Deep Learning Toolbox™
S EE)E

Mark Hudson Beale
Martin T. Hagan
Howard B. Demuth

7

MATLAB

R2022b ¢ } MathWorkse



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Deep Learning Toolbox™ Reference
© COPYRIGHT 1992-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

June 1992

April 1993
January 1997
July 1997
January 1998
September 2000
June 2001

July 2002
January 2003
June 2004
October 2004
October 2004
March 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Sixth printing
Seventh printing
Online only
Online only
Online only
Online only
Eighth printing
Online only
Online only
Ninth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 3 (Release 11)
Revised for Version 4 (Release 12)

Minor revisions (Release 12.1)

Minor revisions (Release 13)

Minor revisions (Release 13SP1)

Revised for Version 4.0.3 (Release 14)
Revised for Version 4.0.4 (Release 14SP1)
Revised for Version 4.0.4

Revised for Version 4.0.5 (Release 14SP2)
Revised for Version 5.0 (Release 2006a)
Minor revisions (Release 2006b)

Minor revisions (Release 2007a)

Revised for Version 5.1 (Release 2007b)
Revised for Version 6.0 (Release 2008a)
Revised for Version 6.0.1 (Release 2008b)
Revised for Version 6.0.2 (Release 2009a)
Revised for Version 6.0.3 (Release 2009b)
Revised for Version 6.0.4 (Release 2010a)
Revised for Version 7.0 (Release 2010b)
Revised for Version 7.0.1 (Release 2011a)
Revised for Version 7.0.2 (Release 2011b)
Revised for Version 7.0.3 (Release 2012a)
Revised for Version 8.0 (Release 2012b)
Revised for Version 8.0.1 (Release 2013a)
Revised for Version 8.1 (Release 2013b)
Revised for Version 8.2 (Release 2014a)
Revised for Version 8.2.1 (Release 2014b)
Revised for Version 8.3 (Release 2015a)
Revised for Version 8.4 (Release 2015b)
Revised for Version 9.0 (Release 2016a)
Revised for Version 9.1 (Release 2016b)
Revised for Version 10.0 (Release 2017a)
Revised for Version 11.0 (Release 2017b)
Revised for Version 11.1 (Release 2018a)
Revised for Version 12.0 (Release 2018b)
Revised for Version 12.1 (Release 2019a)
Revised for Version 13 (Release 2019b)
Revised for Version 14 (Release 2020a)
Revised for Version 14.1 (Release 2020b)
Revised for Version 14.2 (Release 2021a)
Revised for Version 14.3 (Release 2021b)
Revised for Version 14.4 (Release 2022a)
Revised for Version 14.5 (Release 2022b)






Deep Learning Functions

1]

Approximation, Clustering, and Control Functions

2|

Deep Learning Blocks

3|






Deep Learning Functions




1 Deep Learning Functions

Deep Network Designer

Design, visualize, and train deep learning networks

Description

The Deep Network Designer app lets you build, visualize, edit, and train deep learning networks.
Using this app, you can:

* Build, import, edit, and combine networks.

* Load pretrained networks and edit them for transfer learning.

* View and edit layer properties and add new layers and connections.

* Analyze the network to ensure that the network architecture is defined correctly, and detect
problems before training.

* Import and visualize datastores and image data for training and validation.

* Apply augmentations to image classification training data and visualize the distribution of the
class labels.

* Train networks and monitor training with plots of accuracy, loss, and validation metrics.
« Export trained networks to the workspace or to Simulink®.

* Generate MATLAB® code for building and training networks and create experiments for
hyperparameter tuning using Experiment Manager.
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Open

the Deep Network Designer App

* MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.

* MATLAB command prompt: Enter deepNetworkDesigner.

Examples

Select Pretrained Network

Examine a pretrained network in Deep Network Designer.

Open the app and select a pretrained network. You can also load a pretrained network by selecting

the Designer tab and clicking New. If you need to download the network, then click Install to open
the Add-On Explorer. Deep Network Designer has pretrained networks suitable for image and audio
tasks. Loading pretrained audio networks requires Audio Toolbox™.

Tip To get started, try choosing one of the faster image classification networks, such as SqueezeNet
or GoogLeNet. Once you gain an understanding of which settings work well, try a more accurate
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1 Deep Learning Functions

network, such as Inception-v3 or a ResNet, and see if that improves your results. For more
information on selecting a pretrained network, see “Pretrained Deep Neural Networks”.
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In the Designer pane, visualize and explore the network. For a list of available pretrained image
classification networks and how to compare them, see “Pretrained Deep Neural Networks”.
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For information on constructing networks using Deep Network Designer, see “Build Networks with
Deep Network Designer”.

Edit Pretrained Network for Transfer Learning
Prepare a network for transfer learning by editing it in Deep Network Designer.

Transfer learning is the process of taking a pretrained deep learning network and fine-tuning it to
learn a new task. You can quickly transfer learned features to a new task using a smaller number of
training images. Transfer learning is therefore often faster and easier than training a network from
scratch. To use a pretrained network for transfer learning, you must change the number of classes to
match your new data set.

Open Deep Network Designer with SqueezeNet.
deepNetworkDesigner(squeezenet)
To prepare the network for transfer learning, replace the last learnable layer and the final

classification layer. For SqueezeNet, the last learnable layer is a 2-D convolutional layer named
‘convl1O'.
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1 Deep Learning Functions

1-6

* Drag a new convolution2dLayer onto the canvas. Set the FilterSize property to 1, 1 and the
NumFilters property to the new number of classes.

* Change the learning rates so that learning is faster in the new layer than in the transferred layers
by increasing the WeightLearnRateFactor and BiasLearnRateFactor values.

* Delete the last convolution2dLayer and connect your new layer instead.

Proparties

convolution2dLayer (3

Conv
I convolution2dL. ‘ Name | cony |

FilterSize | 11 |
MumFilters 5
Stride 1.1

Tip For most pretrained networks (for example, GoogLeNet) the last learnable layer is the fully
connected layer. To prepare the network for transfer learning, replace the fully connected layer with
a new fully connected layer and set the OutputSize property to the new number of classes. For an
example, see “Get Started with Deep Network Designer”.

Next, delete the classification output layer. Then, drag a new classificationLayer onto the canvas
and connect it instead. The default settings for the output layer mean the network learns the number
of classes during training.

Propearties

classificationLayer (2)

C|ElSSGUt[JUt Mame claszouf
5 put
[ classificationLa. .. ] |

Classes

Clazs\Weighis

OutputSize auto
LossFunction crossentropyex

Check your network by clicking Analyze in the Designer tab. The network is ready for training if
Deep Learning Network Analyzer reports zero errors. For an example showing how to train a
network to classify new images, see “Transfer Learning with Deep Network Designer”.

Get Help on Layer Properties

For help understanding and editing layer properties, click the help icon next to the layer name.



Deep Network Designer

On the Designer pane, select a layer to view and edit the properties. Click the help icon next to the
layer name for more information about the properties of the layer.

Froperties

B

crossChannelNormalizationLayer

conv2-norm?2
crossChannelM. ..

MName COnV2-normi2 ' Get help on layer properties.
WindowChannelSize 5
Alpha 0.0001
Beta 0.73
pool2-3x3_s2 . ;

maxPooling2dL .

For more information about layer properties, see “List of Deep Learning Layers”.

Add Custom Layer to Network
Add layers from the workspace to a network in Deep Network Designer.

In Deep Network Designer, you can build a network by dragging built-in layers from the Layer
Library to the Designer pane and connecting them. You can also add custom layers from the
workspace to a network in the Designer pane. Suppose that you have a custom layer stored in the
variable myCustomLayer.

1 Click New in the Designer tab.

2 Pause on From Workspace and click Import.

3 Select myCustomLayer and click OK.
4

Click Add.

The app adds the custom layer to the top of the Designer pane. To see the new layer, zoom-in using a
mouse or click Zoom in.

Connect myCustomLayer to the network in the Designer pane. For an example showing how build a
network with a custom layer in Deep Network Designer, see “Import Custom Layer into Deep
Network Designer”.

You can also combine networks in Deep Network Designer. For example, you can create a semantic
segmentation network by combining a pretrained network with a decoder subnetwork.

Import Data for Training

Import data into Deep Network Designer for training.
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You can use the Data tab of Deep Network Designer to import training and validation data. Deep
Network Designer supports the import of image data and datastore objects. Select an import method
based on the type of task.

Task Data Type Data Import Method Example Visualization
Image |ImageDatastor [Select Import Data | 4 e netverk Designe
classifica | e object, or a Import Image Data e
tion folder with
subfold¢ & Impert linage Data
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class. Tl Data Trainng
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B
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=z
Random potation (degrees) A caesgr_salad caprese_salad  french_fries greek_salad hamburger hpt_dog
Class labeal
Random pescaling N
Random forizontal translation (piels) N Show randgm observations of | <Al classes> v
Random pertical translation (pixels) N
;-MI Images will be resized during training
g
_ % -
hamburger greak_salad pizza
You can select augme

hambarges

options and specify the
validation data in the Import
Image Data dialog box. For
more information, see “Import
Data into Deep Network
Designer”.




Deep Network Designer

function. For
more information
about
constructing and
using datastore
objects for deep
learning
applications, see
“Datastores for
Deep Learning”.

50 categonical

50 categonical
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sl e, or custom dialog box. For more
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Train Network

Train deep neural networks using Deep Network Designer.

Using Deep Network Designer, you can train a network using image data or any datastore object that
works with the trainNetwork function. For example, you can train a semantic segmentation
network or a multi-input network using a CombinedDatastore object. For more information about
importing data into Deep Network Designer, see “Import Data into Deep Network Designer”.

To train a network on data imported into Deep Network Designer, on the Training tab, click Train.
The app displays an animated plot of the training progress. The plot shows mini-batch loss and
accuracy, validation loss and accuracy, and additional information on the training progress. The plot

has a stop button "®/ in the top-right corner. Click the button to stop training and return the current

state of the network.
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Training Progress (18-May-2021 16:04:30)
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For more information, see “Train Networks Using Deep Network Designer”.

If you require greater control over the training, click Training Options to select the training
settings. For more information about selecting training options, see trainingOptions.

1-10



Deep Network Designer

E Training Cpticns
SOLVER

Solver
InitizlLearnRate
BASIC
ValidationFrequency
MaxEpochs
MiniBatchSize

ExecutionEnvironment

SEQUENCE
Sequencelength
SequencePaddingValue
SequencePaddingDirection
ADVANCED
L2Regularization
GradientThresholdMethod
GradientThreshold
ValidationFatience

Shuffle

CheckpointFPath
CheckpointFrequency
CheckpointFrequencylUnit
LearnRateScheduls
LearnRateDropFactor
LearnRateDropPeriod
ResetinputMormalization
BatchMormalizationStatistics
CutputMetwork

Maomentum

[sgdm L ]

—
sy
Pt
oo
k

auto L ]

every-epoch L ]

|
[
|
| Inf
[
|

Specify checkpoint path |

(18]
=]

—

none i ]

]

population L ]

|last-iteration L4 ]

G.QH

]

1-11



1 Deep Learning Functions

1-12

For an example showing how to train an image classification network, see “Transfer Learning with
Deep Network Designer”. For an example showing how to train a sequence-to-sequence LSTM
network, see “Train Network for Time Series Forecasting Using Deep Network Designer”.

To train a network on data not supported by Deep Network Designer, select the Designer tab, and
click Export to export the initial network architecture. You can then programmatically train the
network, for example, using a custom training loop.

Export Network and Generate Code

Export the network architecture created in Deep Network Designer to the workspace or Simulink and
generate code to recreate the network and training.

* To export the network architecture with the initial weights to the workspace, on the Designer tab,
click Export. Depending on the network architecture, Deep Network Designer exports the
network as a LayerGraph Igraph or as a Layer object layers.

» To export the network trained in Deep Network Designer to the workspace, on the Training tab,
click Export. Deep Network Designer exports the trained network architecture as a DAGNetwork
object trainedNetwork. Deep Network Designer also exports the results from training, such as
training and validation accuracy, as the structure array trainInfoStruct.

» To export the network trained in Deep Network Designer to Simulink, on the Training tab, click
Export > Export to Simulink. Deep Network Designer saves the trained network as a MAT-file
and generates Simulink blocks representing the trained network. The blocks generated depend on
the type of network trained.

* Image Classifier — Classify data using a trained deep learning neural network.
* Predict — Predict responses using a trained deep learning neural network.
» Stateful Classify — Classify data using a trained recurrent neural network.
+ Stateful Predict — Predict responses using a trained recurrent neural network.

For an example showing how to export a network from Deep Network Designer to Simulink, see
“Export Image Classification Network from Deep Network Designer to Simulink”.

To recreate a network that you construct and train in Deep Network Designer, generate MATLAB
code.
» To recreate the network layers, on the Designer tab, select Export > Generate Code.

» To recreate the network layers, including any learnable parameters, on the Designer tab, select
Export > Generate Code with Initial Parameters.

* To recreate the network, data import, and training, on the Training tab, select Export >
Generate Code for Training.

After generating a script, you can perform the following tasks.

» To recreate the network layers created in the app, run the script. If you generated the training
script, running the script will also replicate the network training.

* Examine the code to learn how to create and connect layers programmatically, and how to train a
deep network.

* To modify the layers, edit the code. You can also run the script and import the network back into
the app for editing.



Deep Network Designer

For more information, see “Generate MATLAB Code from Deep Network Designer”.

You can also use Deep Network Designer to create deep learning experiments which sweep through a
range of hyperparameter values or use Bayesian optimization to find optimal training options. For an
example showing how to use Experiment Manager to tune the hyperparameters of a network
trained in Deep Network Designer, see “Generate Experiment Using Deep Network Designer”.

. “Transfer Learning with Deep Network Designer”
. “Build Networks with Deep Network Designer”

. “Import Data into Deep Network Designer”

. “Train Networks Using Deep Network Designer”

. “Train Network for Time Series Forecasting Using Deep Network Designer”

. “Train Simple Semantic Segmentation Network in Deep Network Designer”

. “Image-to-Image Regression in Deep Network Designer”

. “Transfer Learning with Pretrained Audio Networks in Deep Network Designer”
. “Import Custom Layer into Deep Network Designer”

. “Generate MATLAB Code from Deep Network Designer”

. “Export Image Classification Network from Deep Network Designer to Simulink”
. “Generate Experiment Using Deep Network Designer”

. “List of Deep Learning Layers”

Programmatic Use

deepNetworkDesigner opens the Deep Network Designer app. If Deep Network Designer is already
open, deepNetworkDesigner brings focus to the app.

deepNetworkDesigner(net) opens the Deep Network Designer app and loads the specified
network into the app. The network can be a series network, DAG network, layer graph, or an array of
layers.

For example, open Deep Network Designer with a pretrained SqueezeNet network.

net = squeezenet;
deepNetworkDesigner(net);

If Deep Network Designer is already open, deepNetworkDesigner (net) brings focus to the app
and prompts you to add to or replace any existing network.

Tips

To train multiple networks and compare the results, try Experiment Manager. You can use Deep
Network Designer to create experiments suitable for Experiment Manager.

Version History
Introduced in R2018b
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See Also

Functions
analyzeNetwork | trainNetwork | trainingOptions | Experiment Manager

Topics

“Transfer Learning with Deep Network Designer”

“Build Networks with Deep Network Designer”

“Import Data into Deep Network Designer”

“Train Networks Using Deep Network Designer”

“Train Network for Time Series Forecasting Using Deep Network Designer”
“Train Simple Semantic Segmentation Network in Deep Network Designer”
“Image-to-Image Regression in Deep Network Designer”

“Transfer Learning with Pretrained Audio Networks in Deep Network Designer”
“Import Custom Layer into Deep Network Designer”

“Generate MATLAB Code from Deep Network Designer”

“Export Image Classification Network from Deep Network Designer to Simulink”
“Generate Experiment Using Deep Network Designer”

“List of Deep Learning Layers”



Deep Network Quantizer

Deep Network Quantizer

Quantize a deep neural network to 8-bit scaled integer data types

Description

Use the Deep Network Quantizer app to reduce the memory requirement of a deep neural network
by quantizing weights, biases, and activations of convolution layers to 8-bit scaled integer data types.
Using this app you can:

Visualize the dynamic ranges of convolution layers in a deep neural network.
Select individual network layers to quantize.

Assess the performance of a quantized network.

Generate GPU code to deploy the quantized network using GPU Coder™.

Generate HDL code to deploy the quantized network to an FPGA using Deep Learning HDL
Toolbox™.

Generate C++ code to deploy the quantized network to an ARM Cortex-A microcontroller using
MATLAB Coder™.

Generate a simulatable quantized network that you can explore in MATLAB without generating
code or deploying to hardware.

This app requires Deep Learning Toolbox Model Quantization Library. To learn about the products
required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.
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Open the Deep Network Quantizer App

¢ MATLAB command prompt: Enter deepNetworkQuantizer.

* MATLAB toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the
app icon.

Examples

Quantize a Network for GPU Deployment

To explore the behavior of a neural network with quantized convolution layers, use the Deep
Network Quantizer app. This example quantizes the learnable parameters of the convolution layers
of the squeezenet neural network after retraining the network to classify new images according to
the “Train Deep Learning Network to Classify New Images” example.

This example uses a DAG network with the GPU execution environment.

Load the network to quantize into the base workspace.

load squeezenetmerch
net
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net =
DAGNetwork with properties:

Layers: [68x1 nnet.cnn.layer.Layer]
Connections: [75x2 table]
InputNames: {'data'}
OutputNames: {'new classoutput'}

Define calibration and validation data.

The app uses calibration data to exercise the network and collect the dynamic ranges of the weights
and biases in the convolution and fully connected layers of the network and the dynamic ranges of the
activations in all layers of the network. For the best quantization results, the calibration data must be
representative of inputs to the network.

The app uses the validation data to test the network after quantization to understand the effects of
the limited range and precision of the quantized learnable parameters of the convolution layers in the
network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData’,

'IncludeSubfolders',true,

'LabelSource', 'foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug calData augmentedImageDatastore([227 227], calData);
aug valData augmentedImageDatastore([227 227], valData);

At the MATLAB command prompt, open the app.

deepNetworkQuantizer
In the app, click New and select Qquantize a network.

The app verifies your execution environment. For more information, see “Quantization Workflow
Prerequisites”.

In the dialog, select the execution environment and the network to quantize from the base
workspace. For this example, select a GPU execution environment and the DAG network, net.
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Select a network to quantize >

Execution Environment:
(®) GPU

() FPGA

(_JCPU

() MATLAB

Metwaork:

Select a network -

net - DAGMNetwark

|" Refresh List

The app displays the layer graph of the selected network.

In the Calibrate section of the toolstrip, under Calibration Data, select the
augmentedImageDatastore object from the base workspace containing the calibration data,
aug calData. Select Calibrate.

The Deep Network Quantizer uses the calibration data to exercise the network and collect range
information for the learnable parameters in the network layers.

When the calibration is complete, the app displays a table containing the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network and their minimum and maximum values during the calibration. To the right of
the table, the app displays histograms of the dynamic ranges of the parameters. The gray regions of
the histograms indicate data that cannot be represented by the quantized representation. For more
information on how to interpret these histograms, see “Quantization of Deep Neural Networks”.
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In the Quantize column of the table, indicate whether to quantize the learnable parameters in the
layer. Layers that are not quantized remain in single-precision after quantization.

In the Validate section of the toolstrip, under Validation Data, select the
augmentedImageDatastore object from the base workspace containing the validation data,
aug valData.

In the Validate section of the toolstrip, under Quantization Options, select the Default metric
function and MinMax exponent scheme. Select Quantize and Validate.

The Deep Network Quantizer quantizes the weights, activations, and biases of convolution layers in
the network to scaled 8-bit integer data types and uses the validation data to exercise the network.
The app determines a default metric function to use for the validation based on the type of network
that is being quantized. For a classification network, the app uses Top-1 Accuracy.

When the validation is complete, the app displays the results of the validation, including:

* Metric function used for validation
* Result of the metric function before and after quantization
* Memory requirement of the network before and after quantization (MB)
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If you want to use a different metric function for validation, for example to use the Top-5 accuracy
metric function instead of the default Top-1 accuracy metric function, you can define a custom metric
function. Save this function in a local file.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics

% Load ground truth
tmp = readall(dataStore);
groundTruth = tmp.response;

% Compare with predicted label with actual ground truth
predictionError = {};
for idx=1l:numel(groundTruth)

[~, idy] = max(predictionScores(idx,:));

yActual = net.Layers(end).Classes(idy);

predictionError{end+1} = (yActual == groundTruth(idx)); S%#ok
end

% Sum all prediction errors.

predictionError = [predictionError{:}];

accuracy = sum(predictionError)/numel(predictionError);
end

To revalidate the network using this custom metric function, under Quantization Options, enter the
name of the custom metric function, hComputeModelAccuracy. Select Add to add
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hComputeModelAccuracy to the list of metric functions available in the app. Select
hComputeModelAccuracy as the metric function to use.

The custom metric function must be on the path. If the metric function is not on the path, this step
will produce an error.

b ot

Quantization Options | Quantize and Valic

-

METRIC FUNCTION

Default

LIse the validation
datastore and network to
determing the mefric
function

@ hComputeModelAcc...

|hCDmmeMDdEIAccuracy | I:I':',:l Add

Exponent Scheme

I.-'ixl MII'IMEDI
= pvoid overflows and capture range

~ Histogram
Distribution based scaling

Select Quantize and Validate.

The app quantizes the network and displays the validation results for the custom metric function.
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The app displays only scalar values in the validation results table. To view the validation results for a
custom metric function with non-scalar output, export the dlquantizer object as described below,
then validate using the validate function at the MATLAB command window.

If the performance of the quantized network is not satisfactory, you can choose to not quantize some
layers by deselecting the layer in the table. You can also explore the effects of choosing a different
exponent selection scheme for quantization in the Quantization Options menu. To see the effects of
these changes, select Quantize and Validate again.

After calibrating the network, you can choose to export the quantized network or the dlquantizer
object. Select the Export button. In the drop down, select from the following options:

* Export Quantized Network - Add the quantized network to the base workspace. This option
exports a simulatable quantized network that you can explore in MATLAB without deploying to
hardware.

* Export Quantizer - Add the dlquantizer object to the base workspace. You can save the
dlquantizer object and use it for further exploration in the Deep Network Quantizer app or at
the command line, or use it to generate code for your target hardware.

* Generate Code - Open the GPU Coder app and generate GPU code from the quantized neural
network. Generating GPU code requires a GPU Coder™ license.
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Import a dlquantizer Object into the Deep Network Quantizer App

This example shows you how to import a dlquantizer object from the base workspace into the
Deep Network Quantizer app. This allows you to begin quantization of a deep neural network using
the command line or the app, and resume your work later in the app.

Open the Deep Network Quantizer app.

deepNetworkQuantizer

In the app, click New and select Import dlquantizer object.

DEEP METWORK QUANTIZER -

Mews
-

E Guantize a network
Start quantization of a network

. Import diquantizer object
=2 Continue quantization of a network

In the dialog, select the dlquantizer object to import from the base workspace. For this example,
use quantObj that you create in the above example Quantize a Neural Network for GPU Target.

Select a diquantizer object to import

diguantizer:

Select a diquantizer object | -

quantObj

Refresh List

The app imports any data contained in the dlquantizer object that was collected at the command
line. This data can include the network to quantize, calibration data, validation data, and calibration
statistics.

The app displays a table containing the calibration data contained in the imported dlquantizer
object, quantObj. To the right of the table, the app displays histograms of the dynamic ranges of the
parameters. The gray regions of the histograms indicate data that cannot be represented by the
quantized representation. For more information on how to interpret these histograms, see
“Quantization of Deep Neural Networks”.
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I DEEP NETWORK QUANTIZER
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Quantize a Network for FPGA Deployment

To explore the behavior of a neural network that has quantized convolution layers, use the Deep
Network Quantizer app. This example quantizes the learnable parameters of the convolution layers
of the LogoNet neural network for an FPGA target.

For this example, you need the products listed under FPGA in “Quantization Workflow Prerequisites”.

Load the pretrained network to quantize into the base workspace. Create a file in your current
working folder called getLogoNetwork.m. In the file, enter:

function net = getLogoNetwork

if ~isfile('LogoNet.mat')
url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo detection/LogoNet.mat';
websave('LogoNet.mat',url);

end
data = load('LogoNet.mat');
net = data.convnet;

end

Load the pretrained network.

snet

snet

getLogoNetwork;

SeriesNetwork with properties:
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Layers: [22x1 nnet.cnn.layer.Layer]
InputNames: {'imageinput'}
OQutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The Deep Network Quantizer app uses calibration data to exercise the network and collect the
dynamic ranges of the weights and biases in the convolution and fully connected layers of the
network. The app also exercises the dynamic ranges of the activations in all layers of the LogoNet
network. For the best quantization results, the calibration data must be representative of inputs to
the LogoNet network.

After quantization, the app uses the validation data set to test the network to understand the effects
of the limited range and precision of the quantized learnable parameters of the convolution layers in
the network.

In this example, use the images in the logos dataset data set to calibrate and validate the
LogoNet network. Define an imageDatastore object, then split the data into calibration and
validation data sets.

Expedite the calibration and validation process for this example by using a subset of the calibration
and validation data. Store the new reduced calibration data set in calData concise and the new
reduced validation data set in valData concise.

currentDir = pwd;

newDir = fullfile(matlabroot, 'examples', 'deeplearning shared', 'data','logos dataset.zip');

copyfile(newDir,currentDir);
unzip('logos dataset.zip');

imds = imageDatastore(fullfile(currentDir, 'logos dataset'),...
'IncludeSubfolders',true, 'FileExtensions','.JPG', 'LabelSource', 'foldernames');

[calData,valDatal] = splitEachLabel(imds,0.7, " 'randomized');

calData concise
valData concise

calData.subset(1:20);
valData.subset(1:6);

Open the Deep Network Quantizer app.

deepNetworkQuantizer
Click New and select Quantize a network.

Set the execution environment to FPGA and select snet - SeriesNetwork as the network to
quantize.
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Select a network to quantize x

Execution Environment:
) GPU
(®) FPGA
() CPU

) MATLAE

Metwork:

|snet - SeriesMetwork | - |

(Feb )

The app displays the layer graph of the selected network.

Under Calibration Data, select the calData concise - ImageDatastore object from the base
workspace containing the calibration data.

Click Calibrate. By default, the app uses the host GPU to collect calibration data, if one is available.
Otherwise, the host CPU is used. You can use the Calibrate drop down menu to select the calibration
environment.

The Deep Network Quantizer app uses the calibration data to exercise the network and collect
range information for the learnable parameters in the network layers.

When the calibration is complete, the app displays a table containing the weights and biases in the
convolution and fully connected layers of the network. Also displayed are the dynamic ranges of the
activations in all layers of the network and their minimum and maximum values recorded during the
calibration. The app displays histograms of the dynamic ranges of the parameters. The gray regions
of the histograms indicate data that cannot be represented by the quantized representation. For more
information on how to interpret these histograms, see “Quantization of Deep Neural Networks”.
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In the Quantize Layer column of the table, indicate whether to quantize the learnable parameters in
the layer. Layers that are not quantized remain in single-precision.

Under Validation Data, select the valData concise - ImageDatastore object from the base
workspace containing the validation data.

In the Hardware Settings section of the toolstrip, select the environment to use for validation of the
quantized network. For more information on these options, see “Hardware Settings” on page 1-0

For this example, select Xilinx ZC706 (zc706_int8) and JTAG.
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Hardware Settings | Quantization Options
- -

SIMULATION ENVIROMMENT

MATLAB
Simulate in MATLAE

ﬁ Intel Arria 10 SoC
arra1lsoc_int8

ﬁ Kilinxe ZCU102
zou102_intg
ﬁ Hilinx ZCT06
zc/06_int8

Target

® JTAG

() Ethernet

Under Quantization Options, select the Default metric function and MinMax exponent scheme.
For more information on these options, see “Quantization Options” on page 1-0

Click Quantize and Validate.

The Deep Network Quantizer app quantizes the weights, activations, and biases of convolution
layers in the network to scaled 8-bit integer data types and uses the validation data to exercise the
network. The app determines a default metric function to use for the validation based on the type of
network that is being quantized. For more information, see “Quantization Options” on page 1-0

When the validation is complete, the app displays the validation results.
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4 Validation Results

Number of samples: &

Metric Floating-Point Network Results Quantized Network Resulis Percent Change
FramesPerSecond 0.8367 2.7262 225.8316
Mumber of Threads {Convolution) 4.0000 16.0000 300.0000
Mumber of Threads (Fully Connected) 4.0000 2.0000 100.0000

LUT WHilization (%) 63.1281 48.7790 -22.7300
BlockRANM Utilization (%) 9% 9083 50.0000 -19.9265

DSP Utilization (%) 17.0000 31.2222 83.6601

Top-1 Accuracy 1.0000 1.0000 0.0000

After quantizing and validating the network, you can choose to export the quantized network.

Click the Export button. In the drop-down list, select Export Quantizer to create a dlquantizer
object in the base workspace. You can deploy the quantized network to your target FPGA board and
retrieve the prediction results by using MATLAB. For an example, see “Deploy Quantized Network
Example” (Deep Learning HDL Toolbox).

. “Quantization of Deep Neural Networks”
. “Quantize Residual Network Trained for Image Classification and Generate CUDA Code”
Parameters

Execution Environment — Execution Environment
GPU (default) | FPGA | CPU | MATLAB

When you select New > Quantize a Network, the app allows you to choose the execution
environment for the quantized network. How the network is quantized depends on the choice of
execution environment.

When you select the MATLAB execution environment, the app performs target-agnostic quantization of
the neural network. This option does not require you to have target hardware in order to explore the
quantized network in MATLAB.

Hardware Settings — Hardware settings
simulation environment | target

Specify hardware settings based on your execution environment.

* GPU Execution Environment

Select from the following simulation environments:
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Simulation Environment

Action

GPU

Simulate on host GPU

Deploys the quantized network to the host
GPU. Validates the quantized network by
comparing performance to single-precision
version of the network.

MATLAB

Simulate in MATLAB

Simulates the quantized network in MATLAB.
Validates the quantized network by comparing
performance to single-precision version of the
network.

FPGA Execution Environment

Select from the following simulation environments:

Simulation Environment

Action

MATLAB

Simulate in MATLAB

Simulates the quantized network in MATLAB.
Validates the quantized network by comparing
performance to single-precision version of the
network.

Intel Arria 10 SoC

arrialOsoc_int8

Deploys the quantized network to an Intel®
Arria® 10 SoC board by using the
arrial@soc_int8 bitstream. Validates the
quantized network by comparing performance
to single-precision version of the network.

Xilinx ZCU102

zcul02 int8

Deploys the quantized network to a Xilinx®
Zynq® UltraScale+™ MPSoC ZCU102 10 SoC
board by using the zcul02 int8 bitstream.
Validates the quantized network by comparing
performance to single-precision version of the
network.

Xilinx ZC706

zc706 _int8

Deploys the quantized network to a Xilinx
Zynq-7000 ZC706 board by using the

zc706 1int8 bitstream. Validates the
quantized network by comparing performance
to single-precision version of the network.

When you select the Intel Arria 10 SoC, Xilinx ZCU102, or Xilinx ZC706 option, additionally
select the interface to use to deploy and validate the quantized network.

Target Option

Action

JTAG

Programs the target FPGA board selected
under Simulation Environment by using a
JTAG cable. For more information, see “JTAG
Connection” (Deep Learning HDL Toolbox).

Ethernet

Programs the target FPGA board selected in
Simulation Environment through the
Ethernet interface. Specify the IP address for
your target board in the IP Address field.

CPU Execution Environment
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The Hardware Settings button is disabled. However, you must use the raspi function to
establish a connection to your Raspberry Pi™ board prior to the Quantize and Validate step.

Quantization Options — Options for quantization and validation
metric function | exponent scheme

By default, the Deep Network Quantizer app determines a metric function to use for the validation
based on the type of network that is being quantized.

Type of Network Metric Function
Classification Top-1 Accuracy - Accuracy of the network
Object Detection Average Precision - Average precision over all

detection results. See
evaluateDetectionPrecision.

Regression MSE - Mean squared error of the network

Semantic Segmentation WeightedIOU - Average IoU of each class,
weighted by the number of pixels in that class.
See evaluateSemanticSegmentation.

You can also specify a custom metric function to use for validation.

You can select the exponent selection scheme to use for quantization of the network:
* MinMax — (default) Evaluate the exponent based on the range information in the calibration
statistics and avoid overflows.

» Histogram — Distribution-based scaling which evaluates the exponent to best fit the calibration
data.

Export — Options for exporting quantized network
Export Quantized Network | Export Quantizer | Generate Code

* Export Quantized Network — After calibrating the network, quantize and add the quantized
network to the base workspace. This option exports a simulatable quantized network,
quantizedNet, that you can explore in MATLAB without deploying to hardware. This option is
equivalent to using quantize at the command line.

Code generation is not supported for the exported quantized network, quantizedNet.

* Export Quantizer — Add the dlquantizer object to the base workspace. You can save the
dlquantizer object and use it for further exploration in the Deep Network Quantizer app or at
the command line, or use it to generate code for your target hardware.

* Generate Code — Open the GPU Coder app and generate GPU code from the quantized and
validated neural network. Generating GPU code requires a GPU Coder license.

Version History
Introduced in R2020a

Calibrate on host GPU or host CPU
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You can now choose whether to calibrate your network using the host GPU or host CPU. By default,
the calibrate function and the Deep Network Quantizer app will calibrate on the host GPU if one
is available.

In previous versions, it was required that the execution environment be the same as the
instrumentation environment used for the calibration step of quantization.

dlnetwork support

The Deep Network Quantizer app now supports calibration and validation for dlnetwork objects.

Validate the performance of quantized network for CPU target

The Deep Network Quantizer app now supports the quantization and validation workflow for CPU
targets.

Quantize neural networks without a specific target

Specify MATLAB as the Execution Environment to quantize your neural networks without
generating code or committing to a specific target for code deployment. This can be useful if you:

* Do not have access to your target hardware.
* Want to inspect your quantized network without generating code.

Your quantized network implements int8 data instead of single data. It keeps the same layers and
connections as the original network, and it has the same inference behavior as it would when running
on hardware.

Once you have quantized your network, you can use the quantizationDetails function to inspect
your quantized network. Additionally, you also have the option to deploy the code to a GPU target.

See Also

Functions
calibrate | quantize | validate | dlquantizer | dlquantizationOptions |
quantizationDetails | estimateNetworkMetrics

Topics
“Quantization of Deep Neural Networks”
“Quantize Residual Network Trained for Image Classification and Generate CUDA Code”
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Experiment Manager

Design and run experiments to train and compare deep learning networks

Description

The Experiment Manager app enables you to create deep learning experiments to train networks
under multiple initial conditions and compare the results. For example, you can use deep learning
experiments to:

* Sweep through a range of hyperparameter values or use Bayesian optimization to find optimal
training options. Bayesian optimization requires Statistics and Machine Learning Toolbox™.

* Use the built-in function trainNetwork or define your own custom training function.
* Compare the results of using different data sets or test different deep network architectures.

To set up your experiment quickly, you can start with a preconfigured template. The experiment
templates support workflows that include image classification, image regression, sequence
classification, semantic segmentation, and custom training loops.

Experiment Manager provides visualization tools such as training plots and confusion matrices, filters
to refine your experiment results, and annotations to record your observations. To improve
reproducibility, every time that you run an experiment, Experiment Manager stores a copy of the
experiment definition. You can access past experiment definitions to keep track of the
hyperparameter combinations that produce each of your results.

Experiment Manager organizes your experiments and results in a project.

* You can store several experiments in the same project.
* Each experiment contains a set of results for each time that you run the experiment.

* Each set of results consists of one or more trials corresponding to a different combination of
hyperparameters.

By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox™,
you can configure your experiment to run multiple trials at the same time or to run a single trial at a
time on multiple GPUs, on a cluster, or in the cloud. If you have MATLAB Parallel Server™, you can
also offload experiments as batch jobs in a remote cluster so that you can continue working or close
your MATLAB session during training. For more information, see “Use Experiment Manager to Train
Networks in Parallel” and “Offload Experiments as Batch Jobs to Cluster”.

The Experiment Browser pane displays the hierarchy of experiments and results in the project. For
instance, this project has two experiments, each of which has several sets of results.

Experiment Browser

~ [ 5] DeepLeamingProject

- ; Experiment1
[ Resuld
] Resuita
E Result2
[ Resuin

- @ Experiment2
[ Resultz
[ Resuit1
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The blue flask ﬁ indicates a built-in training experiment that uses the trainNetwork function. The

green beaker E indicates a custom training experiment that relies on a different training function.
To open the configuration for an experiment and view its results, double-click the name of the

experiment or a set of results.

EXPERIMENT MANAGER

Mode ( | i
" B(E % 5 |7 W v
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Layout uster Stop ||| Training | Validation  Training Fiter  Annotations  Export
- Pool Size - | Plot | Dat Data - -
FILE ENVIRONMENT EXECUTION RUN REVIEW RESULTS FILTER | ANNGTATIONS | EXPORT
Experiment Browser Experiment1 | Result1
~ [=] DigitClassificationProject
I . ~ Exhaustive Sweep Result
~ /& Experimentt
[ Resut (Running) Experiment1 I 2/6 Trials
(View eriment Source)
Classification of digits, using various initial learning rates. @ Complete 2 A Stopped 0 @ Ermor 0
O Running 2 = Queued 2 X Canceled 0
I Discarded 0
Trial Status Actions ‘ngress Elapsed Time mylnitialeamnRate Training Accuracy (%) | Training Loss Validation Accuracy (%) | Validation Loss
1 & Complete (Max epochs completed; ‘—100 0% 0 hr 4 min 17 sec 0.00825 120.0002 9.0714 57.9600 1.3936
2 @ Complete (Max epochs ) ‘_mn 0%|  0hr4min3dsec 8.0650 106.0860 8.9326 61.5600 1.3986
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6 == Queued ‘ 0.0% 8.8150
Visualizations.
Training Plot (Trial 3, Result1, Experiment1)
£
E _______________ P ———— -
3
g
<
|Epoch 2 | | Epoch 3 |
60 80 100 120 140
lteration
@
# B ——— S _, .
5
R ——— et 1 = 1111 W) Epoch 3 |
60 30 100 120 140
lteration
L] =

1-34

Open the Experiment Manager App

* MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the
app icon.

* MATLAB command prompt: Enter experimentManager.

Examples

Image Classification by Sweeping Hyperparameters

This example shows how to use the experiment template for image classification by sweeping
hyperparameters. With this template, you can quickly set up a built-in training experiment that uses
the trainNetwork function. For more examples of solving image classification problems with
Experiment Manager, see “Create a Deep Learning Experiment for Classification” and “Use
Experiment Manager to Train Networks in Parallel”. For more information on an alternative strategy
to sweeping hyperparameters, see “Tune Experiment Hyperparameters by Using Bayesian
Optimization”.
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Open the example to load a project with a preconfigured experiment that you can inspect and run. To
open the experiment, in the Experiment Browser pane, double-click the name of the experiment
(Experimentl).

4\ Experiment Manager — O X

EXPERIMENT MANAGER

I:II:II:I {3 Open =~ E Mode [Sequential '] L>

5 Cluster
New E ave Layout Run
¥ i3 Duplicate - Pool Size
FILE ENVIROMMENT EXECUTION RUN
Experiment Browser Experimenti

A |Z_| DigitClassificationProject

Description
/&, Experiment1

Classification of digits. using various intial leaming rates.

Hyperparameters

Strategy: [ Exhaustive Sweep -

In the setup and metric functions, access hyperparameter values by using dot notation.

Name Values

mylnitialLearnRate 0.0025:0.0025:0.015

Setup Function

Experimenti_setup1 |

Metrics

Standard training and validation mefrics (such as accuracy, RMSE, and loss) are computed by default.

