traingdx
Gradient descent with momentum and adaptive learning rate backpropagation

Syntax
net.trainFcn = 'traingdx'
[trainedNet,tr] = train(net,...)

Description
net.trainFcn = 'traingdx' sets the network trainFcn property.

[trainedNet,tr] = train(net,...) trains the network with traingdx.

traingdx is a network training function that updates weight and bias values according to gradient
descent momentum and an adaptive learning rate.

Training occurs according to traingdx training parameters, shown here with their default values:

• net.trainParam.epochs — Maximum number of epochs to train. The default value is 1000.
• net.trainParam.goal — Performance goal. The default value is 0.
• net.trainParam.lr — Learning rate. The default value is 0.01.
• net.trainParam.lr_inc — Ratio to increase learning rate. The default value is 1.05.
• net.trainParam.lr_dec — Ratio to decrease learning rate. The default value is 0.7.
• net.trainParam.max_fail — Maximum validation failures. The default value is 6.
• net.trainParam.max_perf_inc — Maximum performance increase. The default value is 1.04.
• net.trainParam.mc — Momentum constant. The default value is 0.9.
• net.trainParam.min_grad — Minimum performance gradient. The default value is 1e-5.
• net.trainParam.show — Epochs between displays (NaN for no displays). The default value is

25.
• net.trainParam.showCommandLine — Generate command-line output. The default value is

false.
• net.trainParam.showWindow — Show training GUI. The default value is true.
• net.trainParam.time — Maximum time to train in seconds. The default value is inf.

Input Arguments
net — Input network
matrix

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.
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Output Arguments
trainedNet — Trained network
network

Trained network, returned as a network object.

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

More About
Network Use

You can create a standard network that uses traingdx with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with traingdx,

1 Set net.trainFcn to 'traingdx'. This sets net.trainParam to traingdx’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingdx.

See help feedforwardnet and help cascadeforwardnet for examples.

Algorithms
The function traingdx combines adaptive learning rate with momentum training. It is invoked in the
same way as traingda, except that it has the momentum coefficient mc as an additional training
parameter.

traingdx can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to gradient descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.
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For each epoch, if performance decreases toward the goal, then the learning rate is increased by the
factor lr_inc. If performance increases by more than the factor max_perf_inc, the learning rate is
adjusted by the factor lr_dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

See Also
traingd | traingda | traingdm | trainlm
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trainlm
Levenberg-Marquardt backpropagation

Syntax
net.trainFcn = 'trainlm'
[trainedNet,tr] = train(net,...)

Description
net.trainFcn = 'trainlm' sets the network trainFcn property.

[trainedNet,tr] = train(net,...) trains the network with trainlm.

trainlm is a network training function that updates weight and bias values according to Levenberg-
Marquardt optimization.

trainlm is often the fastest backpropagation algorithm in the toolbox, and is highly recommended as
a first-choice supervised algorithm, although it does require more memory than other algorithms.

Training occurs according to trainlm training parameters, shown here with their default values:

• net.trainParam.epochs — Maximum number of epochs to train. The default value is 1000.
• net.trainParam.goal — Performance goal. The default value is 0.
• net.trainParam.max_fail — Maximum validation failures. The default value is 6.
• net.trainParam.min_grad — Minimum performance gradient. The default value is 1e-7.
• net.trainParam.mu — Initial mu. The default value is 0.001.
• net.trainParam.mu_dec — Decrease factor for mu. The default value is 0.1.
• net.trainParam.mu_inc — Increase factor for mu. The default value is 10.
• net.trainParam.mu_max — Maximum value for mu. The default value is 1e10.
• net.trainParam.show — Epochs between displays (NaN for no displays). The default value is

25.
• net.trainParam.showCommandLine — Generate command-line output. The default value is

false.
• net.trainParam.showWindow — Show training GUI. The default value is true.
• net.trainParam.time — Maximum time to train in seconds. The default value is inf.

Validation vectors are used to stop training early if the network performance on the validation vectors
fails to improve or remains the same for max_fail epochs in a row. Test vectors are used as a further
check that the network is generalizing well, but do not have any effect on training.

Examples
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Train Neural Network Using trainlm Train Function

This example shows how to train a neural network using the trainlm train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainlm');
net = train(net, x, t);
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y = net(x);

Input Arguments
net — Input network
matrix
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Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Output Arguments
trainedNet — Trained network
network

Trained network, returned as a network object.

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

Limitations
This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of
squared errors. Therefore, networks trained with this function must use either the mse or sse
performance function.

More About
Levenberg-Marquardt Algorithm

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to approach
second-order training speed without having to compute the Hessian matrix. When the performance
function has the form of a sum of squares (as is typical in training feedforward networks), then the
Hessian matrix can be approximated as

H = JTJ (2-1)

and the gradient can be computed as

g = JTe (2-2)

where J is the Jacobian matrix that contains first derivatives of the network errors with respect to the
weights and biases, and e is a vector of network errors. The Jacobian matrix can be computed
through a standard backpropagation technique (see [HaMe94]) that is much less complex than
computing the Hessian matrix.

 trainlm

2-535



The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following
Newton-like update:

xk + 1 = xk− [JTJ + μI]−1JTe

When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian matrix. When
µ is large, this becomes gradient descent with a small step size. Newton’s method is faster and more
accurate near an error minimum, so the aim is to shift toward Newton’s method as quickly as
possible. Thus, µ is decreased after each successful step (reduction in performance function) and is
increased only when a tentative step would increase the performance function. In this way, the
performance function is always reduced at each iteration of the algorithm.

The original description of the Levenberg-Marquardt algorithm is given in [Marq63]. The application
of Levenberg-Marquardt to neural network training is described in [HaMe94] and starting on page
12-19 of [HDB96]. This algorithm appears to be the fastest method for training moderate-sized
feedforward neural networks (up to several hundred weights). It also has an efficient implementation
in MATLAB® software, because the solution of the matrix equation is a built-in function, so its
attributes become even more pronounced in a MATLAB environment.

Try the Neural Network Design demonstration nnd12m [HDB96] for an illustration of the
performance of the batch Levenberg-Marquardt algorithm.

Network Use

You can create a standard network that uses trainlm with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainlm,

1 Set NET.trainFcn to trainlm. This sets NET.trainParam to trainlm’s default parameters.
2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainlm. See
feedforwardnet and cascadeforwardnet for examples.

Algorithms
trainlm supports training with validation and test vectors if the network’s NET.divideFcn
property is set to a data division function. Validation vectors are used to stop training early if the
network performance on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is generalizing well, but do
not have any effect on training.

trainlm can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance perf with respect to the weight
and bias variables X. Each variable is adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.
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The adaptive value mu is increased by mu_inc until the change above results in a reduced
performance value. The change is then made to the network and mu is decreased by mu_dec.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• mu exceeds mu_max.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

See Also
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trainoss
One-step secant backpropagation

Syntax
net.trainFcn = 'trainoss'
[net,tr] = train(net,...)

Description
trainoss is a network training function that updates weight and bias values according to the one-
step secant method.

net.trainFcn = 'trainoss' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainoss.

Training occurs according to trainoss training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.min_grad 1e-10 Minimum performance gradient
net.trainParam.searchFcn 'srchbac

'
Name of line search routine to use

net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20 Divide into delta to determine tolerance for linear search.
net.trainParam.alpha 0.001 Scale factor that determines sufficient reduction in perf
net.trainParam.beta 0.1 Scale factor that determines sufficiently large step size
net.trainParam.delta 0.01 Initial step size in interval location step
net.trainParam.gama 0.1 Parameter to avoid small reductions in performance,

usually set to 0.1 (see srch_cha)
net.trainParam.low_lim 0.1 Lower limit on change in step size
net.trainParam.up_lim 0.5 Upper limit on change in step size
net.trainParam.maxstep 100 Maximum step length
net.trainParam.minstep 1.0e-6 Minimum step length

2 Approximation, Clustering, and Control Functions

2-538



net.trainParam.bmax 26 Maximum step size

Network Use
You can create a standard network that uses trainoss with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainoss:

1 Set net.trainFcn to 'trainoss'. This sets net.trainParam to trainoss’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainoss.

Examples

Train Neural Network Using trainoss Train Function

This example shows how to train a neural network using the trainoss train function.

Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainoss');
net = train(net, x, t);
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y = net(x);

2 Approximation, Clustering, and Control Functions

2-540



More About
One Step Secant Method

Because the BFGS algorithm requires more storage and computation in each iteration than the
conjugate gradient algorithms, there is need for a secant approximation with smaller storage and
computation requirements. The one step secant (OSS) method is an attempt to bridge the gap
between the conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This algorithm
does not store the complete Hessian matrix; it assumes that at each iteration, the previous Hessian
was the identity matrix. This has the additional advantage that the new search direction can be
calculated without computing a matrix inverse.

The one step secant method is described in [Batt92]. This algorithm requires less storage and
computation per epoch than the BFGS algorithm. It requires slightly more storage and computation
per epoch than the conjugate gradient algorithms. It can be considered a compromise between full
quasi-Newton algorithms and conjugate gradient algorithms.

Algorithms
trainoss can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the performance along the
search direction. The line search function searchFcn is used to locate the minimum point. The first
search direction is the negative of the gradient of performance. In succeeding iterations the search
direction is computed from the new gradient and the previous steps and gradients, according to the
following formula:

dX = -gX + Ac*X_step + Bc*dgX;

where gX is the gradient, X_step is the change in the weights on the previous iteration, and dgX is
the change in the gradient from the last iteration. See Battiti (Neural Computation, Vol. 4, 1992, pp.
141–166) for a more detailed discussion of the one-step secant algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a
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References
Battiti, R., “First and second order methods for learning: Between steepest descent and Newton’s
method,” Neural Computation, Vol. 4, No. 2, 1992, pp. 141–166

See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb | trainscg |
traincgp | trainbfg
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trainr
Random order incremental training with learning functions

Syntax
net.trainFcn = 'trainr'
[net,tr] = train(net,...)

Description
trainr is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trainr', thus:

net.trainFcn = 'trainr' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainr.

trainr trains a network with weight and bias learning rules with incremental updates after each
presentation of an input. Inputs are presented in random order.

Training occurs according to trainr training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.max_fail 6 Maximum validation failures
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trainr by calling competlayer or selforgmap. To
prepare a custom network to be trained with trainr,

1 Set net.trainFcn to 'trainr'. This sets net.trainParam to trainr’s default parameters.
2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
3 Set each net.layerWeights{i,j}.learnFcn to a learning function.
4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias learning

parameters are automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.

 trainr

2-543



3 Call train.

See help competlayer and help selforgmap for training examples.

Algorithms
For each epoch, all training vectors (or sequences) are each presented once in a different random
order, with the network and weight and bias values updated accordingly after each individual
presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• Performance is minimized to the goal.
• The maximum amount of time is exceeded.

Version History
Introduced before R2006a

See Also
train
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trainrp
Resilient backpropagation

Syntax
net.trainFcn = 'trainrp'
[trainedNet,tr] = train(net,...)

Description
net.trainFcn = 'trainrp' sets the network trainFcn property.

[trainedNet,tr] = train(net,...) trains the network with trainrp.

trainrp is a network training function that updates weight and bias values according to the resilient
backpropagation algorithm (Rprop).

Training occurs according to trainrp training parameters, shown here with their default values:

• net.trainParam.epochs — Maximum number of epochs to train. The default value is 1000.
• net.trainParam.show — Epochs between displays (NaN for no displays). The default value is

25.
• net.trainParam.showCommandLine — Generate command-line output. The default value is

false.
• net.trainParam.showWindow — Show training GUI. The default value is true.
• net.trainParam.goal — Performance goal. The default value is 0.
• net.trainParam.time — Maximum time to train in seconds. The default value is inf.
• net.trainParam.min_grad — Minimum performance gradient. The default value is 1e-5.
• net.trainParam.max_fail — Maximum validation failures. The default value is 6.
• net.trainParam.lr — Learning rate. The default value is 0.01.
• net.trainParam.delt_inc — Increment to weight change. The default value is 1.2.
• net.trainParam.delt_dec — Decrement to weight change. The default value is 0.5.
• net.trainParam.delta0 — Initial weight change. The default value is 0.07.
• net.trainParam.deltamax — Maximum weight change. The default value is 50.0.

Examples

Solve Problems with Network Trained with 'trainrp'

This example shows how to train a feed-forward network with a trainrp training function to solve a
problem with inputs p and targets t.

Create the inputs p and the targets t that you want to solve with a network.
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p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Create a two-layer feed-forward network with two hidden neurons and this training function.

net = feedforwardnet(2,'trainrp');

Train and test the network.

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = net(p)

For more examples, see help feedforwardnet and help cascadeforwardnet.

Input Arguments
net — Input network
matrix

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Output Arguments
trainedNet — Trained network
network

Trained network, returned as a network object.

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

More About
Network Use

You can create a standard network that uses trainrp with feedforwardnet or
cascadeforwardnet.
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To prepare a custom network to be trained with trainrp,

1 Set net.trainFcn to 'trainrp'. This sets net.trainParam to trainrp’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainrp.