Custom Metrics

Alternatively, you can configure the experiment yourself by following these steps.
1. Open Experiment Manager. A dialog box provides links to the getting started tutorials and your

recent projects, as well as buttons to create a new project or open an example from the
documentation.
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Experiment Manager
Get Starled
pen * New
-
RECENT PROJECTS

L

Project

« Examples

T —T—T—T

Create a Deep Create a Deep Evaluate Deep

Learning Experiment Leamning Experiment Learning Experiments

for Classification for Regression by Using Metric
Functions

2. Under New, select Project. A dialog box lists several templates that support workflows including
image classification, image regression, sequence classification, semantic segmentation, and custom
training loops.

Experiment Manager

« Blank Experiments

a =

Built-In Training _
Custom Training
(trainNetwork)

~ Image Classification Experiments

o &, (5. w
Image Classification by Image Classification Image Classification Image Classification
Sweeping Using Bayesian Using Transfer Using Custom Training
Hyperparameters Optimization Learning

~ Image Comparison Experiments

3. Under Image Classification Experiments, select Image Classification by Sweeping
Hyperparameters.

4. Specify the name and location for the new project. Experiment Manager opens a new experiment
in the project. The Experiment pane displays the description, hyperparameters, setup function, and
metrics that define the experiment.

5. In the Description field, enter a description of the experiment:
Classification of digits, using various initial learning rates.

6. Under Hyperparameters, replace the value of myInitialLearnRate with
0.0025:0.0025:0.015. Verify that Strategy is set to Exhaustive Sweep.
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7. Under Setup Function, click Edit. The setup function opens in MATLAB Editor. The setup
function specifies the training data, network architecture, and training options for the experiment. In
this experiment, the setup function has three sections.

Load Training Data defines image datastores containing the training and validation data for the
experiment. The experiment uses the Digits data set, which consists of 10,000 28-by-28 pixel
grayscale images of digits from 0 to 9, categorized by the digit they represent. For more
information on this data set, see “Image Data Sets”.

Define Network Architecture defines the architecture for a simple convolutional neural network
for deep learning classification.

Specify Training Options defines a trainingOptions object for the experiment. In this
experiment, the setup function loads the values for the initial learning rate from the
myInitialLearnRate entry in the hyperparameter table.

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses one of the learning rates specified in the hyperparameter table. By default,
Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run
multiple trials at the same time or offload your experiment as a batch job in a cluster.

To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” and
“GPU Computing Requirements” (Parallel Computing Toolbox).

To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster”.

A table of results displays the accuracy and loss for each trial.

Trial

Status

Actions | Progress Elapsed Time mylnitialLearnRate Training Accuracy (%) Training Loss Validation Accuracy (%) | Validation Loss

& Complete (Max epochs completed) I 100.0%| 0 hr4 min 17 sec .8025 100.0002 0.8714 57.9600 1.3236

© Complete (Max epochs completed) I 100.0%| 0 hr4 min 34 sec .8950 108.0008 2.8326 61.5608 1.3986

© Running

| | | | 48.3% 0 hr 1 min 16 sec @.8875 99,2188 2.8800 58.2000 1.5348

© Running

| | 48 3% 0 hr 1 min 16 sec 2.8100 99,2188 8.8651 59.2400 1.5593

Do & [@| o] =

= Queued

0.0% ©.8125

= Queued

0.0% 0.0150

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot. You can also monitor the training progress in the
MATLAB Command Window.
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To display the confusion matrix for the validation data in each completed trial, under Review
Results, click Validation Data.

10 1 3 13 8 13 4 2 17
3 7 4 3 9
8 16 36 8 7 15 27
0 20 10 4 46
3 1 0 4 34
22 5 45 19 2 10
3 73 10 9 21 1 19 14
13 5 1 2 1 1
3 27 33 42 10 26 89 20
29 2 39 1 40 -

53.7% 54.0% 84.1% ALY 312% |
7.7% 46.3% 335% 46.0% 356% 15.9% 3T 4% 12.9% 257%
0

1 2 3 L ] 6 7 8 9
Predicted Class

When the experiment finishes, you can sort the table by column or filter trials by using the Filters
pane. You can also record observations by adding annotations to the results table. For more
information, see “Sort, Filter, and Annotate Experiment Results” on page 1-52.

To test the performance of an individual trial, export the trained network or the training information
for the trial. On the Experiment Manager toolstrip, select Export > Trained Network or Export >
Training Information, respectively. For more information, see “net” on page 1-0 and “info”
on page 1-0 . To save the contents of the results table as a table array in the MATLAB
workspace, select Export > Results Table.

To close the experiment, in the Experiment Browser pane, right-click the name of the project and
select Close Project. Experiment Manager closes all of the experiments and results contained in the
project.

Image Regression by Sweeping Hyperparameters

This example shows how to use the experiment template for image regression by sweeping
hyperparameters. With this template, you can quickly set up a built-in training experiment that uses
the trainNetwork function. For another example of solving a regression problem with Experiment
Manager, see “Create a Deep Learning Experiment for Regression”. For more information on an
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alternative strategy to sweeping hyperparameters, see “Tune Experiment Hyperparameters by Using
Bayesian Optimization”.

Open the example to load a project with a preconfigured experiment that you can inspect and run. To
open the experiment, in the Experiment Browser pane, double-click the name of the experiment
(Experimentl).

4\ Experiment Manager — O x

EXPERIMENT MANAGER

EE:I Eﬂpen - E Mode [Sequential '] L>

Clust
New ﬁ save Layout uster Run
* g Duplicate - Pool Size
FILE ENVIROMMENT EXECUTION RUN
Experiment Browser Experiment1
~ [=] DigitRegressionProject .
(=] DigiReg L Description

&, Experiment1

Regression to predict angles of rotation of digits, using various initial learning rates.

Hyperparameters

Strategy: [Exhausti\re Sweep hd |

In the setup and metric functions, access hyperparameter values by using dot notation.

Name Values

mylnitialLearnRate 0.001:0.001:0.006

Setup Function

Experimenti_setupi |

Metrics

Standard training and validation mefrics (such as accuracy, RMSE, and loss) are computed by defauli.

Custom Metrics

Alternatively, you can configure the experiment yourself by following these steps.
1. Open Experiment Manager. A dialog box provides links to the getting started tutorials and your

recent projects, as well as buttons to create a new project or open an example from the
documentation.
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Experiment Manager
Get Starled
pen * New
-
RECENT PROJECTS

L

Project

« Examples

T —T—T—T

Create a Deep Create a Deep Evaluate Deep

Learning Experiment Leamning Experiment Learning Experiments

for Classification for Regression by Using Metric
Functions

2. Under New, select Project. A dialog box lists several templates that support workflows including
image classification, image regression, sequence classification, semantic segmentation, and custom
training loops.

Experiment Manager

« Blank Experiments

a =

Built-In Training _
Custom Training
(trainNetwork)

~ Image Classification Experiments

& & & ®

Image Classification by Image Classification Image Classification Image Classification
Sweeping Using Bayesian Using Transfer Using Custom Training
Hyperparameters Optimization Learning

~ Image Comparison Experiments

3. Under Image Regression Experiments, select Image Regression by Sweeping
Hyperparameters.

4. Specify the name and location for the new project. Experiment Manager opens a new experiment
in the project. The Experiment pane displays the description, hyperparameters, setup function, and
metrics that define the experiment.

5. In the Description field, enter a description of the experiment:
Regression to predict angles of rotation of digits, using various initial learning rates.

6. Under Hyperparameters, replace the value of myInitialLearnRate with
0.001:0.001:0.006. Verify that Strategy is set to Exhaustive Sweep.
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7. Under Setup Function, click Edit. The setup function opens in MATLAB Editor. The setup
function specifies the training data, network architecture, and training options for the experiment. In
this experiment, the setup function has three sections.

* Load Training Data defines the training and validation data for the experiment as 4-D arrays.
The training and validation data each consist of 5000 images from the Digits data set. Each image
shows a digit from 0 to 9, rotated by a certain angle. The regression values correspond to the
angles of rotation. For more information on this data set, see “Image Data Sets”.

* Define Network Architecture defines the architecture for a simple convolutional neural network
for deep learning regression.

* Specify Training Options defines a trainingOptions object for the experiment. In this
experiment, the setup function loads the values for the initial learning rate from the
myInitialLearnRate entry in the hyperparameter table.

When you run the experiment, Experiment Manager trains the network defined by the setup function
six times. Each trial uses one of the learning rates specified in the hyperparameter table. By default,
Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run
multiple trials at the same time or offload your experiment as a batch job in a cluster.

* To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

* To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” and
“GPU Computing Requirements” (Parallel Computing Toolbox).

» To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster”.

A table of results displays the root mean squared error (RMSE) and loss for each trial.

Trial

Status

Actions

Progress

Elapsed Time

mylnitialLearnRate

Training RMSE

Training Loss

Validation RM...

Validation Loss

& Complete (Max epochs compleied)

I 100.0%

0 hr 1 min 3 sec

8.e818

8.8616

32.4943

77715

38.1982

& Complete (Max epochs completed)

I 100.0%

0 hr 1 min 5 sec

@.ea820

7.9933

31.9462

7.9372

31.4995

O Running

| 55.4%

0 hr 0 min 54 sec

@2.e83@

1@.6922

57.1619

10.3233

53.2852

O Running

e 55.8%

0 hr 0 min 54 sec

2.8848

9.8240

48.7159

10.8887

58.8906

= Queued

0.0%

@.8858

Do & W] o] =

= Queued

0.0%

.8860

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot. You can also monitor the training progress in the
MATLAB Command Window.

1-41



1 Deep Learning Functions

1-42

K~
-

400 5
~
]
8 200
S

Epoct

Epoch 2 Epoch 3 Epoch 4 Epoch 5

200
Iteration

-
2

JMBT{%:TTZ‘““"‘“‘W«A——*—- — IRttt EPOCH 5§ Fifa

50 100 150 200

Iteration

When the experiment finishes, you can sort the table by column or filter trials by using the Filters
pane. You can also record observations by adding annotations to the results table. For more
information, see “Sort, Filter, and Annotate Experiment Results” on page 1-52.

To test the performance of an individual trial, export the trained network or the training information
for the trial. On the Experiment Manager toolstrip, select Export > Trained Network or Export >
Training Information, respectively. For more information, see “net” on page 1-0 and “info”
on page 1-0 . To save the contents of the results table as a table array in the MATLAB
workspace, select Export > Results Table.

To close the experiment, in the Experiment Browser pane, right-click the name of the project and
select Close Project. Experiment Manager closes all of the experiments and results contained in the
project.

Image Classification Using Custom Training Loop

This example shows how to use the training experiment template for image classification using a
custom training loop. With this template, you can quickly set up a custom training experiment.

Open the example to load a project with a preconfigured experiment that you can inspect and run. To
open the experiment, in the Experiment Browser pane, double-click the name of the experiment
(Experimentl).
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4 Experiment Manager

EXPERIMENT MANAGER

EB:I [ Open ~ E Mode [Sequential '] D

Cluster
New ﬁ save Layout Run
¥ i3 Duplicate - Pool Size
FILE ENVIROMMENT EXECUTION RUN

kl

Experiment Browser Experiment1
- E| DigitClassificationCustomLoopProject
& Experiment1

Description

Classification of digits, using various initial learing rates.

Hyperparameters

Strategy: [ Exhaustive Sweep - |

In the training function, access hyperparameter values by using dot notation.
Name Values.

mylnitialLearnRate 0.0025:0.0025:0.015

Training Function

Experimenti_training1 |

Alternatively, you can configure the experiment yourself by following these steps.

1. Open Experiment Manager. A dialog box provides links to the getting started tutorials and your

recent projects, as well as buttons to create a new project or open an example from the
documentation.
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Experiment Manager
Get Starled
pen * New
-
RECENT PROJECTS

L

Project

« Examples

T e and acd 1o project it

Create a Deep Create a Deep Evaluate Deep

Learning Experiment Leamning Experiment Learning Experiments

for Classification for Regression by Using Metric
Functions

2. Under New, select Project. A dialog box lists several templates that support workflows including
image classification, image regression, sequence classification, semantic segmentation, and custom
training loops.

Experiment Manager

« Blank Experiments
AN <

Built-In Training

Custom Trainin
(trainNetwork) 9

~ Image Classification Experiments

o a, (5. w
Image Classification by Image Classification Image Classification Image Classification
Sweeping Using Bayesian Using Transfer Using Custom Training
Hyperparameters Optimization Learning

~ Image Comparison Experiments -

3. Under Image Classification Experiments, select Image Classification Using Custom
Training Loop.

4. Select the location and name for a new project. Experiment Manager opens a new experiment in
the project. The Experiment pane displays the description, hyperparameters, and training function
that define the experiment.

3. In the Description field, enter a description of the experiment:

Classification of digits, using various initial learning rates.

4. Under Hyperparameters, replace the value of myInitialLearnRate with
0.0025:0.0025:0.015. Verify that Strategy is set to Exhaustive Sweep.
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5. Under Training Function, click Edit. The training function opens in MATLAB Editor. The training
function specifies the training data, network architecture, training options, and training procedure
used by the experiment. In this experiment, the training function has four sections.

Load Training Data defines the training data for the experiment as 4-D arrays. The experiment
uses the Digits data set, which consists of 5,000 28-by-28 pixel grayscale images of digits from 0
to 9, categorized by the digit they represent. For more information on this data set, see “Image
Data Sets”.

Define Network Architecture defines the architecture for a simple convolutional neural network
for deep learning classification. To train the network with a custom training loop, the training
function represents the network as a dlnetwork object.

Specify Training Options defines the training options used by the experiment. In this
experiment, the training function loads the values for the initial learning rate from the
myInitiallLearnRate entry in the hyperparameter table.

Train Model defines the custom training loop used by the experiment. For each epoch, the
custom training loop shuffles the data and iterates over mini-batches of data. For each mini-batch,
the custom training loop evaluates the model gradients, state, and loss, determines the learning
rate for the time-based decay learning rate schedule, and updates the network parameters. To
track the progress of the training and record the value of the training loss, the training function
uses the experiments.Monitor object monitor.

When you run the experiment, Experiment Manager trains the network defined by the training
function six times. Each trial uses one of the learning rates specified in the hyperparameter table. By
default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you
can run multiple trials at the same time or offload your experiment as a batch job in a cluster.

To run one trial of the experiment at a time, on the Experiment Manager toolstrip, under Mode,
select Sequential and click Run.

To run multiple trials at the same time, under Mode, select Simultaneous and click Run. If
there is no current parallel pool, Experiment Manager starts one using the default cluster profile.
Experiment Manager then runs as many simultaneous trials as there are workers in your parallel
pool. For best results, before you run your experiment, start a parallel pool with as many workers
as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel” and
“GPU Computing Requirements” (Parallel Computing Toolbox).

To offload the experiment as a batch job, under Mode, select Batch Sequential or Batch
Simultaneous, specify your Cluster and Pool Size, and click Run. For more information, see
“Offload Experiments as Batch Jobs to Cluster”.

A table of results displays the training loss for each trial.

Trial Status Actions |Progress Elapsed Time mylnitialLearnRate TrainingLoss

1 & Complete I 100.0% 0 hr 0 min 55 sec 8.8825 1.8179
2 & Complete I 100.0%| O hr 0 min 56 sec 2.8050 @.4266
3 O Running I 55.0% 0 hr 0 min 42 sec @.8875 8.3835
4 O Running [ 50.0% 0 hr 0 min 42 sec 8.8100 @.1488
3 = Queued o 0.0% 8.08125

B = Queued v 0.0% @.6158

1-45



1 Deep Learning Functions

TrainingLoss

To display the training plot and track the progress of each trial while the experiment is running,
under Review Results, click Training Plot.
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When the experiment finishes, you can sort the table by column or filter trials by using the Filters
pane. You can also record observations by adding annotations to the results table. For more
information, see “Sort, Filter, and Annotate Experiment Results” on page 1-52.

To test the performance of an individual trial, export the training output for the trial. On the
Experiment Manager toolstrip, select Export > Training Output. In this experiment, the training
output is a structure that contains the values of the training loss and the trained network. To save the
contents of the results table as a table array in the MATLAB workspace, select Export > Results
Table.

To close the experiment, in the Experiment Browser pane, right-click the name of the project and
select Close Project. Experiment Manager closes all of the experiments and results contained in the
project.

Configure Built-In Training Experiment

This example shows how to set up a built-in training experiment using Experiment Manager. Built-in
training experiments rely on the trainNetwork function and support workflows such as image
classification, image regression, sequence classification, and semantic segmentation.

Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment.

In the Description field, enter a description of the experiment.

Under Hyperparameters, select the strategy to use for your experiment.

* To sweep through a range of hyperparameter values, set Strategy to Exhaustive Sweep. In the
hyperparameter table, enter the names and values of the hyperparameters used in the
experiment. Hyperparameter names must start with a letter, followed by letters, digits, or
underscores. Hyperparameter values must be scalars or vectors with numeric, logical, or string
values, or cell arrays of character vectors. For example, these are valid hyperparameter
specifications:

+ 0.01
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0.01:0.01:0.05

* [0.01 0.02 0.04 0.08]

* ["sgdm" "rmsprop" "adam"]

+ {'squeezenet' 'googlenet' 'resnetl8'}

When you run the experiment, Experiment Manager trains the network using every combination
of the hyperparameter values specified in the table.

» To find optimal training options by using Bayesian optimization, set Strategy to Bayesian
Optimization. In the hyperparameter table, specify these properties of the hyperparameters
used in the experiment:

* Name — Enter a valid hyperparameter name. Hyperparameter names must start with a letter,
followed by letters, digits, or underscores.

* Range — For a real- or integer-valued hyperparameter, enter a two-element vector that gives
the lower bound and upper bound of the hyperparameter. For a categorical hyperparameter,
enter an array of strings or a cell array of character vectors that lists the possible values of the
hyperparameter.

* Type — Select real (real-valued hyperparameter), integer (integer-valued hyperparameter),
or categorical (categorical hyperparameter).

+ Transform — Select none (no transform) or log (logarithmic transform). For log, the
hyperparameter must be real or integer and positive. With this option, the hyperparameter
is searched and modeled on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters. Each trial in the experiment uses a new combination of hyperparameter values
based on the results of the previous trials.

To specify the duration of your experiment, under Bayesian Optimization Options, enter the
maximum time (in seconds) and the maximum number of trials to run. Note that the actual run
time and number of trials in your experiment can exceed these settings because Experiment
Manager checks these options only when a trial finishes executing.

Bayesian optimization requires Statistics and Machine Learning Toolbox. For more information,
see “Tune Experiment Hyperparameters by Using Bayesian Optimization”.

The Setup Function configures the training data, network architecture, and training options for the

experiment. The input to the setup function is a structure with fields from the hyperparameter table.

The output of the setup function must match the input of the trainNetwork function. This table lists
the supported signatures for the setup function.

Goal of Experiment Setup Function Signature
Train a network for image classification and function [images,layers,options] = Experimg
regression tasks using the images and responses |- - -
specified by images and the training options end
defined by options.
Train a network using the images specified by function [images, responses,layers,options]
images and responses specified by responses. |- »
en
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Goal of Experiment

Setup Function Signature

Train a network for sequence or time-series
classification and regression tasks (for example,
an LSTM or GRU network) using the sequences
and responses specified by sequences.

end

function [sequences,layers,options] =

Exper

iment setu

responses.

Train a network using the sequences specified by
sequences and responses specified by

end

function [sequences, reponses, layers,optiong

] =

Experi

Train a network for feature classification or
regression tasks (for example, a multilayer
perceptron, or MLP, network) using the feature
data and responses specified by features.

end

function [features,layers,options] = Experi

ment setur

responses.

Train a network using the feature data specified
by features and responses specified by

end

function [features,responses,layers,optiong

] = Experi

Tip When writing your setup function, follow these guidelines:

* Load training and validation data by using an absolute path to a location that is accessible to all

your workers.

* For networks containing batch normalization layers, if the BatchNormalizationStatistics
training option is population, Experiment Manager displays final validation metric values that
are often different from the validation metrics evaluated during training. The difference in values
is the result of additional operations performed after the network finishes training. For more
information, see “Batch Normalization Layer” on page 1-232.

* The execution modes that you can use for your experiment depend on the settings you specify for
the training options ExecutionEnvironment and DispatchInBackground.

Execution Mode

Valid Settings for

Valid Settings for

ExecutionEnvironment DispatchInBackground

Sequential "auto", "cpu", "gpu", true, false
"multi-gpu”, "parallel"

Simultaneous "auto", "cpu", "gpu" false

Batch Sequential "auto", "cpu", "gpu", true, false
"parallel"

Batch Simultaneous "auto", "cpu", "gpu" false

For more information, see “Use Experiment Manager to Train Networks in Parallel” and “Offload
Experiments as Batch Jobs to Cluster”.

The Metrics section specifies functions to evaluate the results of the experiment. The input to a
metric function is a structure with three fields:

* trainedNetwork is the SeriesNetwork object or DAGNetwork object returned by the
trainNetwork function. For more information, see Trained Network on page 1-0
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* trainingInfo is a structure containing the training information returned by the trainNetwork
function. For more information, see Training Information on page 1-0

* parameters is a structure with fields from the hyperparameter table.
The output of a metric function must be a scalar number, a logical value, or a string.

If your experiment uses Bayesian optimization, select a metric to optimize from the Optimize list. In
the Direction list, specify that you want to Maximize or Minimize this metric. Experiment Manager
uses this metric to determine the best combination of hyperparameters for your experiment. You can
choose a standard training or validation metric (such as accuracy, RMSE, or loss) or a custom metric
from the table.

Configure Custom Training Experiment

This example shows how to set up a custom training experiment using Experiment Manager. Custom
training experiments support workflows that require a training function other than trainNetwork.
These workflows include:

* Training a network that is not defined by a layer graph.

* Training a network using a custom learning rate schedule.

* Updating the learnable parameters of a network by using a custom function.

* Training a generative adversarial network (GAN).

* Training a Siamese network.

Custom training experiments consist of a description, a table of hyperparameters, and a training
function.

In the Description field, enter a description of the experiment.
Under Hyperparameters, select the strategy to use for your experiment.

» To sweep through a range of hyperparameter values, set Strategy to Exhaustive Sweep. In the
hyperparameter table, enter the names and values of the hyperparameters used in the
experiment. Hyperparameter names must start with a letter, followed by letters, digits, or
underscores. Hyperparameter values must be scalars or vectors with numeric, logical, or string
values, or cell arrays of character vectors. For example, these are valid hyperparameter
specifications:
¢« 0.01
* 0.01:0.01:0.05
+ [0.01 0.02 0.04 0.08]

° [Ilsgdmll n I,.mspr.opu "adam“]

* {'squeezenet' 'googlenet' 'resnetl8'}

When you run the experiment, Experiment Manager trains the network using every combination
of the hyperparameter values specified in the table.

» To find optimal training options by using Bayesian optimization, set Strategy to Bayesian
Optimization. In the hyperparameter table, specify these properties of the hyperparameters
used in the experiment:
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* Name — Enter a valid hyperparameter name. Hyperparameter names must start with a letter,
followed by letters, digits, or underscores.

* Range — For a real- or integer-valued hyperparameter, enter a two-element vector that gives
the lower bound and upper bound of the hyperparameter. For a categorical hyperparameter,
enter an array of strings or a cell array of character vectors that lists the possible values of the
hyperparameter.

* Type — Select real (real-valued hyperparameter), integer (integer-valued hyperparameter),
or categorical (categorical hyperparameter).

* Transform — Select none (no transform) or log (logarithmic transform). For log, the
hyperparameter must be real or integer and positive. With this option, the hyperparameter
is searched and modeled on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of
hyperparameters. Each trial in the experiment uses a new combination of hyperparameter values
based on the results of the previous trials.

To specify the duration of your experiment, under Bayesian Optimization Options, enter the
maximum time (in seconds) and the maximum number of trials to run. Note that the actual run
time and number of trials in your experiment can exceed these settings because Experiment
Manager checks these options only when a trial finishes executing.

Bayesian optimization requires Statistics and Machine Learning Toolbox. For more information,
see “Use Bayesian Optimization in Custom Training Experiments”.

The Training Function specifies the training data, network architecture, training options, and
training procedure used by the experiment. The inputs to the training function are:

A structure with fields from the hyperparameter table

An experiments.Monitor object that you can use to track the progress of the training, update
information fields in the results table, record values of the metrics used by the training, and
produce training plots

Experiment Manager saves the output of the training function, so you can export it to the MATLAB
workspace when the training is complete.

Tip When writing your training function, follow these guidelines:

Load training and validation data by using an absolute path to a location that is accessible to all
your workers.

Both information and metric columns display numerical values in the results table for your
experiment. Additionally, metric values are recorded in the training plot. Use information columns
for values that you want to display in the results table but not in the training plot.

If your experiment uses Bayesian optimization, in the Metrics section, under Optimize, enter the
name of a metric to optimize. In the Direction list, specify that you want to Maximize or Minimize
this metric. Experiment Manager uses this metric to determine the best combination of
hyperparameters for your experiment. You can choose any metric that you define using the
experiments.Monitor object for the training function.
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Stop and Restart Training

Experiment Manager provides two options for interrupting experiments:

D Stop marks any running trials as Stopped and saves their results. When the experiment
stops, you can display the training plot and export the training results for these trials.

% Cancel marks any running trials as Canceled and discards their results. When the
experiment stops, you cannot display the training plot or export the training results for these

trials.

Both options save the results of any completed trials and cancel any queued trials. Typically, Cancel
is faster than Stop.

Instead of interrupting the entire experiment, you can stop an individual trial that is running or

cancel an individual queued trial. In the Actions column of the results table, click the Stop button |
or the Cancel button #& for the trial.

Trial Status Actions |Progress Elapsed Time mylnitialLearnRate Training Accuracy (%) Training Loss Validation Accuracy (%) Validation Loss
1 & Complete (Max epochs completed) I 100.0% 0 hr 4 min 17 sec 2.8825 108. 6608 8.8714 57.9608 1.3936
2 & Complete (Max epochs completed) I 100.0% 0 hr 4 min 34 sec ©.8858 100. 2888 8.8326 61.5608 1.3986
3 © Running n |- 51.4% 0 hr 2 min 2 sec 6.0675 98.4375 8.6962 61.2800 1.3933
4 © Running IT Stop _ 51.4% 0 hr 2 min 2 sec 0.0100 98.4375 8.8734 61.3200 1.4084
5 = Queued “ 0.0% 9.8125
6 £ Queued | 0.0% 8.8150
To reduce the size of your experiments, discard the results of trials that are no longer relevant. In the
Actions column of the results table, click the Discard button @ for a trial. Experiment Manager
deletes the training results, training plot, and confusion matrix for the trial from your project.
Trial Status Actions |Progress Elapsed Time mylnitialLearnRate Training Accuracy (%) Training Loss Validation Accuracy (%) Validation Loss
1 @ Complete (Max epochs completed) | B I 100.0% 0 hr 4 min 17 sec 9.80825 100. 2628 8.8714 57.96008 1.3936
2 & Complete (Max epochs completed) | I 100.0% 0 hr 4 min 24 sec ©.0050 100. 2000 9.9326 61.5600 1.3986
3 A Stopped ] I 61.0% 0 hr 3 min 4 sec 8.0875 100.8809 8.0321 57.9208 1.4811
4 @ Complete (Max epochs completed) | &, I 100.0% 0 hr 3 min 57 sec 2.2120 108.2000 8.8143 63.5600 1.4134
5 & Complete (Max epochs completed) .;T Discard _ 100.0% 0 hr 3 min 22 sec 9.0125 160. 8690 8.8128 64.4000 1.4245
6 X Canceled [ 0.0% 8.8158
When the training is complete, you can restart a trial that you stopped, canceled, or discarded. In the
Actions column of the results table, click the Restart button ™ for the trial.
Trial Status Actions |Progress Elapsed Time mylnitialLearnRate Training Accuracy (%) Training Loss Validation Accuracy (%) Validation Loss
1 & Complete (Max epochs completed) | & I 100.0% 0 hr 4 min 17 sec 9.0025 100. 2628 9.8714 57.9600 1.3936
2 @ Complete (Max epochs completed) | & I 100.0% 0 hr 4 min 34 sec 9.2058 100. 2020 9.08326 61.5600 1.3986
3 A Stopped i[\‘,. [ | 61.0% 0 hr 3 min 4 sec 2.8875 102.2020 8.8321 57.9200 1.4811
4 il Discarded T estart — 100.0% 0 hr 3 min 57 sec 9.0180 100. 8696 8.8143 63.5608 1.4134
5 & Complete (Max epochs completed) | B |— 100.0% 0 hr 3 min 22 sec ©.8125 100. 2888 8.8128 64.4060 1.4245
6 X Canceled | 0.0% 8.28158

Alternatively, to restart multiple trials, in the Experiment Manager toolstrip, open the Restart list,

select one or more restarting criteria, and click Restart LD Restarting criteria include All
Canceled, A1l Stopped, ALl Error, and ALl Discarded.
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Note Stop, cancel, and restart options are not available for all experiment types, strategies, or
execution modes.

Sort, Filter, and Annotate Experiment Results

This example shows how to compare your results and record your observations after running an
experiment.

When you run an experiment, Experiment Manager trains the network defined by the setup function
multiple times. Each trial uses a different combination of hyperparameters. When the experiment
finishes, a table displays training and validation metrics (such as RMSE and loss) for each trial. To
compare the results of an experiment, you can use these metrics to sort the results table and filter
trials.

To sort the trials in the results table, use the drop-down list for the column corresponding to a
training or validation metric.

1 Point to the header of a column by which you want to sort.

2 Click the triangle icon.

3 Select Sort in Ascending Order or Sort in Descending Order.

Tnal Status Actions | Progress Elapsed Time myinitialLearnRate Training Accuracy (%) Training Loss Validation Accuracy (%) re ‘ i Lnss |
1 & Complete (Max epochs completed) | & N 100.0%| O hr 4 min 17 sec 2.0025 100.0080 2.0714 S7.9g Sortin Ascending Order
2 © Complete (Max epochs completed) | & I 100.0% | 0 hr4 min 34 sec 2.0850 10.0860 2.8326 &1.5¢ Sortin Descending Order
3 @ Complete (Max epochs completed) W I 100.0% 0 hr 3 min 22 sec ©.8075 160.0000 9.0203 62.7¢ [] Show Filter

4 @ Complete (Max epochs completed) | B I 100.0% 0 hr 2 min 59 sec 9.8100 108.0808 8.08144 £3.4308 1.4136

5 @ Complete (Max epochs completed) W I 100.0% 0 hr 3 min 16 sec 2.9125 100.0000 9.9128 64.4400 1.4249

6 @ Complete (Max epochs completed) ] I 100.0% 0 hr 3 min 25 sec 2.8150 160.8808 8.8164 61.5680 1.6697

To filter trials from the results table, use the Filters pane. This pane shows histograms for the
numeric metrics in the results table. To remove a histogram from the Filters pane, in the results
table, open the drop-down list for the corresponding column and clear the Show Filter check box.

1 On the Experiment Manager toolstrip, select Filters.

2 Adjust the sliders under the histogram for the training or validation metric by which you want to
filter.
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Number of Trials

H7.5000

H8.0000

90000
B0.0000 +

G1.0000
G2.0000

G3.0000

Validation Accuracy (%)

>

>

G.0000

G 5000

The results table shows only the trials with a metric value in the selected range.

Trial Status Actions |Progress Elapsed Time mylnitialLearnRate Training Accuracy (%) Training Loss Validation Accuracy (%) Validation Loss
2 & Complete (Max epochs ] I 100.0% |  O'hr4 min 34 sec 8.8858 1008.0000 8.9326 61.5680 1.3986
6 @ Complete (Max epochs completed) | B I 100.0% 0 hr 3 min 25 sec 8.8158 108.2000 8.0164 61.5620 1.6697
3 To restore all of the trials in the results table, close the Experiment Result pane and reopen the
results from the Experiment Browser pane.
To record observations about the results of your experiment, add an annotation.
1 Right-click a cell in the results table and select Add Annotation. Alternatively, select a cell in
the results table and, on the Experiment Manager toolstrip, select Annotations > Add
Annotation.
Trial Status Actions |Progress Elapsed Time myilnitialLearnRate Training Accuracy (%) Training Loss Validation Accuracy (%) |Va|idal|un Loss
5 @ Complete (Max epochs completed) | & I 100.0%| 0 hr3min 16 sec 8.0125 188.0800 0.8128 64. : .
4 & Complete (Max epochs completed) | B I 100.0% 0 hr 2 min 59 sec ©.09100 100.8090 0.09144 £3.430
3 & Complete (Max epochs completed) | B I 100.0% 0 hr 3 min 22 sec ©8.8875 108.8808 8.8203 62.760
2 @ Complete (Max epochs completed) | B I 100.0% 0 hr 4 min 34 sec ©.00858 120.0000 0.8326 61.560| ff Discard
6 & Complete (Max epochs completed) | B I 100 0% 0 hr 3 min 25 sec 8.815@ 100.8808 8.8164 61.56@ & Export Training Information
1 & Complete (Max epochs completed) | & I 100.0% 0 hr 4 min 17 sec ©.00825 120.0000 0.8714 57.968]

2

annotations for each cell in the results table.

4 Export Trained Network

Add Annotation

In the Annotations pane, enter your observations in the text box. You can add multiple
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Annotations

Sort By: | Creation Time: Older to Newer (...~ |

Trial 5, Validation Accuracy (%)

Largest validation accuracy. Tl |

3 To sort annotations, use the Sort By drop-down list. You can sort by creation time or trial
number.

Sort By: 'Creatiun Time: Older to Newer (... - |

Creation Time: Clder to Newer (Default
Trial 5, V3 ( )

Largest v

Creation Time: Mewer to Older |ﬁ|
Trial Mumber: Lowest to Highest

Trial Mumber: Highest to Lowest

Trial 1,_Validation Loss

Smallest validation loss. |@|

To highlight the cell that corresponds to an annotation, click the link above the annotation.

To delete an annotation, click the delete button @J to the right of the annotation.

View Source of Past Experiment Definitions
This example shows how to inspect the configuration of an experiment that produced a given result.

After you run an experiment, you can open the Experiment Source pane to see a read-only copy of
the experiment description and hyperparameter table, as well as links to all of the functions used by
the experiment. You can use the information in this pane to track the configuration of data, network,
and training options that produces each of your results.

For instance, suppose that you run an experiment multiple times. Each time that you run the
experiment, you change the contents of the setup function but always use the same function name.
The first time that you run the experiment, you use the default network provided by the experiment
template for image classification. The second time that you run the experiment, you modify the setup
function to load a pretrained GoogLeNet network, replacing the final layers with new layers for
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transfer learning. For an example that uses these two network architectures, see “Create a Deep
Learning Experiment for Classification”.

On the first Experiment Result pane, click the View Experiment Source link. Experiment Manager
opens an Experiment Source pane that contains the experiment definition that produced the first
set of results. Click the link at the bottom of the pane to open the setup function that you used the
first time you ran the experiment. You can copy this setup function to rerun the experiment using the
simple classification network.

On the second Experiment Result pane, click the View Experiment Source link. Experiment
Manager opens an Experiment Source pane that contains the experiment definition that produced
the second set of results. Click the link at the bottom of the pane to open the setup function that you
used the second time you ran the experiment. You can copy this setup function to rerun the
experiment using transfer learning.

Experiment Manager stores a copy of all the functions that you use, so you do not have to manually
rename these functions when you modify and rerun an experiment.

. “Generate Experiment Using Deep Network Designer”

. “Create a Deep Learning Experiment for Classification”

. “Create a Deep Learning Experiment for Regression”

. “Evaluate Deep Learning Experiments by Using Metric Functions”

. “Tune Experiment Hyperparameters by Using Bayesian Optimization”

. “Use Bayesian Optimization in Custom Training Experiments”

. “Try Multiple Pretrained Networks for Transfer Learning”

. “Experiment with Weight Initializers for Transfer Learning”

. “Choose Training Configurations for LSTM Using Bayesian Optimization”
. “Run a Custom Training Experiment for Image Comparison”

. “Use Experiment Manager to Train Generative Adversarial Networks (GANs)”
. “Custom Training with Multiple GPUs in Experiment Manager”

Tips

» To visualize, build, and train a network without sweeping hyperparameters, you can use the Deep
Network Designer app. After you train your network, generate an experiment to find the optimal
training options. For more information, see “Generate Experiment Using Deep Network
Designer”.

* To run an experiment in parallel using MATLAB Online, you must have access to a Cloud Center
cluster. For more information, see “Use Parallel Computing Toolbox with Cloud Center Cluster in
MATLAB Online” (Parallel Computing Toolbox).

» To navigate Experiment Manager when using a mouse is not an option, use shortcut keyboards.
For more information, see “Keyboard Shortcuts for Experiment Manager”.

Version History
Introduced in R2020a
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Ease-of-use enhancements
Behavior changed in R2022b

In the Experiment Manager toolstrip, the Restart list replaces the Restart All Canceled
button. To restart multiple trials of your experiment, open the Restart list, select one or more

restarting criteria, and click Restart [«:’ . The restarting criteria include A1l Canceled, All
Stopped, ALl Error, and ALl Discarded.

During training, the results table displays the intermediate values for standard training and
validation metrics for built-in training experiments. These metrics include loss, accuracy (for
classification experiments), and root mean squared error (for regression experiments).

In built-in training experiments, the Execution Environment column of the results table displays
whether each trial of a built-in training experiment runs on a single CPU, a single GPU, multiple
CPUs, or multiple GPUs.

To discard the training plot, confusion matrix, and training results for trials that are no longer

relevant, in the Actions column of the results table, click the Discard button Ef .

Experiments as batch jobs in a cluster

If you have Parallel Computing Toolbox and MATLAB Parallel Server, you can send your experiment
as a batch job to a remote cluster. If you have only Parallel Computing Toolbox, you can use a local
cluster profile to develop and test your experiments on your client machine instead of running them
on a network cluster. For more information, see “Offload Experiments as Batch Jobs to Cluster”.

Ease-of-use enhancements
Behavior changed in R2022a

In the Experiment Manager toolstrip, the Mode list replaces the Use Parallel button.

* To run one trial of the experiment at a time, select Sequential and click Run.
* To run multiple trials at the same time, select Simultaneous and click Run.

+ To offload the experiment as a batch job, select Batch Sequential or Batch
Simultaneous, specify your cluster and pool size, and click Run.

Manage experiments using new Experiment Browser context menu options:
* To add a new experiment to a project, right-click the name of the project and select New
Experiment.

* To create a copy of an experiment, right-click the name of the experiment and select
Duplicate.

Specify hyperparameter values as cell arrays of character vectors. In previous releases,
Experiment Manager supported only hyperparameter specifications using scalars and vectors with
numeric, logical, or string values.

To stop, cancel, or restart a trial, in the Action column of the results table, click the Stop .,

Cancel #, or Restart I* buttons. In previous releases, these buttons were located in the Progress
column. Alternatively, you can right-click the row for the trial and, in the context menu, select
Stop, Cancel, or Restart.

When an experiment trial ends, the Status column of the results table displays one of these
reasons for stopping:
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*+ Max epochs completed
* Met validation criterion
* Stopped by OutputFcn
* Training loss is NaN

» To sort annotations by creation time or trial number, in the Annotations pane, use the Sort By
list.

» After training completes, save the contents of the results table as a table array in the MATLAB
workspace by selecting Export > Results Table.

* To export the training information or trained network for a stopped or completed trial, right-click
the row for the trial and, in the context menu, select Export Training Information or Export
Trained Network.

Bayesian optimization in custom training experiments

If you have Statistics and Machine Learning Toolbox, you can use Bayesian optimization to determine
the best combination of hyperparameters for a custom training experiment. Previously, custom
training experiments supported only sweeping hyperparameters. For more information, see “Use
Bayesian Optimization in Custom Training Experiments”.

Experiments in MATLAB Online

Run Experiment Manager in your web browser by using MATLAB Online™. For parallel execution of
experiments, you must have access to a Cloud Center cluster.

Ease-of-use enhancements

* In the Experiment Manager toolstrip, click Cancel to stop an experiment, mark any running
trials as Canceled, and discard their results. When the training is complete, click Restart All
Canceled to restart all the trials that you canceled.

* Use keyboard shortcuts to navigate Experiment Manager when using a mouse is not an option.
For more information, see “Keyboard Shortcuts for Experiment Manager”.

Custom training experiments

Create custom training experiments to support workflows such as:

* Using a custom training loop on a dlnetwork, such as a Siamese network or a generative
adversarial network (GAN)
* Training a network by using a model function or a custom learning rate schedule

* Updating the learnable parameters of a network by using a custom function

Ease-of-use enhancements

* When you create an experiment, use a preconfigured template as a guide for defining your
experiment. Experiment templates support workflows that include image classification, image
regression, sequence classification, semantic segmentation, and custom training loops.
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* Add annotations to record observations about the results of your experiment. Right-click a cell in
the results table and select Add Annetation. For more information, see “Sort, Filter, and
Annotate Experiment Results” on page 1-52.

Bayesian optimization

If you have Statistics and Machine Learning Toolbox, you can use Bayesian optimization to determine
the best combination of hyperparameters for an experiment. For more information, see “Tune
Experiment Hyperparameters by Using Bayesian Optimization”.

Parallel execution

If you have Parallel Computing Toolbox, you can run multiple trials of an experiment at the same time
by clicking Use Parallel and then Run. Experiment Manager starts the parallel pool and executes
multiple simultaneous trials. For more information, see “Use Experiment Manager to Train Networks
in Parallel”.

See Also

Apps
Deep Network Designer

Functions
dlnetwork | trainNetwork | trainingOptions | table

Objects
experiments.Monitor

Topics

“Generate Experiment Using Deep Network Designer”

“Create a Deep Learning Experiment for Classification”

“Create a Deep Learning Experiment for Regression”

“Evaluate Deep Learning Experiments by Using Metric Functions”

“Tune Experiment Hyperparameters by Using Bayesian Optimization”
“Use Bayesian Optimization in Custom Training Experiments”

“Try Multiple Pretrained Networks for Transfer Learning”

“Experiment with Weight Initializers for Transfer Learning”

“Choose Training Configurations for LSTM Using Bayesian Optimization”
“Run a Custom Training Experiment for Image Comparison”

“Use Experiment Manager to Train Generative Adversarial Networks (GANs)”
“Custom Training with Multiple GPUs in Experiment Manager”

“Use Experiment Manager to Train Networks in Parallel”

“Offload Experiments as Batch Jobs to Cluster”

“Keyboard Shortcuts for Experiment Manager”
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Compute deep learning network layer activations

Syntax

act = activations(net,images, layer)
act = activations(net,sequences, layer)
act = activations(net, features, layer)

act = activations(net,X1,...,XN, layer)
act = activations(net,mixed, layer)

act = activations( ,Name=Value)

Description

You can compute deep learning network layer activations on either a CPU or GPU. Using a GPU
requires Parallel Computing Toolbox and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Specify the hardware
requirements using the ExecutionEnvironment name-value argument.

To compute activations using a trained SeriesNetwork or DAGNetwork, use the activations
function. To compute activations of a dlnetwork objects, use the forward or predict function and
specify the Outputs option.

act = activations(net,images, layer) returns the network activations for the layer with name
or number layer using the specified images.

act = activations(net,sequences, layer) returns the network activations for the layer using
the specified sequences.

act = activations(net, features, layer) returns the network activations for the layer using
the specified feature data.

act = activations(net,X1,...,XN,layer) returns the network activations for the layer using
the data in the numeric or cell arrays X1, ..., XN for the multi-input network net. The input Xi
corresponds to the network input net.InputNames(i).

act = activations(net,mixed, layer) returns the network activations for the layer using the
trained network net with multiple inputs of mixed data types.

act = activations( ,Name=Value) returns network activations with additional options
specified by one or more name-value pair arguments. For example, OutputAs="rows" specifies the

activation output format as "rows". Use this syntax with any of the input arguments in previous
syntaxes. Specify name-value arguments after all other input arguments.

Examples
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Feature Extraction Using SqueezeNet

This example shows how to extract learned image features from a pretrained convolutional neural
network and use those features to train an image classifier.

Feature extraction is the easiest and fastest way to use the representational power of pretrained deep
networks. For example, you can train a support vector machine (SVM) using fitcecoc (Statistics
and Machine Learning Toolbox™) on the extracted features. Because feature extraction requires only
a single pass through the data, it is a good starting point if you do not have a GPU to accelerate
network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip("MerchData.zip");

imds = imageDatastore("MerchData",
IncludeSubfolders=true,
LabelSource="foldernames");

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,"randomized");

This very small data set now has 55 training images and 20 validation images. Display some sample
images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);

I = imtile(imds, "Frames",idx);

figure
imshow(I)
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Load Pretrained Network

Load a pretrained SqueezeNet network. SqueezeNet is trained on more than a million images and
can classify images into 1000 object categories, for example, keyboard, mouse, pencil, and many
animals. As a result, the model has learned rich feature representations for a wide range of images.

net = squeezenet;
Analyze the network architecture.

analyzeNetwork(net)
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4\ Deep Learning Network Analyzer O X
Analysis for trainNetwork usage
ame: et 1.2M 68 0 0o
Analysis date: 07-Jan-2022 16:29:44
ANALYSIS RESULT >
° Name Type Activations Leamables L
I 1 dafa Image Input 227(5) = 227(5) = 3(C) = 1{(B) -
® convl 207%227%3 images with ‘zerocenter nor...
Y
o relu_gonut 2 Convolution 113(5) = 113(5) = 64(C) = 1(B) Meights 3 =3 = G4
1 Bias 1 =1 =64
® poolt RelLU 113(5) = 113(5) x &4(C) x 1(B)
Y
® fire2-squeezaixl ] Max Pooling 56(5) = 55(5) = 64(C) = 1(B)
Y h stride [2 2] and p
#fire2vely_squeez... fire2-squeezex1 Convolution 56(S) = 56(S5) = 16(C) = 1(B) Meights 1 =1 = 64 16
- - 16 12164 convolutions with stride [1 1 Bias 1=1=16
¢frel-expandixl W fire2-expand3xd
| | fire2-relu_squeeze1x1 RelLU 56(5) = 56(5) = 16(C) = 1(B)
& fira2-raly_sxpan . @ fire2-ralu_sepan . T
oY e 7 |fire2-expandixi Convolution 56(5) = 56(5) = 64(C) = 1(B) Meights 1 =1 = 16 = 64
wfirez-concat 64 1¥1x16 convolutions with stride [1 1 Bias 1x1 % 64
1 2 |fire2-relu_expand1x1 RelLU 56(5) = 56(5) = 64(C) = 1(B)
® fire3-squeezeixi RalU
! Convolution 56(5) = 56(5) = 64(C) = 1(B) Weights 3 = 3 = 16 = 64
& fired-rely_squeez i et 11 Bias 1.1«
P N 1 i
@ Fratexpandixl @ fred-expanddd RelU 56(5) = 56(5) = 64(C) = 1(B)
1 1
@ fire3-relu_expan.. @ fire3-relu_sxpan Depth concatenation |56(S) = 56(5) = 128(C) = 1({B)
¥ fir=3-concat Convolution 56(5) x 58(s) = 18(C) = 1(B) Weights 1 x 1 = 128 = 18
Y - stride [1 1 Bias 1 =1 =16 -

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1l).InputSize
inputSize = 1Ix3
227 227 3

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher
level features, constructed using the lower level features of earlier layers. To get the feature
representations of the training and test images, use activations on the global average pooling
layer "pool10". To get a lower level representation of the images, use an earlier layer in the
network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before inputting them to the
network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1l:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1l:2),imdsTest);

layer = "pooll0";
featuresTrain = activations(net,augimdsTrain, layer,QutputAs="rows");
featuresTest = activations(net,augimdsTest,layer,OQutputAs="rows");

Extract the class labels from the training and test data.
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TTrain = imdsTrain.Labels;
TTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,TTrain);
Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test
images.

YPred = predict(mdl, featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15]1;

figure

for i = 1:numel(idx)
subplot(2,2,1)
I = readimage(imdsTest,idx(1i));
label = YPred(idx(i));

imshow(I)

title(label)
end

MathWorks Cap MathWorks Cube

MathWorks Playing Cards MathWorks Screwdriver

-
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Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

accuracy = mean(YPred == TTest)

accuracy = 0.9500

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try
transfer learning instead.

Input Arguments

net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

images — Image data
datastore | numeric array | table

Image data, specified as one of the following.

Data Type Description Example Usage
Datastore ImageDatastore Datastore of images Make predictions with
saved on disk images saved on disk,
where the images are
the same size.
When the images are
different sizes, use an
AugmentedImageData
store object.
AugmentedImageData |Datastore that applies |Make predictions with
store random affine images saved on disk,
geometric where the images are
transformations, different sizes.
including resizing,
rotation, reflection,
shear, and translation
TransformedDatasto |Datastore that * Transform
re transforms batches of datastores with
data read from an outputs not
underlying datastore supported by
using a custom activations.
transformation function |, Apply custom
transformations to
datastore output.
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Data Type Description Example Usage
CombinedDatastore |Datastore that reads ¢ Make predictions
from two or more using networks with
underlying datastores multiple inputs.

* Combine predictors
from different data

sources.
Custom mini-batch Custom datastore that |Make predictions using
datastore returns mini-batches of |data in a format that
data other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric array Images specified as a Make predictions using
numeric array data that fits in memory
and does not require
additional processing
like resizing.

Table Images specified as a Make predictions using
table data stored in a table.

When you use a datastore with networks with multiple inputs, the datastore must be a
TransformedDatastore or CombinedDatastore object.

Tip For sequences of images, for example, video data, use the sequences input argument.

Datastore

Datastores read mini-batches of images and responses. Use datastores when you have data that does
not fit in memory or when you want to resize the input data.

These datastores are directly compatible with activations for image data.:

* ImageDatastore

* AugmentedImageDatastore

*+ CombinedDatastore

 TransformedDatastore

* Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.
Note that ImageDatastore objects allow for batch reading of JPG or PNG image files using

prefetching. If you use a custom function for reading the images, then ImageDatastore objects do
not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.
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Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as

this option is usually significantly slower.

You can use other built-in datastores for making predictions by using the transform and combine

functions. These functions can convert the data read from datastores to the format required by

classify.

The required format of the datastore output depends on the network architecture.

Network Architecture

Datastore Output

Example Output

Single input

Table or cell array, where the
first column specifies the
predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom datastores must output
tables.

data = read(ds)
data =
4x1 table
Predictors

{224x224x3 double}
{224x224x3 double}
{224x224x3 double}
{224x224x3 double}

data = read(ds)

data =
4x1 cell array

{224%x224%x3 double}
{224%x224%x3 double}
{224%x224%x3 double}
{224%x224%x3 double}

Multiple input

Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

data = read(ds)

data =
4x2 cell array

{224%x224%x3 double}
{224%x224%x3 double}
{224%x224%x3 double}
{224%x224%x3 double}

{1
{1
{1
{1

P8x128x3 do
P8x128x3 do
P8x128x3 do
P8x128x3 do

The format of the predictors depends on the type of data.

Data

Format

2-D images

h-by-w-by-c numeric array, where h, w, and c are
the height, width, and number of channels of the
images, respectively
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Data Format

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of
channels of the images, respectively

For more information, see “Datastores for Deep Learning”.

Numeric Array

For data that fits in memory and does not require additional processing like augmentation, you can
specify a data set of images as a numeric array.

The size and shape of the numeric array depends on the type of image data.

Data Format

2-D images h-by-w-by-c-by-N numeric array, where h, w, and
c are the height, width, and number of channels
of the images, respectively, and N is the number
of images

3-D images h-by-w-by-d-by-c-by-N numeric array, where h, w,
d, and c are the height, width, depth, and number
of channels of the images, respectively, and N is
the number of images

Table
As an alternative to datastores or numeric arrays, you can also specify images in a table.
When you specify images in a table, each row in the table corresponds to an observation.

For image input, the predictors must be in the first column of the table, specified as one of the
following:
* Absolute or relative file path to an image, specified as a character vector

* 1-by-1 cell array containing a h-by-w-by-c numeric array representing a 2-D image, where h, w,
and c correspond to the height, width, and number of channels of the image, respectively

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
table
Complex Number Support: Yes

sequences — Sequence or time series data
datastore | cell array of numeric arrays | numeric array

Sequence or time series data, specified as one of the following.
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Data Type Description Example Usage
Datastore TransformedDatasto |Datastore that * Transform
re transforms batches of datastores with
data read from an outputs not
underlying datastore supported by
using a custom activations.
transformation function |, Apply custom
transformations to
datastore output.
CombinedDatastore [|Datastore that reads * Make predictions

from two or more
underlying datastores

using networks with
multiple inputs.

* Combine predictors
from different data
sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric or cell array

A single sequence
specified as a numeric
array or a data set of
sequences specified as
cell array of numeric
arrays

Make predictions using
data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of sequences and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with activations for sequence data:

* CombinedDatastore

* TransformedDatastore

» Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by activations. For example, you can transform and combine data read from in-memory
arrays and CSV files using an ArrayDatastore and an TabularTextDatastore object,

respectively.

The datastore must return data in a table or cell array. Custom mini-batch datastores must output

tables.
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Datastore Output

Example Output

Table

data read(ds)

data
4x2 table

Predictors

{12x50 double}
{12x50 double}
{12x50 double}
{12x50 double}

Cell array

data

read(ds)

data

4x2 cell array
{12x50
{12x50
{12x50
{12x50

double}
double}
double}
double}

The format of the predictors depends on the type o

f data.

Data

Format of Predictors

Vector sequence

c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length

1-D image sequence

h-by-c-by-s array, where h and ¢ correspond to
the height and number of channels of the image,
respectively, and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

2-D image sequence

h-by-w-by-c-by-s array, where h, w, and ¢
correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence

h-by-w-by-d-by-c-by-s array, where h, w, d, and ¢
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,

or a 1-by-1 cell array containing a numeric array.
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For more information, see “Datastores for Deep Learning”.

Numeric or Cell Array

For data that fits in memory and does not require additional processing like custom transformations,
you can specify a single sequence as a numeric array or a data set of sequences as a cell array of

numeric arrays.

For cell array input, the cell array must be an N-by-1 cell array of numeric arrays, where N is the
number of observations. The size and shape of the numeric array representing a sequence depends
on the type of sequence data.

Input

Description

Vector sequences

c-by-s matrices, where c is the number of
features of the sequences and s is the sequence
length

1-D image sequences

h-by-c-by-s arrays, where h and ¢ correspond to
the height and number of channels of the images,
respectively, and s is the sequence length

2-D image sequences

h-by-w-by-c-by-s arrays, where h, w, and ¢
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length

3-D image sequences

h-by-w-by-d-by-c-by-s, where h, w, d, and ¢
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input

layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |

cell

Complex Number Support: Yes

features — Feature data
datastore | numeric array | table

Feature data, specified as one of the following.

Data Type Description Example Usage
Datastore TransformedDatasto |Datastore that * Transform
re transforms batches of datastores with
data read from an outputs not
underlying datastore supported by
using a custom activations.
transformation function |, Apply custom
transformations to
datastore output.
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Data Type Description Example Usage
CombinedDatastore |Datastore that reads ¢ Make predictions
from two or more using networks with
underlying datastores multiple inputs.

* Combine predictors
from different data

sources.
Custom mini-batch Custom datastore that |Make predictions using
datastore returns mini-batches of |data in a format that
data other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Table Feature data specified |Make predictions using
as a table data stored in a table.

Numeric array Feature data specified |Make predictions using
as numeric array data that fits in memory

and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of feature data and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with activations for feature data:

* CombinedDatastore
* TransformedDatastore
» Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by activations. For more information, see “Datastores for Deep Learning”.

For networks with multiple inputs, the datastore must be a TransformedDatastore or
CombinedDatastore object.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Network Architecture

Datastore Output

Example Output

Single input layer

Table or cell array with at least
one column, where the first
column specifies the predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

Table for network with one
input:

data = read(ds)
data =
4x2 table
Predictors

{24x1 double}
{24x1 double}
{24x1 double}
{24x1 double}

Cell array for network with one
input:

data

read(ds)

data =
4x1 cell array

{24x1 double}
{24x1 double}
{24x1 double}
{24x1 double}

Multiple input layers

Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

Cell array for network with two
inputs:

data

read(ds)

data

4x3 cell array

{24x1 double} {28x1 d
{24x1 double} {28x1 d
{24x1 double} {28x1 d
{24x1 double} {28x1 d

ouble}
ouble}
ouble}

ouble}

The predictors must be c-by-1 column vectors, where c is the number of features.

For more information, see “Datastores for Deep Learning”.

Table

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data and responses as a table.

Each row in the table corresponds to an observation. The arrangement of predictors in the table
columns depends on the type of task.
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Task Predictors
Feature classification Features specified in one or more columns as
scalars.

Numeric Array

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data as a numeric array.

The numeric array must be an N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input data.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
table
Complex Number Support: Yes

X1,...,XN — Numeric or cell arrays for networks with multiple inputs
numeric array | cell array

Numeric or cell arrays for networks with multiple inputs.

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
cell
Complex Number Support: Yes

mixed — Mixed data
TransformedDatastore | CombinedDatastore | custom mini-batch datastore

Mixed data, specified as one of the following.
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or more underlying datastores

Data Type Description Example Usage
TransformedDatastore Datastore that transforms * Make predictions using
batches of data read from an networks with multiple
underlying datastore using a inputs.
custom transformation function |, Transform outputs of
datastores not supported by
activations so they have
the required format.

* Apply custom
transformations to datastore
output.

CombinedDatastore Datastore that reads from two |¢ Make predictions using

networks with multiple
inputs.

* Combine predictors from
different data sources.

Custom mini-batch datastore

Custom datastore that returns
mini-batches of data

Make predictions using data in
a format that other datastores
do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by activations. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.

Datastore Output

Example Output

property of the network.

Cell array with numInputs columns, where
numInputs is the number of network inputs.

The order of inputs is given by the InputNames

data =

{24x1 double}
{24x1 double}
{24x1 double}
{24x1 double}

data = read(ds)

4x3 cell array

{28x1 double}
{28x1 double}
{28x1 double}
{28x1 double}

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image

and Feature Data”.

Tip To convert a numeric array to a datastore, use arrayDatastore.
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layer — Layer to extract activations from
numeric index | character vector

Layer to extract activations from, specified as a numeric index or a character vector.

To compute the activations of a SeriesNetwork object, specify the layer using its numeric index, or
as a character vector corresponding to the layer name.

To compute the activations of a DAGNetwork object, specify the layer as the character vector
corresponding to the layer name. If the layer has multiple outputs, specify the layer and output as the
layer name, followed by the character “/”, followed by the name of the layer output. That is, layer is
of the form ' layerName/outputName'.

Example: 3
Example: 'convl’

Example: 'mpool/out’
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MiniBatchSize=256 specifies the mini-batch size as 256.

OutputAs — Format of output activations
"channels" (default) | "rows" | "columns"

Format of output activations, specified as "channels", "rows", or "columns". For descriptions of
the output formats, see act.

For image input, if the OutputAs option is "channels", then the images in the input data can be
larger than the input size of the image input layer of the network. For other output formats, the
images in the input must have the same size as the input size of the image input layer of the network.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

SequencelLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:
* "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.

This option does not discard any data, though padding can introduce noise to the network.

* "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

* Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
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splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
char | string

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequenceLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:

"right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

"left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

Acceleration — Performance optimization
"auto" (default) | "mex" | "none"

Performance optimization, specified as one of the following:

"auto" — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

"mex" — Compile and execute a MEX function. This option is available only when you use a GPU.
Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
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supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If Parallel
Computing Toolbox or a suitable GPU is not available, then the software returns an error.

* "none" — Disable all acceleration.

If Accelerationis "auto", then MATLAB applies a number of compatible optimizations and does
not generate a MEX function.

The "auto" and "mex" options can offer performance benefits at the expense of an increased initial
run time. Subsequent calls with compatible parameters are faster. Use performance optimization
when you plan to call the function multiple times using new input data.

The "mex" option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The "mex" option is available when you use a single GPU.

To use the "mex" option, you must have a C/C++ compiler installed and the GPU Coder Interface for
Deep Learning Libraries support package. Install the support package using the Add-On Explorer in
MATLAB. For setup instructions, see “MEX Setup” (GPU Coder). GPU Coder is not required.

The "mex" option supports networks that contain the layers listed on the “Supported Layers” (GPU
Coder) page, except for the sequenceInputlLayer and featureInputLayer objects.

MATLAB Compiler™ does not support deploying networks when you use the "mex" option.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu" | "multi-gpu" | "parallel”

Hardware resource, specified as one of the following:

o "auto" — Use a GPU if one is available; otherwise, use the CPU.

* "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU
device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

* "cpu" — Use the CPU.

* "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your
default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

* "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform computation. If the pool does not
have GPUs, then computation takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

The "gpu", "multi-gpu", and "parallel" options require Parallel Computing Toolbox. To use a
GPU for deep learning, you must also have a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of
these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software
returns an error.

1-77



1 Deep Learning Functions

To make predictions in parallel with networks with recurrent layers (by setting
ExecutionEnvironment to either "multi-gpu" or "parallel"), the SequenceLength option
must be "shortest" or "longest".

Networks with custom layers that contain State parameters do not support making predictions in
parallel.

Output Arguments

act — Activations from network layer
numeric array | cell array

Activations from the network layer, returned as a numeric array or a cell array of numeric arrays. The
format of act depends on the type of input data, the type of layer output, and the specified OutputAs
option.

Image or Folded Sequence Output

If the layer outputs image or folded sequence data, then act is a numeric array.

OutputAs act

"channels" For 2-D image output, act is an h-by-w-by-c-by-n array, where h, w, and c
are the height, width, and number of channels for the output of the chosen
layer, respectively, and n is the number of images. In this case,
act(:,:,:,1) contains the activations for the ith image.

For 3-D image output, act is an h-by-w-by-d-by-c-by-n array, where h, w, d,
and c are the height, width, depth, and number of channels for the output
of the chosen layer, respectively, and n is the number of images. In this
case, act(:,:,:,:,1) contains the activations for the ith image.

For folded 2-D image sequence output, act is an h-by-w-by-c-by-(n*s) array,
where h, w, and c are the height, width, and number of channels for the
output of the chosen layer, respectively, n is the number of sequences, and
s is the sequence length. In this case, act(:,:,:, (t-1)*n+k) contains
the activations for time step t of the kth sequence.

For folded 3-D image sequence output, act is an h-by-w-by-d-by-c-by-(n*s)
array, where h, w, d, and c are the height, width, depth, and number of
channels for the output of the chosen layer, respectively, n is the number of
sequences, and s is the sequence length. In this case, act(:,:,:,:,
(t-1)*n+k) contains the activations for time step t of the kth sequence.

“rows" For 2-D and 3-D image output, act is an n-by-m matrix, where n is the
number of images and m is the number of output elements from the layer.
In this case, act (i, :) contains the activations for the ith image.

For folded 2-D and 3-D image sequence output, act is an (n*s)-by-m
matrix, where n is the number of sequences, s is the sequence length, and
m is the number of output elements from the layer. In this case,
act((t-1)*n+k, :) contains the activations for time step t of the kth
sequence.
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OutputAs

act

"columns"

For 2-D and 3-D image output, act is an m-by-n matrix, where m is the
number of output elements from the chosen layer and n is the number of
images. In this case, act(:,1) contains the activations for the ith image.

For folded 2-D and 3-D image sequence output, act is an m-by-(n*s)
matrix, where m is the number of output elements from the chosen layer, n
is the number of sequences, and s is the sequence length. In this case,
act(:, (t-1)*n+k) contains the activations for time step t of the kth
sequence.

Sequence Output

If Layer has sequence output (for example, LSTM layers with the output mode "sequence"), then
act is a cell array. In this case, the "OutputAs" option must be "channels".

OutputAs

act

"channels"

For vector sequence output, act is an n-by-1 cell array of c-by-s matrices,
where n is the number of sequences, c is the number of features in the
sequence, and s is the sequence length.

For 2-D image sequence output, act is an n-by-1 cell array of h-by-w-by-c-
by-s matrices, where n is the number of sequences, h, w, and ¢ are the
height, width, and the number of channels of the images, respectively, and
s is the sequence length.

For 3-D image sequence output, act is an n-by-1 cell array of h-by-w-by-c-
by-d-by-s matrices, where n is the number of sequences, h, w, d, and c are
the height, width, depth, and the number of channels of the images,
respectively, and s is the sequence length.

In these cases, act{i} contains the activations of the ith sequence.

Feature Vector and Single Time Step Output

If Llayer outputs a feature vector or a single time step of a sequence (for example, an LSTM layer
with the output mode "last"), then act is a numeric array.

OutputAs

act

"channels"

For a feature vector or single time step containing vector data, act is a c-
by-n matrix, where n is the number of observations and c is the number of
features.

For a single time step containing 2-D image data, act is a h-by-w-by-c-by-n
array, where n is the number of sequences and h, w, and c are the height,
width, and the number of channels of the images, respectively.

For a single time step containing 3-D image data, act is a h-by-w-by-c-by-d-
by-n array, where n is the number of sequences and h, w, d, and c are the
height, width, depth, and the number of channels of the images,
respectively.
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OutputAs act

"rows" n-by-m matrix, where n is the number of observations and m is the number
of output elements from the chosen layer. In this case, act (i, :) contains
the activations for the ith sequence.

"columns" m-by-n matrix, where m is the number of output elements from the chosen
layer and n is the number of observations. In this case, act(:,i) contains
the activations for the ith image.

Algorithms

When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Version History
Introduced in R2016a

Prediction functions pad mini-batches to length of longest sequence before splitting when
you specify SequencelLength option as an integer

Starting in R2022b, when you make predictions with sequence data using the predict, classify,
predictAndUpdateState, classifyAndUpdateState, and activations functions and the
SequencelLength option is an integer, the software pads sequences to the length of the longest
sequence in each mini-batch and then splits the sequences into mini-batches with the specified
sequence length. If SequencelLength does not evenly divide the sequence length of the mini-batch,
then the last split mini-batch has a length shorter than SequenceLength. This behavior prevents
time steps that contain only padding values from influencing predictions.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequencelLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, manually pad the input data such that the mini-batches
have the length of the appropriate multiple of SequenceLength. For sequence-to-sequence
workflows, you may also need to manually remove time steps of the output that correspond to
padding values.

References

[1] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using
Passing-through Regions.” Pattern Recognition Letters 20, no. 11-13 (November 1999): 1103-
11. https://doi.org/10.1016/S0167-8655(99)00077-X.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

C++ code generation supports the following syntaxes:

*+ act = activations(net,images, layer), where images is a numeric array

* act = activations(net,sequences, layer), where sequences is a cell array

* act = activations(net, features, layer), where features is a numeric array
+ act = activations(_,Name,Value) using any of the previous syntaxes

For numeric inputs, the input must not have variable size. The size of the input must be fixed at
code generation time.

For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

The layer argument must be a constant during code generation.

Only the OutputAs, MiniBatchSize, Sequencelength, SequencePaddingDirection, and
SequencePaddingValue name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

The format of the output activations must be "channels".

Only the "longest" and "shortest" option of the SequenceLength name-value pair is
supported for code generation.

Code generation for Intel MKL-DNN target does not support the combination of
SequencelLength="1longest", SequencePaddingDirection="1eft", and
SequencePaddingValue=0 name-value arguments.

For more information about generating code for deep learning neural networks, see “Workflow for
Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

GPU code generation supports the following syntaxes:

* act = activations(net, images, layer), where images is a numeric array
* act = activations(net,sequences, layer), where sequences is a cell array or numeric
array

* act = activations(net, features, layer), where features is a numeric array
*+ act = activations(_,Name,Value) using any of the previous syntaxes

For numeric inputs, the input must not have variable size. The size of the input must be fixed at
code generation time.

GPU code generation does not support gpuArray inputs to the activations function.
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* The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only
vector input sequences. The ARM® Compute Library for GPU does not support recurrent
networks.

» For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

+ For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

* The layer argument must be a constant during code generation.

* Only the QutputAs, MiniBatchSize, SequencelLength, SequencePaddingDirection, and
SequencePaddingValue name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

* The format of the output activations must be "channels".

* Only the "longest" and "shortest" option of the SequenceLength name-value pair is
supported for code generation.

* GPU code generation for the activations function supports inputs that are defined as half-
precision floating point data types. For more information, see half.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

* The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

* AgpuArray

* A cell array containing gpuArray objects

* A table containing gpuArray objects

* A datastore that outputs cell arrays containing gpuArray objects
* A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
predict | classify | deepDreamImage | trainNetwork

Topics

“Transfer Learning Using Pretrained Network”

“Visualize Activations of a Convolutional Neural Network”
“Visualize Activations of LSTM Network”

“Deep Learning in MATLAB”
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AcceleratedFunction

Accelerated deep learning function

Description

An AcceleratedFunction stores traces of the underlying function

Reusing a cached trace depends on the function inputs and outputs:

» For any dlarray object or structure of dlarray object inputs, the trace depends on the size,
format, and underlying datatype of the dlarray. That is, the accelerated function triggers a new
trace for dlarray inputs with size, format, or underlying datatype not contained in the cache. Any
dlarray inputs differing only by value to a previously cached trace do not trigger a new trace.

» For any dlnetwork inputs, the trace depends on the size, format, and underlying datatype of the
dlnetwork state and learnable parameters. That is, the accelerated function triggers a new trace
for dlnetwork inputs with learnable parameters or state with size, format, and underlying
datatype not contained in the cache. Any dlnetwork inputs differing only by the value of the state
and learnable parameters to a previously cached trace do not trigger a new trace.

» For other types of input, the trace depends on the values of the input. That is, the accelerated
function triggers a new trace for other types of input with value not contained in the cache. Any
other inputs that have the same value as a previously cached trace do not trigger a new trace.

* The trace depends on the number of function outputs. That is, the accelerated function triggers a
new trace for function calls with previously unseen numbers of output arguments. Any function
calls with the same number of output arguments as a previously cached trace do not trigger a new
trace.

When necessary, the software caches any new traces by evaluating the underlying function and
caching the resulting trace in the AcceleratedFunction object.

The returned AcceleratedFunction object caches the traces of calls to the underlying function
and reuses the cached result when the same input pattern reoccurs.

Try using dlaccelerate for function calls that:

* are long-running
* have dlarray objects, structures of dlarray objects, or dLnetwork objects as inputs
* do not have side effects like writing to files or displaying output

Invoke the accelerated function as you would invoke the underlying function. Note that the
accelerated function is not a function handle.

Note When using the dlfeval function, the software automatically accelerates the forward and
predict functions for dlnetwork input. If you accelerate a deep learning function where the
majority of the computation takes place in calls to the forward or predict functions for dlnetwork
input, then you might not see an improvement in training time.
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Caution An AcceleratedFunction object is not aware of updates to the underlying function. If you
modify the function associated with the accelerated function, then clear the cache using the
clearCache object function or alternatively use the command clear functions.

Creation

To create an AcceleratedFunction object, use the dlaccelerate function.

Properties

Function — Underlying function
function handle

This property is read-only.

Underlying function, specified as a function handle.

Data Types: function handle

Enabled — Flag to enable tracing
true (default) | false

Flag to enable tracing, specified as true or false.

Data Types: logical

CacheSize — Size of cache
50 (default) | positive integer

Size of cache, specified as a positive integer.

The cache size corresponds to the maximum number of input and output combinations to cache.

Data Types: double

HitRate — Cache hit rate
scalar in the range [0,100]

This property is read-only.
Cache hit rate, specified as a scalar in the range [0,100].

The cache hit rate corresponds to the percentage of reused evaluations.

Data Types: double

Occupancy — Cache occupancy
scalar in the range [0,100]

This property is read-only.
Cache occupancy, specified as a scalar in the range [0,100].

The cache occupancy corresponds to the percentage of the cache in use.

Data Types: double
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CheckMode — Check mode
"none’' (default) | 'tolerance'’

Check mode, specified as one of the following:

* 'none' - Do not check accelerated results.

* 'tolerance' - Check that the accelerated results and the results of the underlying function are
within the tolerance given by the CheckTolerance property. If the values are not within this
tolerance, then the function throws a warning.

CheckTolerance — Check tolerance
le-4 (default) | positive scalar

Check tolerance, specified as a positive scalar.

If the CheckMode property is 'tolerance’, then the function checks that the accelerated results
and the results of the underlying function are within the tolerance given by the CheckTolerance
property. If the values are not within this tolerance, then the function throws a warning.

Data Types: double

Object Functions
clearCache Clear accelerated deep learning function trace cache

Examples

Accelerate Model Gradients Function

Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

s = load("dlnetDigits.mat");
net = s.net;
classNames = s.classNames;

Accelerate the model loss function modelLoss listed at the end of the example.

fun = @modellLoss;
accfun = dlaccelerate(fun);

Clear any previously cached traces of the accelerated function using the clearCache function.
clearCache(accfun)

View the properties of the accelerated function. Because the cache is empty, the Occupancy property
is 0.

accfun

accfun =
AcceleratedFunction with properties:

Function: @modelLoss

Enabled: 1
CacheSize: 50
HitRate: 0

1-85



1 Deep Learning Functions

1-86

Occupancy: 0
CheckMode: 'none'
CheckTolerance: 1.0000e-04

The returned AcceleratedFunction object stores the traces of underlying function calls and
reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a
custom training loop, replace calls to the model gradients function with calls to the accelerated
function. You can invoke the accelerated function as you would invoke the underlying function. Note
that the accelerated function is not a function handle.

Evaluate the accelerated model gradients function with random data using the dlfeval function.

X = rand(28,28,1,128,"single");

X = dlarray(X, "SSCB");

T = categorical(classNames(randi(10,[128 11)));
T = onehotencode(T,2)"';

T = dlarray(T,"CB");

[loss,gradients,state] = dlfeval(accfun,net,X,T);

View the Occupancy property of the accelerated function. Because the function has been evaluated,
the cache is nonempty.

accfun.Occupancy
ans = 2
Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the loss, the gradients of the loss with respect to the
learnable parameters in net, and the network state. To compute the gradients, use the dlgradient
function.

function [loss,gradients,state] = modellLoss(net,X,T)
[Y,state] = forward(net,X);
loss = crossentropy(Y,T);

gradients = dlgradient(loss,net.Learnables);

end

Clear Cache of Accelerated Function

Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.
s = load("dlnetDigits.mat");

net = s.net;
classNames = s.classNames;

Accelerate the model loss function modelLoss listed at the end of the example.

fun = @modelLoss;
accfun = dlaccelerate(fun);
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Clear any previously cached traces of the accelerated function using the clearCache function.

clearCache(accfun)

View the properties of the accelerated function. Because the cache is empty, the Occupancy property
is 0.

accfun

accfun =
AcceleratedFunction with properties:

Function: @modelLoss

Enabled: 1
CacheSize: 50
HitRate: 0

Occupancy: 0
CheckMode: 'none'
CheckTolerance: 1.0000e-04

The returned AcceleratedFunction object stores the traces of underlying function calls and
reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a
custom training loop, replace calls to the model gradients function with calls to the accelerated
function. You can invoke the accelerated function as you would invoke the underlying function. Note
that the accelerated function is not a function handle.

Evaluate the accelerated model gradients function with random data using the dlfeval function.

X = rand(28,28,1,128,"single");

X = dlarray(X, "SSCB");

T = categorical(classNames(randi(10,[128 1])));
T = onehotencode(T,2)"';

T = dlarray(T,"CB");

[loss,gradients,state] = dlfeval(accfun,net,X,T);

View the Occupancy property of the accelerated function. Because the function has been evaluated,
the cache is nonempty.

accfun.Occupancy
ans = 2
Clear the cache using the clearCache function.

clearCache(accfun)

View the Occupancy property of the accelerated function. Because the cache has been cleared, the
cache is empty.

accfun.Occupancy
ans = 0
Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the loss, the gradients of the loss with respect to the
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learnable parameters in net, and the network state. To compute the gradients, use the dlgradient
function.

function [loss,gradients,state] = modellLoss(net,X,T)

[Y,state] = forward(net,X);
loss = crossentropy(Y,T);
gradients = dlgradient(loss,net.Learnables);

end

Check Accelerated Deep Learning Function Outputs

This example shows how to check that the outputs of accelerated functions match the outputs of the
underlying function.

In some cases, the outputs of accelerated functions differ to the outputs of the underlying function.
For example, you must take care when accelerating functions that use random number generation,
such as a function that generates random noise to add to the network input. When caching the trace
of a function that generates random numbers that are not dlarray objects, the accelerated function
caches resulting random numbers in the trace. When reusing the trace, the accelerated function uses
the cached random values. The accelerated function does not generate new random values.

To check that the outputs of the accelerated function match the outputs of the underlying function,
use the CheckMode property of the accelerated function. When the CheckMode property of the
accelerated function is 'tolerance' and the outputs differ by more than a specified tolerance, the
accelerated function throws a warning.

Accelerate the function myUnsupportedFun, listed at the end of the example using the
dlaccelerate function. The function myUnsupportedFun generates random noise and adds it to
the input. This function does not support acceleration because the function generates random
numbers that are not dlarray objects.

accfun

dlaccelerate(@myUnsupportedFun)

accfun =
AcceleratedFunction with properties:

Function: @myUnsupportedFun
1

Enabled:
CacheSize: 50
HitRate: 0

Occupancy: 0
CheckMode: 'none'
CheckTolerance: 1.0000e-04

Clear any previously cached traces using the clearCache function.

clearCache(accfun)

To check that the outputs of reused cached traces match the outputs of the underlying function, set
the CheckMode property to 'tolerance’.

accfun.CheckMode = 'tolerance'
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accfun =
AcceleratedFunction with properties:

Function: @myUnsupportedFun
Enabled: 1
CacheSize: 50
HitRate: 0
Occupancy: 0
CheckMode: 'tolerance'
CheckTolerance: 1.0000e-04

Evaluate the accelerated function with an array of ones as input, specified as a dlarray input.

dlX = dlarray(ones(3,3));
dlY = accfun(dlX)
diy =

3x3 dlarray

1.8147 1.9134 1.2785
1.9058 1.6324 1.5469
1.1270 1.0975 1.9575

Evaluate the accelerated function again with the same input. Because the accelerated function reuses
the cached random noise values instead of generating new random values, the outputs of the reused
trace differs from the outputs of the underlying function. When the CheckMode property of the
accelerated function is 'tolerance' and the outputs differ, the accelerated function throws a
warning.

dlY = accfun(dlX)
Warning: Accelerated outputs differ from underlying function outputs.

dly =
3x3 dlarray

1.8147 1.9134 1.2785

1.9058 1.6324 1.5469
1.1270 1.0975 1.9575

Random number generation using the ' like' option of the rand function with a dlarray object
supports acceleration. To use random number generation in an accelerated function, ensure that the
function uses the rand function with the 'like' option set to a traced dlarray object (a dlarray
object that depends on an input dlarray object).

Accelerate the function mySupportedFun, listed at the end of the example. The function
mySupportedFun adds noise to the input by generating noise using the 'like"' option with a traced
dlarray object.

accfun2 = dlaccelerate(@mySupportedFun);

Clear any previously cached traces using the clearCache function.

clearCache(accfun2)
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To check that the outputs of reused cached traces match the outputs of the underlying function, set
the CheckMode property to 'tolerance’.

accfun2.CheckMode = 'tolerance';

Evaluate the accelerated function twice with the same input as before. Because the outputs of the
reused cache match the outputs of the underlying function, the accelerated function does not throw a

warning.
dlY = accfun2(dlX)
dly =

3x3 dlarray

1.7922 1.0357 1.6787
.9595 1.8491 . 1577
1.6557 1.9340 1.7431

=
=

dlY = accfun2(dlX)

diy =
3x3 dlarray

1.3922 1.7060 1.0462
.6555 1.0318 .0971
1.1712 1.2769 1.8235

=
=

Checking the outputs match requires extra processing and increases the time required for function
evaluation. After checking the outputs, set the CheckMode property to 'none".

accfunl.CheckMode
accfun2.CheckMode

‘none';
‘none';

Example Functions

The function myUnsupportedFun generates random noise and adds it to the input. This function
does not support acceleration because the function generates random numbers that are not dlarray
objects.

function out = myUnsupportedFun(dlX)
sz = size(dlX);

noise = rand(sz);

out = dlX + noise;

end

The function mySupportedFun adds noise to the input by generating noise using the 'like' option
with a traced dlarray object.

function out = mySupportedFun(dlX)
sz = size(dlX);

noise = rand(sz, 'like',d1lX);
out = dlX + noise;
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end

Version History
Introduced in R2021a

See Also
dlaccelerate | clearCache | dlarray | dlgradient | dlfeval

Topics

“Deep Learning Function Acceleration for Custom Training Loops”
“Accelerate Custom Training Loop Functions”

“Check Accelerated Deep Learning Function Outputs”

“Evaluate Performance of Accelerated Deep Learning Function”
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adamupdate

Update parameters using adaptive moment estimation (Adam)

Syntax

[netUpdated, averageGrad,averageSqGrad] = adamupdate(net,grad,averageGrad,
averageSqGrad,iteration)

[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,
averageSqGrad,iteration)

[ 1 = adamupdate(  learnRate,gradDecay, sqGradDecay,epsilon)

Description

Update the network learnable parameters in a custom training loop using the adaptive moment
estimation (Adam) algorithm.