Resilient Backpropagation

Multilayer networks typically use sigmoid transfer functions in the hidden layers. These functions are
often called “squashing” functions, because they compress an infinite input range into a finite output
range. Sigmoid functions are characterized by the fact that their slopes must approach zero as the
input gets large. This causes a problem when you use steepest descent to train a multilayer network
with sigmoid functions, because the gradient can have a very small magnitude and, therefore, cause
small changes in the weights and biases, even though the weights and biases are far from their
optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to eliminate these harmful
effects of the magnitudes of the partial derivatives. Only the sign of the derivative can determine the
direction of the weight update; the magnitude of the derivative has no effect on the weight update.
The size of the weight change is determined by a separate update value. The update value for each
weight and bias is increased by a factor delt_inc whenever the derivative of the performance
function with respect to that weight has the same sign for two successive iterations. The update value
is decreased by a factor delt_dec whenever the derivative with respect to that weight changes sign
from the previous iteration. If the derivative is zero, the update value remains the same. Whenever
the weights are oscillating, the weight change is reduced. If the weight continues to change in the
same direction for several iterations, the magnitude of the weight change increases. A complete
description of the Rprop algorithm is given in [RiBr93].

The following code recreates the previous network and trains it using the Rprop algorithm. The
training parameters for trainrp are epochs, show, goal, time, min_grad, max_fail, delt_inc,
delt_dec, delta0, and deltamax. The first eight parameters have been previously discussed. The
last two are the initial step size and the maximum step size, respectively. The performance of Rprop is
not very sensitive to the settings of the training parameters. For the example below, the training
parameters are left at the default values:

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'trainrp');
net = train(net,p,t);
y = net(p)

rprop is generally much faster than the standard steepest descent algorithm. It also has the nice
property that it requires only a modest increase in memory requirements. You do need to store the
update values for each weight and bias, which is equivalent to storage of the gradient.

Algorithms
trainrp can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:
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dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0, and gX is the gradient. At each iteration
the elements of deltaX are modified. If an element of gX changes sign from one iteration to the next,
then the corresponding element of deltaX is decreased by delta_dec. If an element of gX
maintains the same sign from one iteration to the next, then the corresponding element of deltaX is
increased by delta_inc. See Riedmiller, M., and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE International Conference
on Neural Networks,1993, pp. 586–591.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

References
[1] Riedmiller, M., and H. Braun, “A direct adaptive method for faster backpropagation learning: The

RPROP algorithm,” Proceedings of the IEEE International Conference on Neural
Networks,1993, pp. 586–591.

See Also
traingdm | traingda | traingdx | trainlm | traincgp | traincgf | traincgb | trainscg |
trainoss | trainbfg
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trainru
Unsupervised random order weight/bias training

Syntax
net.trainFcn = 'trainru'
[net,tr] = train(net,...)

Description
trainru is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trainru', thus:

net.trainFcn = 'trainru' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainru.

trainru trains a network with weight and bias learning rules with incremental updates after each
presentation of an input. Inputs are presented in random order.

Training occurs according to trainru training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time Inf Maximum time to train in seconds

Network Use
To prepare a custom network to be trained with trainru,

1 Set net.trainFcn to 'trainru'. This sets net.trainParam to trainru’s default
parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
3 Set each net.layerWeights{i,j}.learnFcn to a learning function.
4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias learning

parameters are automatically set to default values for the given learning function.)

To train the network,

1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.
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Algorithms
For each epoch, all training vectors (or sequences) are each presented once in a different random
order, with the network and weight and bias values updated accordingly after each individual
presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.

Version History
Introduced in R2010b

See Also
train | trainr
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trains
Sequential order incremental training with learning functions

Syntax
net.trainFcn = 'trains'
[net,tr] = train(net,...)

Description
trains is not called directly. Instead it is called by train for networks whose net.trainFcn
property is set to 'trains', thus:

net.trainFcn = 'trains' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trains.

trains trains a network with weight and bias learning rules with sequential updates. The sequence
of inputs is presented to the network with updates occurring after each time step.

This incremental training algorithm is commonly used for adaptive applications.

Training occurs according to trains training parameters, shown here with their default values:

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time Inf Maximum time to train in seconds

Network Use
You can create a standard network that uses trains for adapting by calling perceptron or
linearlayer.

To prepare a custom network to adapt with trains,

1 Set net.adaptFcn to 'trains'. This sets net.adaptParam to trains’s default parameters.
2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each

net.layerWeights{i,j}.learnFcn to a learning function. Set each
net.biases{i}.learnFcn to a learning function. (Weight and bias learning parameters are
automatically set to default values for the given learning function.)

To allow the network to adapt,

1 Set weight and bias learning parameters to desired values.
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2 Call adapt.

See help perceptron and help linearlayer for adaption examples.

Algorithms
Each weight and bias is updated according to its learning function after each time step in the input
sequence.

Version History
Introduced before R2006a

See Also
train | trainb | trainc | trainr
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trainscg
Scaled conjugate gradient backpropagation

Syntax
net.trainFcn = 'trainscg'
[trainedNet,tr] = train(net,...)

Description
net.trainFcn = 'trainscg' sets the network trainFcn property.

[trainedNet,tr] = train(net,...) trains the network with trainscg.

trainscg is a network training function that updates weight and bias values according to the scaled
conjugate gradient method.

Training occurs according to trainscg training parameters, shown here with their default values:

• net.trainParam.epochs — Maximum number of epochs to train. The default value is 1000.
• net.trainParam.show — Epochs between displays (NaN for no displays). The default value is

25.
• net.trainParam.showCommandLine — Generate command-line output. The default value is

false.
• net.trainParam.showWindow — Show training GUI. The default value is true.
• net.trainParam.goal — Performance goal. The default value is 0.
• net.trainParam.time — Maximum time to train in seconds. The default value is inf.
• net.trainParam.min_grad — Minimum performance gradient. The default value is 1e-6.
• net.trainParam.max_fail — Maximum validation failures. The default value is 6.
• net.trainParam.mu — Marquardt adjustment parameter. The default value is 0.005.
• net.trainParam.sigma — Determine change in weight for second derivative approximation.

The default value is 5.0e-5.
• net.trainParam.lambda — Parameter for regulating the indefiniteness of the Hessian. The

default value is 5.0e-7.

Examples

Train Network with 'trainscg'

This example shows how to solve a problem consisting of inputs p and targets t by using a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network with two hidden neurons and this training function is created.
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net = feedforwardnet(2,'trainscg');

Here the network is trained and tested.

net = train(net,p,t);
a = net(p)

See help feedforwardnet and help cascadeforwardnet for other examples.

Input Arguments
net — Input network
matrix

Input network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Output Arguments
trainedNet — Trained network
network

Trained network, returned as a network object.

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network
training function (net.NET.trainFcn). It can include fields such as:

• Training, data division, and performance functions and parameters
• Data division indices for training, validation and test sets
• Data division masks for training validation and test sets
• Number of epochs (num_epochs) and the best epoch (best_epoch).
• A list of training state names (states).
• Fields for each state name recording its value throughout training
• Performances of the best network (best_perf, best_vperf, best_tperf)

More About
Network Use

You can create a standard network that uses trainscg with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainscg,

1 Set net.trainFcn to 'trainscg'. This sets net.trainParam to trainscg’s default
parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainscg.
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Algorithms
trainscg can train any network as long as its weight, net input, and transfer functions have
derivative functions. Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X.

The scaled conjugate gradient algorithm is based on conjugate directions, as in traincgp,
traincgf, and traincgb, but this algorithm does not perform a line search at each iteration. See
Moller (Neural Networks, Vol. 6, 1993, pp. 525–533) for a more detailed discussion of the scaled
conjugate gradient algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance (validation error) has increased more than max_fail times since the last

time it decreased (when using validation).

Version History
Introduced before R2006a

References
[1] Moller. Neural Networks, Vol. 6, 1993, pp. 525–533

See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb | trainbfg |
traincgp | trainoss
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tribas
Triangular basis transfer function

Graph and Symbol

Syntax
A = tribas(N,FP)

Description
tribas is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

A = tribas(N,FP) takes N and optional function parameters,

N S-by-Q matrix of net input (column) vectors
FP Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the triangular basis function applied to each element of N.

info = tribas('code') can take the following forms to return specific information:

tribas('name') returns the name of this function.

tribas('output',FP) returns the [min max] output range.

tribas('active',FP) returns the [min max] active input range.

tribas('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

tribas('fpnames') returns the names of the function parameters.

tribas('fpdefaults') returns the default function parameters.

Examples
Here you create a plot of the tribas transfer function.
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n = -5:0.1:5;
a = tribas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tribas';

Algorithms
a = tribas(n) = 1 - abs(n), if -1 <= n <= 1
              = 0, otherwise

Version History
Introduced before R2006a

See Also
sim | radbas
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tritop
Triangle layer topology function

Syntax
pos = tritop(dimensions)

Description
tritop calculates neuron positions for layers whose neurons are arranged in an N-dimensional
triangular grid.

pos = tritop(dimensions) takes one argument:

dimensions Row vector of dimension sizes

and returns an N-by-S matrix of N coordinate vectors, where N is the number of dimensions and S is
the product of dimensions.

Examples

Display Layer with Triangular Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5
triangular grid.

pos = tritop([8 5]);
plotsom(pos)

2 Approximation, Clustering, and Control Functions

2-558



Version History
Introduced in R2010b

See Also
gridtop | hextop | randtop
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unconfigure
Unconfigure network inputs and outputs

Syntax
unconfigure(net)
unconfigure(net, 'inputs', i)
unconfigure(net, 'outputs', i)

Description
unconfigure(net) returns a network with its input and output sizes set to 0, its input and output
processing settings and related weight initialization settings set to values consistent with zero-sized
signals. The new network will be ready to be reconfigured for data of the same or different
dimensions than it was previously configured for.

unconfigure(net, 'inputs', i) unconfigures the inputs indicated by the indices i. If no
indices are specified, all inputs are unconfigured.

unconfigure(net, 'outputs', i) unconfigures the outputs indicated by the indices i. If no
indices are specified, all outputs are unconfigured.

Examples

Configure and Unconfigure Network

This example shows how to configure a network for a simple fitting problem, and then unconfigure
the network.

[x,t] = simplefit_dataset;
net = fitnet(10);
view(net)
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net = configure(net,x,t);
view(net)
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net = unconfigure(net);
view(net)
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Version History
Introduced in R2010b

See Also
configure | isconfigured

 unconfigure

2-563



vec2ind
Convert vectors to indices

Syntax
[ind,N] = vec2ind(vec)

Description
[ind,N] = vec2ind(vec) takes a matrix of vectors, each containing a single 1 and returns the
indices of the ones, ind, and the number of rows in vec, N.

ind2vec and vec2ind allow indices to be represented either by themselves or as vectors containing
a 1 in the row of the index they represent.

Examples

Convert Three Vectors to Indices and Back

This example shows how to convert three vectors to indices and back, using both the ind2vec and
vec2ind functions.

Define three vector with all zeros in the last row and convert it to indices.

vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'
[ind,n] = vec2ind(vec)

vec =
     0     1     0
     0     0     1
     1     0     0
     0     0     0
ind =
     3     1     2

n =
     4

Convert the indices to vector, while preserving the number of rows.

vec2 = full(ind2vec(ind,n)) 

vec2 =
     0     1     0
     0     0     1
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     1     0     0
     0     0     0

Input Arguments
vec — Matrix of vectors
matrix

Vector representation of the indices, specified as a matrix of vectors, each containing a single 1.

Output Arguments
ind — Indices
row vector

Indices, returned as a row vector.

N — Number of rows
scalar

Number of rows of the input matrix, returned as a scalar.

Version History
Introduced before R2006a

See Also
ind2vec | sub2ind | ind2sub
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view
View shallow neural network

Syntax
view(net)

Description
view(net) opens a window that shows your shallow neural network (specified by net) as a
graphical diagram.

Tip To visualize deep learning networks, see Deep Network Designer.

Examples

View Neural Network

This example shows how to view the diagram of a pattern recognition network.

[x,t] = iris_dataset;
net = patternnet;
net = configure(net,x,t);
view(net)
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Input Arguments
net — Neural network
network object

Neural network, specified as a network object. To create a network object, use for example,
feedforwardnet or narxnet.

Version History
Introduced in R2008a

See Also
feedforwardnet | narxnet
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Topics
“Body Fat Estimation”
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Neural Net Fitting
Solve fitting problem using two-layer feed-forward networks

Description
The Neural Net Fitting app lets you create, visualize, and train a two-layer feed-forward network to
solve data fitting problems.

Using this app, you can:

• Import data from file, the MATLAB workspace, or use one of the example data sets.
• Split data into training, validation, and test sets.
• Define and train a neural network.
• Evaluate network performance using mean squared error and regression analysis.
• Analyze results using visualization plots, such as regression fit or histogram of errors.
• Generate MATLAB scripts to reproduce results and customize the training process.
• Generate functions suitable for deployment with MATLAB Compiler and MATLAB Coder tools, and

export to Simulink for use with Simulink Coder.
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Open the Neural Net Fitting App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter nftool.

Examples
• “Fit Data with a Shallow Neural Network”

Algorithms
The Neural Net Fitting app provides built-in training algorithms that you can use to train your
neural network.