Note This function applies the Adam optimization algorithm to update network parameters in custom
training loops that use networks defined as dlnetwork objects or model functions. If you want to
train a network defined as a Layer array or as a LayerGraph, use the following functions:

* Create a TrainingOptionsADAM object using the trainingOptions function.

* Usethe TrainingOptionsADAM object with the trainNetwork function.

[netUpdated, averageGrad,averageSqGrad] = adamupdate(net,grad,averageGrad,
averageSqGrad,iteration) updates the learnable parameters of the network net using the Adam
algorithm. Use this syntax in a training loop to iteratively update a network defined as a dlnetwork
object.

[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,
averageSqGrad, iteration) updates the learnable parameters in params using the Adam
algorithm. Use this syntax in a training loop to iteratively update the learnable parameters of a
network defined using functions.

[ 1 = adamupdate(  learnRate,gradDecay, sqGradDecay,epsilon) also specifies

values to use for the global learning rate, gradient decay, square gradient decay, and small constant
epsilon, in addition to the input arguments in previous syntaxes.

Examples

Update Learnable Parameters Using adamupdate

Perform a single adaptive moment estimation update step with a global learning rate of 0. 05,
gradient decay factor of 0.75, and squared gradient decay factor of 0.95.

Create the parameters and parameter gradients as numeric arrays.



adamupdate

params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the iteration counter, average gradient, and average squared gradient for the first iteration.

iteration = 1;
averageGrad = [];

averageSqGrad = [];

Specify custom values for the global learning rate, gradient decay factor, and squared gradient decay
factor.

learnRate
gradDecay
sqGradDecay

Update the learnable parameters using adamupdate.
[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,averageSqGrad,iteration,’
Update the iteration counter.

iteration = iteration + 1;

Train Network Using adamupdate

Use adamupdate to train a network using the Adam algorithm.

Load Training Data

Load the digits training data.

[XTrain,TTrain] = digitTrain4DArrayData;
classes = categories(TTrain);
numClasses = numel(classes);

Define Network

Define the network and specify the average image value using the Mean option in the image input
layer.

layers = [
imageInputLayer([28 28 1], 'Mean',mean(XTrain,4))
convolution2dLayer(5,20)
reluLayer
convolution2dLayer(3,20, 'Padding',1)
reluLayer
convolution2dLayer(3,20, 'Padding',1)
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer];

Create a dlnetwork object from the layer array.

net = dlnetwork(layers);
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Define Model Loss Function

Create the helper function modelLoss, listed at the end of the example. The function takes a
dlnetwork object and a mini-batch of input data with corresponding labels, and returns the loss and
the gradients of the loss with respect to the learnable parameters.

Specify Training Options

Specify the options to use during training.

miniBatchSize = 128;

numEpochs = 20;

numObservations = numel(TTrain);

numIterationsPerEpoch = floor(numObservations./miniBatchSize);

Train Network

Initialize the average gradients and squared average gradients.

averageGrad [1

averageSqGrad = [];
Calculate the total number of iterations for the training progress monitor.

numIterations = numEpochs * numIterationsPerEpoch;

Initialize the TrainingProgressMonitor object. Because the timer starts when you create the
monitor object, make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor(Metrics="Loss",Info="Epoch",XLabel="Iteration");

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-
batches of data. Update the network parameters using the adamupdate function. At the end of each
iteration, display the training progress.

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

iteration = 0;
epoch = 0;

while epoch < numEpochs && ~monitor.Stop
epoch = epoch + 1;

% Shuffle data.
idx = randperm(numel(TTrain));

XTrain = XTrain(:,:,:,idx);

TTrain = TTrain(idx);

i=0;

while i < numIterationsPerEpoch && ~monitor.Stop
i=1+1;

iteration = iteration + 1;

Read mini-batch of data and convert the labels to dummy
variables.
idx = (i-1)*miniBatchSize+1:i*miniBatchSize;

%
%
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XTrain(:,:,:,idx);

T = zeros(numClasses, miniBatchSize, "single");

for ¢ = 1l:numClasses
T(c,TTrain(idx)==classes(c)) = 1;

end

% Convert mini-batch of data to a dlarray.
X = dlarray(single(X),"SSCB");

% If training on a GPU, then convert data to a gpuArray.
if canUseGPU

X = gpuArray(X);
end

% Evaluate the model loss and gradients using dlfeval and the
% modellLoss function.
[loss,gradients] = dlfeval(@modelLoss,net,X,T);

% Update the network parameters using the Adam optimizer.
[net,averageGrad,averageSqGrad] = adamupdate(net,gradients,averageGrad,averageSqGrad,ite

% Update the training progress monitor.
recordMetrics(monitor,iteration,Loss=1loss);
updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
monitor.Progress = 100 * iteration/numIterations;

end
end
25
Loss Progress:
Time
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Elapsed time: 00:01:36
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Test Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true
labels.
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[XTest,TTest] = digitTest4DArrayData;

Convert the data to a dlarray with the dimension format "SSCB" (spatial, spatial, channel, batch).
For GPU prediction, also convert the data to a gpuArray.

XTest = dlarray(XTest, "SSCB");
if canUseGPU

XTest = gpuArray(XTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the
highest scores.

YTest = predict(net,XTest);

[~,idx] = max(extractdata(YTest),[]1,1);
YTest = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YTest==TTest)

accuracy = 0.9896

Model Loss Function

The modelLoss helper function takes a dlnetwork object net and a mini-batch of input data X with
corresponding labels T, and returns the loss and the gradients of the loss with respect to the
learnable parameters in net. To compute the gradients automatically, use the dlgradient function.

function [loss,gradients] = modellLoss(net,X,T)
Y = forward(net,X);
loss = crossentropy(Y,T);

gradients = dlgradient(loss,net.Learnables);

end

Input Arguments

net — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the Learnables property of the dlnetwork object. net.Learnables isa
table with three variables:

* Layer — Layer name, specified as a string scalar.
* Parameter — Parameter name, specified as a string scalar.
* Value — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as net.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table
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Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a

table.

If you specify params as a table, it must contain the following three variables:

* Layer — Layer name, specified as a string scalar.

* Parameter — Parameter name, specified as a string scalar.

* Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array,
structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array,
structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for
structures) or variables (for tables) as params.

Data Types: single | double | struct | table | cell

grad — Gradients of the loss

dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of grad depends on the input network or learnable parameters. The following table
shows the required format for grad for possible inputs to adamupdate.

Input Learnable Parameters Gradients

net Table net.Learnables Table with the same data type,
containing Layer, Parameter, |variables, and ordering as
and Value variables. The net.Learnables. grad must
Value variable consists of cell |have a Value variable
arrays that contain each consisting of cell arrays that
learnable parameter as a contain the gradient of each
dlarray. learnable parameter.

params dlarray dlarray with the same data

type and ordering as params

Numeric array

Numeric array with the same
data type and ordering as

params
Cell array Cell array with the same data
types, structure, and ordering
as params
Structure Structure with the same data

types, fields, and ordering as
params
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Input

Learnable Parameters

Gradients

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. grad must have a
Value variable consisting of cell
arrays that contain the gradient
of each learnable parameter.

You can obtain grad from a call to dlfeval that evaluates a function that contains a call to
dlgradient. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

averageGrad — Moving average of parameter gradients
[1|dlarray | numeric array | cell array | structure | table

Moving average of parameter gradients, specified as an empty array, a dlarray, a numeric array, a

cell array, a structure, or a table.

The exact form of averageGrad depends on the input network or learnable parameters. The
following table shows the required format for averageGrad for possible inputs to adamupdate.

Input Learnable Parameters Average Gradients

net Table net.Learnables Table with the same data type,
containing Layer, Parameter, |variables, and ordering as
and Va'lue variables. The net.Learnables.
Va'lue variable consists of cell |averageGrad must have a
arrays that contain each Value variable consisting of cell
learnable parameter as a arrays that contain the average
dlarray. gradient of each learnable

parameter.
params dlarray dlarray with the same data

type and ordering as params

Numeric array

Numeric array with the same
data type and ordering as
params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data

types, fields, and ordering as
params

Table with Layer, Parameter,
and Va'lue variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables, and ordering as
params. averageGrad must
have a Value variable
consisting of cell arrays that
contain the average gradient of
each learnable parameter.

If you specify averageGrad and averageSqGrad as empty arrays, the function assumes no previous
gradients and runs in the same way as for the first update in a series of iterations. To update the
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learnable parameters iteratively, use the averageGrad output of a previous call to adamupdate as

the averageGrad input.

averageSqGrad — Moving average of squared parameter gradients
[1|dlarray | numeric array | cell array | structure | table

Moving average of squared parameter gradients, specified as an empty array, a dlarray, a numeric
array, a cell array, a structure, or a table.

The exact form of averageSqGrad depends on the input network or learnable parameters. The
following table shows the required format for averageSqGrad for possible inputs to adamupdate.

Input Learnable parameters Average Squared Gradients

net Table net.Learnables Table with the same data type,
containing Layer, Parameter, |variables, and ordering as
and Va'lue variables. The net.Learnables.
Va'lue variable consists of cell |averageSqgGrad must have a
arrays that contain each Value variable consisting of cell
learnable parameter as a arrays that contain the average
dlarray. squared gradient of each

learnable parameter.
params dlarray dlarray with the same data

type and ordering as params

Numeric array

Numeric array with the same
data type and ordering as

params

Cell array Cell array with the same data
types, structure, and ordering
as params

Structure Structure with the same data

types, fields, and ordering as
params

Table with Layer, Parameter,
and Value variables. The
Value variable must consist of
cell arrays that contain each
learnable parameter as a
dlarray.

Table with the same data types,
variables and ordering as
params. averageSqGrad must
have a Value variable
consisting of cell arrays that
contain the average squared
gradient of each learnable
parameter.

If you specify averageGrad and averageSqGrad as empty arrays, the function assumes no previous
gradients and runs in the same way as for the first update in a series of iterations. To update the
learnable parameters iteratively, use the averageSqGrad output of a previous call to adamupdate as
the averageSqgGrad input.

iteration — Iteration number
positive integer

Iteration number, specified as a positive integer. For the first call to adamupdate, use a value of 1.
You must increment iteration by 1 for each subsequent call in a series of calls to adamupdate. The
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Adam algorithm uses this value to correct for bias in the moving averages at the beginning of a set of
iterations.

learnRate — Global learning rate
0.001 (default) | positive scalar

Global learning rate, specified as a positive scalar. The default value of learnRate is 0.001.

If you specify the network parameters as a dlnetwork, the learning rate for each parameter is the
global learning rate multiplied by the corresponding learning rate factor property defined in the
network layers.

gradDecay — Gradient decay factor
0.9 (default) | positive scalar between 0 and 1

Gradient decay factor, specified as a positive scalar between 0 and 1. The default value of gradDecay
is 0.9.

sqGradDecay — Squared gradient decay factor
0.999 (default) | positive scalar between 0 and 1

Squared gradient decay factor, specified as a positive scalar between 0 and 1. The default value of
sqGradDecay is 0.999.

epsilon — Small constant
le-8 (default) | positive scalar

Small constant for preventing divide-by-zero errors, specified as a positive scalar. The default value of
epsilonis le-8.
Output Arguments

netUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork object.
The function updates the Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a
structure, or a table with a Value variable containing the updated learnable parameters of the
network.

averageGrad — Updated moving average of parameter gradients
dlarray | numeric array | cell array | structure | table

Updated moving average of parameter gradients, returned as a dlarray, a numeric array, a cell
array, a structure, or a table.

averageSqGrad — Updated moving average of squared parameter gradients
dlarray | numeric array | cell array | structure | table
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Updated moving average of squared parameter gradients, returned as a dlarray, a numeric array, a
cell array, a structure, or a table.

More About
Adam

The function uses the adaptive moment estimation (Adam) algorithm to update the learnable
parameters. For more information, see the definition of the Adam algorithm under “Stochastic
Gradient Descent” on page 1-1628 on the trainingOptions reference page.

Version History
Introduced in R2019b

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

* When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.
* grad
* averageGrad
* averageSqgGrad
* params

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

dlnetwork |dlarray | dlupdate | rmspropupdate | sgdmupdate | forward | dlgradient |
dlfeval

Topics

“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”

“Train Network Using Custom Training Loop”
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Add input layer to network

Syntax

netUpdated = addInputLayer(net, layer)

netUpdated = addInputLayer(net,layer,inputName)
netUpdated = addInputLayer(  ,Initialize=tf)
Description

netUpdated = addInputLayer(net,layer) adds the input layer layer to the network net by
connecting the input layer to the first unconnected input in net. If the updated network supports
automatic initialization, then the function automatically initializes the learnable parameters of the
network.

netUpdated = addInputLayer(net,layer,inputName) also specifies which unconnected input
the function connects to the input layer.

netUpdated = addInputLayer(  ,Initialize=tf) also specifies whether to initialize the
output network using any of the previous syntaxes.

Examples

Add Input Layer to dlnetwork
Create an uninitialized dlnetwork object that does not have an input layer.

layers = [
convolution2dLayer(5,20)
reluLayer
maxPooling2dLayer(2,Stride=2)
fullyConnectedlLayer(10)
softmaxLayer];

net dlnetwork(layers,Initialize=false)

net =
dlnetwork with properties:

Layers: [5x1 nnet.cnn.layer.Layer]
Connections: [4x2 table]
Learnables: [4x3 tablel]
State: [0x3 table]

InputNames: {'conv'}
OQutputNames: {'softmax'}
Initialized: 0

View summary with summary.
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Create an image input layer with an input size of [28 28 1].
layer = imagelnputlLayer([28 28 1],Normalization="none");
Add the input layer to the network.

net addInputLayer(net,layer)

net =
dlnetwork with properties:

Layers: [6x1 nnet.cnn.layer.Layer]
Connections: [5x2 table]
Learnables: [4x3 table]
State: [0x3 table]
InputNames: {'imageinput'}
OQutputNames: {'softmax'}
Initialized: 1

View summary with summary.

View the Initialized property. Because the network contains all the information required for
initialization, the output network is initialized.

net.Initialized

ans = logical
1

Connect Input Layers to Specified dlnetwork Inputs
Create an uninitialized dlnetwork object that has two unconnected inputs.

layers = [
convolution2dLayer(5,16,Name="conv")
batchNormalizationLayer
reluLayer
fullyConnectedLayer(50)
flattenLayer
concatenationLayer(1l,2,Name="cat")
fullyConnectedLayer(10)
softmaxLayer];

net = dlnetwork(layers,Initialize=false);
Create an image input layer to connect to the convolution layer.
layer = imagelnputlLayer([28 28 1],Normalization="none");

Connect the image input layer to the "conv" layer. Because the network does not contain the
information required to initialize the network, the returned network is uninitialized.

net = addInputlLayer(net,layer, "conv")

1-103



1 Deep Learning Functions

net =
dlnetwork with properties:

Layers: [9x1 nnet.cnn.layer.Layer]
Connections: [8x2 table]
Learnables: [8x3 table]
State: [2x3 table]
InputNames: {'imageinput' ‘'cat/in2'}
OQutputNames: {'softmax'}
Initialized: 0

View summary with summary.

Create a feature input layer to connect to the second input of the concatenation layer.
layer = featureInputLayer(l);

Connect the feature input layer to the "in2" input of the "cat" layer. Because the network now
contains the information required to initialize the network, the returned network is initialized.

net addInputLayer(net,layer,"cat/in2")

net =
dlnetwork with properties:

Layers: [10x1 nnet.cnn.layer.Layer]
Connections: [9x2 tablel
Learnables: [8x3 table]
State: [2x3 table]
InputNames: {'imageinput' ‘'input'}

OQutputNames: {'softmax'}
Initialized: 1

View summary with summary.
Visualize the network in a plot.

figure
plot(net)
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Input Arguments

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

layer — Input layer to add
Layer object

Input layer to add, specified as a Layer object.

inputName — Unconnected network input which the function connects the layer
string scalar | character vector | cell array containing a character vector

Unconnected network input which the function connects the layer, specified as a string scalar, a
character vector, or a cell array containing a character vector.
Data Types: char | string | cell

tf — Flag to initialize output network
"auto" (default) | trueor 1| falseor 0

Flag to initialize the learnable parameters of the output network, specified as one of these values:

+ "auto" — If the network does contains all the required information for initialization, then the
function initializes the output network. Otherwise, the function does not initialize the output
network..

* 1 (true) — Initialize the output network. If the network does not contain all the required
information for initialization, then the function errors.

* 0 (false) — Do not initialize the output network.
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Output Arguments

netUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork object.

The function reorders the layers in the Layers property of the network such that the input layer
appears immediately before the layer that it is connected to.

Version History
Introduced in R2022b

See Also
dlnetwork |dlarray | dlgradient | dlfeval | forward | predict | layerGraph | initialize

Topics

“Train Network Using Custom Training Loop”

“List of Deep Learning Layers”

“Define Custom Training Loops, Loss Functions, and Networks”
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additionLayer

Addition layer

Description

An addition layer adds inputs from multiple neural network layers element-wise.
Specify the number of inputs to the layer when you create it. The inputs to the layer have the names
'inl','in2',...,'inN', where N is the number of inputs. Use the input names when connecting

or disconnecting the layer by using connectLayers or disconnectLayers. All inputs to an
addition layer must have the same dimension.

Creation

Syntax

additionLayer(numInputs)
additionLayer(numInputs, 'Name', name)

layer
layer

Description

layer = additionLayer(numInputs) creates an addition layer that adds numInputs inputs
element-wise. This function also sets the NumInputs property.

layer = additionLayer(numInputs, 'Name',b name) also sets the Name property.

Properties

NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer greater than or equal to 2.

The inputs have the names 'inl', 'in2',...,"'inN"', where N is NumInputs. For example, if
NumInputs is 3, then the inputs have the names 'inl', 'in2"', and 'in3"'. Use the input names
when connecting or disconnecting the layer using the connectlLayers or disconnectLayers
functions.

Name — Layer name
"' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name "'

Data Types: char | string
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InputNames — Input Names
{'inl','in2"',.., "inN'} (default)

Input names, specifiedas {'inl','in2"', ..., "'inN'}, where N is the number of inputs of the layer.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create and Connect Addition Layer

Create an addition layer with two inputs and the name 'add 1'.
add = additionLayer(2, 'Name', 'add 1')

add =
AdditionLayer with properties:

Name: ‘'add 1'
NumInputs: 2
InputNames: {'inl' 'in2'}

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs
from the ReLU layers.

relu 1 = reluLayer('Name', 'relu 1');

relu 2 = reluLayer('Name', 'relu 2');

lgraph = layerGraph;

lgraph = addLayers(lgraph,relu 1);

lgraph = addLayers(lgraph,relu 2);

lgraph = addLayers(lgraph,add);

lgraph = connectlLayers(lgraph, 'relu 1','add 1/inl');
lgraph = connectlLayers(lgraph, 'relu 2','add 1/in2');
plot(lgraph)
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Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify
images of digits. The simple network in this example consists of:

* A main branch with layers connected sequentially.

* A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable
the parameter gradients to flow more easily from the output layer to the earlier layers of the
network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs
element-wise. Specify the number of inputs for the addition layer to sum. To easily add connections
later, specify names for the first ReLU layer and the addition layer.

layers = [
imageInputlLayer([28 28 11])

convolution2dLayer(5,16, 'Padding', 'same')
batchNormalizationLayer
reluLayer('Name', 'relu 1")

convolution2dLayer(3,32, 'Padding’, 'same', 'Stride',2)
batchNormalizationLayer

reluLayer

convolution2dLayer(3,32, 'Padding', 'same')
batchNormalizationLayer
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reluLayer
additionLayer(2, 'Name', 'add")

averagePooling2dLayer(2, 'Stride"',2)
fullyConnectedLayer(10)
softmaxLayer

classificationLayer];

Create a layer graph from the layer array. layerGraph connects all the layers in layers
sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of
convolutional filters and the stride so that the activation size matches the activation size of the third
RelU layer. This arrangement enables the addition layer to add the outputs of the third ReLU layer
and the 1-by-1 convolutional layer. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32, 'Stride"',2, 'Name', 'skipConv');
lgraph = addLayers(lgraph,skipConv);

figure

plot(lgraph)
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Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified
two as the number of inputs to the addition layer when you created it, the layer has two inputs named
‘inl' and 'in2'. The third ReLU layer is already connected to the 'inl"' input. Connect the
'relu 1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the

"add’' layer. The addition layer now sums the outputs of the third ReLU layer and the 'skipConv'
layer. To check that the layers are connected correctly, plot the layer graph.

lgraph
lgraph
figure

plot(lgraph);

connectLayers(lgraph, 'relu 1', 'skipConv')
connectlLayers(lgraph, 'skipConv', 'add/in2"
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Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the
validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm’,
'MaxEpochs',8, .
'Shuffle', 'every-epoch', ...
'ValidationData',{XValidation,YValidation},
'ValidationFrequency', 30,
'Verbose', false,
'"Plots', 'training-progress');

net = trainNetwork(XTrain,YTrain,lgraph,options);
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Accuracy (%)

Training Progress (31-Aug-2022 04:13:11)

Results
Validation accuracy: G9.34%
Training finished: Max epochs completed

Training Time

Start time: 31-Aug-2022 04:13:11
Elapsed time: 3 min 34 sec
Training Cycle

Epoch: 8ofd

Iteration: 312 of 312

Iterations per epoch: 39

Maximum iterations: 32

Validation

Frequency: 30 iterations

Other Information

Hardware resource: Single CPU
Learning rate schedule: Constant
Learning rate: 0.01
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Display the properties of the trained network. The network is a DAGNetwork object.
net

net =
DAGNetwork with properties:

Layers: [16x1 nnet.cnn.layer.Layer]
Connections: [16x2 table]
InputNames: {'imageinput'}
OutputNames: {'classoutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)

accuracy = 0.9934
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Version History
Introduced in R2017b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | layerGraph | depthConcatenationLayer

Topics

“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”

“Pretrained Deep Neural Networks”

“Set Up Parameters and Train Convolutional Neural Network”
“Specify Layers of Convolutional Neural Network”

“Train Residual Network for Image Classification”

“List of Deep Learning Layers”
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addLayers

Package: nnet.cnn

Add layers to layer graph or network

Syntax

lgraphUpdated = addLayers(lgraph,larray)
netUpdated = addLayers(net,larray)

Description

lgraphUpdated = addLayers(lgraph,larray) adds the network layers in larray to the layer
graph lgraph. The updated layer graph lgraphUpdated contains the layers and connections of
lgraph together with the layers in larray, connected sequentially. The layer names in larray must
be unique, nonempty, and different from the names of the layers in 1graph.

netUpdated = addLayers(net,larray) adds the network layers in larray to the dlnetwork
object net. The updated network netUpdated contains the layers and connections of net together
with the layers in larray, connected sequentially. The layer names in larray must be unique,
nonempty, and different from the names of the layers in net.

Examples

Add Layers to Layer Graph

Create an empty layer graph and an array of layers. Add the layers to the layer graph and plot the
graph. addLayers connects the layers sequentially.

lgraph

layerGraph;

layers = [
imagelInputLayer([32 32 3], 'Name', 'input')
convolution2dLayer(3,16, 'Padding"', 'same’, 'Name', 'conv_1")
batchNormalizationLayer('Name', 'BN 1")
reluLayer('Name', 'relu 1')1;

lgraph = addLayers(lgraph, layers);

figure
plot(lgraph)
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Input Arguments

lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

net — Neural network
dlnetwork object

Neural network, specified as a dlnetwork object.

larray — Network layers
Layer array

Network layers, specified as a Layer array.

J

For a list of built-in layers, see “List of Deep Learning Layers”.

Output Arguments

lgraphUpdated — Updated layer graph
LayerGraph object

Updated layer graph, returned as a LayerGraph object.

1-116



addLayers

netUpdated — Updated network
dlnetwork object

Updated network, returned as an uninitialized dlnetwork object.

To initialize the learnable parameters of a dlnetwork object, use the initialize function.

Version History
Introduced in R2017b

See Also

layerGraph | removelLayers | connectlLayers | disconnectLayers | plot | assembleNetwork
| replaceLayer | dlnetwork

Topics

“Train Deep Learning Network to Classify New Images”
“Train Network with Multiple Outputs”

“Classify Videos Using Deep Learning”
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Compute additional classification performance metrics

Syntax

UpdatedROCObj = addMetrics(rocObj,metrics)

Description

rocmetrics computes the false positive rates (FPR), true positive rates (TPR), and additional
metrics specified by the AdditionalMetrics name-value argument. After creating a rocmetrics
object, you can compute additional classification performance metrics by using the addMetrics
function.

UpdatedROCObj = addMetrics(rocObj,metrics) computes additional classification
performance metrics specified in metrics using the classification model information stored in the
rocmetrics object rocObj.

UpdatedROCObj contains all the information in rocObj plus additional performance metrics
computed by addMetrics. The function attaches the additional computed metrics (metrics) as new
variables in the table of the Metrics property.

If you compute confidence intervals when you create rocObj, the addMetrics function computes
the confidence intervals for the additional metrics. The new variables in the Metrics property
contain a three-column matrix in which the first column corresponds to the metric values, and the
second and third columns correspond to the lower and upper bounds, respectively. Using confidence
intervals requires Statistics and Machine Learning Toolbox.

Examples

Compute Additional Metrics

Compute the performance metrics (FPR, TPR, and expected cost) for a multiclass classification
problem when you create a rocmetrics object. Compute additional metrics, the positive predictive
value (PPV) and the negative predictive value (NPV), and add them to the object.

Load a sample of true labels and the prediction scores for a classification problem. For this example,
there are five classes: daisy, dandelion, roses, sunflowers, and tulips. The class names are stored in
classNames. The scores are the softmax prediction scores generated using the predict function.
scores is an N-by-K array where N is the number of observations and K is the number of classes.
The column order of scores follows the class order stored in classNames.

load( ' flowersDataResponses.mat"')

scores = flowersData.scores;
trueLabels = flowersData.truelLabels;

classNames = flowersData.classNames;
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Create a rocmetrics object by using the true labels and the classification scores. Specify the
column order of scores using classNames. By default, rocmetrics computes the FPR and TPR.
Specify AdditionalMetrics="ExpectedCost" to compute the expected cost as well.

rocObj = rocmetrics(truelLabels,scores,classNames,
AdditionalMetrics="ExpectedCost");

The table in the Metrics property of rocObj contains performance metric values for each of the
classes, vertically concatenated according to the class order. Find and display the top rows for the
second class in the table.

idx = rocObj.Metrics.ClassName == classNames(2);

head(rocObj.Metrics(idx,:))
ClassName Threshold FalsePositiveRate TruePositiveRate ExpectedCost
dandelion 1 0 0 0.045287
dandelion 1 0 0.23889 0.034469
dandelion 1 0 0.26111 0.033462
dandelion 1 0 0.27222 0.032959
dandelion 1 0 0.28889 0.032204
dandelion 1 0 0.29444 0.031953
dandelion 1 0 0.3 0.031701
dandelion 1 0 0.31111 0.031198

The table in Metrics contains the variables for the class names, threshold, false positive rate, true
positive rate, and expected cost (the additional metric).

After creating a rocmetrics object, you can compute additional metrics using the classification
model information stored in the object. Compute the PPV and NPV by using the addMetrics
function. To overwrite the input argument rocObj, assign the output of addMetrics to the input.

rocObj = addMetrics(rocObj,["PositivePredictiveValue", "NegativePredictiveValue"]);
Display the Metrics property for the top rows.

head(rocObj.Metrics(idx,:))

ClassName Threshold FalsePositiveRate TruePositiveRate ExpectedCost PositiveP
dandelion 1 0 0 0.045287
dandelion 1 0 0.23889 0.034469
dandelion 1 0 0.26111 0.033462
dandelion 1 0 0.27222 0.032959
dandelion 1 0 0.28889 0.032204
dandelion 1 0 0.29444 0.031953
dandelion 1 0 0.3 0.031701
dandelion 1 0 0.31111 0.031198

The table in Metrics now includes the PositivePredictiveValue and
NegativePredictiveValue variables in the last two columns, in the order you specified. Note that
the positive predictive value (PPV = TP/ (TP+FP)) is NaN for the reject-all threshold (largest
threshold), and the negative predictive value (NPV = TN/ (TN+FN)) is NaN for the accept-all
threshold (lowest threshold). TP, FP, TN, and FN represent the number of true positives, false
positives, true negatives, and false negatives, respectively.
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Input Arguments

rocObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, specified as a rocmetrics object.

metrics — Additional model performance metrics
character vector | string array | function handle | cell array

Additional model performance metrics to compute, specified as a character vector or string scalar of
the built-in metric name, string array of names, function handle (@metricName), or cell array of
names or function handles. A rocmetrics object always computes the false positive rates (FPR) and
the true positive rates (TPR) to obtain a ROC curve. Therefore, you do not have to specify to compute
FPR and TPR.

* Built-in metrics — Specify one of the following built-in metric names by using a character vector
or string scalar. You can specify more than one by using a string array.

Name Description

"TruePositives" or "tp"

Number of true positives (TP)

"FalseNegatives" or "fn"

Number of false negatives (FN)

"FalsePositives" or "fp"

Number of false positives (FP)

"TrueNegatives" or "tn"

Number of true negatives (TN)

"SumOfTrueAndFalsePosit
ives" or "tp+fp"

Sum of TP and FP

"RateOfPositivePredicti
OnS" Or 1] rppll

Rate of positive predictions (RPP), (TP+FP)/ (TP+FN+FP+TN)

"Rate0fNegativePredicti
ons" or "rnp"

Rate of negative predictions (RNP), (TN+FN) / (TP+FN+FP
+TN)

"Accuracy" or "accu"

Accuracy, (TP+TN) / (TP+FN+FP+TN)

"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or miss rate, FN/ (TP+FN)

"TrueNegativeRate",
"tnr", or "spec"

True negative rate (TNR), or specificity, TN/ (TN+FP)

"PositivePredictiveValu

e", "ppv", or "prec"

Positive predictive value (PPV), or precision, TP/ (TP+FP)

"NegativePredictiveValu
ell OI' Ilnpvll

Negative predictive value (NPV), TN/ (TN+FN)
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Name Description
"ExpectedCost" or Expected cost, (TP*cost(P|P)+FN*cost(N|P)
"ecost" +FP*cost (P|N)+TN*cost (N|N) )/ (TP+FN+FP+TN), where

cost is a 2-by-2 misclassification cost matrix containing
[0,cost(N|P);cost(P|N),0]. cost(N]|P) is the cost of
misclassifying a positive class (P) as a negative class (N), and
cost (P|N) is the cost of misclassifying a negative class as a
positive class.

The software converts the K-by-K matrix specified by the Cost
name-value argument of rocmetrics to a 2-by-2 matrix for
each one-versus-all binary problem. For details, see
“Misclassification Cost Matrix”.

The software computes the scale vector using the prior class probabilities (Prior) and the
number of classes in Labels, and then scales the performance metrics according to this scale
vector. For details, see “Performance Metrics”.

» Custom metric — Specify a custom metric by using a function handle. A custom function that
returns a performance metric must have this form:

metric = customMetric(C,scale,cost)

* The output argument metric is a scalar value.

* A custom metric is a function of the confusion matrix (C), scale vector (scale), and cost matrix
(cost). The software finds these input values for each one-versus-all binary problem. For
details, see “Performance Metrics”.

* C(Cis a 2-by-2 confusion matrix consisting of [TP,FN; FP,TN].
* scaleis a 2-by-1 scale vector.
* cost is a 2-by-2 misclassification cost matrix.

The software does not support cross-validation for a custom metric. Instead, you can specify to use
bootstrap when you create a rocmetrics object.

Note that the positive predictive value (PPV) is NaN for the reject-all threshold for which TP = FP = 0,
and the negative predictive value (NPV) is NaN for the accept-all threshold for which TN = FN = 0. For
more details, see “Thresholds, Fixed Metric, and Fixed Metric Values”.

Example: ["Accuracy", "PositivePredictiveValue"]

Example: {"Accuracy",@ml,@m2} specifies the accuracy metric and the custom metrics m1 and m2
as additional metrics. addMetrics stores the custom metric values as variables named
CustomMetricl and CustomMetric?2 in the Metrics property.

Data Types: char | string | cell | function handle
Output Arguments

UpdatedROCObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, returned as a rocmetrics object.
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To overwrite the input argument rocObj, assign the output of addMetrics to rocObj:

rocObj = addMetrics(rocObj,metrics);

Version History
Introduced in R2022b

See Also
rocmetrics | average | plot
Topics

“ROC Curve and Performance Metrics”
“Compare Deep Learning Models Using ROC Curves”
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addParameter

Add parameter to ONNXParameters object

Syntax

addParameter(params,name,value, type)
addParameter(params,name,value, type,NumDimensions)

params
params

Description

params = addParameter(params,name,value,type) adds the network parameter specified by
name, value, and type to the ONNXParameters object params. The returned params object
contains the model parameters of the input argument params together with the added parameter,
stacked sequentially. The added parameter name must be unique, nonempty, and different from the
parameter names in params.

params = addParameter(params,name,value, type,NumDimensions) adds the network
parameter specified by name, value, type, and NumDimensions to params.

Examples

Add Parameters to Imported ONNX Model Function
Import a network saved in the ONNX format as a function and modify the network parameters.

Import the pretrained simplenet3fc.onnx network as a function. simplenet3fc is a simple
convolutional neural network trained on digit image data. For more information on how to create a
network similar to simplenet3fc, see “Create Simple Image Classification Network”.

Import simplenet3fc.onnx using importONNXFunction, which returns an ONNXParameters
object that contains the network parameters. The function also creates a new model function in the
current folder that contains the network architecture. Specify the name of the model function as
simplenetFcn.

params = importONNXFunction('simplenet3fc.onnx"', 'simplenetFcn');

A function containing the imported ONNX network has been saved to the file simplenetFcn.m.
To learn how to use this function, type: help simplenetFcn.

Display the parameters that are updated during training (params.Learnables) and the parameters
that remain unchanged during training (params.Nonlearnables).

params.Learnables

ans = struct with fields:
imageinput Mean: [1x1 dlarray]
conv_W: [5x5x1x20 dlarray]
conv_B: [20x1 dlarray]
batchnorm scale: [20x1 dlarray]
batchnorm B: [20x1 dlarray]
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fc 1 W: [24x24x20x20 dlarray]
fc 1 B: [20x1 dlarray]
fc 2 W: [1x1x20x20 dlarray]
fc 2 B: [20x1 dlarray]
fc 3 W: [1x1x20x10 dlarrayl
fc_ 3 B: [10x1 dlarray]

params.Nonlearnables

ans = struct with fields:
ConvStridel004: [2x1 dlarray]
ConvDilationFactorl005: [2x1 dlarray]
ConvPaddingl1006: [4x1 dlarray]
ConvStridel007: [2x1 dlarray]
ConvDilationFactorl008: [2x1 dlarray]
ConvPaddingl1009: [4x1 dlarray]
ConvStridel010: [2x1 dlarray]
ConvDilationFactorl01ll: [2x1 dlarray]
ConvPaddingl1012: [4x1 dlarray]
ConvStridel0l13: [2x1 dlarray]
ConvDilationFactorl014: [2x1 dlarray]
ConvPaddingl1015: [4x1 dlarray]

The network has parameters that represent three fully connected layers. You can add a fully
connected layer in the original parameters params between layers fc 2 and fc_3. The new layer
might increase the classification accuracy.

To see the parameters of the convolutional layers fc_2 and fc_3, open the model function
simplenetFcn.

open simplenetFcn

Scroll down to the layer definitions in the function simplenetFcn. The code below shows the
definitions for layers fc_2 and fc_3.

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc 2] = prepareConvArgs(Var:
Vars.fc_2 = dlconv(Vars.fc_1, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor,

% Conv:
[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc 3] = prepareConvArgs(Var:
Vars.fc_3 = dlconv(Vars.fc 2, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor,

Name the new layer fc_4, because each added parameter name must be unique. The addParameter
function always adds a new parameter sequentially to the params.Learnables or
params.Nonlearnables structure. The order of the layers in the model function simplenetFcn
determines the order in which the network layers are executed. The names and order of the
parameters do not influence the execution order.

Add a new fully connected layer fc 4 with the same parameters as fc_2.

params = addParameter(params,'fc 4 W', params.Learnables.fc 2 W, 'Learnable');

params = addParameter(params,'fc 4 B',params.Learnables.fc 2 B, 'Learnable');

params = addParameter(params,'fc 4 Stride',params.Nonlearnables.ConvStridel010, 'Nonlearnable');
params = addParameter(params,'fc 4 DilationFactor',params.Nonlearnables.ConvDilationFactorl01l, 'l
params = addParameter(params,'fc 4 Padding',6params.Nonlearnables.ConvPaddingl012, 'Nonlearnable')
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Display the updated learnable and nonlearnable parameters.
params.Learnables

ans = struct with fields:
imageinput Mean: [1x1 dlarray]
conv _W: [5x5x1x20 dlarray]
conv_B: [20x1 dlarray]
batchnorm scale: [20x1 dlarray]
batchnorm B: [20x1 dlarray]
fc 1 W: [24x24x20x20 dlarray]
fc_ 1 B: [20x1 dlarray]
fc 2 W: [1x1x20x20 dlarray]
fc 2 B: [20x1 dlarray]
fc 3 W: [1x1x20x10 dlarray]
fc 3 B: [10x1 dlarray]
fc 4 W: [1x1x20x20 dlarray]
fc 4 B: [20x1 dlarray]

params.Nonlearnables

ans = struct with fields:
ConvStridel004: [2x1 dlarray]
ConvDilationFactorl@05: [2x1 dlarray]
ConvPaddingl006: [4x1 dlarray]
ConvStridel007: [2x1 dlarray]
ConvDilationFactorl@@8: [2x1 dlarray]
ConvPaddingl1009: [4x1 dlarray]
ConvStridel010: [2x1 dlarray]
ConvDilationFactorl@ll: [2x1 dlarray]
ConvPaddingl1012: [4x1 dlarray]
ConvStridel013: [2x1 dlarray]
ConvDilationFactorl@l14: [2x1 dlarray]
ConvPaddingl1015: [4x1 dlarray]
fc 4 Stride: [2x1 dlarray]
fc 4 DilationFactor: [2x1 dlarray]
fc_4 Padding: [4x1 dlarray]

Modify the architecture of the model function to reflect the changes in params so you can use the
network for prediction with the new parameters or retrain the network. Open the model function
simplenetFcn. Then, add the fully connected layer fc_4 between layers fc 2 and fc_3, and
change the input data of the convolution operation dlconv for layer fc_3 to Vars.fc 4.

open simplenetFcn

The code below shows the new layer fc_4 in its position, as well as layers fc 2 and fc_ 3.

% Conv:

[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc 2] = prepareConvArgs(Var:
Vars.fc 2 = dlconv(Vars.fc 1, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor,
% Conv

[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc 4] = prepareConvArgs(Var:
Vars.fc_4 = dlconv(Vars.fc 2, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor,

% Conv:
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[weights, bias, stride, dilationFactor, padding, dataFormat, NumDims.fc 3] = prepareConvArgs(Var:
Vars.fc_3 = dlconv(Vars.fc 4, weights, bias, 'Stride', stride, 'DilationFactor', dilationFactor,

Input Arguments

params — Network parameters
ONNXParameters object

Network parameters, specified as an ONNXParameters object. params contains the network
parameters of the imported ONNX™ model.

name — Name of parameter

character vector | string scalar

Name of the parameter, specified as a character vector or string scalar.
Example: 'conv2 W'

Example: 'conv2 Padding'

value — Value of parameter
numeric array | character vector | string scalar

Value of the parameter, specified as a numeric array, character vector, or string scalar. To duplicate
an existing network layer (stored in params), copy the parameter values of the network layer.
Example: params.Learnables.convl W

Example: params.Nonlearnables.convl Padding

Data Types: single | double | char | string

type — Type of parameter
'Learnable' | 'Nonlearnable' | 'State'

Type of parameter, specified as 'Learnable’, 'Nonlearnable', or 'State'.

* Thevalue 'Learnable’ specifies a parameter that is updated by the network during training (for
example, weights and bias of convolution).

» The value 'Nonlearnable' specifies a parameter that remains unchanged during network
training (for example, padding).

* Thevalue 'State' specifies a parameter that contains information remembered by the network
between iterations and updated across multiple training batches.

Data Types: char | string

NumDimensions — Number of dimensions for every parameter
structure

Number of dimensions for every parameter, specified as a structure. NumDimensions includes
trailing singleton dimensions.

Example: params.NumDimensions.convl W

Example: 4
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Output Arguments

params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network
parameters updated by addParameter.

Version History
Introduced in R2020b

See Also
importONNXFunction | ONNXParameters | removeParameter
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AlexNet convolutional neural network

Syntax
net = alexnet
net = alexnet('Weights', 'imagenet')

layers = alexnet('Weights', 'none"')

Description

AlexNet is a convolutional neural network that is 8 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 227-by-227. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the AlexNet network. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with AlexNet.

For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp.
net = alexnet returns an AlexNet network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for AlexNet Network support package. If this
support package is not installed, the function provides a download link. Alternatively, see Deep
Learning Toolbox Model for AlexNet Network.

For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

net = alexnet('Weights', 'imagenet') returns an AlexNet network trained on the ImageNet
data set. This syntax is equivalent to net = alexnet.

layers = alexnet('Weights', 'none') returns the untrained AlexNet network architecture.
The untrained model does not require the support package.

Examples

Download AlexNet Support Package
Download and install Deep Learning Toolbox Model for AlexNet Network support package.

Type alexnet at the command line.

alexnet

If Deep Learning Toolbox Model for AlexNet Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
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support package, click the link, and then click Install. Check that the installation is successful by
typing alexnet at the command line.

alexnet
ans =
SeriesNetwork with properties:
Layers: [25x1 nnet.cnn.layer.lLayer]
If the required support package is installed, then the function returns a SeriesNetwork object.
Visualize the network using Deep Network Designer.
deepNetworkDesigner(alexnet)

Explore other pretrained networks in Deep Network Designer by clicking New.

MATLAB

Geiting Started | Compare Pretrained Networks Transfer Leaming

SqueezeMNet GoogLeNet ResNet-50 EfficientNet-bo DarkNet-53 DarkNet-19

OOOL DB Ge [EEC) T 1]

ShuffleMet HasNal-Mobile NasNet.Large Xception Places365-Google... MobileMet.v2

o
]
=

If you need to download a network, pause on the desired network and click Install to open the Add-
On Explorer.

Transfer Learning Using AlexNet

This example shows how to fine-tune a pretrained AlexNet convolutional neural network to perform
classification on a new collection of images.
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AlexNet has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich
feature representations for a wide range of images. The network takes an image as input and outputs
a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
images.

Reuse Pretrained Network

Load pretrained network Replace final layers Train network Predict and Deploy results
assess network accuracy
Training images i
Early layers that learned Last layers that Mew layers to learn i —— ‘,— Probabllty
low-level features o = P Traini - h - .
learned task features specific o raining options 5 Test images —
{edges, blobs, colors) - - : =
specific features to your data set |-,
]
l I I I“ | Trained network i
1 million images Fewer classes 100s of images
1000s classes Learn faster 10s of classes
Improve network
Load Data
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Unzip and load the new images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a convolutional neural network.

unzip('MerchData.zip');

imds = imageDatastore('MerchData’,
'IncludeSubfolders', true,
'LabelSource', 'foldernames');

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for
validation. splitEachLabel splits the images datastore into two new datastores.

[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7, " 'randomized');

This very small data set now contains 55 training images and 20 validation images. Display some
sample images.

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
subplot(4,4,1)
I = readimage(imdsTrain,idx(1i));
imshow(I)
end
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Load Pretrained Network

Load the pretrained AlexNet neural network. If Deep Learning Toolbox™ Model for AlexNet Network
is not installed, then the software provides a download link. AlexNet is trained on more than one
million images and can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. As a result, the model has learned rich feature representations for a wide range of
images.

net = alexnet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed
information about the network layers.

analyzeNetwork(net)
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I
|
i
net
I 2580 0 00
i Analysis date: 21-Dec-2015 11:40:34
| ANALYSIS RESULT -
|
| % dam Name ype Activations Learnables
\ i data Image Input 227x227=3
® convi 227Tx227x3 images with 'zerocenter normalization
T z  |convt Convolution 55x55=95 Weights 11x11x3=36
@ relul 05 11x11x3 convolutions with stride [4 4] and padding [0 00 0] Bias 1=1=96
Y
& norm1 H r_eelu1 RelU 55x55%35
] LU
® poclt 4 |norm1 Cross Channel Nor.. | 555595
! cross channel normalization with 5 channels per element
® conv2 5 |pool Max Pooling 27=27=96
Y 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
® relu2 a8 |convz2 Grouped Convolution | 27x27=256 Meigh. 5x5x48x128.
T 2 groups of 123 volutions with stride [1 1] and padding [2 Bias 1x1x128=2
. 2
T lrel2 RelU 275275256
® poolz i
T 2 |norm2 Cross Channel Nor... | 2727256
£ coma oes channel nomalization with 5 channels per eleme
T g pool2 Wax Pooling 13%13=256
& relu3 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
! conv3 Convolution 13=13=384 Weights 3=3=256=x384
® conud 384 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1] Biac 1x1x384
Y
relu3 RelLU 13x13=3384
® relud fel
Y
| — z | convd Grouped Convolution | 13=13=384 Weigh. 3=3=192x192.
Y 2 groups convolutions with stride [1 1] and padding Bias Tel192%2
® relus 13 |relud RelU 13=13=334
T RelU
® pools 14 | convs Grouped Convolution | 13=13=x256 Meigh. 3=3x192x128.
T 2 groups of 128 3x3x192 convolutions with stride [1 1] and padding Bige  1wlx128%2
®fcd -
! 15 |relud RelU 13x13%256
® relud i -
T 1 | pools Max Pooling Gx6x256
3x3 max pooling with stride [2 2] and padding [0 0 0 0]
17 |fcB Fully Connected 1=1=4996 Weights 4996=9216
4088 fully connected layer Bias 4996=1 =
T - »

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize = net.Layers(1l).InputSize

inputSize Ix3

227 227 3

Replace Final Layers

The last three layers of the pretrained network net are configured for 1000 classes. These three
layers must be fine-tuned for the new classification problem. Extract all layers, except the last three,
from the pretrained network.

layersTransfer = net.Layers(l:end-3);

Transfer the layers to the new classification task by replacing the last three layers with a fully
connected layer, a softmax layer, and a classification output layer. Specify the options of the new fully
connected layer according to the new data. Set the fully connected layer to have the same size as the
number of classes in the new data. To learn faster in the new layers than in the transferred layers,
increase the WeightLearnRateFactor and BiasLearnRateFactor values of the fully connected
layer.

numClasses = numel(categories(imdsTrain.Labels))
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numClasses = 5

layers = [
layersTransfer
fullyConnectedLayer(numClasses, 'WeightLearnRateFactor',20, 'BiasLearnRateFactor',20)
softmaxLayer
classificationlLayer];

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and
vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact
details of the training images.

pixelRange = [-30 301];

imageAugmenter = imageDataAugmenter(
'RandXReflection', true,
'RandXTranslation',pixelRange,
'RandYTranslation',pixelRange);

augimdsTrain = augmentedImageDatastore(inputSize(1l:2),imdsTrain,
'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the fully connected layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size and validation data. The
software validates the network every ValidationFrequency iterations during training.

options = trainingOptions('sgdm’,
'MiniBatchSize', 10,
'MaxEpochs',6,
'InitiallLearnRate', le-4,
'Shuffle', 'every-epoch’,
'ValidationData',augimdsValidation,
'ValidationFrequency',3,
'Verbose', false,
'Plots', 'training-progress');

Train the network that consists of the transferred and new layers. By default, trainNetwork uses a
GPU if one is available, otherwise, it uses a CPU. Training on a GPU requires Parallel Computing
Toolbox™ and a supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox). You can also specify the execution environment by
using the 'ExecutionEnvironment' name-value pair argument of trainingOptions.

netTransfer = trainNetwork(augimdsTrain, layers,options);
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Classify Validation Images

Classify the validation images using the fine-tuned network.

[YPred,scores] =

classify(netTransfer,augimdsValidation);

Display four sample validation images with their predicted labels.

idx =
figure
for i = 1:4

subplot(2,2,1)
I =
imshow(I)

label = YPred(idx(i));

title(string(label));
end

readimage(imdsValidation,idx(i));

randperm(numel(imdsValidation.Files),4);
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Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the
network predicts correctly.

YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

accuracy =1

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks”.

Classify an Image Using AlexNet

Read, resize, and classify an image using AlexNet. First, load a pretrained AlexNet model.
net = alexnet;

Read the image using imread.

I = imread('peppers.png');

figure
imshow(I)
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The pretrained model requires the image size to be the same as the input size of the network.

Determine the input size of the network using the InputSize property of the first layer of the
network.

sz = net.Layers(1l).InputSize
sz = Ix3

227 227 3

Resize the image to the input size of the network.
I = imresize(I,sz(1:2));

figure
imshow(I)
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Classify the image using classify.
label = classify(net,I)

label = categorical
bell pepper

Show the image and classification result together.
figure

imshow(I)
title(label)
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bell pepper

Feature Extraction Using AlexNet

This example shows how to extract learned image features from a pretrained convolutional neural
network, and use those features to train an image classifier. Feature extraction is the easiest and
fastest way to use the representational power of pretrained deep networks. For example, you can
train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™)
on the extracted features. Because feature extraction only requires a single pass through the data, it
is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the
images based on folder names and stores the data as an ImageDatastore object. An image
datastore lets you store large image data, including data that does not fit in memory. Split the data
into 70% training and 30% test data.

unzip('MerchData.zip"');
imds = imageDatastore('MerchData’,
"IncludeSubfolders', true,
‘LabelSource', 'foldernames');
[imdsTrain,imdsTest] = splitEachLabel(imds,0.7, 'randomized');

There are now 55 training images and 20 validation images in this very small data set. Display some
sample images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);

for i = 1:16
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I{i} = readimage(imdsTrain,idx(i));
end

figure
imshow(imtile(I))

Load Pretrained Network

Load a pretrained AlexNet network. If the Deep Learning Toolbox Model for AlexNet Network
support package is not installed, then the software provides a download link. AlexNet is trained on
more than a million images and can classify images into 1000 object categories. For example,
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keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature
representations for a wide range of images.

net = alexnet;

Display the network architecture. The network has five convolutional layers and three fully connected

layers.

net.Layers

ans =

25x1 Layer array with layers:

OCoNOUTE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

'data’
‘convl'
'relul’
‘norml’
'pooll’
'conv2'
'relu2’
'norm2'
'pool2’
'conv3'
'relu3’
‘conv4'
'relud’
‘conv5'
'relu5’
'pool5!
'fco'
'relu6’
'drop6’
"fc7'
'relu7’
'drop7'
"fc8'
'prob’
"output'

Image Input
Convolution

RelLU

Cross Channel Normalization
Max Pooling

Grouped Convolution
RelLU

Cross Channel Normalization
Max Pooling
Convolution

RelLU

Grouped Convolution
RelLU

Grouped Convolution
RelLU

Max Pooling

Fully Connected

RelLU

Dropout

Fully Connected

RelLU

Dropout

Fully Connected
Softmax
Classification Output

normalizati
[4 4] and

227x227x3 images with 'zerocenter!
96 11x11x3 convolutions with stride
RelLU

cross channel normalization with 5 channels pe
3x3 max pooling with stride [2 2] and padding
2 groups of 128 5x5x48 convolutions with strid
RelLU

cross channel normalization with 5 channels pe
3x3 max pooling with stride [2 2] and padding
384 3x3x256 convolutions with stride [1 1] anc
RelLU

2 groups of 192 3x3x192 convolutions with stri
RelLU

2 groups of 128 3x3x192 convolutions with stri
RelLU

3x3 max pooling with stride [2 2] and padding
4096 fully connected layer

RelLU

50% dropout

4096 fully connected layer

RelLU

50% dropout

1000 fully connected layer

softmax

crossentropyex with 'tench' and 999 other clas:

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the
number of color channels.

inputSize
inputSize

227

= net.Layers(1l).InputSize

= Ix3

227

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher-
level features, constructed using the lower-level features of earlier layers. To get the feature
representations of the training and test images, use activations on the fully connected layer
'fc7'. To get a lower-level representation of the images, use an earlier layer in the network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores
have different sizes. To automatically resize the training and test images before they are input to the
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network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

augimdsTrain = augmentedImageDatastore(inputSize(1l:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1l:2),imdsTest);

layer = 'fc7';
featuresTrain = activations(net,augimdsTrain,layer, 'OutputAs', 'rows');
featuresTest = activations(net,augimdsTest,layer, 'OutputAs', 'rows');

Extract the class labels from the training and test data.

YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass
support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,YTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test
images.

YPred = predict(mdl, featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];

figure

for i = l:numel(idx)
subplot(2,2,1)
I = readimage(imdsTest,idx(1i));
label = YPred(idx(i));

imshow(I)
title(label)
end

1-141



1 Deep Learning Functions

1-142

MathWorks Cap

MathWorks Cube

MathWorks Playing Cards MathWorks Screwdriver

—

Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the
network predicts correctly.

accuracy = mean(YPred == YTest)

accuracy =1

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try
transfer learning instead.

Output Arguments

net — Pretrained AlexNet convolutional neural network
SeriesNetwork object

Pretrained AlexNet convolutional neural network, returned as a SeriesNetwork object.

layers — Untrained AlexNet convolutional neural network architecture
Layer array

Untrained AlexNet convolutional neural network architecture, returned as a Layer array.
Tips

» For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp.


https://www.mathworks.com/training-schedule/deep-learning-onramp.html?s_tid=doc_to_dlonramp
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = alexnet or by passing the
alexnet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('alexnet').

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).
The syntax alexnet('Weights', 'none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

» For code generation, you can load the network by using the syntax net = alexnet or by passing
the alexnet function to coder.loadDeepLearningNetwork. For example: net =
coder.loadDeepLearningNetwork('alexnet').

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
* The syntax alexnet('Weights', 'none') is not supported for GPU code generation.

See Also

Deep Network Designer | vggl6 | vggl9 | resnetl8 | resnet50 | densenet201 | googlenet |
inceptionresnetv2 | squeezenet | importKerasNetwork | importCaffeNetwork

Topics

“Deep Learning in MATLAB”

“Classify Webcam Images Using Deep Learning”
“Pretrained Deep Neural Networks”

“Train Deep Learning Network to Classify New Images”
“Transfer Learning with Deep Network Designer”
“Deep Learning Tips and Tricks”
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Analyze deep learning network architecture

Syntax

analyzeNetwork(layers)
analyzeNetwork(layers,TargetUsage=target)
analyzeNetwork(layers,X1,...,Xn,TargetUsage="dlnetwork")
analyzeNetwork(net)

analyzeNetwork(net,X1,...,Xn)

Description

Use analyzeNetwork to visualize and understand the architecture of a network, check that you have
defined the architecture correctly, and detect problems before training. Problems that
analyzeNetwork detects include missing or unconnected layers, incorrectly sized layer inputs, an
incorrect number of layer inputs, and invalid graph structures.

Tip To interactively visualize, analyze, and train a network, use deepNetworkDesigner(net). For
more information, see Deep Network Designer.

analyzeNetwork(layers) analyzes the network layers given by the layer array or layer graph
layers and also detects errors and issues for trainNetwork workflows. The function displays an
interactive visualization of the network architecture and provides detailed information about the
network layers. The layer information includes the layer type, the size and format of the layer
activations, and the size and number of learnable and state parameters.

Each activation dimension has one of the following labels: S (spatial), C (channel), B (batch), T (time
or sequence), or U (unspecified).

analyzeNetwork(layers,TargetUsage=target) analyzes the network layers given by the layer
array or layer graph layers for the specified target workflow. Use this syntax when analyzing the
layers for dlnetwork workflows.

analyzeNetwork(layers,X1,...,Xn,TargetUsage="dlnetwork") analyzes the layer array or
layer graph layers using the example networks inputs X1, . .., Xn. The software propagates the
example inputs through the network to determine the size and format of layer activations, the size
and number of learnable and state parameters, and the total number of learnables. Use this syntax to
analyze a network that has one or more inputs that are not connected to an input layer.

analyzeNetwork(net) analyzes the SeriesNetwork, DAGNetwork, or dlnetwork object net.

analyzeNetwork(net,X1,...,Xn) analyzes the dlnetwork object net using example networks
inputs X1, ..., Xn. The software propagates the example inputs through the network to determine
the size and format of layer activations, the size and number of learnable and state parameters, and
the total number of learnables. Use this syntax to analyze an uninitialized dlnetwork that has one or
more inputs that are not connected to an input layer.
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Examples

Analyze Trained Network
Load a pretrained GoogLeNet convolutional neural network.
net = googlenet;

Analyze the network. analyzeNetwork displays an interactive plot of the network architecture and a
table containing information about the network layers.

analyzeNetwork(net)
4\ Deep Learning Network Analyzer — m} X
Analysis for trainNetwork usage
Name: net
6.9M 144 0 00
Analysis date: 28-Oct-2021 14:39:03
Il ANALYSIS RESULT (]
. Name Type Activations Leamnable Properties |
! _ i |data Image Input 224(S) = 224(S) = 3(C) = 1(B) = B
¥ convi-7x.. 224x224x3 images with ‘zerocenter' nor
1
& convi-re 2 conv1-Tx7_s2 Convolution 112(5) = 112(5) = 64(C) = 1(B) Meights 7 = 7 = 3 = 64
; o B4 Tx7%3 convolutions with stride [2 2] a... Biac x 1 % G4
# poolt-2x... 3 | convi-relu_Tx7 RelLU 112(5) * 112(S) = 64(C) x 1(B)
T RelU
# paoli-na... 4 pool1-3x3_s2 Max Pooling 56(5) = 56(5) = 64(C) = 1(B)
T 3%3 max pooling with stride [2 2] and pa..
» convz-3x.. pooli-norm1 Cross Channel Nor__ |56(S) = 56(5) = 64(C) = 1(8)
I oross channel normalization with § chan..
® conyZ-r " 3
rmn = conv2-3x3_reduce Convolution 56(S) = 56(5) = 64(C) = 1(B) Meights 1 = 1 = 64 = g4
64 121284 convolutions with stride [11] ... Bias 1x=1x 64
® conuz-3x3
T 7 conv2-relu_3x3_reduce RelLU 56(5) = 56(5) = 64(C) = 1(B)
# convz-ra... Rell
' E conv2-3x3 Convolution 56(5) = 56(5) = 192(C) = 1(B) Weights 3 = 3 = 64 = 192
® convZon. 192 2x3284 convolutions with stride [11... Bias 1x=1=192
! 8 conv2-relu_3x3 RelLU 56(5) = 56(5) = 192(C) = 1(B)
#pool2-3x.. Rell
e
o Ficapion. & nception '8 incepior - ncepicn.. comznom2 |Cross Channel Nor... |S6(S) x S6(S)  192(C) x 1(8)
T T T T - - EE——
# inception..# inception..® inception..® inception... pooi2-3x3_s2 o Max Pooling 28(S) = 28(5) = 192(C) = 1(8)
: ! { 3x3 max pooling with stride [2 2] and pa
@ inception. @ inception..® inception 2 |inception_3a-1x1 Convolution 28(5) = 28(5) = 64(C) = 1(B) Meights 1 = 1 = 192 = 64
T T 84 121182 convolutions with stride [1 1... Bias 1x1x64
@, inception. @ incaption..p inception_3a-relu_1x1 ReLU 28(S) = 28(5) = 84(C) = 1(8)
R * RelU
W-rcepti
. y ‘T”IT 14 |inception_3a-3x3_reduce Convolution 28(8) = 28(5) = 9&6(C) = 1(B) Meights 1 = 1 = 192 = 9§
__— ) 96 1%1x182 convalutions with stride [1 1... Bias 1x1 =9
@ inception. ® inception..® inception -® inception_. -
! ! ! ' 3 | == S —— — S .

Investigate the network architecture using the plot to the left. Select a layer in the plot. The selected
layer is highlighted in the plot and in the layer table.

In the table, view layer information such as layer properties, layer type, and sizes of the layer
activations and learnable parameters. The activations of a layer are the outputs of that layer. Each
activation dimension has one of the following labels:

e S — Spatial

* C — Channel

* B — Batch observations

* T — Time or sequence

* U — Unspecified
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View the dimension labels to understand how data propagates through the network and how the
layers modify the size and layout of activations.

Select a deeper layer in the network. Notice that activations in deeper layers are smaller in the
spatial dimensions (the first two dimensions) and larger in the channel dimension (the last
dimension). Using this structure enables convolutional neural networks to gradually increase the
number of extracted image features while decreasing the spatial resolution.

The Deep Learning Network Analyzer shows the total number of learnable parameters in the
network, to one decimal place. To see the exact number of learnable parameters, pause on total
learnables. To show the number of learnable parameters in each layer, click the arrow in the top-
right corner of the layer table and select Number of Learnables. To sort the layer table by column
value, hover the mouse over the column heading and click the arrow that appears. For example, you
can determine which layer contains the most parameters by sorting the layers by the number of
learnable parameters.

Fix Errors in Network Architecture

Create a simple convolutional network with some skip connections. Create a layer array containing
the main branch of the network.

layers = [
imageInputlLayer([32 32 3])
convolution2dLayer(5,16,Padding="same")
reluLayer(Name="relu 1")
convolution2dLayer(3,16,Padding="same",Stride=2)
reluLayer
additionLayer(2,Name="add 1")
convolution2dLayer(3,16,Padding="same",Stride=2)
reluLayer
additionLayer(3,Name="add 2")
fullyConnectedlLayer(10)
softmaxLayer
classificationLayer];

lgraph = layerGraph(layers);

Convert the layer array to a layer graph and add the skip connections. One of the skip connections
contains a single 1-by-1 convolutional layer conv_skip.

layer = convolution2dlLayer(1l,16,Stride=2,Name="conv skip");

lgraph = addLayers(lgraph, layer);
lgraph = connectLayers(lgraph,"relu 1","add 1/in2");
lgraph = connectLayers(lgraph,"add 1","add 2/in2");

Analyze the network architecture using the analyzeNetwork function. The function finds issues with
three layers in the network.

analyzeNetwork(lgraph)
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4\ Deep Learning Network Analyzer - O X
Analysis for trainNetwork usage
Name: Igraph 3 5k 1 3 0 3 o
Analysis date: 28-Oct-2021 13:48:57
ISSUES ®
Found in Message
# imageinput| & @ conv_skip
° @ |conv_skip Disconnected layers. All layers in the layer graph must be connected
v Detected disconnected layers:
layer ‘conv_skip'
® com_1 QO |add 2 Unconnected input. Each layer input must be connected to the output of another layer
Y O |add 1 Input size mismatch. Size of input to this layer is different from the expected input size.
Inputs to this layer
o reiu_1 from layer 'relu_2" (size 16(S) x 16(S) x 16(C) = 1(B)) .
From I Al 47 (mivn 2@ v W) v 4RI v 400
#
#'conv_2
Hame Type Activations Leamable Properties
Y Y
imageinput Image Input 32(S) = 32(5) = 3(C) = 1(B)
o reiu 2 32x32x3 images with 'zerocenter’ norm
conv_1 Convolution 32(S) = 32(S) = 16(C) = 1(8) Weights 5 =5 = 3 x 18
% 16 5x5 convolutions with stride 1 1] and Bias 1=1x=16
[ FeER relu_1 ReLU 32(S) = 32(5) = 16(C) = 1(B)
RelLU
* cony_2 Convolution 16(5) = 16(5) = 16(C) = 1(B) Weights 3 = 3 = 16 x 16
JrU— 16 3x3 comvolutions with stride [2 2] and Bias 1x1x16
‘ relu_2 RelLU 16(5) = 16(5) = 16(C) = 1(B)
Y RelU
el 3 Q add_1 Addition
- Element-wise sddition of 2 inputs
4 conv_3 Convolution Weights
16 33 convolutions with stride [2 2] and Bias
opadd_2
relu_3 RelU
Y ReLU
Q add_2 Addition
L Element-wise addition of 3 inputs
Y fc Fully Connected Weights
10 fully connected layer Bias
§ softmax softmax Softmax
. softmax
Classification Quiput |-
® classoutput P
© conv_skip Convolution Weights
16 1x1 convolutions with stride [2 2] and Bias

Investigate and fix the errors in the network. In this example, the following issues cause the errors:

* The layer conv_skip is not connected to the rest of the network. It should be a part of the
shortcut connection between the add 1 and add 2 layers. To fix this error, connect add 1 to
conv_skip and conv_skip to add 2.

* The add 2 layer is specified to have three inputs, but the layer only has two inputs. To fix the
error, specify the number of inputs as 2.

* All the inputs to an addition layer must have the same size, but the add 1 layer has two inputs
with different sizes. Because the conv_2 layer has a Stride value of 2, this layer downsamples
the activations by a factor of two in the first two dimensions (the spatial dimensions). To resize the
input from the relu2 layer so that it has the same size as the input from relu_1, remove the
downsampling by removing the Stride value of the conv_2 layer.

Apply these modifications to the layer graph construction from the beginning of this example and
create a new layer graph.

layers = [

imagelInputLayer([32 32 3])
convolution2dLayer(5,16,Padding="same")
reluLayer(Name="relu 1")
convolution2dLayer(3,16,Padding="same")
reluLayer

additionLayer(2,Name="add 1")
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convolution2dLayer(3,16,Padding="same",Stride=2)
reluLayer

additionLayer(2,Name="add 2")
fullyConnectedLayer(10)

softmaxLayer

classificationLayer];

lgraph = layerGraph(layers);

layer = convolution2dlLayer(1,16,Stride=2,Name="conv_skip");

lgraph = addLayers(lgraph, layer);

lgraph = connectlLayers(lgraph,"relu 1","add 1/in2");
lgraph = connectlLayers(lgraph,"add 1","conv_skip");
lgraph = connectLayers(lgraph, "conv_skip","add 2/in2");

Analyze the new architecture. The new network does not contain any errors and is ready to be
trained.

analyzeNetwork(lgraph)

4\ Deep Learing Network Analyzer - [m] x

Analysis for trainNetwork usage

Name: Igraph 47'( 1 3 0 0 0

Analysis date: 28-Oct-2021 13:50:23

. Mame Type Activations Leamable Properties
T 1 imageinput Image Input 32(5) = 32(5) = 3(C) = 1(B) -
32x32x2 images with ‘zerocenter’ norm...
® conv_1 -
2 conv_1 Convolution 32(5) = 32(5) = 16(C) = 1(B) Weights 5 =5 = 3 = 16
T 16 5%5 convolutions with stride [1 1] and. Bias 1=1=18
el 3 Jrelu_1 RelU 32(5) = 32(5) = 16(C) = 1(B)
* RelU
& cony_2 4 conv_2 Convolution 32(5) = 32(5) = 16(C) = 1(B) Weights 3 = 3 = 16
16 3%3 convolutions with stride [1 1] and. Bias 1 x1 = 1
L | T
. relu_2 ReLU 32(5) = 32(5) = 16(C) = 1(B)
o el 2 feL]
™ add_1 Addition 32(5) = 32(5) = 16(C) = 1(B)
®2dd 1 Element-wise addition of 2 inputs
v % 7 |conv_3 Convolution 16(S) = 16(S) = 16(C) = 1(B) Weights 3 = 3 5 = 16
R ) 18 3x3 convolutions with stride [2 2] and Bias 1=1x16
®conv_3 ® conv_skip
! relu_3 RelLU 16(5) = 16(5) = 16(C) = 1(B)
ReLU
o= 3 4 ¢ | conv_skip Convolution 16(S) = 18(5) = 16(C) = 1(B) Weights 1 x 1 * 16
N 18 11 convolutions with stride [2 2] and Bias 1=1x16
®3dd_2 0 |add_2 Addition 16(5) = 16(5) = 16(C) = 1(B)
. Element-wise addition of 2 inputs
e fc Fully Connected 1(s) = 1(s) = 18(C) = 1(B) Weights 10 = 4096
o 10 fully connected layer Bias 18 = 1
Y
2 |softmax Softmax 1(S) = 1(5) = 18(C) = 1(B)
® sofimax softmax
\ @ |classoutput Classification Qutput [1(S) = 1(5) = 18(C}) = 1(B)
® classoutput Erassentropyex

Analyze Layers for Custom Training Loop

Create a layer array for a custom training loop. For custom training loop workflows, the network must
not have an output layer.

layers = [

imagelInputLayer([28 28 1],Normalization="none")
convolution2dLayer(5,20,Padding="same")
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batchNormalizationLayer

reluLayer

convolution2dLayer(3,20,Padding="same")
batchNormalizationLayer

reluLayer

convolution2dLayer(3,20,Padding="same")
batchNormalizationLayer

reluLayer

fullyConnectedLayer(10)

softmaxLayer];

Analyze the layer array using the analyzeNetwork function and set the TargetUsage option to

"dlnetwork".

analyzeNetwork(layers,TargetUsage="dlnetwork")

4\ Deep Learning Network Analyzer

Analysis for dinetwork usage
Name: layers

Analysis date: 18-Nov-2021 12:50:21

.
Y

® conv_1
'

# batchnorm_1
Y

®refu_1

1

® conv_2

'

® batchnorm_2
Y

® e 2

i

® conv_3

'

@ batchnorm_3
Y

® e 3

¥

»fc

Y

@ softmax

ANALYSIS RESULT [~ ]
Name Type Activations Leamable Properties
imageinput Image Input 28(5) = 28(5) = 1(C) = 1({B) -
28x28%1 images
conv_1 Convolution 28(5) = 28(5) = 28(C) = 1(B) Meights 5 = 5 = 1 = 28
20 5%5 convolutions with stride [1 1] and Biasz 1x1x 328
batchnorm_1 Batch Normalization [28(s) = 28(5) = 28(C) = 1(8) Offset 1 x 1 x 20
Batch normalization Scale 1 =1 =28
relu_1 RelU 28(S) = 28(5) = 28(C) = 1(B)

RelU

conv_2 Convelution 28(5) = 28(5) = 28(C) = 1(B) Weights 3 x 3 = 28 = 28
20 3%3 convolutions with stride [1 1] anc Bias 1x=1=x=28
batchnorm_2 Batch Normalization |28(5) = 28(5) = 28(C) = 1(B) Offset 1 = 1 = 28

Batch normalization Scale 1 =1 = 28
relu_2 RelU 28(5) = 28(5) = 28(C) = 1(B)

RelU

conv_3 Convolution 28(5) = 28(5) = 28(C) = 1(B) Meights 3 = 3 = 28 x 28
20 32 convolutions with stride [1 1] an Bias 1=1 =28
batchnorm_3 Batch Normalization |28(S) = 28(5) = 28(C) = 1(B) Offset 1 = 1 = 20

Batch normalization Scale 1 =1 =20
relu_3 ReLU 28(S) = 28(5) = 28(C) = 1(B)

RelU

fc Fully Connected 18{C) = 1(B) Meights 18 = 15680

10 fully connected layer Bias 13 = 1

softmax Softmax 18(C) = 1(B)

softmax

Here, the function does not report any issues with the layer array.

Analyze Network Using Example Inputs

To analyze a network that has an input that is not connected to an input layer, you can provide
example network inputs to the analyzeNetwork function. You can provide example inputs when you
analyze dlnetwork objects, or when you analyze Layer arrays or LayerGraph objects for custom
training workflows by setting the TargetUsage option to "dlnetwork".

Define the network architecture. Construct a network with two branches. The network takes two

inputs, with one input per branch. Connect the branches using an addition layer.
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numFilters = 24;
inputSize = [64 64 3];

layersBranchl = [
convolution2dLayer(3,6*numFilters,Padding="same",Stride=2)
groupNormalizationLayer("all-channels")
reluLayer
convolution2dLayer(3,numFilters,Padding="same")
groupNormalizationLayer("channel-wise")
additionLayer(2,Name="add")
reluLayer
fullyConnectedlLayer(10)
softmaxLayer];

layersBranch2 = [
convolution2dLayer(1l,numFilters,Name="conv_branch")
groupNormalizationLayer("all-channels",Name="gn branch")];

lgraph = layerGraph(layersBranchl);
lgraph = addLayers(lgraph,layersBranch2);
lgraph = connectlLayers(lgraph,"gn branch","add/in2");

Create the dlnetwork. Because this network contains an unconnected input, create an uninitialized
dlnetwork object by setting the Initialize option to false.

net = dlnetwork(lgraph,Initialize=false);
View the network input names.
net.InputNames

1x2 cell

ans =
{'conv_1'} {'conv_branch'}

Create example network inputs of the same size and format as typical inputs for this network using
random dlarray objects. For both inputs, use a batch size of 32. Use an input of size 64-by-64 with
three channels for the input to the layer "input". Use an input of size 64-by-64 with 18 channels for
the input to the layer "conv_branch".

X1l
X2

dlarray(rand([inputSize 32]),"SSCB");
dlarray(rand([32 32 18 32]),"SSCB");

Analyze the network. Provide the example inputs in the same order as the InputNames property of
the dlnetwork. You must provide an example input for all network inputs, including inputs that are
connected to an input layer.

analyzeNetwork(net, X1, X2)
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4\ Deep Learning Network Analyzer - m} x
Analysis for dinetwork usage
ame: net 281.7k 11 0 00
Analysis date: 28-Oct-2021 13:58:09
ANALYSIS RESULT [~ ]
Hame Type Activations Leamable Properties
conv_1 ® conv_branch
x T |conv_1 Convolution 32(5) = 32(5) = 144(C) = 32(B) Weights 3 = 3 = 3 x 144
v | 144 3x3 convolutions with stride [2 2] an... Bias 1x1 %144
2 groupnorm_1 Group Normalization |32(5) = 32(5) = 144{C) = 32(B) Offset 1 = 1 = 144
# groupnorm_1 # gn_branch Group normalization Scale 1 = 1 = 144
Y 2 [re_1 ReLU 32(5) = 32(5) = 144(C) = 32(B)
Rell
& et 4 |comv_2 Convolution 32(5) = 32(5) = 24(C) = 32(B) Meigh. 3 =3 x 144 =
I 24 3x3 convolutions with stride [1 1] and... Bias 1x1x24
groupnorm_2 Group Normalization |32(5) = 32(S) = 24(C) x 32(B) Offset 1 x 1 x 24
® conv_2 Group normalization Scale 1 x 1 = 24
y 8 conv_branch Convolution 32(5) = 32(5) = 24(C) = 32(B) Weights 1 = 1 = 18 = 24
24 11 convolutions with stride [1 1] and... Bias 1x1x324
& groupnorm_2 7 |gn_branch Group Mormalization |32(S) = 32(5) = 24(C) = 32(B) Offset 1 =1 = 24
Group normalization Scale 1 = 1 = 24
3
add Addition 32(5) = 32(5) * 24(C) * 32(B)
' 2dd Element-wise addition of 2 inputs
8 relu_2 RelLU 32(5) = 32(5) = 24(C) = 32(B)
! ReLL
» relu_2 | Fully Connected 18(C) = 32(8) Weights 18 = 24576
10 fully connected layer Bias 18 = 1
! softmax Softmax 18(C) = 32(8)
o softmax
i
® softmax
4 »

Input Arguments

layers — Network layers
Layer array | LayerGraph object

Network layers, specified as a Layer array or a LayerGraph object.
For a list of built-in layers, see “List of Deep Learning Layers”.

net — Deep learning network
SeriesNetwork object | DAGNetwork object | dlnetwork object

Deep learning network, specified as a SeriesNetwork, DAGNetwork, or dlnetwork object.

target — Target workflow
"trainNetwork" (default) | "dlnetwork"

Target workflow, specified as one of the following:

* "trainNetwork" — Analyze layer graph for usage with the trainNetwork function. For
example, the function checks that the layer graph has an output layer and no disconnected layer
outputs.

* "dlnetwork" — Analyze layer graph for usage with dlnetwork objects. For example, the
function checks that the layer graph does not have any output layers.
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X1,...,Xn — Example network inputs
dlarray

Example network inputs, specified as formatted dlarray objects. The software propagates the
example inputs through the network to determine the size and format of layer activations, the size
and number of learnable and state parameters, and the total number of learnables.

Use example inputs when you want to analyze a network that does not have any input layers or that
has inputs that are not connected to an input layer.

The order in which you must specify the example inputs depends on the type of network you are
analyzing:

* Layer array — Provide example inputs in the same order that the layers that require inputs
appear in the Layer array.

* LayerGraph — Provide example inputs in the same order as the layers that require inputs appear
in the Layers property of the LayerGraph.

* dlnetwork — Provide example inputs in the same order as the inputs are listed in the
InputNames property of the dlnetwork.

If a layer has multiple unconnected inputs, then example inputs for that layer must be specified
separately in the same order as they appear in the layer’s InputNames property.

You must specify one example input for each input to the network, even if that input is connected to
an input layer.

Version History
Introduced in R2018a

See Also

Deep Network Designer | SeriesNetwork | DAGNetwork | LayerGraph | trainNetwork | plot |
assembleNetwork | summary

Topics

“Create Simple Deep Learning Network for Classification”
“Transfer Learning with Deep Network Designer”

“Build Networks with Deep Network Designer”

“Train Deep Learning Network to Classify New Images”
“Pretrained Deep Neural Networks”

“Visualize Activations of a Convolutional Neural Network”
“Deep Learning in MATLAB”
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assembleNetwork

Assemble deep learning network from pretrained layers

Syntax

assembledNet = assembleNetwork(layers)

Description
assembleNetwork creates deep learning networks from layers without training.
Use assembleNetwork for the following tasks:

* Convert a layer array or layer graph to a network ready for prediction.
* Assemble networks from imported layers.
* Modify the weights of a trained network.

To train a network from scratch, use trainNetwork.

assembledNet = assembleNetwork(layers) assembles the layer array or layer graph layers
into a deep learning network ready to use for prediction.

Examples

Assemble Network from Pretrained Keras Layers

Import the layers from a pretrained Keras network, replace the unsupported layers with custom
layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5"';
lgraph = importKerasLayers(filename, 'ImportWeights', true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning

The Keras network contains some layers that are not supported by Deep Learning Toolbox™. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the
placeholder layers using findPlaceholderLayers and display their Keras configurations.

placeholderLayers = findPlaceholderLayers(lgraph);
placeholderLayers.KerasConfiguration
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ans = struct with fields:
trainable: 1
name: ‘'gaussian noise 1'
stddev: 1.5000

ans = struct with fields:
trainable: 1
name: 'gaussian noise 2'
stddev: 0.7000

Define a custom Gaussian noise layer by saving the file gaussianNoiselLayer.m in the current
folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras

layers.
gnLayerl = gaussianNoiselayer(1.5, 'new gaussian noise 1");
gnLayer2 = gaussianNoiselayer(0.7, 'new gaussian noise 2');

Replace the placeholder layers with the custom layers using replacelLayer.

lgraph
lgraph

replacelLayer(lgraph, 'gaussian noise 1',gnLayerl);
replacelLayer(lgraph, 'gaussian noise 2',gnLayer2);

Specify Class Names

The imported classification layer does not contain the classes, so you must specify these before
assembling the network. If you do not specify the classes, then the software automatically sets the
classes to 1, 2, ..., N, where N is the number of classes.