Training
Algorithm

Description

Levenberg-
Marquardt

Update weight and bias values according to Levenberg-Marquardt optimization.
Levenberg-Marquardt training is often the fastest training algorithm, although
it does require more memory than other techniques.

To implement this algorithm, the Neural Net Fitting app uses the trainlm
function.

Bayesian
regularization

Bayesian regularization updates the weight and bias values according to
Levenberg-Marquardt optimization. It then minimizes a combination of squared
errors and weights, and determines the correct combination so as to produce a
network that generalizes well. This algorithm typically takes longer but is good
at generalizing to noisy or small data sets.

To implement this algorithm, the Neural Net Fitting app uses the trainbr
function.

Scaled conjugate
gradient
backpropagation

Scaled conjugate gradient backpropagation updates weight and bias values
according to the scaled conjugate gradient method. For large problems, scaled
conjugate gradient is recommended as it uses gradient calculations which are
more memory efficient than the Jacobian calculations used by Levenberg-
Marquardt or Bayesian regularization.

To implement this algorithm, the Neural Net Fitting app uses the trainscg
function.

See Also
Apps
Neural Net Time Series | Neural Net Clustering | Neural Net Pattern Recognition

Functions
fitnet | feedforwardnet | trainlm | trainscg | trainbr
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Topics
“Fit Data with a Shallow Neural Network”
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Neural Net Clustering
Solve clustering problem using self-organizing map (SOM) networks

Description
The Neural Net Clustering app lets you create, visualize, and train self-organizing map networks to
solve clustering problems.

Using this app, you can:

• Import data from file, the MATLAB workspace, or use one of the example data sets.
• Define and train a neural network.
• Analyze results using visualization plots, such as neighbor distance, weight planes, sample hits,

and weight position.
• Generate MATLAB scripts to reproduce results and customize the training process.
• Generate functions suitable for deployment with MATLAB Compiler and MATLAB Coder tools, and

export to Simulink for use with Simulink Coder.
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Open the Neural Net Clustering App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter nctool.

Examples
• “Cluster Data with a Self-Organizing Map”

Algorithms
The Neural Net Clustering app provides a built-in training algorithm that you can use to train your
neural network.

Training
Algorithm

Description

Batch
unsupervised
weight and bias
training

Train a network with unsupervised weight and bias learning rules with batch
updates. The weights and biases are updated at the end of an entire pass
through the input data.

To implement this algorithm, the Neural Net Clustering app uses the
trainbu function.

See Also
Apps
Neural Net Fitting | Neural Net Time Series | Neural Net Pattern Recognition

Functions
selforgmap | trainbu | learnsomb

Topics
“Cluster Data with a Self-Organizing Map”
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Neural Net Pattern Recognition
Solve pattern recognition problem using two-layer feed-forward networks

Description
The Neural Net Pattern Recognition app lets you create, visualize, and train two-layer feed-
forward networks to solve data classification problems.

Using this app, you can:

• Import data from file, the MATLAB workspace, or use one of the example data sets.
• Split data into training, validation, and test sets.
• Define and train a neural network.
• Evaluate network performance using cross-entropy error and misclassification error.
• Analyze results using visualization plots, such as confusion matrices and receiver operating

characteristic curves.
• Generate MATLAB scripts to reproduce results and customize the training process.
• Generate functions suitable for deployment with MATLAB Compiler and MATLAB Coder tools, and

export to Simulink for use with Simulink Coder.
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Open the Neural Net Pattern Recognition App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter nprtool.

Examples
• “Classify Patterns with a Shallow Neural Network”

Algorithms
The Neural Net Pattern Recognition app provides a built-in training algorithm that you can use to
train your neural network.

 Neural Net Pattern Recognition
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Training
Algorithm

Description

Scaled conjugate
gradient
backpropagation

Scaled conjugate gradient backpropagation updates weight and bias values
according to the scaled conjugate gradient method.

To implement this algorithm, the Neural Net Pattern Recognition app uses
the trainscg function.

See Also
Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Time Series

Functions
patternnet | trainscg

Topics
“Classify Patterns with a Shallow Neural Network”
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Neural Net Time Series
Solve nonlinear time series problem using dynamic neural networks

Description
The Neural Net Time Series app lets you create, visualize, and train dynamic neural networks to
solve three different kinds of nonlinear time series problems.

Using this app, you can:

• Create three types of neural networks: NARX networks, NAR networks, and nonlinear input-
output networks.

• Import data from file, the MATLAB workspace, or use one of the example data sets.
• Split data into training, validation, and test sets.
• Define and train a neural network.
• Evaluate network performance using mean squared error and regression analysis.
• Analyze results using visualization plots, such as autocorrelation plots or a histogram of errors.
• Generate MATLAB scripts to reproduce results and customize the training process.
• Generate functions suitable for deployment with MATLAB Compiler and MATLAB Coder tools, and

export to Simulink for use with Simulink Coder.
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Open the Neural Net Time Series App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter ntstool.

Examples
• “Shallow Neural Network Time-Series Prediction and Modeling”

Algorithms
The Neural Net Time Series app provides built-in training algorithms that you can use to train your
neural network.
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Training
Algorithm

Description

Levenberg-
Marquardt

Update weight and bias values according to Levenberg-Marquardt optimization.
Levenberg-Marquardt training is often the fastest training algorithm, although
it does require more memory than other techniques.

To implement this algorithm, the Neural Net Time Series app uses the
trainlm function.

Bayesian
regularization

Bayesian regularization updates the weight and bias values according to
Levenberg-Marquardt optimization. It then minimizes a combination of squared
errors and weights, and determines the correct combination so as to produce a
network that generalizes well. This algorithm typically takes longer but is good
at generalizing to noisy or small data sets.

To implement this algorithm, the Neural Net Time Series app uses the
trainbr function.

Scaled conjugate
gradient
backpropagation

Scaled conjugate gradient backpropagation updates weight and bias values
according to the scaled conjugate gradient method. For large problems, scaled
conjugate gradient is recommended as it uses gradient calculations which are
more memory efficient than the Jacobian calculations used by Levenberg-
Marquardt or Bayesian regularization.

To implement this algorithm, the Neural Net Time Series app uses the
trainscg function.

See Also
Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Pattern Recognition

Functions
narxnet | narnet | closeloop | train | preparets | perform | removedelay

Topics
“Shallow Neural Network Time-Series Prediction and Modeling”
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matlab.io.datastore.MiniBatchable class
Package: matlab.io.datastore

Add mini-batch support to datastore

Description
matlab.io.datastore.MiniBatchable is an abstract mixin class that adds support for mini-
batches to your custom datastore for use with Deep Learning Toolbox. A mini-batch datastore
contains training and test data sets for use in Deep Learning Toolbox training, prediction, and
classification.

To use this mixin class, you must inherit from the matlab.io.datastore.MiniBatchable class in
addition to inheriting from the matlab.io.Datastore base class. Type the following syntax as the
first line of your class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
                       matlab.io.datastore.MiniBatchable
    ...
end

To add support for mini-batches to your datastore:

• Inherit from an additional class matlab.io.datastore.MiniBatchable
• Define two additional properties: MiniBatchSize and NumObservations.

For more details and steps to create your custom mini-batch datastore to optimize performance
during training, prediction, and classification, see “Develop Custom Mini-Batch Datastore”.

Properties
MiniBatchSize — Number of observations in each batch
positive integer

Number of observations that are returned in each batch, or call of the read function. For training,
prediction, and classification, the MiniBatchSize property is set to the mini-batch size defined in
trainingOptions.

Attributes:

Abstract true
Access Public

NumObservations — Total number of observations in the datastore
positive integer

Total number of observations contained within the datastore. This number of observations is the
length of one training epoch.

Attributes:
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Abstract true
SetAccess Protected
ReadAccess Public

Attributes
Abstract true
Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Train Network Using Out-of-Memory Sequence Data

This example shows how to train a deep learning network on out-of-memory sequence data by
transforming and combining datastores.

A transformed datastore transforms or processes data read from an underlying datastore. You can
use a transformed datastore as a source of training, validation, test, and prediction data sets for deep
learning applications. Use transformed datastores to read out-of-memory data or to perform specific
preprocessing operations when reading batches of data. When you have separate datastores
containing predictors and labels, you can combine them so you can input the data into a deep
learning network.

When training the network, the software creates mini-batches of sequences of the same length by
padding, truncating, or splitting the input data. For in-memory data, the trainingOptions function
provides options to pad and truncate input sequences, however, for out-of-memory data, you must pad
and truncate the sequences manually.

Load Training Data

Load the Japanese Vowels data set as described in [1] and [2]. The zip file japaneseVowels.zip
contains sequences of varying length. The sequences are divided into two folders, Train and Test,
which contain training sequences and test sequences, respectively. In each of these folders, the
sequences are divided into subfolders, which are numbered from 1 to 9. The names of these
subfolders are the label names. A MAT file represents each sequence. Each sequence is a matrix with
12 rows, with one row for each feature, and a varying number of columns, with one column for each
time step. The number of rows is the sequence dimension and the number of columns is the sequence
length.

Unzip the sequence data.

filename = "japaneseVowels.zip";
outputFolder = fullfile(tempdir,"japaneseVowels");
unzip(filename,outputFolder);
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For the training predictors, create a file datastore and specify the read function to be the load
function. The load function, loads the data from the MAT-file into a structure array. To read files from
the subfolders in the training folder, set the 'IncludeSubfolders' option to true.

folderTrain = fullfile(outputFolder,"Train");
fdsPredictorTrain = fileDatastore(folderTrain, ...
    'ReadFcn',@load, ...
    'IncludeSubfolders',true);

Preview the datastore. The returned struct contains a single sequence from the first file.

preview(fdsPredictorTrain)

ans = struct with fields:
    X: [12×20 double]

For the labels, create a file datastore and specify the read function to be the readLabel function,
defined at the end of the example. The readLabel function extracts the label from the subfolder
name.

classNames = string(1:9);
fdsLabelTrain = fileDatastore(folderTrain, ...
    'ReadFcn',@(filename) readLabel(filename,classNames), ...
    'IncludeSubfolders',true);

Preview the datastore. The output corresponds to the label of the first file.

preview(fdsLabelTrain)

ans = categorical
     1 

Transform and Combine Datastores

To input the sequence data from the datastore of predictors to a deep learning network, the mini-
batches of the sequences must have the same length. Transform the datastore using the
padSequence function, defined at the end of the datastore, that pads or truncates the sequences to
have length 20.

sequenceLength = 20;
tdsTrain = transform(fdsPredictorTrain,@(data) padSequence(data,sequenceLength));

Preview the transformed datastore. The output corresponds to the padded sequence from the first
file.

X = preview(tdsTrain)

X = 1×1 cell array
    {12×20 double}

To input both the predictors and labels from both datastores into a deep learning network, combine
them using the combine function.

cdsTrain = combine(tdsTrain,fdsLabelTrain);
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Preview the combined datastore. The datastore returns a 1-by-2 cell array. The first element
corresponds to the predictors. The second element corresponds to the label.

preview(cdsTrain)

ans = 1×2 cell array
    {12×20 double}    {[1]}

Define LSTM Network Architecture

Define the LSTM network architecture. Specify the number of features of the input data as the input
size. Specify an LSTM layer with 100 hidden units and to output the last element of the sequence.
Finally, specify a fully connected layer with output size equal to the number of classes, followed by a
softmax layer and a classification layer.

numFeatures = 12;
numClasses = numel(classNames);
numHiddenUnits = 100;

layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Specify the training options. Set the solver to 'adam' and 'GradientThreshold' to 2. Set the
mini-batch size to 27 and set the maximum number of epochs to 75. The datastores do not support
shuffling, so set 'Shuffle' to 'never'.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set
'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set
'ExecutionEnvironment' to 'auto' (the default value).

miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',75, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',2, ...
    'Shuffle','never',...
    'Verbose',0, ...
    'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(cdsTrain,layers,options);
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Test the Network

Create a transformed datastore containing the held-out test data using the same steps as for the
training data.

folderTest = fullfile(outputFolder,"Test");

fdsPredictorTest = fileDatastore(folderTest, ...
    'ReadFcn',@load, ...
    'IncludeSubfolders',true);
tdsTest = transform(fdsPredictorTest,@(data) padSequence(data,sequenceLength));

Make predictions on the test data using the trained network.

YPred = classify(net,tdsTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy on the test data. To get the labels of the test set, create a file
datastore with the read function readLabel and specify to include subfolders. Specify that the
outputs are vertically concatenateable by setting the 'UniformRead' option to true.

fdsLabelTest = fileDatastore(folderTest, ...
    'ReadFcn',@(filename) readLabel(filename,classNames), ...
    'IncludeSubfolders',true, ...
    'UniformRead',true);
YTest = readall(fdsLabelTest);

accuracy = mean(YPred == YTest)

accuracy = 0.9351

2 Approximation, Clustering, and Control Functions

2-584



Functions

The readLabel function extracts the label from the specified filename over the categories in
classNames.

function label = readLabel(filename,classNames)

filepath = fileparts(filename);
[~,label] = fileparts(filepath);

label = categorical(string(label),classNames);

end

The padSequence function pads or truncates the sequence in data.X to have the specified sequence
length and returns the result in a 1-by-1 cell.

function sequence = padSequence(data,sequenceLength)

sequence = data.X;
[C,S] = size(sequence);

if S < sequenceLength
    padding = zeros(C,sequenceLength-S);
    sequence = [sequence padding];
else
    sequence = sequence(:,1:sequenceLength);
end

sequence = {sequence};

end

Version History
Introduced in R2018a

matlab.io.datastore.MiniBatchable is not recommended for custom image
preprocessing
Not recommended starting in R2019a

Starting in R2019a, matlab.io.datastore.MiniBatchable is not recommended for custom
image processing. Use the transform and combine functions with built-in datastores instead. For
more information, see “Preprocess Images for Deep Learning”.

References
[1] Kudo, M., J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-

Through Regions." Pattern Recognition Letters. Vol. 20, No. 11–13, pp. 1103–1111.

[2] Kudo, M., J. Toyama, and M. Shimbo. Japanese Vowels Data Set. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels
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See Also
matlab.io.Datastore | matlab.io.datastore.Partitionable |
matlab.io.datastore.Shuffleable | read

Topics
“Deep Learning in MATLAB”
“Develop Custom Mini-Batch Datastore”
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read
Class: matlab.io.datastore.MiniBatchable
Package: matlab.io.datastore

(Not recommended) Read data from custom mini-batch datastore

Note The read method of matlab.io.datastore.MiniBatchable is not recommended. For more
information, see Compatibility Considerations.

Syntax
data = read(ds)
[data,info] = read(ds)

Description
data = read(ds) returns data from a mini-batch datastore. Subsequent calls to the read function
continue reading from the endpoint of the previous call.

[data,info] = read(ds) also returns information about the extracted data in info, including
metadata.

Input Arguments
mbds — Mini-batch datastore
datastore | custom MiniBatchable datastore | ...

Mini-batch datastore, specified as a built-in datastore or custom mini-batch datastore. For more
information, see “Datastores for Deep Learning”.

Output Arguments
data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows. For the last mini-batch of
data in the datastore, if NumObservations is not evenly divisible by MiniBatchSize, then data
should contain the remaining observations in the datastore (a partial batch smaller than
MiniBatchSize).

The table should have two columns, with predictors in the first column and responses in the second
column.

info — Information about read data
structure array

Information about read data, returned as a structure array.
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Attributes
Hidden true

To learn about attributes of methods, see Method Attributes.

Version History
Introduced in R2018a

read is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable were introduced as a
solution to perform custom image preprocessing with support for prefetching, shuffling, and parallel
training. Implementing a custom mini-batch datastore using
matlab.io.datastore.MiniBatchable has several challenges and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, built-in datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove the read method of matlab.io.datastore.MiniBatchable at this
time.
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See Also
read (Datastore) | matlab.io.datastore.MiniBatchable | matlab.io.Datastore |
transform | combine

Topics
“Datastores for Deep Learning”
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
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matlab.io.datastore.BackgroundDispatchable class
Package: matlab.io.datastore

(Not recommended) Add prefetch reading support to datastore

Note matlab.io.datastore.BackgroundDispatchable is not recommended. For more
information, see Compatibility Considerations.

Description
matlab.io.datastore.BackgroundDispatchable is an abstract mixin class that adds support
for prefetch reading to your custom datastore for use with Deep Learning Toolbox.

To use this mixin class, you must inherit from the
matlab.io.datastore.BackgroundDispatchable class in addition to inheriting from the
matlab.io.Datastore base class. Type the following syntax as the first line of your class definition
file:

classdef MyDatastore < matlab.io.Datastore & ...
                       matlab.io.datastore.BackgroundDispatchable
    ...
end

To add support for parallel processing to your custom datastore, you must:

• Inherit from an additional class matlab.io.datastore.BackgroundDispatchable
• Define the additional method: readByIndex

For more details and steps to create your custom datastore to optimize performance during training,
prediction, and classification, see “Develop Custom Mini-Batch Datastore”.

Properties
DispatchInBackground — Dispatch observations in background
true (default) | false

Dispatch observations in the background during training, prediction, or classification, specified as
true or false. To use background dispatching, you must have Parallel Computing Toolbox.

Attributes:

Public true

Methods
readByIndex (Not recommended) Return observations specified by index from datastore
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Attributes
Abstract true
Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Version History
Introduced in R2018a

matlab.io.datastore.BackgroundDispatchable is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and
matlab.io.datastore.BackgroundDispatchable were introduced as a solution to perform
custom image preprocessing with support for prefetching, shuffling, and parallel training.
Implementing a custom mini-batch datastore using matlab.io.datastore.MiniBatchable has
several challenges and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable and
matlab.io.datastore.BackgroundDispatchable.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.
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Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove matlab.io.datastore.BackgroundDispatchable at this time.

See Also
transform | combine | matlab.io.Datastore | matlab.io.datastore.Partitionable |
matlab.io.datastore.Shuffleable

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
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readByIndex
Class: matlab.io.datastore.BackgroundDispatchable
Package: matlab.io.datastore

(Not recommended) Return observations specified by index from datastore

Note readByIndex is not recommended. For more information, see Compatibility Considerations.

Syntax
[data,info] = readByIndex(ds,ind)

Description
[data,info] = readByIndex(ds,ind) returns a subset of observations in a datastore, ds. The
desired observations are specified by indices, ind.

Input Arguments
ds — Input datastore
Datastore object

Input datastore, specified as a Datastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
data — Observations from datastore
table

Observations from the datastore, returned as a table or an array according to the read method of the
datastore. For example, when ds is a custom mini-batch datastore, then data is a table with the same
format as returned by the read (MiniBatchable) method.

info — Information about read data
structure array

Information about read data, returned as a structure array. The structure array can contain the
following fields.

Field Name Description
Filename Filename is a fully resolved path containing the path

string, name of the file, and file extension.

 readByIndex

2-593



Field Name Description
FileSize Total file size, in bytes. For MAT-files, FileSize is

the total number of key-value pairs in the file.

Attributes
Abstract true
Access Public

To learn about attributes of methods, see Method Attributes.

Tips
• You must implement the readByIndex method by deriving a subclass from the

matlab.io.datastore.BackgroundDispatchable class.

Version History
Introduced in R2018a

readByIndex is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and
matlab.io.datastore.BackgroundDispatchable were introduced as a solution to perform
custom image preprocessing with support for prefetching, shuffling, and parallel training.
Implementing a custom mini-batch datastore using matlab.io.datastore.MiniBatchable has
several challenges and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable and
matlab.io.datastore.BackgroundDispatchable.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.
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• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove matlab.io.datastore.BackgroundDispatchable class or the
readByIndex method at this time.

See Also
transform | combine | matlab.io.Datastore | read | readall

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
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matlab.io.datastore.PartitionableByIndex class
Package: matlab.io.datastore

(Not recommended) Add parallelization support to datastore

Note matlab.io.datastore.PartitionableByIndex is not recommended. For more
information, see Compatibility Considerations.

Description
matlab.io.datastore.PartitionableByIndex is an abstract mixin class that adds
parallelization support to your custom datastore for use with Deep Learning Toolbox. This class
requires Parallel Computing Toolbox.

To use this mixin class, you must inherit from the
matlab.io.datastore.PartitionableByIndex class in addition to inheriting from the
matlab.io.Datastore base class. Type the following syntax as the first line of your class definition
file:

classdef MyDatastore < matlab.io.Datastore & ...
                       matlab.io.datastore.PartitionableByIndex
    ...
end

To add support for parallel processing to your custom datastore, you must:

• Inherit from an additional class matlab.io.datastore.PartitionableByIndex
• Define the additional method: partitionByIndex

For more details and steps to create your custom datastore with parallel processing support, see
“Develop Custom Mini-Batch Datastore”.

Methods
partitionByIndex (Not recommended) Partition datastore according to indices

Attributes
Abstract true
Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.
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Version History
Introduced in R2018a

matlab.io.datastore.PartitionableByIndex is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and
matlab.io.datastore.PartitionableByIndex were introduced as a solution to perform custom
image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a
custom mini-batch datastore using matlab.io.datastore.MiniBatchable has several challenges
and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable and
matlab.io.datastore.PartitionableByIndex.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove matlab.io.datastore.PartitionableByIndex at this time.

See Also
transform | combine | matlab.io.Datastore | matlab.io.datastore.Shuffleable |
matlab.io.datastore.HadoopFileBased | matlab.io.datastore.Partitionable

Topics
“Preprocess Images for Deep Learning”
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“Deep Learning in MATLAB”

2 Approximation, Clustering, and Control Functions

2-598



partitionByIndex
Class: matlab.io.datastore.PartitionableByIndex
Package: matlab.io.datastore

(Not recommended) Partition datastore according to indices

Note partitionByIndex is not recommended. For more information, see Compatibility
Considerations.

Syntax
ds2 = partitionByIndex(ds,ind)

Description
ds2 = partitionByIndex(ds,ind) partitions a subset of observations in a datastore, ds, into a
new datastore, ds2. The desired observations are specified by indices, ind.

Input Arguments
ds — Input datastore
Datastore object

Input datastore, specified as a Datastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments
ds2 — Partitioned datastore
Datastore object

Partitioned datastore, returned as a Datastore object.

Attributes
Abstract true
Access Public

To learn about attributes of methods, see Method Attributes.
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Tips
• You must implement the partitionByIndex method by deriving a subclass from the

matlab.io.datastore.Partitionable class.

Version History
Introduced in R2018a

partitionByIndex is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had
to specify a custom read function using the readFcn property of imageDatastore. However,
reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and
matlab.io.datastore.PartitionableByIndex were introduced as a solution to perform custom
image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a
custom mini-batch datastore using matlab.io.datastore.MiniBatchable has several challenges
and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and
methods to support reading data in batches, reading data by index, and partitioning and shuffling
data.

• You must specify a value for the NumObservations property, but this value may be ill-defined or
difficult to define in real-world applications.

• Custom mini-batch datastores are not flexible enough to support common deep learning
workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when
reading batches of data. The transform function is the preferred way to perform custom data
preprocessing, or transformations. The combine function is the preferred way to concatenate read
data from multiple datastores, including transformed datastores. Concatenated data can serve as the
network inputs and expected responses for training deep learning networks. The transform and
combine functions have several advantages over matlab.io.datastore.MiniBatchable and
matlab.io.datastore.PartitionableByIndex.

• The functions enable data preprocessing and concatenation for all types of datastores, including
imageDatastore.

• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations,
including resizing, rotation, and reflection, is augmentedImageDatastore. For more information,
see “Preprocess Images for Deep Learning”.

There are no plans to remove partitionByIndex at this time.
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See Also
transform | combine | matlab.io.Datastore

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
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trainAutoencoder
Train an autoencoder

Syntax
autoenc = trainAutoencoder(X)
autoenc = trainAutoencoder(X,hiddenSize)
autoenc = trainAutoencoder( ___ ,Name,Value)

Description
autoenc = trainAutoencoder(X) returns an autoencoder, autoenc, trained using the training
data in X.

autoenc = trainAutoencoder(X,hiddenSize) returns an autoencoder autoenc, with the
hidden representation size of hiddenSize.

autoenc = trainAutoencoder( ___ ,Name,Value) returns an autoencoder autoenc, for any of
the above input arguments with additional options specified by one or more Name,Value pair
arguments.

For example, you can specify the sparsity proportion or the maximum number of training iterations.

Examples

Train Sparse Autoencoder

Load the sample data.

X = abalone_dataset;

X is an 8-by-4177 matrix defining eight attributes for 4177 different abalone shells: sex (M, F, and I
(for infant)), length, diameter, height, whole weight, shucked weight, viscera weight, shell weight. For
more information on the dataset, type help abalone_dataset in the command line.

Train a sparse autoencoder with default settings.

autoenc = trainAutoencoder(X);
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Reconstruct the abalone shell ring data using the trained autoencoder.

XReconstructed = predict(autoenc,X);

Compute the mean squared reconstruction error.

mseError = mse(X-XReconstructed)

mseError = 0.0167
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Train Autoencoder with Specified Options

Load the sample data.

X = abalone_dataset;

X is an 8-by-4177 matrix defining eight attributes for 4177 different abalone shells: sex (M, F, and I
(for infant)), length, diameter, height, whole weight, shucked weight, viscera weight, shell weight. For
more information on the dataset, type help abalone_dataset in the command line.

Train a sparse autoencoder with hidden size 4, 400 maximum epochs, and linear transfer function for
the decoder.

autoenc = trainAutoencoder(X,4,'MaxEpochs',400,...
'DecoderTransferFunction','purelin');
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Reconstruct the abalone shell ring data using the trained autoencoder.

XReconstructed = predict(autoenc,X);

Compute the mean squared reconstruction error.

mseError = mse(X-XReconstructed)

mseError = 0.0050
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Reconstruct Observations Using Sparse Autoencoder

Generate the training data.

rng(0,'twister'); % For reproducibility
n = 1000;
r = linspace(-10,10,n)';
x = 1 + r*5e-2 + sin(r)./r + 0.2*randn(n,1);

Train autoencoder using the training data.

hiddenSize = 25;
autoenc = trainAutoencoder(x',hiddenSize,...
        'EncoderTransferFunction','satlin',...
        'DecoderTransferFunction','purelin',...
        'L2WeightRegularization',0.01,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.10);
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Generate the test data.

n = 1000;
r = sort(-10 + 20*rand(n,1));
xtest = 1 + r*5e-2 + sin(r)./r + 0.4*randn(n,1);

Predict the test data using the trained autoencoder, autoenc .
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xReconstructed = predict(autoenc,xtest');

Plot the actual test data and the predictions.

figure;
plot(xtest,'r.');
hold on
plot(xReconstructed,'go');

Reconstruct Handwritten Digit Images Using Sparse Autoencoder

Load the training data.