The classification layer has the name 'ClassificationLayer activation 1'. Set the classes to
0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer = lgraph.Layers(end);

cLayer.Classes = string(0:9);

lgraph = replacelLayer(lgraph, 'ClassificationLayer activation 1',clLayer);
Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that
is ready to use for prediction.

net assembleNetwork(lgraph)

net =
DAGNetwork with properties:

Layers: [15x1 nnet.cnn.layer.Layer]
Connections: [15x2 table]

InputNames: {'input 1'}
OutputNames: {'ClassificationLayer activation 1'}

Input Arguments

layers — Network layers
Layer array | LayerGraph object
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Network layers, specified as a Layer array or a LayerGraph object.

To create a network with all layers connected sequentially, you can use a Layer array as the input
argument. In this case, the returned network is a SeriesNetwork object.

A directed acyclic graph (DAG) network has a complex structure in which layers can have multiple
inputs and outputs. To create a DAG network, specify the network architecture as a LayerGraph
object and then use that layer graph as the input argument to assembleNetwork.

The assembleNetwork function supports networks with at most one sequence input layer.

For a list of built-in layers, see “List of Deep Learning Layers”.

Output Arguments

assembledNet — Assembled network
SeriesNetwork object | DAGNetwork ohject

Assembled network ready for prediction, returned as a SeriesNetwork object or a DAGNetwork
object. The returned network depends on the layers input argument:

+ Iflayersisa Layer array, then assembledNet is a SeriesNetwork object.
» If layersis a LayerGraph object, then assembledNet is a DAGNetwork object.

Version History
Introduced in R2018b

See Also

trainNetwork | importKerasNetwork | replacelLayer | importKerasLayers |
findPlaceholderLayers | functionLayer

Topics

“Assemble Network from Pretrained Keras Layers”
“Deep Learning in MATLAB”

“Pretrained Deep Neural Networks”

“Define Custom Deep Learning Layers”
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Dot-product attention

Syntax

Y = attention(queries, keys,values,numHeads)

[Y,weights] = attention(queries,keys,values,numHeads)

[Y,weights] = attention(queries,keys,values,numHeads,DataFormat=FMT)
[Y,weights] attention(queries, keys,values,numHeads,Name=Value)

Description
The attention operation focuses on parts of the input using weighted multiplication operations.

Y = attention(queries, keys,values,numHeads) applies the dot-product attention operation
to the specified queries, keys, and values using the number of attention heads numHeads. The input
argument queries must be a formatted dlarray object.

[Y,weights] = attention(queries,keys,values,numHeads) applies the dot-product
attention operation and also returns the attention weights..

[Y,weights] = attention(queries,keys,values,numHeads,DataFormat=FMT) applies the
dot-product attention operation to the unformatted dlarray object queries with format specified by
FMT. For example, DataFormat="CBT" specifies data with format "CBT" (channel, batch, time).

[Y,weights] = attention(queries,keys,values,numHeads,Name=Value) specifies
additional options using one or more name-value arguments. For example,
DropoutProbability=0.01 specifies a dropout probability of 0.01.

Examples

Apply Attention Operation

Specify the sizes of the queries, keys, and values.

querySize 100;
valueSize 120;
numQueries = 64;
numValues = 80;
numObservations = 32;

Create random arrays containing the queries, keys, and values. For the queries, specify the dlarray
format "CBT" (channel, batch, time).

queries = dlarray(rand(querySize,numObservations, numQueries),"CBT");
keys = dlarray(rand(querySize,numObservations, numValues));
values = dlarray(rand(valueSize,numObservations, numValues));

Specify the number of attention heads.
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numHeads = 5;

Apply the attention operation.

[Y,weights] = attention(queries,keys,values,numHeads);
View the sizes and format of the output.

size(Y)

ans = 1x3

120 32 64

dims(Y)

ans =
'CBT!

View the sizes and format of the weights.
size(weights)
ans = 1x4

80 64 5 32

dims(weights)
ans =

0x0 empty char array

Create Multihead Self Attention Function

You can use the attention function to implement the multihead self attention operation [1] that
focuses on parts of the input.

Create the multiheadSelfAttention function, listed in the Multihead Self Attention Function on
page 1-158 section of the example. The multiheadSelfAttention function takes as input the input
data X, the number of heads, and the learnable weights for the queries, keys, values, and output data,
and returns the multihead attention values.

The input X must be an unformatted dlarray object, where the first dimension corresponds to the
input channels, the second dimension corresponds to the time or spatial dimension, and the third
dimension corresponds to the batch dimension.

Create an array of sequence data.
numChannels = 10;
numObservations = 128;
numTimeSteps = 100;

X = rand(numChannels,numObservations,numTimeSteps);
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X = dlarray(X);
size(X)

ans = 1x3

10 128 100

Specify the number of heads for multihead attention.
numHeads = 8;
Initialize the learnable parameters for multihead attention.

* The learnable query, key, and value weights must be (numChannels*numHeads )-by-
numChannels arrays.

* The learnable output weights must be a (numChannels*numHeads )-by-
(numChannels*numHeads) array.

outputSize = numChannels*numHeads;

WQ = rand(outputSize,numChannels);
WK = rand(outputSize,numChannels);
WV = rand(outputSize,numChannels);
W0 = rand(outputSize,outputSize);

Apply the multihead self attention operation.
Y = multiheadSelfAttention (X, numHeads,WQ,WK,WV,W0);

View the size of the output. The output has size (numChannels*numHeads)-by-numObservations-

by-(numTimeSteps).
size(Y)
ans = 1x3

80 128 100

Multihead Self Attention Function

The multiheadSelfAttention function takes as input the input data X, the number of heads, and
the learnable weights for the queries, keys, values, and output data, and returns the multihead

attention values.

* The input X must be an unformatted dlarray object, where the first dimension corresponds to
the input channels, the second dimension corresponds to the time or spatial dimension, and the

third dimension corresponds to the batch dimension.

* The learnable query, key, and value weight matrices are (numChannels*numHeads )-by-

numChannels matrices.

* The learnable output weights matrix is a (numChannels*numHeads )-by-
(numChannels*numHeads) matrix.

function Y = multiheadSelfAttention (X, numHeads,WQ,WK,WV,WO0)

queries = pagemtimes(WQ,X);
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keys = pagemtimes (WK, X) ;
values = pagemtimes (WV,X);

A = attention(queries,keys,values,numHeads,DataFormat="CTB");
Y = pagemtimes(WO0,A);
end

Create Luong Attention Function

You can use the attention function to create a function that applies the Luong attention operation
to its input. Create the LuongAttention function, listed at the end of the example, that applies the
Luong attention operation.

Specify the array sizes.

numHiddenUnits = 100;
latentSize = 16;

Create random arrays containing the input data.

hiddenState = dlarray(rand(numHiddenUnits,1));
Z = dlarray(rand(latentSize,1));
weights = dlarray(rand(numHiddenUnits,latentSize));

Apply the LuongAttention function.

[context,attentionScores] = luongAttention(hiddenState,Z,weights);
View the sizes of the outputs.

size(context)

ans = 1Ix2

16 1

size(attentionScores)

ans = 1x2

1 1

Luong Attention Function

The luongAttention function returns the context vector and attention scores according to the
Luong "general" scoring [2]. This is equivalent to dot-product attention with queries, keys, and values
specified as the hidden state, the weighted latent representation, and the latent representation,
respectively.

function [context,attentionScores] = luongAttention(hiddenState,Z,weights)

numHeads = 1;
queries = hiddenState;
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keys = pagemtimes(weights,Z);
values = Z;

[context,attentionScores] = attention(queries, keys,values,numHeads,Scale=1,DataFormat="CBT");

end

Input Arguments

queries — Queries
dlarray object

Queries, specified as a dlarray object.

queries can have at most one "S" (spatial) or "T" (time) dimension. Any dimensions in queries
labeled "U" (unspecified) must be singleton. If queries is an unformatted dlarray object, then
specify the data format using the DataFormat option.

The size of the "C" (channel) dimension in keys must match the size of the corresponding dimension
in queries.

The size of the "B" (batch) dimension in queries, keys, and values must match.

keys — Keys
dlarray object | numeric array

Keys, specified as a dlarray object or a numeric array.

If keys is a formatted dlarray object, then its format must match the format of queries. If keys is
not a formatted dlarray, then the function uses the same format as queries.

The size of any "S" (spatial) or "T" (time) dimensions in keys must match the size of the
corresponding dimension in values.

The size of the "C" (channel) dimension in keys must match the size of the corresponding dimension
in queries.

The size of the "B" (batch) dimension in queries, keys, and values must match.

values — Values
dlarray object | numeric array

Values, specified as a dlarray object or a numeric array.

If values is a formatted dlarray object, then its format must match the format of queries.
Otherwise, the function uses the same format as queries.

The size of any "S" (spatial) or "T" (time) dimensions in keys must match the size of the
corresponding dimension in values.

The size of the "B" (batch) dimension in queries, keys, and values must match.

numHeads — Number of heads
positive integer

Number of heads, specified as a positive integer. The value of numHeads must evenly divide the size
of the "C" (channel) dimension of queries, keys, and values.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: attention(queries, keys,values,numHeads,DataFormat="CBT") applies the
attention operation for unformatted data and specifies the data format "CBT" (channel, batch, time).

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

e "S" — Spatial

+ "C" — Channel

* "B" — Batch (for example, samples and observations)
* "T" — Time (for example, time steps of sequences)

* "U" — Unspecified

You can use the labels "C" and "B" at most once and one dimension labeled either "S" or "T".

You must specify DataFormat when the input data is not a formatted dlarray.

Data Types: char | string

Scale — Multiplicative factor for scaled dot-product attention
"auto" (default) | numeric scalar

Multiplicative factor for scaled dot-product attention [1], specified as one of these values:

"auto" — Multiply the dot-product by A = L, where d; denotes the number of channels in the

NG
keys divided by the number of heads.
* Numeric scalar — Multiply the dot-product by the specified scale factor.

Data Types: single | double | char | string

PaddingMask — Mask indicating which elements of the input correspond to padding values
dlarray object | logical array | numeric array

Mask indicating which elements of the input correspond to padding values, specified as a dlarray
object, a logical array, or a numeric array consisting of 0 and 1 values.

The function prevents and allows attention to elements of input data key-value pairs when the
corresponding element in PaddingMask is 0 and 1, respectively.

If PaddingMask is a formatted dlarray, then its format must match that of keys. If PaddingMask
is not a formatted dlarray, then the function uses the same format as keys. The size of the "S"
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(spatial), "T" (time), and "B" (batch) dimensions in PaddingMask must match the size of the
corresponding dimensions in keys and values.

The default value is a logical array of ones with the same size as keys.

AttentionMask — Attention mask
"none" (default) | "causal" | numeric array | logical array

Attention mask indicating which elements to include when applying the attention operation, specified
as one of these values:

* "none" — Do not prevent attention to elements with respect to their positions. If
AttentionMask is "none", then the software prevents attention using PaddingMask only.

* "causal" — Prevent elements in position M in the "S" (spatial) or "T" (time) dimension of
queries from providing attention to the elements in positions n>M in the corresponding
dimension of keys and values. Use this option for auto-regressive models.

» Logical or numeric array — Prevent attention to elements of keys and values when the
corresponding element in the array is 0, where AttentionMask is a Nk-by-Nq matrix or a Nk-by-
Ng-by-numObservations array, Nk is the size of the "S" (spatial) or "T" (time) dimension of
keys, Nq is the size of the corresponding dimension in queries, and numObservations is the
size of the "B" dimension in queries.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
logical | char | string

DropoutProbability — Dropout probability
0 (default) | nonnegative scalar less than 1

Dropout probability for the attention weights, specified as a nonnegative scalar less than 1.

Data Types: single | double

Output Arguments

Y — Output data
dlarray object

Output data, returned as a dlarray object.

If queries is a formatted dlarray object, then Y is a formatted dlarray object with the same
dimension labels as queries. The size of the "C" (channel) dimension of Y is the same as the size of
the corresponding dimension in values. The size of the "S" (spatial)

or "T" dimension of Y is the same size as the corresponding dimension in queries.
If queries is not a formatted dlarray object, the Y is an unformatted dlarray object.

weights — Attention weights
unformatted dlarray object

Attention weights, returned as an unformatted dlarray object.

weights is a Nk-by-Ng-by-numHeads-by-numObservations, where Nk is the size of the "S" (spatial)
or "T" (time) dimension of keys, Nq is the size of the corresponding dimension in queries, and
numObservations is the size of the "B" (batch) dimension in queries.
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Algorithms
Dot-Product Attention
The attention operation focuses on parts of the input using weighted multiplication operations.

The single-head dot-product attention operation is given by

attention(Q,K,V) = dropout(softmax(mask(AQKT, M )) p)V,
where Q, K, and V correspond to the queries, keys, and values, respectively, 4 denotes the scaling
factor, M is a mask array of ones and zeros, and p is the dropout probability. The mask operation
includes and excludes the values of the matrix multiplication setting values of the input to —« for
zero-valued mask elements. The mask is the union of the padding and attention masks. The dropout
operation sets elements to zero with probability p.

Multihead Self Attention

The multihead self attention operation for the input X is given by

multiheadSelfAttention(X, h, WQ, WK, WV, WO) = concatenate(heady, ..., headh)WO,
where h is the number of heads, W2, WX, WV, and W° are learnable projection matrices for the

queries, keys, values, and output, respectively. Each weight matrix is composed of concatenated
weight matrices W; for each head. Each head; denotes the output of the head operation given by

head; = attention(XWiQ, XW,-K, XW,-V .

Version History

Introduced in R2022b
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Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

* When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU.
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* queries
* keys
* values

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
padsequences | dlarray | dlgradient | dlfeval | Lstm | gru | embed

Topics

“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

“Sequence-to-Sequence Translation Using Attention”

“Image Captioning Using Attention”

“Multilabel Graph Classification Using Graph Attention Networks”
“Language Translation Using Deep Learning”

“List of Functions with dlarray Support”
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augment

Apply identical random transformations to multiple images

Syntax

augl = augment(augmenter,I)

Description

augl = augment(augmenter,I) augments image I using a random transformation from the set of
image preprocessing options defined by image data augmenter, augmenter. If I consists of multiple
images, then augment applies an identical transformation to all images.

Examples

Augment Image Data with Custom Rotation Range

Create an image augmenter that rotates images by a random angle. To use a custom range of valid
rotation angles, you can specify a function handle when you create the augmenter. This example
specifies a function called myrange (defined at the end of the example) that selects an angle from
within two disjoint intervals.

imageAugmenter = imageDataAugmenter('RandRotation',@myrange);
Read multiple images into the workspace, and display the images.

imgl imread('peppers.png');

img2 imread('corn.tif',2);

inImg = imtile({imgl,img2});
imshow(inImg)
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Augment the images with identical augmentations. The randomly selected rotation angle is returned
in a temporary variable, angle.

outCellArray = augment(imageAugmenter,{imgl,img2});
angle = 8.1158
View the augmented images.

outImg = imtile(outCellArray);
imshow(outImg);
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Supporting Function

This example defines the myrange function that first randomly selects one of two intervals (-10, 10)
and (170, 190) with equal probability. Within the selected interval, the function returns a single
random number from a uniform distribution.

function angle = myrange()
if randi([0 1],1)

a = -10;
b = 10;
else
a = 170;
b = 190;
end
angle = a + (b-a).*rand(1)

end

Input Arguments

augmenter — Augmentation options
imageDataAugmenter object

Augmentation options, specified as an imageDataAugmenter object.

I — Images to augment
numeric array | cell array of numeric and categorical images
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Images to augment, specified as one of the following.

* Numeric array, representing a single grayscale or color image.
* Cell array of numeric and categorical images. Images can be different sizes and types.

Output Arguments

augI — Augmented images
numeric array | cell array of numeric and categorical images

Augmented images, returned as a numeric array or cell array of numeric and categorical images,
consistent with the format of the input images I.

Tips

* You can use the augment function to preview the transformations applied to sample images.

* To perform image augmentation during training, create an augmentedImageDatastore and
specify preprocessing options by using the 'DataAugmentation' name-value pair with an
imageDataAugmenter. The augmented image datastore automatically applies random
transformations to the training data.

Version History
Introduced in R2018b

See Also
augmentedImageDatastore | trainNetwork
Topics

“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”
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augmentedimageDatastore

Transform batches to augment image data

Description

An augmented image datastore transforms batches of training, validation, test, and prediction data,
with optional preprocessing such as resizing, rotation, and reflection. Resize images to make them
compatible with the input size of your deep learning network. Augment training image data with
randomized preprocessing operations to help prevent the network from overfitting and memorizing
the exact details of the training images.

To train a network using augmented images, supply the augmentedImageDatastore to
trainNetwork. For more information, see “Preprocess Images for Deep Learning”.

*  When you use an augmented image datastore as a source of training images, the datastore
randomly perturbs the training data for each epoch, so that each epoch uses a slightly different
data set. The actual number of training images at each epoch does not change. The transformed
images are not stored in memory.

* An imageInputLayer normalizes images using the mean of the augmented images, not the mean
of the original data set. This mean is calculated once for the first augmented epoch. All other
epochs use the same mean, so that the average image does not change during training.

By default, an augmentedImageDatastore only resizes images to fit the output size. You can
configure options for additional image transformations using an imageDataAugmenter.

Creation

Syntax

auimds = augmentedImageDatastore(outputSize,imds)

auimds = augmentedImageDatastore(outputSize,X,Y)

auimds = augmentedImageDatastore(outputSize,X)

auimds = augmentedImageDatastore(outputSize,tbl)

auimds = augmentedImageDatastore(outputSize,tbl, responseNames)
auimds = augmentedImageDatastore( _ ,Name,Value)

Description

auimds = augmentedImageDatastore(outputSize,imds) creates an augmented image
datastore for classification problems using images from image datastore imds, and sets the
OutputSize property.

auimds = augmentedImageDatastore(outputSize,X,Y) creates an augmented image
datastore for classification and regression problems. The array X contains the predictor variables and
the array Y contains the categorical labels or numeric responses.

auimds = augmentedImageDatastore(outputSize,X) creates an augmented image datastore
for predicting responses of image data in array X.
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auimds = augmentedImageDatastore(outputSize,tbl) creates an augmented image
datastore for classification and regression problems. The table, tb1, contains predictors and
responses.

auimds = augmentedImageDatastore(outputSize,tbl, responseNames) creates an
augmented image datastore for classification and regression problems. The table, tb1l, contains
predictors and responses. The responseNames argument specifies the response variables in thl.

auimds = augmentedImageDatastore( _ ,Name,Value) creates an augmented image
datastore, using name-value pairs to set the ColorPreprocessing, DataAugmentation,
OutputSizeMode, and DispatchInBackground properties. You can specify multiple name-value
pairs. Enclose each property name in quotes.

For example,
augmentedImageDatastore([28,28],myTable, 'OutputSizeMode', 'centercrop') creates
an augmented image datastore that crops images from the center.

Input Arguments

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.

Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and
channels, and the last dimension indexes the individual images.

If the array contains NaNs, then they are propagated through the training. However, in most cases,
the training fails to converge.

Data Types: single | double | uint8 | int8 | uint16 | intl6 | uint32 | int32

Y — Responses for classification or regression
array of categorical responses | numeric matrix | 4-D numeric array

Responses for classification or regression, specified as one of the following:

» For a classification problem, Y is a categorical vector containing the image labels.
» For a regression problem, Y can be an:

* n-by-r numeric matrix. n is the number of observations and r is the number of responses.
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* h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number
of observations.

Responses must not contain NaNs.

Data Types: categorical | double

tbl — Input data
table

Input data, specified as a table. tbl must contain the predictors in the first column as either absolute
or relative image paths or images. The type and location of the responses depend on the problem:

For a classification problem, the response must be a categorical variable containing labels for the
images. If the name of the response variable is not specified in the call to
augmentedImageDatastore, the responses must be in the second column. If the responses are
in a different column of tb1, then you must specify the response variable name using the
responseNames argument.

For a regression problem, the responses must be numerical values in the column or columns after
the first one. The responses can be either in multiple columns as scalars or in a single column as
numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name
of the response variable or variables, augmentedImageDatastore accepts the remaining
columns of tbl as the response variables. You can specify the response variable names using the
responseNames argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated
through the training, however, in most cases the training fails to converge.

Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array

Names of the response variables in the input table, specified as one of the following:

For classification or regression tasks with a single response, responseNames must be a character
vector or string scalar containing the response variable in the input table.

For regression tasks with multiple responses, responseNames must be string array or cell array
of character vectors containing the response variables in the input table.

Data Types: char | cell | string

Properties

ColorPreprocessing — Preprocessing color operations
'none’' (default) | 'gray2rgb' | 'rgb2gray'

Preprocessing color operations performed on input grayscale or RGB images, specified as 'none’,
'gray2rgb', or 'rgb2gray'. When the image datastore contains a mixture of grayscale and RGB
images, use ColorPreprocessing to ensure that all output images have the number of channels

required by imageInputlLayer.
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No color preprocessing operation is performed when an input image already has the required number
of color channels. For example, if you specify the value 'gray2rgb' and an input image already has
three channels, then no color preprocessing occurs.

Note The augmentedImageDatastore object converts RGB images to grayscale by using the
rgb2gray function. If an image has three channels that do not correspond to red, green, and blue
channels (such as an image in the L*a*b* color space), then using ColorPreprocessing can give
poor results.

No color preprocessing operation is performed when the input images do not have 1 or 3 channels,
such as for multispectral or hyperspectral images. In this case, all input images must have the same
number of channels.

Data Types: char | string

DataAugmentation — Preprocessing applied to input images
'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as an imageDataAugmenter object or 'none’.
When DataAugmentation is 'none', no preprocessing is applied to input images.

DispatchInBackground — Dispatch observations in background
false (default) | true

Dispatch observations in the background during training, prediction, or classification, specified as
false or true. To use background dispatching, you must have Parallel Computing Toolbox.

Augmented image datastores only perform background dispatching when used with trainNetwork
and inference functions such as predict and classify. Background dispatching does not occur
when you call the read function of the datastore directly.

MiniBatchSize — Number of observations in each batch
128 | positive integer

Number of observations that are returned in each batch. You can change the value of
MiniBatchSize only after you create the datastore. For training, prediction, and classification, the
MiniBatchSize property is set to the mini-batch size defined in trainingOptions.

NumObservations — Total number of observations in the datastore
positive integer

This property is read-only.

Total number of observations in the augmented image datastore. The number of observations is the
length of one training epoch.

OutputSize — Size of output images
vector of two positive integers

Size of output images, specified as a vector of two positive integers. The first element specifies the
number of rows in the output images, and the second element specifies the number of columns.

Note If you create an augmentedImageDatastore by specifying the image output size as a three-
element vector, then the datastore ignores the third element. Instead, the datastore uses the value of
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ColorPreprocessing to determine the dimensionality of output images. For example, if you specify
OutputSizeas [28 28 1] butset ColorPreprocessingas 'gray2rgb', then the output images
have size 28-by-28-by-3.

OutputSizeMode — Method used to resize output images
'resize’ (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as one of the following.

* 'resize' — Scale the image using bilinear interpolation to fit the output size.

Note augmentedImageDatastore uses the bilinear interpolation method of imresize with
antialiasing. Bilinear interpolation enables fast image processing while avoiding distortions such
as caused by nearest-neighbor interpolation. In contrast, by default imresize uses bicubic
interpolation with antialiasing to produce a high-quality resized image at the cost of longer
processing time.

* 'centercrop' — Take a crop from the center of the training image. The crop has the same size
as the output size.

* 'randcrop' — Take a random crop from the training image. The random crop has the same size
as the output size.

Data Types: char | string

Object Functions

combine Combine data from multiple datastores

hasdata Determine if data is available to read

numpartitions Number of datastore partitions

partition Partition a datastore

partitionByIndex Partition augmentedIimageDatastore according to indices
preview Preview subset of data in datastore

read Read data from augmentedimageDatastore

readall Read all data in datastore

readBylndex Read data specified by index from augmentedimageDatastore
reset Reset datastore to initial state

shuffle Shuffle data in augmentedIimageDatastore

subset Create subset of datastore or FileSet

transform Transform datastore

isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable
Examples

Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent
the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;
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digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

+ 28 is the height and width of the images.

* 1 is the number of channels.

* 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,1idx);
XTrain(:,:,:,idx) = []1;

YValidation YTrain(idx);
YTrain(idx) [1;

Create an imageDataAugmenter object that specifies preprocessing options for image
augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images
up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

imageAugmenter = imageDataAugmenter(
'RandRotation',[-20,20],
'RandXTranslation',[-3 3],
'RandYTranslation',[-3 3])

imageAugmenter =
imageDataAugmenter with properties:

FillValue: 0
RandXReflection: 0
RandYReflection: 0

RandRotation: [-20 20]

RandScale: [1 1]

RandXScale: [1 1]
RandYScale: [1 1]
RandXShear: [0 0]
RandYShear: [0 0]
RandXTranslation: [-3 3]
RandYTranslation: [-3 3]

Create an augmentedImageDatastore object to use for network training and specify the image
output size. During training, the datastore performs image augmentation and resizes the images. The
datastore augments the images without saving any images to memory. trainNetwork updates the
network parameters and then discards the augmented images.

imageSize = [28 28 1];
augimds = augmentedImageDatastore(imageSize,XTrain,YTrain, 'DataAugmentation', imageAugmenter);

Specify the convolutional neural network architecture.

layers = [
imagelInputlLayer(imageSize)

convolution2dLayer(3,8, 'Padding', 'same"')
batchNormalizationLayer
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Accuracy (%)

reluLayer
maxPooling2dLayer(2, 'Stride',2)

convolution2dLayer(3,16, 'Padding', 'same')
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2, 'Stride',2)

convolution2dLayer (3,32, 'Padding', 'same')
batchNormalizationLayer
reluLayer

fullyConnectedLayer(10)
softmaxLayer
classificationLayer];

Specify training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm',
'MaxEpochs', 15,
'Shuffle', 'every-epoch’,
'Plots', 'training-progress',
'Verbose', false,
'ValidationData',{XValidation,YValidation});

Train the network. Because the validation images are not augmented, the validation accuracy is
higher than the training accuracy.

net = trainNetwork(augimds, layers,opts);

Training Progress (08-Jun-2021 12:30:14) Resuits
Validation accuracy: 97.50%
Training finished: Max epochs completed
Training Time
Start time: 09-Jun-202112:30:14
Elapsed time. 40 sec
Training Cycle
Epoch: 150115
Iteration: 465 of 465
lterations per epoch 3
Maximum iterations: 485
Validation
Frequency 50 terations

Other Information

Hardware resource single CPU
Learning rate schedule: Constant
Leaming rate: 0.01
Learn more
50 100 150 200 250 300 350 400 450
lteration
Accuracy

Training (smoothed)
Training

— ~@— - Validation

Loss

Training (smoothed
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Tips

* You can visualize many transformed images in the same figure by using the imtile function. For
example, this code displays one mini-batch of transformed images from an augmented image
datastore called auimds.

minibatch = read(auimds);
imshow(imtile(minibatch.input))

* By default, resizing is the only image preprocessing operation performed on images. Enable
additional preprocessing operations by using the DataAugmentation name-value pair argument
with an imageDataAugmenter object. Each time images are read from the augmented image
datastore, a different random combination of preprocessing operations are applied to each image.

Version History
Introduced in R2018a

See Also
imageDataAugmenter | imageInputLayer | trainNetwork
Topics

“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”
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augmentedimageSource

(To be removed) Generate batches of augmented image data

Note augmentedImageSource will be removed in a future release. Create an augmented image
datastore using the augmentedImageDatastore function instead. For more information, see
“Compatibility Considerations”.

Syntax

auimds = augmentedImageSource(outputSize,imds)

auimds = augmentedImageSource(outputSize,X,Y)
auimds =
auimds = augmentedImageSource(outputSize,tbl, responseNames)

(

(
augmentedImageSource(outputSize, tbhl)

(

(

auimds = augmentedImageSource(  ,Name,Value)

Description

auimds = augmentedImageSource(outputSize,imds) creates an augmented image datastore,
auimds, for classification problems using images from image datastore imds, with output image size
outputSize.

auimds = augmentedImageSource(outputSize,X,Y) creates an augmented image datastore
for classification and regression problems. The array X contains the predictor variables and the array
Y contains the categorical labels or numeric responses.

auimds = augmentedImageSource(outputSize,tbl) creates an augmented image datastore
for classification and regression problems. The table, tb, contains predictors and responses.

auimds = augmentedImageSource(outputSize,tbl, responseNames) creates an augmented
image datastore for classification and regression problems. The table, tbl, contains predictors and
responses. The responseNames argument specifies the response variable in tb1l.

auimds = augmentedImageSource( ,Name, Value) creates an augmented image datastore,
using name-value pairs to configure the image preprocessing done by the augmented image
datastore. You can specify multiple name-value pairs.

Examples

Train Network with Rotational Invariance Using augmentedImageSource

Preprocess images using random rotation so that the trained convolutional neural network has
rotational invariance. This example uses the augmentedImageSource function to create an
augmented image datastore object. For an example of the recommended workflow that uses the
augmentedImageDatastore function to create an augmented image datastore object, see “Train
Network with Augmented Images” on page 1-172.

Load the sample data, which consists of synthetic images of handwritten numbers.
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[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-
by-5000 array, where:

» 28 is the height and width of the images.
* 1 is the number of channels
* 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Create an image augmenter that rotates images during training. This image augmenter rotates each
image by a random angle.

imageAugmenter = imageDataAugmenter('RandRotation',[-180 180])

imageAugmenter =
imageDataAugmenter with properties:

FillValue: 0
RandXReflection: O
RandYReflection: O

RandRotation: [-180 180]

RandScale: [1 1]

RandXScale: [1 1]
RandYScale: [1 1]
RandXShear: [0 0]
RandYShear: [0 0]
RandXTranslation: [0 0]
RandYTranslation: [0 0]

Use the augmentedImageSource function to create an augmented image datastore. Specify the size
of augmented images, the training data, and the image augmenter.

imageSize = [28 28 1];
auimds = augmentedImageSource(imageSize,XTrain,YTrain, 'DataAugmentation', imageAugmenter)

auimds =
augmentedImageDatastore with properties:

NumObservations: 5000
MiniBatchSize: 128
DataAugmentation: [1x1 imageDataAugmenter]
ColorPreprocessing: 'none'
OutputSize: [28 28]
OutputSizeMode: 'resize'
DispatchInBackground: 0

Specify the convolutional neural network architecture.

layers = [
imagelInputlLayer([28 28 1])

convolution2dLayer(3,16, 'Padding',1)

batchNormalizationLayer
reluLayer
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maxPooling2dLayer(2, 'Stride',2)

convolution2dlLayer(3,32, 'Padding', 1)
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2, 'Stride',2)

convolution2dLayer(3,64, 'Padding', 1)
batchNormalizationLayer
reluLayer

fullyConnectedLayer(10)
softmaxLayer
classificationLayer];

Set the training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm’,
'MaxEpochs', 10,
'Shuffle', 'every-epoch’,
'InitiallLearnRate’',le-3);

Train the network.

net = trainNetwork(auimds, layers,opts);

Training on single CPU.
Initializing image normalization.

|
| Epoch | TIteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
| |
| 1| 1| 00:00:01 | 7.81% | 2.4151 | 0.0010 |
| 2 | 50 | 00:00:23 | 52.34% | 1.4930 | 0.0010 |
| 3] 100 | 00:00:44 | 74.22% | 1.0148 | 0.0010 |
| 4 | 150 | 00:01:05 | 78.13% | 0.8153 | 0.0010 |
| 6 | 200 | 00:01:26 | 76.56% | 0.6903 | 0.0010 |
| 7 | 250 | 00:01:45 | 87.50% | 0.4891 | 0.0010 |
| 8 | 300 | 00:02:06 | 87.50% | 0.4874 | 0.0010 |
| 9 | 350 | 00:02:30 | 87.50% | 0.4866 | 0.0010 |
| 10 | 390 | 00:02:46 | 89.06% | 0.4021 | 0.0010 |
| |

Input Arguments

outputSize — Size of output images
vector of two positive integers

Size of output images, specified as a vector of two positive integers. The first element specifies the
number of rows in the output images, and the second element specifies the number of columns. This
value sets the QutputSize on page 1-0 property of the returned augmented image datastore,
auimds.

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a
custom function for reading the images, then ImageDatastore does not prefetch.
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Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.

Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and
channels, and the last dimension indexes the individual images.

If the array contains NaNs, then they are propagated through the training. However, in most cases,
the training fails to converge.
Data Types: single | double | uint8 | int8 | uint16 | int1l6 | uint32 | int32

Y — Responses for classification or regression
array of categorical responses | numeric matrix | 4-D numeric array

Responses for classification or regression, specified as one of the following:

» For a classification problem, Y is a categorical vector containing the image labels.
» For a regression problem, Y can be an:

* n-by-r numeric matrix. n is the number of observations and r is the number of responses.

* h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number
of observations.

Responses must not contain NaNs.

Data Types: categorical | double

tbl — Input data
table

Input data, specified as a table. tb1l must contain the predictors in the first column as either absolute
or relative image paths or images. The type and location of the responses depend on the problem:

» For a classification problem, the response must be a categorical variable containing labels for the
images. If the name of the response variable is not specified in the call to
augmentedImageSource, the responses must be in the second column. If the responses are in a
different column of tb1, then you must specify the response variable name using the
responseNames argument.

» For a regression problem, the responses must be numerical values in the column or columns after
the first one. The responses can be either in multiple columns as scalars or in a single column as
numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name
of the response variable or variables, augmentedImageSource accepts the remaining columns of
tbl as the response variables. You can specify the response variable names using the
responseNames argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated
through the training, however, in most cases the training fails to converge.
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Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array

Names of the response variables in the input table, specified as one of the following:

» For classification or regression tasks with a single response, responseNames must be a character
vector or string scalar containing the response variable in the input table.

For regression tasks with multiple responses, responseNames must be string array or cell array
of character vectors containing the response variables in the input table.

Data Types: char | cell | string
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: augmentedImageSource([28,28],myTable, 'OutputSizeMode', 'centercrop')
creates an augmented image datastore that sets the OutputSizeMode property to crop images from
the center.

ColorPreprocessing — Preprocessing color operations
'none’' (default) | 'gray2rgb' | 'rgb2gray

Preprocessing operations performed on color channels of input images, specified as the comma-
separated pair consisting of ' ColorPreprocessing' and 'none', 'gray2rgb', or 'rgb2gray"'.
This argument sets the ColorPreprocessing on page 1-0 property of the returned
augmented image datastore, auimds. The ColorPreprocessing property ensures that all output
images from the augmented image datastore have the number of color channels required by
inputImagelLayer.

DataAugmentation — Preprocessing applied to input images
‘none’ (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as the comma-separated pair consisting of
‘DataAugmentation' and an imageDataAugmenter object or 'none’'. This argument sets the
DataAugmentation on page 1-0 property of the returned augmented image datastore,
auimds. When DataAugmentation is 'none’, no preprocessing is applied to input images.

OutputSizeMode — Method used to resize output images
‘resize’ (default) | 'centercrop' | 'randcrop'’

Method used to resize output images, specified as the comma-separated pair consisting of
"OutputSizeMode' and one of the following. This argument sets the QutputSizeMode on page
1-0 property of the returned augmented image datastore, auimds.

* 'resize' — Scale the image to fit the output size. For more information, see imresize.

* 'centercrop' — Take a crop from the center of the training image. The crop has the same size
as the output size.
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* ‘'randcrop' — Take a random crop from the training image. The random crop has the same size
as the output size.

Data Types: char | string

BackgroundExecution — Perform augmentation in parallel
false (default) | true

Perform augmentation in parallel, specified as the comma-separated pair consisting of
'BackgroundExecution' and false or true. This argument sets the DispatchInBackground
on page 1-0 property of the returned augmented image datastore, auimds. If
'BackgroundExecution' is true, and you have Parallel Computing Toolbox software installed,
then the augmented image datastore auimds performs image augmentation in parallel.

Output Arguments

auimds — Augmented image datastore
augmentedImageDatastore object

Augmented image datastore, returned as an augmentedImageDatastore object.

Version History
Introduced in R2017b

augmentedImageSource object is removed

In R2017b, you could create an augmentedImageSource object to preprocess images for training
deep learning networks. Starting in R2018a, the augmentedImageSource object has been removed.
Use an augmentedImageDatastore object instead.

An augmentedImageDatastore has additional properties and methods to assist with data
preprocessing. Unlike augmentedImageSource, which could be used for training only, you can use

an augmentedImageDatastore for both training and prediction.

To create an augmentedImageDatastore object, you can use either the
augmentedImageDatastore function (recommended) or the augmentedImageSource function.

augmentedImageSource function will be removed
Not recommended starting in R2018a

The augmentedImageSource function will be removed in a future release. Create an
augmentedImageDatastore using the augmentedImageDatastore function instead.

To update your code, change instances of the function name augmentedImageSource to
augmentedImageDatastore. You do not need to change the input arguments.

See Also
augmentedImageDatastore
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Compute performance metrics for average receiver operating characteristic (ROC) curve in
multiclass problem

Syntax

[FPR,TPR,Thresholds,AUC] = average(rocObj, type)

Description

[FPR,TPR, Thresholds,AUC] = average(rocObj,type) computes the averages of performance
metrics stored in the rocmetrics object rocObj for a multiclass classification problem using the
averaging method specified in type. The function returns the average false positive rate (FPR) and
the average true positive rate (TPR) for each threshold value in Thresholds. The function also
returns AUC, the area under the ROC curve composed of FPR and TPR.

Examples

Find Average ROC Curve

Compute the performance metrics for a multiclass classification problem by creating a rocmetrics
object, and then compute the average values for the metrics by using the average function. Plot the
average ROC curve using the outputs of average.

Load a sample of true labels and the prediction scores for a classification problem. For this example,
there are five classes: daisy, dandelion, roses, sunflowers, and tulips. The class names are stored in
classNames. The scores are the softmax prediction scores generated using the predict function.
scores is an N-by-K array where N is the number of observations and K is the number of classes.
The column order of scores follows the class order stored in classNames.

load( ' flowersDataResponses.mat"')

scores = flowersData.scores;
trueLabels = flowersData.truelLabels;

classNames = flowersData.classNames;

Create a rocmetrics object by using the true labels in truelLabels and the classification scores in
scores. Specify the column order of scores using classNames.

rocObj = rocmetrics(truelLabels,scores,classNames);

rocmetrics computes the FPR and TPR at different thresholds and finds the AUC value for each
class.

Compute the average performance metric values, including the FPR and TPR at different thresholds
and the AUC value, using the macro-averaging method.

[FPR, TPR, Thresholds,AUC] = average(rocObj,"macro");
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Plot the average ROC curve and display the average AUC value. Include (0,0) so that the curve starts
from the origin (0,0).

plot([0;FPR],[0;TPR])

xlabel("False Positive Rate")

ylabel("True Positive Rate")

title("Average ROC Curve")

hold on

plot([0,1],[0,1],"k--")

legend(join(["Macro-average (AUC =",AUC,")"1),
Location="southeast")

axis padded

hold off
Average ROC Curve
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Alternatively, you can create the average ROC curve by using the plot function. Specify
AverageROCType="macro" to compute the metrics for the average ROC curve using the macro-
averaging method.

plot(rocObj,AverageR0OCType="macro",ClassNames=[])
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Input Arguments

rocObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, specified as a rocmetrics object.

type — Averaging method
"micro" | "macro" | "weighted"

Averaging method, specified as "micro", "macro", or "weighted".

* "micro" (micro-averaging) — average finds the average performance metrics by treating all
one-versus-all on page 1-186 binary classification problems as one binary classification problem.
The function computes the confusion matrix components for the combined binary classification
problem, and then computes the average FPR and TPR using the values of the confusion matrix.

* "macro" (macro-averaging) — average computes the average values for FPR and TPR by
averaging the values of all one-versus-all binary classification problems.