XTrain = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell containing a 28-by-28 matrix representing
a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(XTrain,hiddenSize,...
        'L2WeightRegularization',0.004,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.15);
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Load the test data.

XTest = digitTestCellArrayData;

The test data is a 1-by-5000 cell array, with each cell containing a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Reconstruct the test image data using the trained autoencoder, autoenc.

xReconstructed = predict(autoenc,XTest);

View the actual test data.

figure;
for i = 1:20
    subplot(4,5,i);
    imshow(XTest{i});
end

View the reconstructed test data.

figure;
for i = 1:20
    subplot(4,5,i);
    imshow(xReconstructed{i});
end
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Input Arguments
X — Training data
matrix | cell array of image data

Training data, specified as a matrix of training samples or a cell array of image data. If X is a matrix,
then each column contains a single sample. If X is a cell array of image data, then the data in each
cell must have the same number of dimensions. The image data can be pixel intensity data for gray
images, in which case, each cell contains an m-by-n matrix. Alternatively, the image data can be RGB
data, in which case, each cell contains an m-by-n-3 matrix.
Data Types: single | double | cell

hiddenSize — Size of hidden representation of the autoencoder
10 (default) | positive integer value

Size of hidden representation of the autoencoder, specified as a positive integer value. This number is
the number of neurons in the hidden layer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'EncoderTransferFunction','satlin','L2WeightRegularization',0.05
specifies the transfer function for the encoder as the positive saturating linear transfer function and
the L2 weight regularization as 0.05.

EncoderTransferFunction — Transfer function for the encoder
'logsig' (default) | 'satlin'

Transfer function for the encoder, specified as the comma-separated pair consisting of
'EncoderTransferFunction' and one of the following.

Transfer Function Option Definition
'logsig' Logistic sigmoid function

f z = 1
1 + e−z

'satlin' Positive saturating linear transfer function

f z =
0, if  z ≤ 0
z, if  0 < z < 1
1, if  z ≥ 1

Example: 'EncoderTransferFunction','satlin'

DecoderTransferFunction — Transfer function for the decoder
'logsig' (default) | 'satlin' | 'purelin'

Transfer function for the decoder, specified as the comma-separated pair consisting of
'DecoderTransferFunction' and one of the following.

Transfer Function Option Definition
'logsig' Logistic sigmoid function

f z = 1
1 + e−z

'satlin' Positive saturating linear transfer function

f z =
0, if  z ≤ 0
z, if  0 < z < 1
1, if  z ≥ 1

'purelin' Linear transfer function

f z = z

Example: 'DecoderTransferFunction','purelin'

MaxEpochs — Maximum number of training epochs
1000 (default) | positive integer value

Maximum number of training epochs or iterations, specified as the comma-separated pair consisting
of 'MaxEpochs' and a positive integer value.
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Example: 'MaxEpochs',1200

L2WeightRegularization — The coefficient for the L2 weight regularizer
0.001 (default) | a positive scalar value

The coefficient for the L2 weight regularizer on page 2-614 in the cost function (LossFunction),
specified as the comma-separated pair consisting of 'L2WeightRegularization' and a positive
scalar value.
Example: 'L2WeightRegularization',0.05

LossFunction — Loss function to use for training
'msesparse' (default)

Loss function to use for training, specified as the comma-separated pair consisting of
'LossFunction' and 'msesparse'. It corresponds to the mean squared error function adjusted for
training a sparse autoencoder on page 2-614 as follows:

E = 1
N ∑

n = 1

N
∑

k = 1

K
xkn− x kn

2

︷
mean squared error

+ λ * Ωweights︷
L2

regularization

+ β * Ωsparsity︷
sparsity

regularization

,

where λ is the coefficient for the L2 regularization term on page 2-614 and β is the coefficient for the
sparsity regularization term on page 2-614. You can specify the values of λ and β by using the
L2WeightRegularization and SparsityRegularization name-value pair arguments,
respectively, while training an autoencoder.

ShowProgressWindow — Indicator to show the training window
true (default) | false

Indicator to show the training window, specified as the comma-separated pair consisting of
'ShowProgressWindow' and either true or false.
Example: 'ShowProgressWindow',false

SparsityProportion — Desired proportion of training examples a neuron reacts to
0.05 (default) | positive scalar value in the range from 0 to 1

Desired proportion of training examples a neuron reacts to, specified as the comma-separated pair
consisting of 'SparsityProportion' and a positive scalar value. Sparsity proportion is a
parameter of the sparsity regularizer. It controls the sparsity of the output from the hidden layer. A
low value for SparsityProportion usually leads to each neuron in the hidden layer "specializing" by
only giving a high output for a small number of training examples. Hence, a low sparsity proportion
encourages higher degree of sparsity. See Sparse Autoencoders on page 2-614.
Example: 'SparsityProportion',0.01 is equivalent to saying that each neuron in the hidden
layer should have an average output of 0.1 over the training examples.

SparsityRegularization — Coefficient that controls the impact of the sparsity regularizer
1 (default) | a positive scalar value

Coefficient that controls the impact of the sparsity regularizer on page 2-614 in the cost function,
specified as the comma-separated pair consisting of 'SparsityRegularization' and a positive
scalar value.
Example: 'SparsityRegularization',1.6
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TrainingAlgorithm — The algorithm to use for training the autoencoder
'trainscg' (default)

The algorithm to use for training the autoencoder, specified as the comma-separated pair consisting
of 'TrainingAlgorithm' and 'trainscg'. It stands for scaled conjugate gradient descent [1].

ScaleData — Indicator to rescale the input data
true (default) | false

Indicator to rescale the input data, specified as the comma-separated pair consisting of
'ScaleData' and either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the range of the
input data must match the range of the transfer function for the decoder. trainAutoencoder
automatically scales the training data to this range when training an autoencoder. If the data was
scaled while training an autoencoder, the predict, encode, and decode methods also scale the
data.
Example: 'ScaleData',false

UseGPU — Indicator to use GPU for training
false (default) | true

Indicator to use GPU for training, specified as the comma-separated pair consisting of 'UseGPU' and
either true or false.
Example: 'UseGPU',true

Output Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an Autoencoder object. For information on the properties and
methods of this object, see Autoencoder class page.

More About
Autoencoders

An autoencoder is a neural network which is trained to replicate its input at its output. Autoencoders
can be used as tools to learn deep neural networks. Training an autoencoder is unsupervised in the
sense that no labeled data is needed. The training process is still based on the optimization of a cost
function. The cost function measures the error between the input x and its reconstruction at the
output x .

An autoencoder is composed of an encoder and a decoder. The encoder and decoder can have
multiple layers, but for simplicity consider that each of them has only one layer.

If the input to an autoencoder is a vector x ∈ ℝDx, then the encoder maps the vector x to another

vector z ∈ ℝD 1
 as follows:

z = h 1 W 1 x + b 1 ,
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where the superscript (1) indicates the first layer. h 1 :ℝD 1
ℝD 1

 is a transfer function for the

encoder, W 1 ∈ ℝD 1 × Dx is a weight matrix, and b 1 ∈ ℝD 1
 is a bias vector. Then, the decoder maps

the encoded representation z back into an estimate of the original input vector, x, as follows:

x = h 2 W 2 z + b 2 ,

where the superscript (2) represents the second layer. h 2 :ℝDx ℝDx is the transfer function for the

decoder,W 1 ∈ ℝDx × D 1
 is a weight matrix, and b 2 ∈ ℝDx is a bias vector.

Sparse Autoencoders

Encouraging sparsity of an autoencoder is possible by adding a regularizer to the cost function [2].
This regularizer is a function of the average output activation value of a neuron. The average output
activation measure of a neuron i is defined as:

ρ i = 1
n ∑j = 1

n
zi

1 x j = 1
n ∑j = 1

n
h wi

1 Tx j + bi
1 ,

where n is the total number of training examples. xj is the jth training example, wi
1 T is the ith row of

the weight matrix W 1 , and bi
1  is the ith entry of the bias vector, b 1 . A neuron is considered to be

‘firing’, if its output activation value is high. A low output activation value means that the neuron in
the hidden layer fires in response to a small number of the training examples. Adding a term to the
cost function that constrains the values of ρ i to be low encourages the autoencoder to learn a
representation, where each neuron in the hidden layer fires to a small number of training examples.
That is, each neuron specializes by responding to some feature that is only present in a small subset
of the training examples.

Sparsity Regularization

Sparsity regularizer attempts to enforce a constraint on the sparsity of the output from the hidden
layer. Sparsity can be encouraged by adding a regularization term that takes a large value when the
average activation value, ρ i, of a neuron i and its desired value, ρ, are not close in value [2]. One such
sparsity regularization term can be the Kullback-Leibler divergence.

Ωsparsity = ∑
i = 1

D 1

KL ρ ∥ ρ i = ∑
i = 1

D 1

ρlog ρ
ρ i

+ 1 − ρ log 1 − ρ
1 − ρ i

Kullback-Leibler divergence is a function for measuring how different two distributions are. In this
case, it takes the value zero when ρ and ρ i are equal to each other, and becomes larger as they
diverge from each other. Minimizing the cost function forces this term to be small, hence ρ and ρ i to
be close to each other. You can define the desired value of the average activation value using the
SparsityProportion name-value pair argument while training an autoencoder.

L2 Regularization

When training a sparse autoencoder, it is possible to make the sparsity regulariser small by
increasing the values of the weights w(l) and decreasing the values of z(1) [2]. Adding a regularization
term on the weights to the cost function prevents it from happening. This term is called the L2
regularization term and is defined by:
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Ωweights = 1
2 ∑l = 1

L
∑

j = 1

nl
∑

i = 1

kl
w ji

(l) 2,

where L is the number of hidden layers, nl is the output size of layer l, and kl is the input size of layer
l. The L2 regularization term is the sum of the squared elements of the weight matrices for each layer.

Cost Function

The cost function for training a sparse autoencoder on page 2-614 is an adjusted mean squared error
function as follows:

E = 1
N ∑

n = 1

N
∑

k = 1

K
xkn− x kn

2

︷
mean squared error

+ λ * Ωweights︷
L2

regularization

+ β * Ωsparsity︷
sparsity

regularization

,

where λ is the coefficient for the L2 regularization term on page 2-614 and β is the coefficient for the
sparsity regularization term on page 2-614. You can specify the values of λ and β by using the
L2WeightRegularization and SparsityRegularization name-value pair arguments,
respectively, while training an autoencoder.

Version History
Introduced in R2015b

References
[1] Moller, M. F. “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning”, Neural

Networks, Vol. 6, 1993, pp. 525–533.

[2] Olshausen, B. A. and D. J. Field. “Sparse Coding with an Overcomplete Basis Set: A Strategy
Employed by V1.” Vision Research, Vol.37, 1997, pp.3311–3325.

See Also
trainSoftmaxLayer | Autoencoder | encode | stack

Topics
“Train Stacked Autoencoders for Image Classification”
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trainSoftmaxLayer
Train a softmax layer for classification

Syntax
net = trainSoftmaxLayer(X,T)
net = trainSoftmaxLayer(X,T,Name,Value)

Description
net = trainSoftmaxLayer(X,T) trains a softmax layer, net, on the input data X and the targets
T.

net = trainSoftmaxLayer(X,T,Name,Value) trains a softmax layer, net, with additional
options specified by one or more of the Name,Value pair arguments.

For example, you can specify the loss function.

Examples

Classify Using Softmax Layer

Load the sample data.

[X,T] = iris_dataset;

X is a 4x150 matrix of four attributes of iris flowers: Sepal length, sepal width, petal length, petal
width.

T is a 3x150 matrix of associated class vectors defining which of the three classes each input is
assigned to. Each row corresponds to a dummy variable representing one of the iris species (classes).
In each column, a 1 in one of the three rows represents the class that particular sample (observation
or example) belongs to. There is a zero in the rows for the other classes that the observation does not
belong to.

Train a softmax layer using the sample data.

net = trainSoftmaxLayer(X,T);

Classify the observations into one of the three classes using the trained softmax layer.

Y = net(X);

Plot the confusion matrix using the targets and the classifications obtained from the softmax layer.

plotconfusion(T,Y);
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Input Arguments
X — Training data
m-by-n matrix

Training data, specified as an m-by-n matrix, where m is the number of variables in training data, and
n is the number of observations (examples). Hence, each column of X represents a sample.
Data Types: single | double

T — Target data
k-by-n matrix
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Target data, specified as a k-by-n matrix, where k is the number of classes, and n is the number of
observations. Each row is a dummy variable representing a particular class. In other words, each
column represents a sample, and all entries of a column are zero except for a single one in a row. This
single entry indicates the class for that sample.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxEpochs',400,'ShowProgressWindow',false specifies the maximum number of
iterations as 400 and hides the training window.