+ "weighted" (weighted macro-averaging) — average computes the weighted average values for
FPR and TPR using the macro-averaging method and using the prior class probabilities (the
Prior property of rocObj) as weights.

The algorithm type determines the length of the vectors for the output arguments (FPR, TPR, and
Thresholds). For more details, see “Average of Performance Metrics”.
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Data Types: char | string

Output Arguments

FPR — Average false positive rates
numeric vector

Average false positive rates, returned as a numeric vector.

TPR — Average true positive rates
numeric vector

Average true positive rates, returned as a numeric vector.

Thresholds — Thresholds on classification scores
numeric vector

Thresholds on classification scores at which the function finds each of the average performance
metric values (FPR and TPR), returned as a vector.

AUC — Area under average ROC curve
numeric scalar

Area under the average ROC curve on page 1-186 composed of FPR and TPR, returned as a numeric
scalar.

More About

Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate versus the false positive rate for different thresholds of
classification scores.

The true positive rate and the false positive rate are defined as follows:

* True positive rate (TPR), also known as recall or sensitivity — TP/ (TP+FN), where TP is the
number of true positives and FN is the number of false negatives

+ False positive rate (FPR), also known as fallout or 1-specificity — FP/ (TN+FP), where FP is the
number of false positives and TN is the number of true negatives

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs. For each class, rocmetrics uses all distinct adjusted score on
page 1-186 values as threshold values to create a ROC curve.

For a multiclass classification problem, rocmetrics formulates a set of one-versus-all on page 1-186
binary classification problems to have one binary problem for each class, and finds a ROC curve for
each class using the corresponding binary problem. Each binary problem assumes one class as
positive and the rest as negative.

For a binary classification problem, if you specify the classification scores as a matrix, rocmetrics
formulates two one-versus-all binary classification problems. Each of these problems treats one class
as a positive class and the other class as a negative class, and rocmetrics finds two ROC curves.
Use one of the curves to evaluate the binary classification problem.
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For more details, see “ROC Curve and Performance Metrics”.
Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
classification and evaluates the performance on each class by using the binary classification that the
class is positive.

For example, the OVA coding design for three classes formulates three binary classifications:

Binary 1 Binary 2 Binary 3

Class 1 1 -1 -1
Class2 -1 1 -1
Class 3 -1 -1 1

Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

Algorithms
Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s,5,,53] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s;-max(s,,53),5,-max(sy,S3),S3-max(s,5,) 1.

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.

1-186



average

Alternative Functionality

* You can use the plot function to create the average ROC curve. The function returns a ROCCurve
object containing the XData, YData, Thresholds, and AUC properties, which correspond to the
output arguments FPR, TPR, Thresholds, and AUC of the average function, respectively. For an
example, see “Plot ROC Curve” on page 1-1305.

Version History
Introduced in R2022b

References

[1] Sebastiani, Fabrizio. "Machine Learning in Automated Text Categorization." ACM Computing
Surveys 34, no. 1 (March 2002): 1-47.

See Also
rocmetrics | addMetrics | plot

Topics

“ROC Curve and Performance Metrics”
“Compare Deep Learning Models Using ROC Curves”
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averagePoolingldLayer

1-D average pooling layer

Description

A 1-D average pooling layer performs downsampling by dividing the input into 1-D pooling regions,
then computing the average of each region.

The dimension that the layer pools over depends on the layer input:

» For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

* For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

» For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Creation

Syntax

layer
layer

averagePoolingldLayer(poolSize)
averagePoolingldLayer(poolSize,Name=Value)

Description

layer = averagePoolingldLayer(poolSize) creates a 1-D average pooling layer and sets the
PoolSize property.

layer = averagePoolingldLayer(poolSize,Name=Value) also specifies the padding or sets
the Stride and Name properties using one or more optional name-value arguments. For example,
averagePoolingldLayer(3,Padding=1,Stride=2) creates a 1-D average pooling layer with a
pool size of 3, a stride of 2, and padding of size 1 on both the left and right of the input.

Input Arguments

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: averagePoolingldLayer(3,Padding=1) creates a 1-D average pooling layer with a
pool size of 3 and padding of size 1 on the left and right of the layer input.

Padding — Padding to apply to input
[0 O] (default) | "same" | nonnegative integer | vector of nonnegative integers

Padding to apply to the input, specified as one of the following:



averagePoolingldLayer

* "same" — Apply padding such that the output size is ceil(inputSize/stride), where
inputSize is the length of the input. When Stride is 1, the output is the same size as the input.

* Nonnegative integer sz — Add padding of size sz to both ends of the input.

* Vector [1 r] of nonnegative integers — Add padding of size 1 to the left and r to the right of the
input.

Example: Padding=[2 1] adds padding of size 2 to the left and size 1 to the right.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |

char | string
Properties
Average Pooling

PoolSize — Width of pooling regions
positive integer

Width of the pooling regions, specified as a positive integer.

The width of the pooling regions Poo1Size must be greater than or equal to the padding dimensions
PaddingSize.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Stride — Step size for traversing input
1 (default) | positive integer

Step size for traversing the input, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

PaddingSize — Size of padding
[0 O] (default) | vector of two nonnegative integers

Size of padding to apply to each side of the input, specified as a vector [1 r] of two nonnegative
integers, where 1 is the padding applied to the left and r is the padding applied to the right.

When you create a layer, use the Padding name-value argument to specify the padding size.

Data Types: double

PaddingMode — Method to determine padding size
'manual’ (default) | 'same"

This property is read-only.
Method to determine padding size, specified as one of the following:

* 'manual' - Pad using the integer or vector specified by Padding.

* 'same' - Apply padding such that the output size is ceil(inputSize/Stride), where
inputSize is the length of the input. When Stride is 1, the output is the same as the input.

To specify the layer padding, use the Padding name-value argument.

Data Types: char
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PaddingValue — Value used to pad input
0 (default) | "mean"

Value used to pad input, specified as 0 or "mean".

When you use the Padding option to add padding to the input, the value of the padding applied can
be one of the following:

* 0 — Input is padded with zeros at the positions specified by the Padding property. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.

* "mean" — Input is padded with the mean of the pooling region at the positions specified by the
Padding option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Layer

Name — Layer name
"' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name "'

Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumQutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.
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Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create 1-D Average Pooling Layer

Create a 1-D average pooling layer with a pool size of 3.

layer

averagePoolingldLayer(3)

layer =
AveragePoolinglDLayer with properties:

Name:

Hyperparameters
PoolSize: 3
Stride: 1
PaddingMode: 'manual’
PaddingSize: [0 0]
PaddingValue: ©

Include a 1-D average pooling layer in a layer array.

layers = [
sequencelnputlLayer(12)
convolutionldLayer(11,96)
reluLayer
averagePoolingldLayer(3)
convolutionldLayer(11,96)
reluLayer
globalMaxPoolingldLayer
fullyConnectedLayer(10)
softmaxLayer
classificationlLayer]

layers =
10x1 Layer array with layers:

1 t Sequence Input Sequence input with 12 dimensions

2 t 1-D Convolution 96 11 convolutions with stride 1 and padding [0 0]

3 Y ReLU RelLU

4 Y 1-D Average Pooling average pooling with pool size 3, stride 1, and padding [
5 v 1-D Convolution 96 11 convolutions with stride 1 and padding [0 0]

6 Y ReLU RelLU

7 t 1-D Global Max Pooling 1-D global max pooling

8 t Fully Connected 10 fully connected layer

9 Y Softmax softmax

10 t Classification Output crossentropyex
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Algorithms
1-D Average Pooling Layer

A 1-D average pooling layer performs downsampling by dividing the input into 1-D pooling regions,
then computing the average of each region. The layer pools the input by moving the pooling regions
along the input horizontally.

The dimension that the layer pools over depends on the layer input:

» For time series and vector sequence input (data with three dimensions corresponding to the
channels, observations, and time steps), the layer pools over the time dimension.

» For 1-D image input (data with three dimensions corresponding to the spatial pixels, channels, and
observations), the layer pools over the spatial dimension.

» For 1-D image sequence input (data with four dimensions corresponding to the spatial pixels,
channels, observations, and time steps), the layer pools over the spatial dimension.

Version History
Introduced in R2021b

See Also

trainingOptions | trainNetwork | sequenceInputlLayer | lstmLayer | bilstmLayer |
gruLayer | convolutionldLayer | maxPoolingldLayer | globalMaxPoolingldLayer |
globalAveragePoolingldLayer

Topics

“Sequence Classification Using 1-D Convolutions”
“Sequence-to-Sequence Classification Using 1-D Convolutions”
“Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Time Series Forecasting Using Deep Learning”

“Long Short-Term Memory Networks”

“List of Deep Learning Layers”

“Deep Learning Tips and Tricks”
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Average pooling layer

Description

A 2-D average pooling layer performs downsampling by dividing the input into rectangular pooling
regions, then computing the average of each region.

Creation

Syntax

layer
layer

averagePooling2dLayer(poolSize)
averagePooling2dLayer(poolSize,Name,Value)

Description

layer = averagePooling2dLayer(poolSize) creates an average pooling layer and sets the
PoolSize property.

layer = averagePooling2dLayer(poolSize,Name,Value) sets the optional Stride and Name
properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair
argument. For example, averagePooling2dLayer(2, 'Stride',2) creates an average pooling
layer with pool size [2 2] and stride [2 2]. You can specify multiple name-value pairs. Enclose each
property name in single quotes.

Input Arguments

Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along
the edges of the layer input or to set the Stride and Name properties. Enclose names in single
quotes.

Example: averagePooling2dLayer(2, 'Stride',2) creates an average pooling layer with pool
size [2 2] and stride [2 2].

Padding — Input edge padding
[0 0 0 O] (default) | vector of nonnegative integers | ' same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

* 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height or width of the
input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, and to the left and right, if possible. If the padding that
must be added vertically has an odd value, then the software adds extra padding to the bottom. If

1-193



1 Deep Learning Functions

1-194

the padding that must be added horizontally has an odd value, then the software adds extra
padding to the right.

* Nonnegative integer p — Add padding of size p to all the edges of the input.

* Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input
and padding of size b to the left and right.

* Vector [t b 1 r] of nonnegative integers — Add padding of size t to the top, b to the bottom, 1
to the left, and r to the right of the input.

Example: 'Padding', 1 adds one row of padding to the top and bottom, and one column of padding
to the left and right of the input.

Example: 'Padding', 'same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties

Average Pooling

PoolSize — Dimensions of pooling regions
vector of two positive integers

Dimensions of the pooling regions, specified as a vector of two positive integers [h w], where h is
the height and w is the width. When creating the layer, you can specify PoolSize as a scalar to use
the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions Pool1Size.

Example: [2 1] specifies pooling regions of height 2 and width 1.

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector of two positive
integers [a b], where a is the vertical step size and b is the horizontal step size. When creating the
layer, you can specify Stride as a scalar to use the same value for both dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

PaddingSize — Size of padding
[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector [t b 1 r] of four nonnegative
integers, where t is the padding applied to the top, b is the padding applied to the bottom, 1 is the
padding applied to the left, and r is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
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Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to
the left and right of the input.

PaddingMode — Method to determine padding size
'manual’' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same’.

The software automatically sets the value of PaddingMode based on the 'Padding' value you
specify when creating a layer.

* Ifyousetthe 'Padding’ option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual’.

» Ifyou set the 'Padding' option to 'same', then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height or width of the input and stride is
the stride in the corresponding dimension. The software adds the same amount of padding to the
top and bottom, and to the left and right, if possible. If the padding that must be added vertically
has an odd value, then the software adds extra padding to the bottom. If the padding that must be
added horizontally has an odd value, then the software adds extra padding to the right.

PaddingValue — Value used to pad input
0 (default) | "mean"

Value used to pad input, specified as 0 or "mean".

When you use the Padding option to add padding to the input, the value of the padding applied can
be one of the following:

* 0 — Input is padded with zeros at the positions specified by the Padding property. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.

* "mean" — Input is padded with the mean of the pooling region at the positions specified by the
Padding option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Padding — Size of padding
[0 O] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When
creating a layer, use the 'Padding' name-value pair argument to specify the padding size.

Size of padding to apply to input borders vertically and horizontally, specified as a vector [a b] of
two nonnegative integers, where a is the padding applied to the top and bottom of the input data and
b is the padding applied to the left and right.

Example: [1 1] adds one row of padding to the top and bottom, and one column of padding to the
left and right of the input.

Layer

Name — Layer name
"' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name "'

Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Average Pooling Layer
Create an average pooling layer with the name 'avgl'.
layer = averagePooling2dLayer(2, 'Name', 'avgl')

layer =
AveragePooling2DLayer with properties:

Name: 'avgl'

Hyperparameters
PoolSize: [2 2]
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Stride: [1 1]
PaddingMode: 'manual’
PaddingSize: [0 0 0 O]

PaddingValue: 0

Include an average pooling layer in a Layer array.

layers = [ ...
imagelInputlLayer([28 28 1])
convolution2dLayer(5,20)
reluLayer
averagePooling2dLayer(2)
fullyConnectedLayer(10)
softmaxLayer
classificationlLayer]

layers =
7x1 Layer array with layers:

1 t Image Input 28x28x1 images with 'zerocenter' normalization

2 t 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0O
3 Y ReLU ReLU

4 b 2-D Average Pooling 2x2 average pooling with stride [1 1] and padding [0 0O
5 b Fully Connected 10 fully connected layer

6 b Softmax softmax

7 t Classification Output crossentropyex

Create Average Pooling Layer with Nonoverlapping Pooling Regions

Create an average pooling layer with nonoverlapping pooling regions.
layer = averagePooling2dLayer(2, 'Stride"',2)

layer =
AveragePooling2DLayer with properties:

Name:

Hyperparameters
PoolSize: [2 2]
Stride: [2 2]
PaddingMode: 'manual’
PaddingSize: [0 0 0 O]
PaddingValue: 0

The height and width of the rectangular regions (pool size) are both 2. The pooling regions do not
overlap because the step size for traversing the images vertically and horizontally (stride) is also 2.

Include an average pooling layer with nonoverlapping regions in a Layer array.

layers = [ ...
imagelInputLayer([28 28 1])
convolution2dLayer(5,20)
reluLayer
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averagePooling2dLayer(2, 'Stride"',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer]

layers =

7x1 Layer array with layers:

NOoOUph, WN =

Image Input

2-D Convolution

RelLU

2-D Average Pooling
Fully Connected
Softmax
Classification Output

28x28x1 images with 'zerocenter' normalization

20 5x5 convolutions with stride [1 1] and padding [0 ©
RelLU

2x2 average pooling with stride [2 2] and padding [0 O
10 fully connected layer

softmax

crossentropyex

Create Average Pooling Layer with Overlapping Pooling Regions

Create an average pooling layer with overlapping pooling regions.

layer = averagePooling2dLayer([3 2], 'Stride',2)

layer =

AveragePooling2DLayer with properties:

Name:

Hyperparameters
PoolSize: [3 2]

Stride: [2 2]

PaddingMode: ‘'manual’
PaddingSize: [0 0 0 0]
PaddingValue: 0

This layer creates pooling regions of size [3 2] and takes the average of the six elements in each
region. The pooling regions overlap because Stride includes dimensions that are less than the

respective pooling dimensions PoolSize

Include an average pooling layer with overlapping pooling regions in a Layer array.

layers = [
imagelInp

Q%Layer([ZS 28 1])

convolution2dLayer(5,20)

reluLayer

averagePooling2dLayer([3 2], 'Stride"',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer]

layers =

7x1 Layer array with layers:

3 1
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Image Input
2-D Convolution
ReLU

28x28x1 images with 'zerocenter' normalization
20 5x5 convolutions with stride [1 1] and padding [0 ©
RelLU
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4 t 2-D Average Pooling

5 t Fully Connected

6 Y Softmax

7 t Classification Output
Algorithms

2-D Average Pooling Layer

3x2 average pooling with stride [2
10 fully connected layer

softmax

crossentropyex

2] and padding [0 ©

A 2-D average pooling layer performs downsampling by dividing the input into rectangular pooling
regions, then computing the average of each region.

The dimensions that the layer pools over depends on the layer input:

Layer Input and Output Formats

For 2-D image input (data with four dimensions corresponding to pixels in two spatial dimensions,
the channels, and the observations), the layer pools over the spatial dimensions.

For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
dimensions.

For 1-D image sequence input (data with four dimensions corresponding to the pixels in one
spatial dimension, the channels, the observations, and the time steps), the layer pools over the
spatial and time dimensions.

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

wgn
wen
gy
-
g

— Spatial
— Channel
— Batch
— Time

— Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionlLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of AveragePooling2DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattab'le option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.
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Input Format Output Format

"SSCB" (spatial, spatial, channel, batch) "SSCB" (channel, batch)
"SCBT" (spatial, channel, batch, time) "SCB" (channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) |["SSCBT" (channel, batch, time)

Version History
Introduced in R2016a

References

[1] Nagi, J., E Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M.
Gambardella. "Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture
Recognition". IEEE International Conference on Signal and Image Processing Applications
(ICSIPA2011), 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
convolution2dLayer | globalAveragePooling2dLayer | maxPooling2dLayer

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”

“Specity Layers of Convolutional Neural Network”

“List of Deep Learning Layers”
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averagePooling3dLayer

3-D average pooling layer

Description

A 3-D average pooling layer performs downsampling by dividing three-dimensional input into
cuboidal pooling regions, then computing the average values of each region.

The dimensions that the layer pools over depends on the layer input:

* For 3-D image input (data with five dimensions corresponding to pixels in three spatial
dimensions, the channels, and the observations), the layer pools over the spatial dimensions.

» For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer pools over the
spatial dimensions.

* For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
and time dimensions.

Creation

Syntax

layer
layer

averagePooling3dLayer(poolSize)
averagePooling3dLayer(poolSize,Name,Value)

Description

layer = averagePooling3dLayer(poolSize) creates an average pooling layer and sets the
PoolSize property.

layer = averagePooling3dLayer(poolSize,Name,Value) sets the optional Stride and Name
properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair
argument. For example, averagePooling3dLayer(2, 'Stride',2) creates a 3-D average pooling
layer with pool size [2 2 2] and stride [2 2 2]. You can specify multiple name-value pairs. Enclose
each property name in single quotes.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: averagePooling3dLayer (2, 'Stride',2) creates a 3-D average pooling layer with pool
size [2 2 2] and stride [2 2 2].
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Padding — Input edge padding
0 (default) | array of nonnegative integers | ' same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these
values:

* 'same' — Add padding of size calculated by the software at training or prediction time so that the
output has the same size as the input when the stride equals 1. If the stride is larger than 1, then
the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of
the input and stride is the stride in the corresponding dimension. The software adds the same
amount of padding to the top and bottom, to the left and right, and to the front and back, if
possible. If the padding in a given dimension has an odd value, then the software adds the extra
padding to the input as postpadding. In other words, the software adds extra vertical padding to
the bottom, extra horizontal padding to the right, and extra depth padding to the back of the
input.

* Nonnegative integer p — Add padding of size p to all the edges of the input.

» Three-element vector [a b c] of nonnegative integers — Add padding of size a to the top and
bottom, padding of size b to the left and right, and padding of size c to the front and back of the
input.

* 2-by-3matrix [t L f;b r k] of nonnegative integers — Add padding of size t to the top, b to
the bottom, 1 to the left, r to the right, f to the front, and k to the back of the input. In other
words, the top row specifies the prepadding and the second row defines the postpadding in the
three dimensions.

Example: 'Padding', 1 adds one row of padding to the top and bottom, one column of padding to
the left and right, and one plane of padding to the front and back of the input.

Example: 'Padding', 'same' adds padding so that the output has the same size as the input (if the
stride equals 1).

Properties
Average Pooling

PoolSize — Dimensions of pooling regions
vector of three positive integers

Dimensions of the pooling regions, specified as a vector of three positive integers [h w d], where h
is the height, w is the width, and d is the depth. When creating the layer, you can specify PoolSize
as a scalar to use the same value for all three dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: [2 1 1] specifies pooling regions of height 2, width 1, and depth 1.

Stride — Step size for traversing input
[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector [a b c] of three positive
integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the
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depth direction. When creating the layer, you can specify Stride as a scalar to use the same value
for step sizes in all three directions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling
regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along
the depth of 1.

PaddingSize — Size of padding
[0 0 0;0 0 0] (default) | 2-by-3 matrix of nonnegative integers

Size of padding to apply to input borders, specified as 2-by-3 matrix [t 1 f;b r k] of nonnegative
integers, where t and b are the padding applied to the top and bottom in the vertical direction, 1 and
r are the padding applied to the left and right in the horizontal direction, and f and k are the padding
applied to the front and back along the depth. In other words, the top row specifies the prepadding
and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.

Example: [1 2 4;1 2 4] adds one row of padding to the top and bottom, two columns of padding
to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size
'manual’ (default) | 'same'

Method to determine padding size, specified as 'manual’' or 'same’.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify
when creating a layer.

* Ifyousetthe 'Padding' option to a scalar or a vector of nonnegative integers, then the software
automatically sets PaddingMode to 'manual’.

+ Ifyousetthe 'Padding' option to 'same’, then the software automatically sets PaddingMode to
'same' and calculates the size of the padding at training time so that the output has the same
size as the input when the stride equals 1. If the stride is larger than 1, then the output size is
ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and
stride is the stride in the corresponding dimension. The software adds the same amount of
padding to the top and bottom, to the left and right, and to the front and back, if possible. If the
padding in a given dimension has an odd value, then the software adds the extra padding to the
input as postpadding. In other words, the software adds extra vertical padding to the bottom,
extra horizontal padding to the right, and extra depth padding to the back of the input.

PaddingValue — Value used to pad input
0 (default) | "mean"

Value used to pad input, specified as 0 or "mean".

When you use the Padding option to add padding to the input, the value of the padding applied can
be one of the following:

* 0 — Input is padded with zeros at the positions specified by the Padding property. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.
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* "mean" — Input is padded with the mean of the pooling region at the positions specified by the
Padding option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Layer

Name — Layer name
"' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the

trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name "'

Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.
Output names of the layer. This layer has a single output only.

Data Types: cell

Examples
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Create 3-D Average Pooling Layer

Create a 3-D average pooling layer with nonoverlapping pooling regions that downsamples by a
factor of 2.

layer = averagePooling3dLayer(2, 'Stride"',2)

layer =
AveragePooling3DLayer with properties:

Name:

Hyperparameters
PoolSize: [2 2 2]
Stride: [2 2 2]
PaddingMode: 'manual’
PaddingSize: [2x3 double]
PaddingValue: 0

Include a 3-D average pooling layer in a Layer array.

layers = [ ...
image3dInputlLayer([28 28 28 3])
convolution3dLayer(5,20)
reluLayer
averagePooling3dLayer(2, 'Stride"',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer]

layers =
7x1 Layer array with layers:

1 n 3-D Image Input 28x28x28x3 images with 'zerocenter' normalization

2 t 3-D Convolution 20 5x5x5 convolutions with stride [1 1 1] and padding [0
3 " RelLU RelLU

4 n 3-D Average Pooling 2x2x2 average pooling with stride [2 2 2] and padding [0
5 t Fully Connected 10 fully connected layer

6 " Softmax softmax

7 t Classification Output crossentropyex

Create 3-D Average Pooling Layer with Overlapping Pooling Regions

Create a 3-D average pooling layer with overlapping pooling regions and padding for the top and
bottom of the input.

layer = averagePooling3dLayer([3 2 2],'Stride',2, 'Padding',[1 0 01])

layer =
AveragePooling3DLayer with properties:

Name:

Hyperparameters
PoolSize: [3 2 2]
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Stride: [2 2 2]
PaddingMode: 'manual’
PaddingSize: [2x3 double]
PaddingValue: 0

This layer creates pooling regions of size 3-by-2-by-2 and takes the average of the twelve elements in
each region. The stride is 2 in all dimensions. The pooling regions overlap because there are stride
dimensions Stride that are less than the respective pooling dimensions Pool1Size.

Algorithms
3-D Average Pooling Layer

A 3-D average pooling layer extends the functionality of an average pooling layer to a third
dimension, depth. An average pooling layer performs down-sampling by dividing the input into
rectangular or cuboidal pooling regions, and computing the average of each region. To learn more,
see the “2-D Average Pooling Layer” on page 1-199 section of the averagePooling2dLayer
reference page.

The dimensions that the layer pools over depends on the layer input:
* For 3-D image input (data with five dimensions corresponding to pixels in three spatial

dimensions, the channels, and the observations), the layer pools over the spatial dimensions.

» For 3-D image sequence input (data with six dimensions corresponding to the pixels in three
spatial dimensions, the channels, the observations, and the time steps), the layer pools over the
spatial dimensions.

* For 2-D image sequence input (data with five dimensions corresponding to the pixels in two spatial
dimensions, the channels, the observations, and the time steps), the layer pools over the spatial
and time dimensions.

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

e "S" — Spatial

* "C" — Channel

* "B" — Batch

« "T" — Time

e "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the

images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionlLayer object, or using the forward and predict
functions with dlnetwork objects.
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This table shows the supported input formats of AveragePooling3DLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattab'le option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format Output Format
"SSSCB" (spatial, spatial, spatial, channel, batch) | "SSSCB" (spatial, spatial, spatial, channel, batch)
"SSCBT" (spatial, spatial, channel, batch, time) |["SSCBT" (spatial, spatial, channel, batch, time)

"SSSCBT" (spatial, spatial, spatial, channel, "SSSCBT" (spatial, spatial, spatial, channel,
batch, time) batch, time)

Version History
Introduced in R2019a

See Also

averagePooling2dLayer | convolution3dLayer | maxPooling3dLayer |
globalAveragePooling3dLayer

Topics
“Deep Learning in MATLAB”

“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
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avgpool

Pool data to average values over spatial dimensions
Syntax

Y = avgpool (X, poolsize)

Y = avgpool (X, 'global')

Y = avgpool(  ,'DataFormat', FMT)

Y = avgpool(  ,Name,Value)
Description

The average pooling operation performs downsampling by dividing the input into pooling regions and
computing the average value of each region.

The avgpool function applies the average pooling operation to dlarray data. Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note To apply average pooling within a LlayerGraph object or Layer array, use one of the following
layers:

* averagePooling2dLayer

* averagePooling3dLayer

* globalAveragePooling2dLayer

* globalAveragePooling3dLayer

Y = avgpool(X,poolsize) applies the average pooling operation to the formatted dlarray object
X. The function downsamples the input by dividing it into regions defined by poolsize and
calculating the average value of the data in each region. The output Y is a formatted dlarray with
the same dimension format as X.

The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T"' dimension using the
"PoolFormat' option.

Y = avgpool (X, 'global') computes the global average over the spatial dimensions of the input
X. This syntax is equivalent to setting poolsize in the previous syntax to the size of the 'S
dimensions of X.

Y = avgpool( _ ,'DataFormat', FMT) applies the average pooling operation to the unformatted
dlarray object X with format specified by FMT using any of the previous syntaxes. The output Y is an
unformatted dlarray object with dimensions in the same order as X. For example,
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'DataFormat', 'SSCB' specifies data for 2-D average pooling with format 'SSCB' (spatial, spatial,
channel, batch).

Y = avgpool( ,Name, Value) specifies options using one or more name-value pair arguments.
For example, 'PoolFormat', 'T' specifies a pooling region for 1-D pooling with format 'T' (time).

Examples

Perform 2-D Average Pooling

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;

inputSize = [28 28];

numChannels = 3;

X = rand(inputSize(1l),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X, 'SSCB');

View the size and format of the input data.

size(d1X)

ans = 1x4

28 28 3 128

dims (d1X)

ans =
'SSCB'

Apply 2-D average pooling with 2-by-2 pooling regions using the avgpool function.

poolSize = [2 2];
dlY = avgpool(dlX,poolSize);

View the size and format of the output.
size(dlY)
ans = 1x4

27 27 3 128
dims (dlY)

ans =
'SSCB'
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Perform 2-D Global Average Pooling

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;

inputSize = [28 28];

numChannels = 3;

X = rand(inputSize(1l),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X, 'SSCB');

View the size and format of the input data.

size(d1X)

ans = 1x4

28 28 3 128

dims (d1X)

ans =
'SSCB!

Apply 2-D global average pooling using the avgpool function by specifying the 'global’' option.
dlY = avgpool(dlX, 'global');

View the size and format of the output.

size(dlY)

ans = 1x4

1 1 3 128

dims (dlY)

ans =
'SSCB!

Perform 1-D Average Pooling

Create a formatted dlarray object containing a batch of 128 sequences of length 100 with 12
channels. Specify the format 'CBT' (channel, batch, time).

miniBatchSize = 128;

sequencelLength = 100;

numChannels = 12;

X = rand(numChannels,miniBatchSize, sequencelLength);
dlX = dlarray(X, 'CBT');

View the size and format of the input data.

size(d1X)
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ans = 1x3

12 128 100

dims (d1X)

ans =
"CBT'

Apply 1-D average pooling with pooling regions of size 2 with a stride of 2 using the avgpool
function by specifying the 'PoolFormat' and 'Stride’ options.

poolSize = 2;
dlY = avgpool(dlX,poolSize, 'PoolFormat','T', 'Stride',2);

View the size and format of the output.
size(dlY)
ans = 1Ix3

12 128 50

dims (dlY)

ans =
"CBT'

Input Arguments

X — Input data
dlarray

Input data, specified as a formatted or unformatted dlarray object.

If X is an unformatted dlarray, then you must specify the format using the DataFormat option.
The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T"' dimension using the

"PoolFormat' option.

poolsize — Size of pooling regions
positive integer | vector of positive integers

Size of the pooling regions, specified as a numeric scalar or numeric vector.

To pool using a pooling region with edges of the same size, specify poolsize as a scalar. The pooling
regions have the same size along all dimensions specified by 'PoolFormat'.

To pool using a pooling region with edges of different sizes, specify poolsize as a vector, where
poolsize(1i) is the size of corresponding dimension in 'PoolFormat"'.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Stride', 2 specifies the stride of the pooling regions as 2.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

e "S" — Spatial

¢ "C" — Channel

* "B" — Batch (for example, samples and observations)

* "T" — Time (for example, time steps of sequences)

* "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.

Data Types: char | string

PoolFormat — Dimension order of pooling region
character vector | string scalar

Dimension order of the pooling region, specified as the comma-separated pair consisting of
'"PoolFormat' and a character vector or string scalar that provides a label for each dimension of the
pooling region.

The default value of 'PoolFormat' depends on the task:

Task Default

1-D pooling 'S' (spatial)

2-D pooling 'SS' (spatial, spatial)

3-D pooling 'SSS' (spatial, spatial, spatial)

The format must have either no 'S"' (spatial) dimensions, or as many 'S"' (spatial) dimensions as the
input data.

The function, by default, pools over up to three dimensions of X labeled 'S' (spatial). To pool over
dimensions labeled 'T' (time), specify a pooling region with a 'T"' dimension using the
"PoolFormat' option.

Example: 'PoolFormat’', 'T'
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Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of
'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same
value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the
number of spatial dimensions of the input data, the vector values are used for the corresponding
spatial dimensions.

The default value of 'Stride' is 1. If 'Stride"' isless than poolsize in any dimension, then the
pooling regions overlap.

The Stride parameter is not supported for global pooling using the 'global' option.
Example: 'Stride',3
Data Types: single | double

Padding — Size of padding applied to edges of data
0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of
"Padding' and one of the following:

* ‘'same' — Padding size is set so that the output size is the same as the input size when the stride
is 1. More generally, the output size of each spatial dimension is ceil(inputSize/stride),
where inputSize is the size of the input along a spatial dimension.

* Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.

* Numeric vector — A different amount of padding is applied along each spatial dimension. Use a
vector of size d, where d is the number of spatial dimensions of the input data. The ith element of
the vector specifies the size of padding applied to the start and the end along the ith spatial
dimension.

* Numeric matrix — A different amount of padding is applied to the start and end of each spatial
dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input
data. The element (1,d) specifies the size of padding applied to the start of spatial dimension d.
The element (2,d) specifies the size of padding applied to the end of spatial dimension d. For
example, in 2-D, the format is [top, left; bottom, right].

The 'Padding' parameter is not supported for global pooling using the 'global"' option.

Example: 'Padding', 'same'

Data Types: single | double

PaddingValue — Value used to pad input
0 (default) | "mean”

Value used to pad input, specified as 0 or "mean".

When you use the Padding option to add padding to the input, the value of the padding applied can
be one of the following:

* 0 — Input is padded with zeros at the positions specified by the Padding property. The padded
areas are included in the calculation of the average value of the pooling regions along the edges.
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* "mean" — Input is padded with the mean of the pooling region at the positions specified by the
Padding option. The padded areas are effectively excluded from the calculation of the average
value of each pooling region.

Output Arguments

Y — Pooled data
dlarray

Pooled data, returned as a dlarray with the same underlying data type as X.

If the input data X is a formatted dlarray, then Y has the same format as X. If the input data is not a
formatted dlarray, then Y is an unformatted dlarray with the same dimension order as the input
data.

More About

Average Pooling

The avgpool function pools the input data to average values. For more information, see the “2-D
Average Pooling Layer” on page 1-199 section of the averagePooling2dLayer reference page.

Version History
Introduced in R2019b

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

*  When the input argument X is a dlarray with underlying data of type gpuArray, this function
runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also

dlconv | maxpool | dlarray | dlgradient | dlfeval

Topics

“Define Custom Training Loops, Loss Functions, and Networks”

“Train Network Using Model Function”
“List of Functions with dlarray Support”
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batchnorm

Normalize data across all observations for each channel independently

Syntax

Y = batchnorm(X,offset,scaleFactor)
[Y,popMu,popSigmaSq] = batchnorm(X,offset,scaleFactor)
[Y,updatedMu,updatedSigmaSq] = batchnorm(X,offset,scaleFactor, runningMu,

runningSigmaSq)

Y = batchnorm(X,offset,scaleFactor,trainedMu,trainedSigmaSq)
[ 1 = batchnorm(___ ,'DataFormat', FMT)

[ 1 = batchnorm(___ ,Name,Value)

Description

The batch normalization operation normalizes the input data across all observations for each channel
independently. To speed up training of the convolutional neural network and reduce the sensitivity to
network initialization, use batch normalization between convolution and nonlinear operations such as
relu.

After normalization, the operation shifts the input by a learnable offset p and scales it by a learnable
scale factor y.

The batchnorm function applies the batch normalization operation to dlarray data. Using dlarray
objects makes working with high dimensional data easier by allowing you to label the dimensions. For
example, you can label which dimensions correspond to spatial, time, channel, and batch dimensions
using the "S", "T", "C", and "B" labels, respectively. For unspecified and other dimensions, use the
"U" label. For dlarray object functions that operate over particular dimensions, you can specify the
dimension labels by formatting the dlarray object directly, or by using the DataFormat option.

Note To apply batch normalization within a layerGraph object or Layer array, use
batchNormalizationLayer.

Y = batchnorm(X,offset,scaleFactor) applies the batch normalization operation to the input
data X using the population mean and variance of the input data and the specified offset and scale
factor.

The function normalizes over the 'S"' (spatial), 'T"' (time), 'B' (batch), and 'U' (unspecified)
dimensions of X for each channel in the 'C' (channel) dimension, independently.

For unformatted input data, use the 'DataFormat' option.

[Y,popMu,popSigmaSq] = batchnorm(X,offset,scaleFactor) applies the batch
normalization operation and also returns the population mean and variance of the input data X.

[Y,updatedMu,updatedSigmaSq] = batchnorm(X,offset,scaleFactor, runningMu,
runningSigmaSq) applies the batch normalization operation and also returns the updated moving
mean and variance statistics. runningMu and runningSigmaSq are the mean and variance values
after the previous training iteration, respectively.
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Use this syntax to maintain running values for the mean and variance statistics during training. When
you have finished training, use the final updated values of the mean and variance for the batch
normalization operation during prediction and classification.

Y = batchnorm(X,offset,scaleFactor,trainedMu,trainedSigmaSq) applies the batch
normalization operation using the mean trainedMu and variance trainedSigmaSq.

Use this syntax during classification and prediction, where trainedMu and trainedSigmaSq are
the final values of the mean and variance after you have finished training, respectively.

[ 1 = batchnorm(___ ,'DataFormat', FMT) applies the batch normalization operation to
unformatted input data with format specified by FMT using any of the input or output combinations in
previous syntaxes. The output Y is an unformatted dlarray object with dimensions in the same order
as X. For example, 'DataFormat', 'SSCB' specifies data for 2-D image input with the format
'SSCB' (spatial, spatial, channel, batch).

[ ] = batchnorm( ,Name, Value) specifies additional options using one or more name-
value pair arguments. For example, 'MeanDecay', 0.3 sets the decay rate of the moving average
computation.

Examples

Apply Batch Normalization

Create a formatted dlarray object containing a batch of 128 28-by-28 images with 3 channels.
Specify the format 'SSCB' (spatial, spatial, channel, batch).

miniBatchSize = 128;

inputSize = [28 28];

numChannels = 3;

X = rand(inputSize(1l),inputSize(2),numChannels,miniBatchSize);
dlX = dlarray(X, 'SSCB');

View the size and format of the input data.

size(d1X)

ans = 1x4

28 28 3 128

dims (d1X)

ans =
'SSCB!

Initialize the scale and offset for batch normalization. For the scale, specify a vector of ones. For the
offset, specify a vector of zeros.

scaleFactor = ones(numChannels,1);
offset = zeros(numChannels,1);

Apply the batch normalization operation using the batchnorm function and return the mini-batch
statistics.
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[dlY,mu,sigmaSq] = batchnorm(dlX,offset,scaleFactor);

View the size and format of the output d1Y.
size(dlY)
ans = 1x4

28 28 3 128

dims (dlY)

ans =
'SSCB!

View the mini-batch mean mu.

mu

mu = 3x1
0.4998
0.4993
0.5011

View the mini-batch variance sigmaSq.
sigmaSq
sigmaSq = 3x1

0.0831
0.0832
0.0835

Update Mean and Variance over Multiple Batches of Data

Use the batchnorm function to normalize several batches of data and update the statistics of the

whole data set after each normalization.

Create three batches of data. The data consists of 10-by-10 random arrays with five channels. Each
batch contains 20 observations. The second and third batches are scaled by a multiplicative factor of

1.5 and 2.5, respectively, so the mean of the data set increases with each batch.

height = 10;

width = 10;
numChannels = 5;
observations = 20;
X1l =

dlX1 = dlarray(X1,"SSCB");

X2 = 1.5*rand(height,width,numChannels,observations);

rand (height,width,numChannels,observations);
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dlX2 = dlarray(X2,"SSCB");

X3 = 2.5*rand(height,width,numChannels,observations);
dlX3 = dlarray(X3,"SSCB");

Create the learnable parameters.

offset = zeros(numChannels,1);
scale = ones(numChannels,1);

Normalize the first batch of data d1X1 using batchnorm. Obtain the values of the mean and variance
of this batch as outputs.

[d1Y1,mu,sigmaSq] = batchnorm(dlX1l,offset,scale);

Normalize the second batch of data d1X2. Use mu and sigmaSq as inputs to obtain the values of the
combined mean and variance of the data in batches d1X1 and d1X2.

[d1Y2,datasetMu,datasetSigmaSq]l = batchnorm(dlX2,offset,scale,mu,sigmaSq);

Normalize the final batch of data d1X3. Update the data set statistics datasetMu and
datasetSigmaSq to obtain the values of the combined mean and variance of all data in batches
d1X1, d1X2, and d1X3.

[d1Y3,datasetMuFull,datasetSigmaSqFull] = batchnorm(d1X3,offset,scale,datasetMu,datasetSigmaSq);
Observe the change in the mean of each channel as each batch is normalized.

plot([mu datasetMu datasetMuFull]"')

legend("Channel " + string(1:5),"Location","southeast")
xticks([1 2 31)

xlabel("Number of Batches")

xlim([0.9 3.1])

ylabel("Per-Channel Mean")

title("Data Set Mean")

1-218



batchnorm

Data Set Mean

0.62 T T
06 -
0.58 i
=
[43]
[1E]
= 056} |
[45]
=
=
[43]
5 054f ]
o
o _..--"--..
052t i
f,,f*”ﬁ Channel 1
B —" Channel 2
06 _—— Channel 3 | -
- Channel 4
Channel 5
0.48 L | .
1 2 3

Mumber of Batches

Input Arguments

X — Input data
dlarray | numeric array

Input data, specified as a formatted dlarray, an unformatted dlarray, or a numeric array.