MaxEpochs — Maximum number of training iterations
1000 (default) | positive integer value

Maximum number of training iterations, specified as the comma-separated pair consisting of
'MaxEpochs' and a positive integer value.
Example: 'MaxEpochs',500
Data Types: single | double

LossFunction — Loss function for the softmax layer
'crossentropy' (default) | 'mse'

Loss function for the softmax layer, specified as the comma-separated pair consisting of
'LossFunction' and either 'crossentropy' or 'mse'.

mse stands for mean squared error function, which is given by:

E = 1
n ∑j = 1

n
∑

i = 1

k
ti j− yi j

2,

where n is the number of training examples, and k is the number of classes. ti j is the ijth entry of the
target matrix, T, and yi j is the ith output from the autoencoder when the input vector is xj.

The cross entropy function is given by:

E = 1
n ∑j = 1

n
∑

i = 1

k
ti jlnyi j + 1 − ti j ln 1 − yi j .

Example: 'LossFunction','mse'

ShowProgressWindow — Indicator to display the training window
true (default) | false

Indicator to display the training window during training, specified as the comma-separated pair
consisting of 'ShowProgressWindow' and either true or false.
Example: 'ShowProgressWindow',false
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Data Types: logical

TrainingAlgorithm — Training algorithm
'trainscg' (default)

Training algorithm used to train the softmax layer, specified as the comma-separated pair consisting
of 'TrainingAlgorithm' and 'trainscg', which stands for scaled conjugate gradient.
Example: 'TrainingAlgorithm','trainscg'

Output Arguments
net — Softmax layer for classification
network object

Softmax layer for classification, returned as a network object. The softmax layer, net, is the same
size as the target T.

Version History
Introduced in R2015b

See Also
trainAutoencoder | stack
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Autoencoder class

Autoencoder class

Description
An Autoencoder object contains an autoencoder network, which consists of an encoder and a
decoder. The encoder maps the input to a hidden representation. The decoder attempts to map this
representation back to the original input.

Construction
autoenc = trainAutoencoder(X) returns an autoencoder trained using the training data in X.

autoenc = trainAutoencoder(X,hiddenSize) returns an autoencoder with the hidden
representation size of hiddenSize.

autoenc = trainAutoencoder( ___ ,Name,Value) returns an autoencoder for any of the above
input arguments with additional options specified by one or more name-value pair arguments.

Input Arguments

X — Training data
matrix | cell array of image data

Training data, specified as a matrix of training samples or a cell array of image data. If X is a matrix,
then each column contains a single sample. If X is a cell array of image data, then the data in each
cell must have the same number of dimensions. The image data can be pixel intensity data for gray
images, in which case, each cell contains an m-by-n matrix. Alternatively, the image data can be RGB
data, in which case, each cell contains an m-by-n-3 matrix.
Data Types: single | double | cell

hiddenSize — Size of hidden representation of the autoencoder
10 (default) | positive integer value

Size of hidden representation of the autoencoder, specified as a positive integer value. This number is
the number of neurons in the hidden layer.
Data Types: single | double

Properties
HiddenSize — Size of the hidden representation
a positive integer value

Size of the hidden representation in the hidden layer of the autoencoder, stored as a positive integer
value.
Data Types: double
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EncoderTransferFunction — Name of the transfer function for the encoder
string

Name of the transfer function for the encoder, stored as a string.
Data Types: char

EncoderWeights — Weights for the encoder
matrix

Weights for the encoder, stored as a matrix.
Data Types: double

EncoderBiases — Bias values for the encoder
vector

Bias values for the encoder, stored as a vector.
Data Types: double

DecoderTransferFunction — Name of the transfer function for the decoder
string

Name of the transfer function for the decoder, stored as a string.
Data Types: char

DecoderWeights — Weights for the decoder
matrix

Weights for the decoder, stored as a matrix.
Data Types: double

DecoderBiases — Bias values for the decoder
vector

Bias values for the decoder, stored as a vector.
Data Types: double

TrainingParameters — Parameters that trainAutoencoder uses for training the
autoencoder
structure

Parameters that trainAutoencoder uses for training the autoencoder, stored as a structure.
Data Types: struct

ScaleData — Indicator for data that is rescaled
true or 1 (default) | false or 0

Indicator for data that is rescaled while passing to the autoencoder, stored as either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the range of the
input data must match the range of the transfer function for the decoder. trainAutoencoder
automatically scales the training data to this range when training an autoencoder. If the data was
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scaled while training an autoencoder, the predict, encode, and decode methods also scale the
data.
Data Types: logical

Methods
decode Decode encoded data
encode Encode input data
generateFunction Generate a MATLAB function to run the autoencoder
generateSimulink Generate a Simulink model for the autoencoder
network Convert Autoencoder object into network object
plotWeights Plot a visualization of the weights for the encoder of an autoencoder
predict Reconstruct the inputs using trained autoencoder
stack Stack encoders from several autoencoders together
view View autoencoder

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Version History
Introduced in R2015b

See Also
trainAutoencoder

Topics
Class Attributes
Property Attributes
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decode
Class: Autoencoder

Decode encoded data

Syntax
Y = decode(autoenc,Z)

Description
Y = decode(autoenc,Z)returns the decoded data on page 2-624 Y, using the autoencoder
autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned by the trainAutoencoder function as an object of the Autoencoder
class.

Z — Data encoded by autoenc
matrix

Data encoded by autoenc, specified as a matrix. Each column of Z represents an encoded sample
(observation).
Data Types: single | double

Output Arguments
Y — Decoded data
matrix | cell array of image data

Decoded data, returned as a matrix or a cell array of image data.

If the autoencoder autoenc was trained on a cell array of image data, then Y is also a cell array of
images.

If the autoencoder autoenc was trained on a matrix, then Y is also a matrix, where each column of Y
corresponds to one sample or observation.

Examples

Decode Encoded Data For New Images

Load the training data.
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X = digitTrainCellArrayData;

X is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image
of a handwritten digit.

Train an autoencoder using the training data with a hidden size of 15.

hiddenSize = 15;
autoenc = trainAutoencoder(X,hiddenSize);

Extract the encoded data for new images using the autoencoder.

Xnew = digitTestCellArrayData;
features = encode(autoenc,Xnew);

Decode the encoded data from the autoencoder.

Y = decode(autoenc,features);

Y is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image
of a handwritten digit.

Algorithms

If the input to an autoencoder is a vector x ∈ ℝDx, then the encoder maps the vector x to another

vector z ∈ ℝD 1
 as follows:

z = h 1 W 1 x + b 1 ,

where the superscript (1) indicates the first layer. h 1 :ℝD 1
ℝD 1

 is a transfer function for the

encoder, W 1 ∈ ℝD 1 × Dx is a weight matrix, and b 1 ∈ ℝD 1
 is a bias vector. Then, the decoder maps

the encoded representation z back into an estimate of the original input vector, x, as follows:

x = h 2 W 2 z + b 2 ,

where the superscript (2) represents the second layer. h 2 :ℝDx ℝDx is the transfer function for the

decoder,W 1 ∈ ℝDx × D 1
 is a weight matrix, and b 2 ∈ ℝDx is a bias vector.

Version History
Introduced in R2015b

See Also
encode | trainAutoencoder
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encode
Class: Autoencoder

Encode input data

Syntax
Z = encode(autoenc,Xnew)

Description
Z = encode(autoenc,Xnew) returns the encoded data on page 2-626, Z, for the input data Xnew,
using the autoencoder, autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Xnew — Input data
matrix | cell array of image data | array of single image data

Input data, specified as a matrix of samples, a cell array of image data, or an array of single image
data.

If the autoencoder autoenc was trained on a matrix, where each column represents a single sample,
then Xnew must be a matrix, where each column represents a single sample.

If the autoencoder autoenc was trained on a cell array of images, then Xnew must either be a cell
array of image data or an array of single image data.
Data Types: single | double | cell

Output Arguments
Z — Data encoded by autoenc
matrix

Data encoded by autoenc, specified as a matrix. Each column of Z represents an encoded sample
(observation).
Data Types: single | double

Examples
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Encode Decoded Data for New Images

Load the sample data.

X = digitTrainCellArrayData;

X is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image
of a handwritten digit.

Train an autoencoder with a hidden size of 50 using the training data.

autoenc = trainAutoencoder(X,50);

Encode decoded data for new image data.

Xnew = digitTestCellArrayData;
Z = encode(autoenc,Xnew);

Xnew is a 1-by-5000 cell array. Z is a 50-by-5000 matrix, where each column represents the image
data of one handwritten digit in the new data Xnew.

Algorithms

If the input to an autoencoder is a vector x ∈ ℝDx, then the encoder maps the vector x to another

vector z ∈ ℝD 1
 as follows:

z = h 1 W 1 x + b 1 ,

where the superscript (1) indicates the first layer. h 1 :ℝD 1
ℝD 1

 is a transfer function for the

encoder, W 1 ∈ ℝD 1 × Dx is a weight matrix, and b 1 ∈ ℝD 1
 is a bias vector.

Version History
Introduced in R2015b

See Also
trainAutoencoder | decode | stack
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generateFunction
Class: Autoencoder

Generate a MATLAB function to run the autoencoder

Syntax
generateFunction(autoenc)
generateFunction(autoenc,pathname)
generateFunction(autoenc,pathname,Name,Value)

Description
generateFunction(autoenc) generates a complete stand-alone function in the current directory,
to run the autoencoder autoenc on input data.

generateFunction(autoenc,pathname) generates a complete stand-alone function to run the
autoencoder autoenc on input data in the location specified by pathname.

generateFunction(autoenc,pathname,Name,Value) generates a complete stand-alone
function with additional options specified by the Name,Value pair argument.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

pathname — Location for generated function
string

Location for generated function, specified as a string.
Example: 'C:\MyDocuments\Autoencoders'
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

ShowLinks — Indicator to display the links to the generated code
false (default) | true

Indicator to display the links to the generated code in the command window, specified as the comma-
separated pair consisting of 'ShowLinks' and either true or false.
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Example: 'ShowLinks',true
Data Types: logical

Examples

Generate MATLAB Function for Running Autoencoder

Load the sample data.

X = iris_dataset;

Train an autoencoder with 4 neurons in the hidden layer.

autoenc = trainAutoencoder(X,4);

Generate the code for running the autoencoder. Show the links to the MATLAB function.

generateFunction(autoenc)

MATLAB function generated: neural_function.m
To view generated function code: edit neural_function
For examples of using function: help neural_function

Generate the code for the autoencoder in a specific path.

generateFunction(autoenc,'H:\Documents\Autoencoder')

MATLAB function generated: H:\Documents\Autoencoder.m
To view generated function code: edit Autoencoder
For examples of using function: help Autoencoder

Tips
• If you do not specify the path and the file name, generateFunction, by default, creates the code

in an m-file with the name neural_function.m. You can change the file name after
generateFunction generates it. Or you can specify the path and file name using the pathname
input argument in the call to generateFunction.

Version History
Introduced in R2015b

See Also
genFunction | generateSimulink
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generateSimulink
Class: Autoencoder

Generate a Simulink model for the autoencoder

Syntax
generateSimulink(autoenc)

Description
generateSimulink(autoenc) creates a Simulink model for the autoencoder, autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Examples

Generate Simulink Model for Autoencoder

Load the training data.

X = digitSmallCellArrayData;

The training data is a 1-by-500 cell array, where each cell containing a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(X,hiddenSize,...
        'L2WeightRegularization',0.004,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.15);

Create a Simulink model for the autoencoder, autoenc.

generateSimulink(autoenc)

 generateSimulink

2-629



Version History
Introduced in R2015b

See Also
trainAutoencoder
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network
Class: Autoencoder

Convert Autoencoder object into network object

Syntax
net = network(autoenc)

Description
net = network(autoenc) returns a network object which is equivalent to the autoencoder,
autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments
net — Neural network
network object

Neural network, that is equivalent to the autoencoder autoenc, returned as an object of the
network class.

Examples

Create Network from Autoencoder

Load the sample data.

X = bodyfat_dataset;

X is a 13-by-252 matrix defining thirteen attributes of 252 different observations. For more
information on the data, type help bodyfat_dataset in the command line.

Train an autoencoder on the attribute data.

autoenc = trainAutoencoder(X);
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Create a network object from the autoencoder, autoenc .

net = network(autoenc);

Predict the attributes using the network, net .

Xpred = net(X);
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Fit a linear regression model between the actual and estimated attributes data. Compute the
estimated Pearson correlation coefficient, the slope and the intercept (bias) of the regression model,
using all attribute data as one data set.

[C, S, B] = regression(X, Xpred, 'one')

C = 0.9997

S = 0.9983

B = 0.1160

The correlation coefficient is almost 1, which indicates that the attributes data and the estimations
from the neural network are highly close to each other.

Plot the actual data and the fitted line.

plotregression(X, Xpred);

The data appears to be on the fitted line, which visually supports the conclusion that the predictions
are very close to the actual data.
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Version History
Introduced in R2015b

See Also
trainAutoencoder | Autoencoder
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plotWeights
Class: Autoencoder

Plot a visualization of the weights for the encoder of an autoencoder

Syntax
plotWeights(autoenc)
h = plotWeights(autoenc)

Description
plotWeights(autoenc) visualizes the weights for the autoencoder, autoenc.

h = plotWeights(autoenc) returns a function handle h, for the visualization of the encoder
weights for the autoencoder, autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments
h — Image object
handle

Image object, returned as a handle.

Examples

Visualize Learned Features

Load the training data.

X = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer of 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(X,hiddenSize, ...
  'L2WeightRegularization',0.004, ...
  'SparsityRegularization',4, ...
  'SparsityProportion',0.2);
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Visualize the learned features.

plotWeights(autoenc);

Tips
• plotWeights allows the visualization of the features that the autoencoder learns. Use it when the

autoencoder is trained on image data. The visualization of the weights has the same dimensions as
the images used for training.

Version History
Introduced in R2015b

See Also
trainAutoencoder
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predict
Class: Autoencoder

Reconstruct the inputs using trained autoencoder

Syntax
Y = predict(autoenc,X)

Description
Y = predict(autoenc,X) returns the predictions Y for the input data X, using the autoencoder
autoenc. The result Y is a reconstruction of X.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Xnew — Input data
matrix | cell array of image data | array of single image data

Input data, specified as a matrix of samples, a cell array of image data, or an array of single image
data.

If the autoencoder autoenc was trained on a matrix, where each column represents a single sample,
then Xnew must be a matrix, where each column represents a single sample.

If the autoencoder autoenc was trained on a cell array of images, then Xnew must either be a cell
array of image data or an array of single image data.
Data Types: single | double | cell

Output Arguments
Y — Predictions for the input data Xnew
matrix | cell array of image data | array of single image data

Predictions for the input data Xnew, returned as a matrix or a cell array of image data.

• If Xnew is a matrix, then Y is also a matrix, where each column corresponds to a single sample
(observation or example).

• If Xnew is a cell array of image data, then Y is also a cell array of image data, where each cell
contains the data for a single image.

• If Xnew is an array of a single image data, then Y is also an array of a single image data.
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Examples

Predict Continuous Measurements Using Trained Autoencoder

Load the training data.

X = iris_dataset;

The training data contains measurements on four attributes of iris flowers: Sepal length, sepal width,
petal length, petal width.

Train an autoencoder on the training data using the positive saturating linear transfer function in the
encoder and linear transfer function in the decoder.

autoenc = trainAutoencoder(X,'EncoderTransferFunction',...
'satlin','DecoderTransferFunction','purelin');
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Reconstruct the measurements using the trained network, autoenc.

xReconstructed = predict(autoenc,X);

Plot the predicted measurement values along with the actual values in the training dataset.

for i = 1:4
h(i) = subplot(1,4,i);
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plot(X(i,:),'r.');
hold on 
plot(xReconstructed(i,:),'go');
hold off;
end
title(h(1),{'Sepal';'Length'});
title(h(2),{'Sepal';'Width'});
title(h(3),{'Petal';'Length'});
title(h(4),{'Petal';'Width'});

The red dots represent the training data and the green circles represent the reconstructed data.

Reconstruct Handwritten Digit Images Using Sparse Autoencoder

Load the training data.

XTrain = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell containing a 28-by-28 matrix representing
a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(XTrain,hiddenSize,...
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        'L2WeightRegularization',0.004,...
        'SparsityRegularization',4,...
        'SparsityProportion',0.15);

Load the test data.

XTest = digitTestCellArrayData;

The test data is a 1-by-5000 cell array, with each cell containing a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Reconstruct the test image data using the trained autoencoder, autoenc.

xReconstructed = predict(autoenc,XTest);

View the actual test data.

figure;
for i = 1:20
    subplot(4,5,i);
    imshow(XTest{i});
end

View the reconstructed test data.

figure;
for i = 1:20
    subplot(4,5,i);
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    imshow(xReconstructed{i});
end

Version History
Introduced in R2015b

See Also
trainAutoencoder
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stack
Class: Autoencoder

Stack encoders from several autoencoders together

Syntax
stackednet = stack(autoenc1,autoenc2,...)
stackednet = stack(autoenc1,autoenc2,...,net1)

Description
stackednet = stack(autoenc1,autoenc2,...) returns a network object created by stacking
the encoders of the autoencoders, autoenc1, autoenc2, and so on.

stackednet = stack(autoenc1,autoenc2,...,net1) returns a network object created by
stacking the encoders of the autoencoders and the network object net1.

The autoencoders and the network object can be stacked only if their dimensions match.

Input Arguments
autoenc1 — Trained autoencoder
Autoencoder object

Trained autoencoder, specified as an Autoencoder object.

autoenc2 — Trained autoencoder
Autoencoder object

Trained autoencoder, specified as an Autoencoder object.

net1 — Trained neural network
network object

Trained neural network, specified as a network object. net1 can be a softmax layer, trained using
the trainSoftmaxLayer function.

Output Arguments
stackednet — Stacked neural network
network object

Stacked neural network (deep network), returned as a network object

Examples
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Create a Stacked Network

Load the training data.

[X,T] = iris_dataset;

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the decoder. Set
the L2 weight regularizer to 0.001, sparsity regularizer to 4 and sparsity proportion to 0.05.

hiddenSize = 5;
autoenc = trainAutoencoder(X, hiddenSize, ...
    'L2WeightRegularization', 0.001, ...
    'SparsityRegularization', 4, ...
    'SparsityProportion', 0.05, ...
    'DecoderTransferFunction','purelin');
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Extract the features in the hidden layer.

features = encode(autoenc,X);

Train a softmax layer for classification using the features .

softnet = trainSoftmaxLayer(features,T);
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Stack the encoder and the softmax layer to form a deep network.

stackednet = stack(autoenc,softnet);

View the stacked network.

view(stackednet);
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Tips
• The size of the hidden representation of one autoencoder must match the input size of the next

autoencoder or network in the stack.

The first input argument of the stacked network is the input argument of the first autoencoder.
The output argument from the encoder of the first autoencoder is the input of the second
autoencoder in the stacked network. The output argument from the encoder of the second
autoencoder is the input argument to the third autoencoder in the stacked network, and so on.

• The stacked network object stacknet inherits its training parameters from the final input
argument net1.

Version History
Introduced in R2015b

 stack

2-647



See Also
trainAutoencoder | Autoencoder

Topics
“Train Stacked Autoencoders for Image Classification”
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view
Class: Autoencoder

View autoencoder

Syntax
view(autoenc)

Description
view(autoenc) returns a diagram of the autoencoder, autoenc.

Input Arguments
autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Examples

View Autoencoder

Load the training data.

X = iris_dataset;

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the decoder. Set
the L2 weight regularizer to 0.001, sparsity regularizer to 4 and sparsity proportion to 0.05.

hiddenSize = 5;
autoenc = trainAutoencoder(X, hiddenSize, ...
    'L2WeightRegularization',0.001, ...
    'SparsityRegularization',4, ...
    'SparsityProportion',0.05, ...
    'DecoderTransferFunction','purelin');
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View the autoencoder.

view(autoenc)
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Version History
Introduced in R2015b

See Also
trainAutoencoder
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fitnet
Function fitting neural network

Syntax
net = fitnet(hiddenSizes)
net = fitnet(hiddenSizes,trainFcn)

Description
net = fitnet(hiddenSizes) returns a function fitting neural network with a hidden layer size of
hiddenSizes.

net = fitnet(hiddenSizes,trainFcn) returns a function fitting neural network with a hidden
layer size of hiddenSizes and training function, specified by trainFcn.

Examples

Construct and Train a Function Fitting Network

Load the training data.

[x,t] = simplefit_dataset;

The 1-by-94 matrix x contains the input values and the 1-by-94 matrix t contains the associated
target output values.

Construct a function fitting neural network with one hidden layer of size 10.

net = fitnet(10);

View the network.

view(net)
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The sizes of the input and output are zero. The software adjusts the sizes of these during training
according to the training data.

Train the network net using the training data.

net = train(net,x,t);
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View the trained network.

view(net)
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You can see that the sizes of the input and output are 1.

Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared
error.

perf = perform(net,y,t)

perf = 1.4639e-04

The default training algorithm for a function fitting network is Levenberg-Marquardt ( 'trainlm' ).
Use the Bayesian regularization training algorithm and compare the performance results.

net = fitnet(10,'trainbr');
net = train(net,x,t);
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y = net(x);
perf = perform(net,y,t)

perf = 3.3416e-10

The Bayesian regularization training algorithm improves the performance of the network in terms of
estimating the target values.
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Input Arguments
hiddenSizes — Size of the hidden layers
10 (default) | row vector

Size of the hidden layers in the network, specified as a row vector. The length of the vector
determines the number of hidden layers in the network.
Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer
size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training
according to the training data.
Data Types: single | double

trainFcn — Training function name
'trainlm' (default) | 'trainbr' | 'trainbfg' | 'trainrp' | 'trainscg' | ...

Training function name, specified as one of the following.

Training Function Algorithm
'trainlm' Levenberg-Marquardt
'trainbr' Bayesian Regularization
'trainbfg' BFGS Quasi-Newton
'trainrp' Resilient Backpropagation
'trainscg' Scaled Conjugate Gradient
'traincgb' Conjugate Gradient with Powell/Beale Restarts
'traincgf' Fletcher-Powell Conjugate Gradient
'traincgp' Polak-Ribiére Conjugate Gradient
'trainoss' One Step Secant
'traingdx' Variable Learning Rate Gradient Descent
'traingdm' Gradient Descent with Momentum
'traingd' Gradient Descent

Example: For example, you can specify the variable learning rate gradient descent algorithm as the
training algorithm as follows: 'traingdx'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural
Networks” and “Choose a Multilayer Neural Network Training Function”.
Data Types: char

Output Arguments
net — Function fitting network
network object

Function fitting network, returned as a network object.
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Tips
• Function fitting is the process of training a neural network on a set of inputs in order to produce

an associated set of target outputs. After you construct the network with the desired hidden layers
and the training algorithm, you must train it using a set of training data. Once the neural network
has fit the data, it forms a generalization of the input-output relationship. You can then use the
trained network to generate outputs for inputs it was not trained on.

Version History
Introduced in R2010b

See Also
train | feedforwardnet | network | nftool | trainlm | perform

Topics
“Fit Data with a Shallow Neural Network”
“Neural Network Object Properties”
“Neural Network Subobject Properties”
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Image Classifier
Classify data using a trained deep learning neural network
Library: Deep Learning Toolbox / Deep Neural Networks

Description
The Image Classifier block predicts class labels for the data at the input by using the trained network
specified through the block parameter. This block allows loading of a pretrained network into the
Simulink model from a MAT-file or from a MATLAB function.

Limitations
• The Image Classifier block does not support sequence networks and multiple input and multiple

output networks (MIMO).
• The Image Classifier block does not support MAT-file logging.

Ports
Input

image — Image or feature data
numeric array

A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of
the images, respectively, and N is the number of images.

A N-by-numFeatures numeric array, where N is the number of observations and numFeatures is the
number of features of the input data.

If the array contains NaNs, then they are propagated through the network.

Output

ypred — Predicted class labels
enumerated

Predicted class labels with the highest score, returned as a N-by-1 enumerated vector of labels,
where N is the number of observations.

scores — Predicted class scores
matrix

Predicted scores, returned as a N-by-K matrix, where N is the number of observations, and K is the
number of classes.
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labels — Class labels for predicted scores
matrix

Labels associated with the predicted scores, returned as a N-by-K matrix, where N is the number of
observations, and K is the number of classes.

Parameters
Network — Source for trained network
Network from MAT-file (default) | Network from MATLAB function

Specify the source for the trained network. Select one of the following:

• Network from MAT-file— Import a trained network from a MAT-file containing a
SeriesNetwork, DAGNetwork, or dlnetwork object.

• Network from MATLAB function— Import a pretrained network from a MATLAB function. For
example, by using the googlenet function.

Programmatic Use
Block Parameter: Network
Type: character vector, string
Values: 'Network from MAT-file' | 'Network from MATLAB function'
Default: 'Network from MAT-file'

File path — MAT-file containing trained network
untitled.mat (default) | MAT-file path or name

This parameter specifies the name of the MAT-file that contains the trained deep learning network to
load. If the file is not on the MATLAB path, use the Browse button to locate the file.

Dependencies

To enable this parameter, set the Network parameter to Network from MAT-file.

Programmatic Use
Block Parameter: NetworkFilePath
Type: character vector, string
Values: MAT-file path or name
Default: 'untitled.mat'

MATLAB function — MATLAB function name
squeezenet (default) | MATLAB function name

This parameter specifies the name of the MATLAB function for the pretrained deep learning network.
For example, use googlenet function to import the pretrained GoogLeNet model.

Dependencies

To enable this parameter, set the Network parameter to Network from MATLAB function.

Programmatic Use
Block Parameter: NetworkFunction
Type: character vector, string
Values: MATLAB function name
Default: 'squeezenet'
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Mini-batch size — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.
Programmatic Use
Block Parameter: MiniBatchSize
Type: character vector, string
Values: positive integer
Default: '128'

Resize input — Resize input dimensions
on (default) | off

Resize the data at the input port to the input size of the network.
Programmatic Use
Block Parameter: ResizeInput
Type: character vector, string
Values: 'off' | 'on'
Default: 'on'

Classification — Output predicted label with highest score
on (default) | off

Enable output port ypred that outputs the label with the highest score.
Programmatic Use
Block Parameter: Classification
Type: character vector, string
Values: 'off' | 'on'
Default: 'on'

Predictions — Output all scores and associated labels
off (default) | on

Enable output ports scores and labels that output all predicted scores and associated class labels.
Programmatic Use
Block Parameter: Predictions
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:
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• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• For a list of networks and layers supported for CUDA code generation, see “Supported Networks,
Layers, and Classes” (GPU Coder).

• To learn more about generating code for Simulink models containing the Image Classifier block,
see “Code Generation for a Deep Learning Simulink Model to Classify ECG Signals” (GPU Coder).

See Also
Predict
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Predict
Predict responses using a trained deep learning neural network
Library: Deep Learning Toolbox / Deep Neural Networks

Description
The Predict block predicts responses for the data at the input by using the trained network specified
through the block parameter. This block allows loading of a pretrained network into the Simulink
model from a MAT-file or from a MATLAB function.

Note Use the Predict block to make predictions in Simulink. To make predictions programmatically
using MATLAB code, use the classify and predict functions.

Ports
Input

input — Image, feature, sequence, or time series data
numeric array

The input ports of the Predict block takes the names of the input layers of the network loaded. For
example, if you specify googlenet for MATLAB function, then the input port of the Predict block is
labeled data. Based on the network loaded, the input to the predict block can be image, sequence, or
time series data.

The format of the input depend on the type of data.

Data Format of Predictors
2-D images A h-by-w-by-c-by-N numeric array, where h, w,

and c are the height, width, and number of
channels of the images, respectively, and N is the
number of images.

Vector sequence c-by-s matrices, where c is the number of
features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3 Deep Learning Blocks

3-6



Data Format of Predictors
Features A N-by-numFeatures numeric array, where N is

the number of observations and numFeatures is
the number of features of the input data.

If the array contains NaNs, then they are propagated through the network.

Output

output — Predicted scores, responses, or activations
numeric array

The outputs port of the Predict block takes the names of the output layers of the network loaded. For
example, if you specify googlenet for MATLAB function, then the output port of the Predict block
is labeled output. Based on the network loaded, the output of the Predict block can represent
predicted scores or responses.

Predicted scores or responses, returned as a N-by-K array, where N is the number of observations,
and K is the number of classes.

If you enable Activations for a network layer, the Predict block creates a new output port with the
name of the selected network layer. This port outputs the activations from the selected network layer.

The activations from the network layer is returned as a numeric array. The format of output depends
on the type of input data and the type of layer output.

For 2-D image output, activations is an h-by-w-by-c-by-n array, where h, w, and c are the height,
width, and number of channels for the output of the chosen layer, respectively, and n is the number of
images.

For a single time-step containing vector data, activations is a c-by-n matrix, where n is the number of
sequences and c is the number of features in the sequence.

For a single time-step containing 2-D image data, activations is a h-by-w-by-c-by-n array, where n is
the number of sequences, h, w, and c are the height, width, and the number of channels of the
images, respectively.

Parameters
Network — Source for trained network
Network from MAT-file (default) | Network from MATLAB function

Specify the source for the trained network. Select one of the following:

• Network from MAT-file— Import a trained network from a MAT-file containing a
SeriesNetwork, DAGNetwork, or dlnetwork object.

• Network from MATLAB function— Import a pretrained network from a MATLAB function. For
example, by using the googlenet function.

Programmatic Use
Block Parameter: Network
Type: character vector, string
Values: 'Network from MAT-file' | 'Network from MATLAB function'
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Default: 'Network from MAT-file'

File path — MAT-file containing trained network
untitled.mat (default) | MAT-file path or name

This parameter specifies the name of the MAT-file that contains the trained deep learning network to
load. If the file is not on the MATLAB path, use the Browse button to locate the file.

Dependencies

To enable this parameter, set the Network parameter to Network from MAT-file.

Programmatic Use
Block Parameter: NetworkFilePath
Type: character vector, string
Values: MAT-file path or name
Default: 'untitled.mat'

MATLAB function — MATLAB function name
squeezenet (default) | MATLAB function name

This parameter specifies the name of the MATLAB function for the pretrained deep learning network.
For example, use googlenet function to import the pretrained GoogLeNet model.

Dependencies

To enable this parameter, set the Network parameter to Network from MATLAB function.

Programmatic Use
Block Parameter: NetworkFunction
Type: character vector, string
Values: MATLAB function name
Default: 'squeezenet'

Mini-batch size — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

Programmatic Use
Block Parameter: MiniBatchSize
Type: character vector, string
Values: positive integer
Default: '128'

Predictions — Output predicted scores or responses
on (default) | off

Enable output ports that return predicted scores or responses.

Programmatic Use
Block Parameter: Predictions
Type: character vector, string
Values: 'off' | 'on'
Default: 'on'
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Activations — Output network activations for a specific layer
layers of the network

Use the Activations list to select the layer to extract features from. The selected layers appear as an
output port of the Predict block.

Programmatic Use
Block Parameter: Activations
Type: character vector, string
Values: character vector in the form of '{'layerName1',layerName2',...}'
Default: ''

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• For a list of networks and layers supported for CUDA code generation, see “Supported Networks,
Layers, and Classes” (GPU Coder).

• To learn more about generating code for Simulink models containing the Predict block, see “Code
Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle Detection” (GPU
Coder).

See Also
Image Classifier | Stateful Classify | Stateful Predict
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Stateful Classify
Classify data using a trained deep learning recurrent neural network
Library: Deep Learning Toolbox / Deep Neural Networks

Description
The Stateful Classify block predicts class labels for the data at the input by using the trained
recurrent neural network specified through the block parameter. This block allows loading of a
pretrained network into the Simulink model from a MAT-file or from a MATLAB function. This block
updates the state of the network with every prediction.

To reset the state of recurrent neural network to its initial state, place the Stateful Classify block
inside a Resettable Subsystem block and use the Reset control signal as trigger.

Limitations
The Stateful Classify block does not support MAT-file logging.

Ports
Input

input — Sequence or time series data
numeric array

The format of the input depend on the type of data.

Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

Output

ypred — Predicted class labels
enumerated

Predicted class labels with the highest score, returned as a N-by-1 enumerated vector of labels,
where N is the number of observations.
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scores — Predicted class scores
matrix

Predicted scores, returned as a N-by-K matrix, where N is the number of observations, and K is the
number of classes.

labels — Class labels for predicted scores
matrix

Labels associated with the predicted scores, returned as a N-by-K matrix, where N is the number of
observations, and K is the number of classes.

Parameters
Network — Source for trained recurrent neural network
Network from MAT-file (default) | Network from MATLAB function

Specify the source for the trained recurrent neural network. The trained network must have at least
one recurrent layer (for example, an LSTM network). Select one of the following:

• Network from MAT-file— Import a trained recurrent neural network from a MAT-file
containing a SeriesNetwork, DAGNetwork, or dlnetwork object.

• Network from MATLAB function— Import a pretrained recurrent neural network from a
MATLAB function.

Programmatic Use
Block Parameter: Network
Type: character vector, string
Values: 'Network from MAT-file' | 'Network from MATLAB function'
Default: 'Network from MAT-file'

File path — MAT-file containing trained recurrent neural network
untitled.mat (default) | MAT-file name

This parameter specifies the name of the MAT-file that contains the trained recurrent neural network
to load. If the file is not on the MATLAB path, use the Browse button to locate the file.
Dependencies

To enable this parameter, set the Network parameter to Network from MAT-file.
Programmatic Use
Block Parameter: NetworkFilePath
Type: character vector, string
Values: MAT-file path or name
Default: 'untitled.mat'

MATLAB function — MATLAB function name
untitled (default) | MATLAB function name

This parameter specifies the name of the MATLAB function for the pretrained recurrent neural
network.
Dependencies

To enable this parameter, set the Network parameter to Network from MATLAB function.
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Programmatic Use
Block Parameter: NetworkFunction
Type: character vector, string
Values: MATLAB function name
Default: 'untitled'

Sample time — Output sample period and optional time offset
-1 (default) | scalar | vector

The Sample time parameter specifies when the block computes a new output value during
simulation. For details, see “Specify Sample Time” (Simulink).

Specify the Sample time parameter as a scalar when you do not want the output to have a time
offset. To add a time offset to the output, specify the Sample time parameter as a 1-by-2 vector
where the first element is the sampling period and the second element is the offset.

By default, the Sample time parameter value is -1 to inherit the value.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Classification — Output predicted label with highest score
on (default) | off

Enable output port ypred that outputs the label with the highest score.

Programmatic Use
Block Parameter: Classification
Type: character vector, string
Values: 'off' | 'on'
Default: 'on'

Predictions — Output all scores and associated labels
off (default) | on

Enable output ports scores and labels that output all predicted scores and associated class labels.

Programmatic Use
Block Parameter: Predictions
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers
Supported for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• GPU code generation supports this block only when targeting the cuDNN library.

See Also
Predict | Image Classifier | Stateful Predict
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Stateful Predict
Predict responses using a trained recurrent neural network
Library: Deep Learning Toolbox / Deep Neural Networks

Description
The Stateful Predict block predicts responses for the data at the input by using the trained recurrent
neural network specified through the block parameter. This block allows loading of a pretrained
network into the Simulink model from a MAT-file or from a MATLAB function. This block updates the
state of the network with every prediction.

To reset the state of recurrent neural network to its initial state, place the Stateful Predict block
inside a Resettable Subsystem block and use the Reset control signal as trigger.

Ports
Input

input — Sequence or time series data
numeric array

The input ports of the Stateful Predict block takes the names of the input layers of the network
loaded. Based on the network loaded, the input to the predict block can be sequence or time series
data.

The dimensions of the numeric arrays containing the sequences depend on the type of data.

Input Description
Vector sequences c-by-s matrices, where c is the number of

features of the sequences and s is the sequence
length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and c
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

Output

output — Predicted scores or responses
numeric array

The outputs port of the Stateful Predict block takes the names of the output layers of the network
loaded. Based on the network loaded, the output of the Stateful Predict block can represent predicted
scores or responses.
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For sequence-to-label classification, the output is a N-by-K matrix, where N is the number of
observations, and K is the number of classes.

For sequence-to-sequence classification problems, the output is a K-by-S matrix of scores, where K is
the number of classes, and S is the total number of time steps in the corresponding input sequence.

Parameters
Network — Source for trained recurrent neural network
Network from MAT-file (default) | Network from MATLAB function

Specify the source for the trained recurrent neural network. The trained network must have at least
one recurrent layer (for example, an LSTM network). Select one of the following:

• Network from MAT-file— Import a trained recurrent neural network from a MAT-file
containing a SeriesNetwork, DAGNetwork, or dlnetwork object.

• Network from MATLAB function— Import a pretrained recurrent neural network from a
MATLAB function.

Programmatic Use
Block Parameter: Network
Type: character vector, string
Values: 'Network from MAT-file' | 'Network from MATLAB function'
Default: 'Network from MAT-file'

File path — MAT-file containing trained recurrent neural network
untitled.mat (default) | MAT-file name

This parameter specifies the name of the MAT-file that contains the trained recurrent neural network
to load. If the file is not on the MATLAB path, use the Browse button to locate the file.

Dependencies

To enable this parameter, set the Network parameter to Network from MAT-file.

Programmatic Use
Block Parameter: NetworkFilePath
Type: character vector, string
Values: MAT-file path or name
Default: 'untitled.mat'

MATLAB function — MATLAB function name
untitled (default) | MATLAB function name

This parameter specifies the name of the MATLAB function for the pretrained recurrent neural
network.

Dependencies

To enable this parameter, set the Network parameter to Network from MATLAB function.

Programmatic Use
Block Parameter: NetworkFunction
Type: character vector, string
Values: MATLAB function name
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Default: 'untitled'

Sample time — Output sample period and optional time offset
-1 (default) | scalar | vector

The Sample time parameter specifies when the block computes a new output value during
simulation. For details, see “Specify Sample Time” (Simulink).

Specify the Sample time parameter as a scalar when you do not want the output to have a time
offset. To add a time offset to the output, specify the Sample time parameter as a 1-by-2 vector
where the first element is the sampling period and the second element is the offset.

By default, the Sample time parameter value is -1 to inherit the value.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '-1'

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• To generate generic C code that does not depend on third-party libraries, in the Configuration
Parameters > Code Generation general category, set the Language parameter to C.

• To generate C++ code, in the Configuration Parameters > Code Generation general category,
set the Language parameter to C++. To specify the target library for code generation, in the Code
Generation > Interface category, set the Target Library parameter. Setting this parameter to
None generates generic C++ code that does not depend on third-party libraries.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation>
Interface pane must be enabled.

• Code generation for the Stateful Predict block does not support dlnetwork.
• For a list of networks and layers supported for code generation, see “Networks and Layers

Supported for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general
category must be set to C++.

• GPU code generation supports this block only when targeting the cuDNN library.
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• Code generation for the Stateful Predict block does not support dlnetwork.

See Also
Predict | Image Classifier | Stateful Classify
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