If X is an unformatted dlarray or a numeric array, then you must specify the format using the
DataFormat option. If X is a numeric array, then either scaleFactor or offset must be a dlarray
object.

Xmust have a 'C' (channel) dimension.

offset — Offset
dlarray | numeric array

Offset B, specified as a formatted dlarray, an unformatted dlarray, or a numeric array with one
nonsingleton dimension with size matching the size of the 'C' (channel) dimension of the input X.

If offset is a formatted dlarray object, then the nonsingleton dimension must have label 'C'
(channel).

scaleFactor — Scale factor
dlarray | numeric array
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Scale factor yp, specified as a formatted dlarray, an unformatted dlarray, or a numeric array with
one nonsingleton dimension with size matching the size of the 'C' (channel) dimension of the input
X.

If scaleFactor is a formatted dlarray object, then the nonsingleton dimension must have label
"C' (channel).

runningMu — Running value of mean statistic
numeric vector

Running value of mean statistic, specified as a numeric vector of the same length as the 'C'
dimension of the input data.

To maintain a running value for the mean during training, provide runningMu as the updatedMu
output of the previous training iteration.

Data Types: single | double

runningSigmaSq — Running value of variance statistic
numeric vector

Running value of variance statistic, specified as a numeric vector of the same length as the 'C'
dimension of the input data.

To maintain a running value for the variance during training, provide runningSigmaSq as the
updatedSigmaSq output of the previous training iteration.

Data Types: single | double

trainedMu — Final value of mean statistic after training
numeric vector

Final value of mean statistic after training, specified as a numeric vector of the same length as the
'C' dimension of the input data.

During classification and prediction, provide trainedMu as the updatedMu output of the final
training iteration.

Data Types: single | double

trainedSigmaSq — Final value of variance statistic after training
numeric vector

Final value of variance statistic after training, specified as a numeric vector of the same length as the
'C' dimension of the input data.

During classification and prediction, provide trainedSigmaSq as the updatedSigmaSq output of
the final training iteration.

Data Types: single | double
Name-Value Pair Arguments
Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the

argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'MeanDecay',0.3, 'VarianceDecay', 0.5 sets the decay rate for the moving average
computations of the mean and variance of several batches of data to 0.3 and 0.5, respectively.

DataFormat — Dimension order of unformatted data
character vector | string scalar

Dimension order of unformatted input data, specified as a character vector or string scalar FMT that
provides a label for each dimension of the data.

When you specify the format of a dlarray object, each character provides a label for each dimension
of the data and must be one of the following:

e "S" — Spatial

* "C" — Channel

* "B" — Batch (for example, samples and observations)
* "T" — Time (for example, time steps of sequences)

* "U" — Unspecified

You can specify multiple dimensions labeled "S" or "U". You can use the labels "C", "B", and "T" at
most once.

You must specify DataFormat when the input data is not a formatted dlarray.

Data Types: char | string

Epsilon — Variance offset
le-5 (default) | numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting
of 'Epsilon' and a numeric scalar greater than or equal to 1e-5.

Data Types: single | double

MeanDecay — Decay value for moving mean computation
0.1 (default) | numeric scalar between 0 and 1

Decay value for the moving mean computation, specified as a numeric scalar between 0 and 1.
The function updates the moving mean value using
pr= 2+ (1 -2,

where p* denotes the updated mean updatedMu, A, denotes the mean decay value 'MeanDecay ', [T
denotes the mean of the input data, and 1 denotes the current value of the mean mu.

Data Types: single | double

VarianceDecay — Decay value for moving variance computation
0.1 (default) | numeric scalar between 0 and 1

Decay value for the moving variance computation, specified as a numeric scalar between 0 and 1.

The function updates the moving variance value using
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0% = 1,202 + (1 = A42)0?,

where 0%* denotes the updated variance updatedSigmaSq, 2,2 denotes the variance decay value

'VarianceDecay', o2 denotes the variance of the input data, and o2 denotes the current value of
the variance sigmaSq.

Data Types: single | double

Output Arguments

Y — Normalized data
dlarray

Normalized data, returned as a dlarray with the same underlying data type as X.

If the input data X is a formatted dlarray, then Y has the same format as X. If the input data is not a
formatted dlarray, then Y is an unformatted dlarray with the same dimension order as the input
data.

The size of the output Y matches the size of the input X.

popMu — Per-channel mean
numeric column vector

Per-channel mean of the input data, returned as a numeric column vector with length equal to the
size of the 'C' dimension of the input data.

popSigmaSq — Per-channel variance
numeric column vector

Per-channel variance of the input data, returned as a numeric column vector with length equal to the
size of the 'C' dimension of the input data.

updatedMu — Updated mean statistic
numeric vector

Updated mean statistic, returned as a numeric vector with length equal to the size of the 'C"
dimension of the input data.

The function updates the moving mean value using
pr= A + (1 - Ay,

where p* denotes the updated mean updatedMu, A, denotes the mean decay value 'MeanDecay', I
denotes the mean of the input data, and u denotes the current value of the mean mu.

updatedSigmaSq — Updated variance statistic
numeric vector

Updated variance statistic, returned as a numeric vector with length equal to the size of the 'C'
dimension of the input data.

The function updates the moving variance value using
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0% = 1,202 + (1 = A42)0?,

where 02* denotes the updated variance updatedSigmaSq, Ag2 denotes the variance decay value

'VarianceDecay', 0% denotes the variance of the input data, and 0% denotes the current value of
the variance sigmaSq.

Algorithms

The batch normalization operation normalizes the elements x; of the input by first calculating the
mean Jiz and variance og? over the spatial, time, and observation dimensions for each channel
independently. Then, it calculates the normalized activations as

- Xi — UB

Xi = ,
Jok+e

where € is a constant that improves numerical stability when the variance is very small.

To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
operations that follow batch normalization, the batch normalization operation further shifts and
scales the activations using the transformation

Vi=VyXi+5B,

where the offset 8 and scale factor y are learnable parameters that are updated during network
training.

To make predictions with the network after training, batch normalization requires a fixed mean and
variance to normalize the data. This fixed mean and variance can be calculated from the training data
after training, or approximated during training using running statistic computations.

Version History
Introduced in R2019b

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

* When at least one of the following input arguments is a gpuArray or a dlarray with underlying
data of type gpuArray, this function runs on the GPU:

e X
e offset
* scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
relu | fullyconnect |dlconv |dlarray | dlgradient | dlfeval | groupnorm | layernorm

Topics

“Define Custom Training Loops, Loss Functions, and Networks”
“Update Batch Normalization Statistics Using Model Function”
“Train Network Using Model Function”

“Train Network with Multiple Outputs”

“List of Functions with dlarray Support”
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batchNormalizationLayer

Batch normalization layer

Description

A batch normalization layer normalizes a mini-batch of data across all observations for each channel
independently. To speed up training of the convolutional neural network and reduce the sensitivity to
network initialization, use batch normalization layers between convolutional layers and
nonlinearities, such as ReLU layers.

After normalization, the layer scales the input with a learnable scale factor y and shifts it by a
learnable offset f5.

Creation

Syntax

layer
layer

batchNormalizationLayer
batchNormalizationLayer (Name,Value)

Description

layer = batchNormalizationLayer creates a batch normalization layer.

layer = batchNormalizationLayer(Name,Value) creates a batch normalization layer and sets
the optional TrainedMean, TrainedVariance, Epsilon, “Parameters and Initialization” on page 1-
227, “Learning Rate and Regularization” on page 1-230, and Name properties using one or more

name-value pairs. For example, batchNormalizationLayer('Name', 'batchnorm') creates a
batch normalization layer with the name 'batchnorm’.

Properties
Batch Normalization

TrainedMean — Mean statistic used for prediction
numeric vector

Mean statistic used for prediction, specified as a numeric vector of per-channel mean values.

Depending on the type of layer input, the trainNetwork, assembleNetwork, layerGraph, and
dlnetwork functions automatically reshape this property to have of the following sizes:

Layer Input Property Size

feature input NumChannels-by-1

vector sequence input
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Layer Input Property Size

1-D image input 1-by-NumChannels

1-D image sequence input

2-D image input 1-by-1-by-NumChannels

2-D image sequence input

3-D image input 1-by-1-by-1-by-NumChannels
3-D image sequence input

If the BatchNormalizationStatistics training option is 'moving', then the software
approximates the batch normalization statistics during training using a running estimate and, after
training, sets the TrainedMean and TrainedVariance properties to the latest values of the moving
estimates of the mean and variance, respectively.

If the BatchNormalizationStatistics training option is 'population’, then after network
training finishes, the software passes through the data once more and sets the TrainedMean and
TrainedVariance properties to the mean and variance computed from the entire training data set,
respectively.

The layer uses TrainedMean and TrainedVariance to normalize the input during prediction.

Data Types: single | double

TrainedVariance — Variance statistic used for prediction
numeric vector

Variance statistic used for prediction, specified as a numeric vector of per-channel variance values.

Depending on the type of layer input, the trainNetwork, assembleNetwork, layerGraph, and
dlnetwork functions automatically reshape this property to have of the following sizes:

Layer Input Property Size

feature input NumChannels-by-1

vector sequence input

1-D image input 1-by-NumChannels

1-D image sequence input

2-D image input 1-by-1-by-NumChannels

2-D image sequence input

3-D image input 1-by-1-by-1-by-NumChannels

3-D image sequence input

If the BatchNormalizationStatistics training option is 'moving', then the software
approximates the batch normalization statistics during training using a running estimate and, after
training, sets the TrainedMean and TrainedVariance properties to the latest values of the moving
estimates of the mean and variance, respectively.

If the BatchNormalizationStatistics training option is 'population’, then after network
training finishes, the software passes through the data once more and sets the TrainedMean and
TrainedVariance properties to the mean and variance computed from the entire training data set,
respectively.
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The layer uses TrainedMean and TrainedVariance to normalize the input during prediction.
Data Types: single | double

Epsilon — Constant to add to mini-batch variances
le-5 (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than
le-5.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical
stability and avoid division by zero.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

NumChannels — Number of input channels
‘auto' (default) | positive integer

This property is read-only.
Number of input channels, specified as one of the following:

* 'auto' — Automatically determine the number of input channels at training time.

* Positive integer — Configure the layer for the specified number of input channels. NumChannels
and the number of channels in the layer input data must match. For example, if the input is an
RGB image, then NumChannels must be 3. If the input is the output of a convolutional layer with
16 filters, then NumChannels must be 16.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
char | string

Parameters and Initialization

ScaleInitializer — Function to initialize channel scale factors
‘ones' (default) | 'narrow-normal’' | function handle

Function to initialize the channel scale factors, specified as one of the following:

* 'ones' - Initialize the channel scale factors with ones.
* 'zeros' - Initialize the channel scale factors with zeros.

* 'narrow-normal’' - Initialize the channel scale factors by independently sampling from a normal
distribution with a mean of zero and standard deviation of 0.01.

* Function handle - Initialize the channel scale factors with a custom function. If you specify a
function handle, then the function must be of the form scale = func(sz), where sz is the size
of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the Scale property is empty.

Data Types: char | string | function handle

OffsetInitializer — Function to initialize channel offsets
'zeros' (default) | ‘ones' | 'narrow-normal’' | function handle

Function to initialize the channel offsets, specified as one of the following:
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 'zeros' - Initialize the channel offsets with zeros.
* 'ones' - Initialize the channel offsets with ones.

* ‘'narrow-normal’' - Initialize the channel offsets by independently sampling from a normal
distribution with a mean of zero and standard deviation of 0.01.

* Function handle - Initialize the channel offsets with a custom function. If you specify a function
handle, then the function must be of the form offset = func(sz), where sz is the size of the
scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.

Data Types: char | string | function handle

Scale — Channel scale factors
[1 (default) | numeric vector

Channel scale factors p, specified as a numeric vector.
The channel scale factors are learnable parameters. When you train a network, if Scale is nonempty,
then trainNetwork uses the Scale property as the initial value. If Scale is empty, then

trainNetwork uses the initializer specified by ScaleInitializer.

Depending on the type of layer input, the trainNetwork, assembleNetwork, layerGraph, and
dlnetwork functions automatically reshape this property to have of the following sizes:

Layer Input Property Size

feature input NumChannels-by-1

vector sequence input

1-D image input 1-by-NumChannels

1-D image sequence input

2-D image input 1-by-1-by-NumChannels
2-D image sequence input

3-D image input 1-by-1-by-1-by-NumChannels

3-D image sequence input

Data Types: single | double

0ffset — Channel offsets
[1 (default) | numeric vector

Channel offsets B, specified as a numeric vector.
The channel offsets are learnable parameters. When you train a network, if 0ffset is nonempty, then
trainNetwork uses the Offset property as the initial value. If Of fset is empty, then

trainNetwork uses the initializer specified by 0ffsetInitializer.

Depending on the type of layer input, the trainNetwork, assembleNetwork, layerGraph, and
dlnetwork functions automatically reshape this property to have of the following sizes:
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Layer Input Property Size

feature input NumChannels-by-1

vector sequence input

1-D image input 1-by-NumChannels

1-D image sequence input

2-D image input 1-by-1-by-NumChannels

2-D image sequence input

3-D image input 1-by-1-by-1-by-NumChannels

3-D image sequence input

Data Types: single | double

MeanDecay — Decay value for moving mean computation
0.1 (default) | numeric scalar between 0 and 1

Decay value for the moving mean computation, specified as a numeric scalar between 0 and 1.

When the BatchNormalizationStatistics training option is 'moving’, at each iteration, the
layer updates the moving mean value using

e = A0+ (1= Am,

where p* denotes the updated mean, 2, denotes the mean decay value, i denotes the mean of the
layer input, and u denotes the latest value of the moving mean value.

If the BatchNormalizationStatistics training option is 'population’, then this option has no
effect.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

VarianceDecay — Decay value for moving variance computation
0.1 (default) | numeric scalar between 0 and 1

Decay value for the moving variance computation, specified as a numeric scalar between 0 and 1.

When the BatchNormalizationStatistics training option is 'moving', at each iteration, the
layer updates the moving variance value using

0% = 15202 + (1 — A42)02,
where 02* denotes the updated variance, 4,2 denotes the variance decay value, o2 denotes the

variance of the layer input, and o2 denotes the latest value of the moving variance value.

If the BatchNormalizationStatistics training option is 'population’, then this option has no
effect.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64
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Learning Rate and Regularization

ScalelLearnRateFactor — Learning rate factor for scale factors
1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the
scale factors in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

OffsetLearnRateFactor — Learning rate factor for offsets
1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the
offsets in a layer. For example, if 0ffsetLearnRateFactor is 2, then the learning rate for the
offsets in the layer is twice the current global learning rate. The software determines the global
learning rate based on the settings specified with the trainingOptions function.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

ScalelL2Factor — L, regularization factor for scale factors
1 (default) | nonnegative scalar

L, regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L, regularization factor to determine the learning
rate for the scale factors in a layer. For example, if ScaleL2Factor is 2, then the L, regularization
for the offsets in the layer is twice the global L, regularization factor. You can specify the global L,
regularization factor using the trainingOptions function.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

OffsetL2Factor — L, regularization factor for offsets
1 (default) | nonnegative scalar

L, regularization factor for the offsets, specified as a nonnegative scalar.
The software multiplies this factor by the global L, regularization factor to determine the learning
rate for the offsets in a layer. For example, if 0ffsetL2Factor is 2, then the L, regularization for the

offsets in the layer is twice the global L, regularization factor. You can specify the global L,
regularization factor using the trainingOptions function.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64
Layer
Name — Layer name

"' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name "'

Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Batch Normalization Layer

Create a batch normalization layer with the name 'BN1'.
layer = batchNormalizationLayer('Name', 'BN1")

layer =
BatchNormalizationLayer with properties:

Name: 'BN1'
NumChannels: 'auto'

Hyperparameters
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MeanDecay: 0.1000
VarianceDecay: 0.1000
Epsilon: 1.0000e-05

Learnable Parameters

Offset: []
Scale: []

State Parameters
TrainedMean: []
TrainedVariance: []

Show all properties

Include batch normalization layers in a Layer array.

layers = [

imagelInputlLayer([32 32 3])

convolution2dLayer(3,16, 'Padding',1)

batchNormalizationLayer

reluLayer

maxPooling2dLayer(2, 'Stride',2)

convolution2dLayer(3,32, 'Padding',1)

batchNormalizationLayer

reluLayer

fullyConnectedLayer(10)

softmaxLayer
classificationLayer

]

layers =

11x1 Layer array with layers:

1 n Image Input
2 v 2-D Convolution
3 [}
4 v RelLU
5 n 2-D Max Pooling
6 n 2-D Convolution
7 [}
8 v RelLU
9 b Fully Connected
10 n Softmax
11 [}

Algorithms

Batch Normalization Layer

Batch Normalization

Batch Normalization

Classification Output

32x32x3 images with 'zerocenter' normalization

16 3x3 convolutions with stride [1 1] and padding [1 1
Batch normalization

RelLU

2x2 max pooling with stride [2 2] and padding [0 0 O 0
32 3x3 convolutions with stride [1 1] and padding [1 1
Batch normalization

RelLU

10 fully connected layer

softmax

crossentropyex

A batch normalization layer normalizes a mini-batch of data across all observations for each channel
independently. To speed up training of the convolutional neural network and reduce the sensitivity to
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network initialization, use batch normalization layers between convolutional layers and
nonlinearities, such as ReLU layers.

The layer first normalizes the activations of each channel by subtracting the mini-batch mean and
dividing by the mini-batch standard deviation. Then, the layer shifts the input by a learnable offset
and scales it by a learnable scale factor y. § and y are themselves learnable parameters that are
updated during network training.

Batch normalization layers normalize the activations and gradients propagating through a neural
network, making network training an easier optimization problem. To take full advantage of this fact,
you can try increasing the learning rate. Since the optimization problem is easier, the parameter
updates can be larger and the network can learn faster. You can also try reducing the L, and dropout
regularization. With batch normalization layers, the activations of a specific image during training
depend on which images happen to appear in the same mini-batch. To take full advantage of this
regularizing effect, try shuffling the training data before every training epoch. To specify how often to
shuffle the data during training, use the 'Shuffle' name-value pair argument of
trainingOptions.

The batch normalization operation normalizes the elements x; of the input by first calculating the
mean pg and variance og® over the spatial, time, and observation dimensions for each channel
independently. Then, it calculates the normalized activations as

~_ Xi—Hp
1 — T
Jok+e€
where € is a constant that improves numerical stability when the variance is very small.

To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
operations that follow batch normalization, the batch normalization operation further shifts and
scales the activations using the transformation

Vi=VyXi+5B,

where the offset f and scale factor y are learnable parameters that are updated during network
training.

To make predictions with the network after training, batch normalization requires a fixed mean and
variance to normalize the data. This fixed mean and variance can be calculated from the training data
after training, or approximated during training using running statistic computations.

If the BatchNormalizationStatistics training option is 'moving’, then the software
approximates the batch normalization statistics during training using a running estimate and, after
training, sets the TrainedMean and TrainedVariance properties to the latest values of the moving
estimates of the mean and variance, respectively.

If the BatchNormalizationStatistics training option is 'population’, then after network
training finishes, the software passes through the data once more and sets the TrainedMean and
TrainedVariance properties to the mean and variance computed from the entire training data set,
respectively.

The layer uses TrainedMean and TrainedVariance to normalize the input during prediction.
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Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

e "S" — Spatial
¢ "C" — Channel
+ "B" — Batch

o« "T" — Time

* "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the
images, and the fourth dimension corresponds to the batch dimension, can be described as having the

format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionlLayer object, or using the forward and predict

functions with dlnetwork objects.

This table shows the supported input formats of BatchNormalizationLayer objects and the
corresponding output format. If the output of the layer is passed to a custom layer that does not
inherit from the nnet.layer.Formattable class, or a FunctionLayer object with the
Formattab'le option set to false, then the layer receives an unformatted dlarray object with
dimensions ordered corresponding to the formats outlined in this table.

Input Format

Output Format

"CB" (channel, batch)

"CB" (channel, batch)

"SCB" (spatial, channel, batch)

"SCB" (spatial, channel, batch)

"SSCB" (spatial, spatial, channel, batch)

"SSCB" (spatial, spatial, channel, batch)

"SSSCB" (spatial, spatial, spatial, channel, batch)

"SSSCB" (spatial, spatial, spatial, channel, batch)

"CBT" (channel, batch, time)

"CBT" (channel, batch, time)

"SCBT" (spatial, spatial, channel, batch)

"SCBT" (spatial, spatial, channel, batch)

"SSCBT" (spatial, spatial, channel, batch, time)

"SSCBT" (spatial, spatial, channel, batch, time)

"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

"SSSCBT" (spatial, spatial, spatial, channel,
batch, time)

Version History
Introduced in R2017b

References

[1] Ioffe, Sergey, and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift.” Preprint, submitted March 2, 2015. https://

arxiv.org/abs/1502.03167.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | trainingOptions | reluLayer | convolution2dLayer |
fullyConnectedLayer | groupNormalizationLayer | layerNormalizationLayer

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”

“Specify Layers of Convolutional Neural Network”

“List of Deep Learning Layers”
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Bidirectional long short-term memory (BiLSTM) layer

Description

A bidirectional LSTM (BiLSTM) layer learns bidirectional long-term dependencies between time steps
of time series or sequence data. These dependencies can be useful when you want the network to
learn from the complete time series at each time step.

Creation

bilstmLayer (numHiddenUnits)
bilstmLayer (numHiddenUnits,Name,Value)

Description

layer = bilstmLayer(numHiddenUnits) creates a bidirectional LSTM layer and sets the
NumHiddenUnits property.

layer = bilstmLayer(numHiddenUnits,Name,Value) sets additional OutputMode,
“Activations” on page 1-237, “State” on page 1-238, “Parameters and Initialization” on page 1-239,
“Learning Rate and Regularization” on page 1-241, and Name properties using one or more name-
value pair arguments. You can specify multiple name-value pair arguments. Enclose each property
name in quotes.

Properties
BiLSTM

NumHiddenUnits — Number of hidden units
positive integer

This property is read-only.
Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time
steps (the hidden state). The hidden state can contain information from all previous time steps,
regardless of the sequence length. If the number of hidden units is too large, then the layer might
overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split
your sequences into smaller sequences for when using the trainNetwork function, use the
Sequencelength training option.

The layer outputs data with NumHiddenUnits channels.
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Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

OutputMode — Output mode
'sequence’ (default) | 'last'

This property is read-only.
Output mode, specified as one of the following:

* 'sequence' - Output the complete sequence.
* ‘'last' - Output the last time step of the sequence.

HasStateInputs — Flag for state inputs to layer
0 (false) (default) | 1 (true)

This property is read-only.
Flag for state inputs to the layer, specified as 0 (false) or 1 (true).

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in’,
"hidden', and 'cell’', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStateInputs is 1 (true), then the HiddenState and CellState properties must be empty.

HasStateOutputs — Flag for state outputs from layer
0 (false) (default) | 1 (true)

This property is read-only.
Flag for state outputs from the layer, specified as 0 (false) or 1 (true).

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out’,
"hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

InputSize — Input size
'auto' (default) | positive integer

This property is read-only.

Input size, specified as a positive integer or 'auto'. If InputSizeis 'auto’', then the software
automatically assigns the input size at training time.

Data Types: double | char
Activations

StateActivationFunction — Activation function to update the cell and hidden state
"tanh' (default) | 'softsign'
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This property is read-only.
Activation function to update the cell and hidden state, specified as one of the following:
* 'tanh' - Use the hyperbolic tangent function (tanh).

'softsign' - Use the softsign function softsign(x) =

14 |x|°

The layer uses this option as the function o, in the calculations to update the cell and hidden state.

For more information on how activation functions are used in an LSTM layer, see “Long Short-Term
Memory Layer” on page 1-1149.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | "hard-sigmoid’

This property is read-only.
Activation function to apply to the gates, specified as one of the following:

‘sigmoid' - Use the sigmoid function o(x) = (1 + e L.

* ‘'hard-sigmoid' - Use the hard sigmoid function

0 ifx< =25
o(x) =40.2x+ 0.5 if-2.5<=x=<2.5.
1 ifx>2.5

The layer uses this option as the function gy in the calculations for the layer gates.
State

CellState — Cell state
numeric vector

Cell state to use in the layer operation, specified as a 2*NumHiddenUnits-by-1 numeric vector. This
value corresponds to the initial cell state when data is passed to the layer.

After setting this property manually, calls to the resetState function set the cell state to this value.

If HasStateInputs is true, then the CellState property must be empty.
Data Types: single | double

HiddenState — Hidden state
numeric vector

Hidden state to use in the layer operation, specified as a 2*NumHiddenUnits-by-1 numeric vector.
This value corresponds to the initial hidden state when data is passed to the layer.

After setting this property manually, calls to the resetState function set the hidden state to this
value.

If HasStateInputs is true, then the HiddenState property must be empty.
Data Types: single | double
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Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights
‘glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the input weights, specified as one of the following:

* 'glorot' - Initialize the input weights with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/ (InputSize + numOut), where numOut = 8*NumHiddenUnits.

* 'he' - Initialize the input weights with the He initializer [2]. The He initializer samples from a
normal distribution with zero mean and variance 2/InputSize.

* 'orthogonal' - Initialize the input weights with Q, the orthogonal matrix given by the QR
decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

* 'narrow-normal’' - Initialize the input weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

* 'zeros' - Initialize the input weights with zeros.
* 'ones' - Initialize the input weights with ones.

* Function handle - Initialize the input weights with a custom function. If you specify a function
handle, then the function must be of the form weights = func(sz), where sz is the size of the
input weights.

The layer only initializes the input weights when the InputWeights property is empty.

Data Types: char | string | function handle

RecurrentWeightsInitializer — Function to initialize recurrent weights
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function
handle

Function to initialize the recurrent weights, specified as one of the following:
* ‘'orthogonal' - Initialize the input weights with Q, the orthogonal matrix given by the QR

decomposition of Z = QR for a random matrix Z sampled from a unit normal distribution. [3]

* 'glorot' - Initialize the recurrent weights with the Glorot initializer [1] (also known as Xavier
initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/ (numIn + numOut), where numIn = NumHiddenUnits and numOut =
8*NumHiddenUnits.

* 'he' - Initialize the recurrent weights with the He initializer [2]. The He initializer samples from
a normal distribution with zero mean and variance 2/NumHiddenUnits.

* 'narrow-normal' - Initialize the recurrent weights by independently sampling from a normal
distribution with zero mean and standard deviation 0.01.

e ‘'zeros' - Initialize the recurrent weights with zeros.
* 'ones' - Initialize the recurrent weights with ones.

* Function handle - Initialize the recurrent weights with a custom function. If you specify a function
handle, then the function must be of the form weights = func(sz), where sz is the size of the
recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.
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Data Types: char | string | function handle

BiasInitializer — Function to initialize bias
‘unit-forget-gate' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:
* 'unit-forget-gate' - Initialize the forget gate bias with ones and the remaining biases with
ZEros.

* 'narrow-normal’' - Initialize the bias by independently sampling from a normal distribution with
zero mean and standard deviation 0.01.

* 'ones' - Initialize the bias with ones.

* Function handle - Initialize the bias with a custom function. If you specify a function handle, then
the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.

Data Types: char | string | function handle

InputWeights — Input weights
[ 1 (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the eight input weight matrices for the components
(gates) in the bidirectional LSTM layer. The eight matrices are concatenated vertically in the
following order:

Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Forget gate (Backward)
Cell candidate (Backward)

1
2
3
4
5 Input gate (Backward)
6
7
8 Output gate (Backward)

The input weights are learnable parameters. When training a network, if InputWeights is
nonempty, then trainNetwork uses the InputWeights property as the initial value. If
InputWeights is empty, then trainNetwork uses the initializer specified by
InputWeightsInitializer.

At training time, InputWeights is an 8*NumHiddenUnits-by-InputSize matrix.

Data Types: single | double

RecurrentWeights — Recurrent weights
[ 1 (default) | matrix

Recurrent weights, specified as a matrix.
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The recurrent weight matrix is a concatenation of the eight recurrent weight matrices for the
components (gates) in the bidirectional LSTM layer. The eight matrices are concatenated vertically in
the following order:

Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Input gate (Backward)

Forget gate (Backward)

Cell candidate (Backward)

Output gate (Backward)

0 N O 1 A W N M

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is
nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If
RecurrentWeights is empty, then trainNetwork uses the initializer specified by
RecurrentWeightsInitializer.

At training time, RecurrentWeights is an 8*NumHiddenUnits-by-NumHiddenUnits matrix.
Data Types: single | double

Bias — Layer biases
[1 (default) | numeric vector

Layer biases, specified as a numeric vector.

The bias vector is a concatenation of the eight bias vectors for the components (gates) in the
bidirectional LSTM layer. The eight vectors are concatenated vertically in the following order:
Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Input gate (Backward)

Forget gate (Backward)

Cell candidate (Backward)

Output gate (Backward)

0 N OO U1 A W N M

The layer biases are learnable parameters. When you train a network, if Bias is nonempty, then
trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork
uses the initializer specified by BiasInitializer.

At training time, Bias is an 8*NumHiddenUnits-by-1 numeric vector.

Data Types: single | double
Learning Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights
1 (default) | numeric scalar | 1-by-8 numeric vector
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Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor
for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the
learning rate factor for the input weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in InputWeights,
assign a 1-by-8 vector, where the entries correspond to the learning rate factor of the following:
Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Input gate (Backward)

Forget gate (Backward)

Cell candidate (Backward)

Output gate (Backward)

00 N OO Bl A W N R

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | numeric scalar | 1-by-8 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
recurrent weights of the layer. For example, if RecurrentWeightslLearnRateFactor is 2, then the
learning rate for the recurrent weights of the layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.

To control the value of the learn rate for the four individual matrices in RecurrentWeights, assign a
1-by-8 vector, where the entries correspond to the learning rate factor of the following:

Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Input gate (Backward)

Forget gate (Backward)

Cell candidate (Backward)

Output gate (Backward)

00 N OO B A W N R

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
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BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-8 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the
biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases
in the layer is twice the current global learning rate. The software determines the global learning
rate based on the settings you specify using the trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in Bias, assign a 1-
by-8 vector, where the entries correspond to the learning rate factor of the following:

Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Input gate (Backward)

Forget gate (Backward)

Cell candidate (Backward)

Output gate (Backward)

0 N & Ut A WN R

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InputWeightsL2Factor — L2 regularization factor for input weights
1 (default) | numeric scalar | 1-by-8 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2,
then the L2 regularization factor for the input weights of the layer is twice the current global L2
regularization factor. The software determines the L2 regularization factor based on the settings
specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in InputWeights,
assign a 1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:
Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Input gate (Backward)

Forget gate (Backward)

Cell candidate (Backward)

Output gate (Backward)

0O N OO Ut A WN R

To specify the same value for all the matrices, specify a nonnegative scalar.
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Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights
1 (default) | numeric scalar | 1-by-8 numeric vector

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-8 numeric
vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2
regularization factor for the recurrent weights of the layer. For example, if
RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the
layer is twice the current global L2 regularization factor. The software determines the L2
regularization factor based on the settings specified with the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in
RecurrentWeights, assign a 1-by-8 vector, where the entries correspond to the L2 regularization
factor of the following:

Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Input gate (Backward)

Forget gate (Backward)

Cell candidate (Backward)

Output gate (Backward)

0 N O U1 A W N M

To specify the same value for all the matrices, specify a nonnegative scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

BiasL2Factor — L2 regularization factor for biases
0 (default) | nonnegative scalar | 1-by-8 numeric vector

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L, regularization factor to determine the L,
regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L,
regularization for the biases in this layer is twice the global L, regularization factor. You can specify
the global L, regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the four individual matrices in Bias, assign a
1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:

Input gate (Forward)

Forget gate (Forward)

Cell candidate (Forward)

Output gate (Forward)

Input gate (Backward)

A U1 A W N M

Forget gate (Backward)
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7 Cell candidate (Backward)

8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Layer

Name — Layer name
"' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name '"'.

Data Types: char | string

NumInputs — Number of inputs
1|3

This property is read-only.
Number of inputs of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in"',
"hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStatelInputs is 1 (true), then the HiddenState and CellState properties must be empty.

Data Types: double

InputNames — Input names
{'in'}|{'in', "hidden', 'cell'}

This property is read-only.
Input names of the layer.

If the HasStateInputs property is 0 (false), then the layer has one input with name 'in', which
corresponds to the input data. In this case, the layer uses the HiddenState and CellState
properties for the layer operation.

If the HasStateInputs property is 1 (true), then the layer has three inputs with names 'in"',
"hidden', and 'cell', which correspond to the input data, hidden state, and cell state respectively.
In this case, the layer uses the values passed to these inputs for the layer operation. If
HasStatelInputs is 1 (true), then the HiddenState and CellState properties must be empty.

NumOutputs — Number of outputs
1|3

This property is read-only.
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Number of outputs of the layer.

If the HasStateOutputs property is O (false), then the layer has one output with name 'out’, which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out’,
"hidden', and 'cell’, which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

Data Types: double

OutputNames — Output names
{'out'}|{'out', 'hidden', 'cell'}

This property is read-only.
Output names of the layer.

If the HasStateOutputs property is 0 (false), then the layer has one output with name 'out', which
corresponds to the output data.

If the HasStateOutputs property is 1 (true), then the layer has three outputs with names 'out’,
"hidden', and 'cell', which correspond to the output data, hidden state, and cell state,
respectively. In this case, the layer also outputs the state values computed during the layer operation.

Examples

Create Bidirectional LSTM Layer

Create a bidirectional LSTM layer with the name 'bilstml' and 100 hidden units.

layer = bilstmLayer(100, 'Name', 'bilstml")

layer =
BiLSTMLayer with properties:

Name: 'bilstml'
InputNames: {'in'}
OQutputNames: {'out'}
NumInputs: 1
NumOutputs: 1
HasStateInputs: 0
HasStateOutputs: 0
Hyperparameters
InputSize: 'auto'
NumHiddenUnits: 100
OutputMode: 'sequence'
StateActivationFunction: 'tanh'
GateActivationFunction: 'sigmoid'

Learnable Parameters

InputWeights:
RecurrentWeights:
Bias:
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State Parameters
HiddenState: []
CellState: []

Show all properties

Include a bidirectional LSTM layer in a Layer array.

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
sequencelnputlLayer(inputSize)
bilstmLayer(numHiddenUnits)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]

layers =
5x1 Layer array with layers:

1 t Sequence Input Sequence input with 12 dimensions
2 e BiLSTM BiLSTM with 100 hidden units
3 b Fully Connected 9 fully connected layer
4 n Softmax softmax
5 t Classification Output crossentropyex
Algorithms

Layer Input and Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters, in which each character describes the
corresponding dimension of the data. The formats consists of one or more of these characters:

+ "S" — Spatial

¢ "C" — Channel

* "B" — Batch

e "T" — Time

* "U" — Unspecified

For example, 2-D image data represented as a 4-D array, where the first two dimensions correspond
to the spatial dimensions of the images, the third dimension corresponds to the channels of the

images, and the fourth dimension corresponds to the batch dimension, can be described as having the
format "SSCB" (spatial, spatial, channel, batch).

You can interact with these dlarray objects in automatic differentiation workflows such as
developing a custom layer, using a functionlLayer object, or using the forward and predict
functions with dlnetwork objects.

This table shows the supported input formats of BiLSTMLayer objects and the corresponding output
format. If the output of the layer is passed to a custom layer that does not inherit from the
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nnet.layer.Formattab'le class, or a FunctionlLayer object with the Formattab'le option set to
false, then the layer receives an unformatted dlarray object with dimensions ordered
corresponding to the formats outlined in this table.

Input Format OutputMode Output Format
'CB' (channel, batch) 'sequence’ 'CB' (channel, batch)
‘last'’
'"CBT' (channel, batch, time) ‘sequence’ "CBT' (channel, batch, time)
'last' 'CB' (channel, batch)
In dlnetwork objects, BLLSTMLayer objects also support the following input and output format
combinations.
Input Format OutputMode Output Format
'SCB' (spatial, channel, batch) |'sequence’ '"CB' (channel, batch)
'last’
'SSCB' (spatial, spatial, 'sequence’ 'CB' (channel, batch)
channel) 1ast '
'SSSCB' (spatial, spatial, 'sequence’ 'CB' (channel, batch)
spatial, channel) N
'SCBT' (spatial, channel, batch)|'sequence' '"CBT' (channel, batch, time)
'last’ 'CB' (channel, batch)
'SSCBT' (spatial, spatial, 'sequence’ "CBT' (channel, batch, time)
channel, batch, time) 'last’ 'CB' (channel, batch)
'SSSCBT' (spatial, spatial, 'sequence’ '"CBT' (channel, batch, time)
spatial, channel, batch, time) 1ast ' "CB' (channel, batch)

To use these input formats in trainNetwork workflows, first convert the data to ' CBT' (channel,
batch, time) format using flattenLayer.

If the HasStateInputs property is 1 (true), then the layer has two additional inputs with names
"hidden' and 'cell’, which correspond to the hidden state and cell state, respectively. These
additional inputs expect input format 'CB"' (channel, batch).

If the HasStateOutputs property is 1 (true), then the layer has two additional outputs with names

"hidden' and 'cell’, which correspond to the hidden state and cell state, respectively. These
additional outputs have output format 'CB' (channel, batch).

Version History
Introduced in R2018a

Default input weights initialization is Glorot
Behavior changed in R2019a
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Starting in R2019a, the software, by default, initializes the layer input weights of this layer using the
Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep
networks.

In previous releases, the software, by default, initializes the layer input weights using the by sampling
from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the
"InputWeightsInitializer' option of the layer to 'narrow-normal’.

Default recurrent weights initialization is orthogonal
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer recurrent weights of this layer with
Q, the orthogonal matrix given by the QR decomposition of Z = QR for a random matrix Z sampled
from a unit normal distribution. This behavior helps stabilize training and usually reduces the training
time of deep networks.

In previous releases, the software, by default, initializes the layer recurrent weights using the by
sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior,
set the 'RecurrentWeightsInitializer' option of the layer to 'narrow-normal".
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When generating code with Intel MKL-DNN:

* The StateActivationFunction property must be set to 'tanh'.
* The GateActivationFunction property must be set to 'sigmoid’.
* The HasStatelInputs and HasStateOutputs properties must be set to 0 (false).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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* For GPU code generation, the StateActivationFunction property must be set to 'tanh'.
* For GPU code generation, the GateActivationFunction property must be set to 'sigmoid"'.
* The HasStatelInputs and HasStateOutputs properties must be set to 0 (false).

See Also

trainingOptions | trainNetwork | sequencelnputlLayer | lstmLayer | gruLayer |
convolutionldLayer | maxPoolingldLayer | averagePoolingldLayer |
globalMaxPoolingldLayer | globalAveragePoolingldLayer

Topics

“Sequence Classification Using Deep Learning”

“Sequence Classification Using 1-D Convolutions”

“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Classify Videos Using Deep Learning”

“Long Short-Term Memory Networks”

“List of Deep Learning Layers”

“Deep Learning Tips and Tricks”
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Simulate and collect ranges of a deep neural network

Syntax

calResults = calibrate(quantObj,calData)

calResults = calibrate(quantObj,calData,Name,Value)
Description

calResults = calibrate(quantObj,calData) exercises the network and collects the dynamic
ranges of the weights and biases in the convolution and fully connected layers of the network and the
dynamic ranges of the activations in all layers of the network specified by dlquantizer object,
quantObj, using the data specified by calData.

calResults = calibrate(quantObj,calData,Name,Value) calibrates the network with
additional options specified by one or more name-value pair arguments.

This function requires Deep Learning Toolbox Model Quantization Library. To learn about the
products required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Examples

Quantize a Neural Network for GPU Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network for GPU and explore the behavior of the quantized network. In this example, you quantize
the squeezenet neural network after retraining the network to classify new images according to the
Train Deep Learning Network to Classify New Images example. In this example, the memory required
for the network is reduced approximately 75% through quantization while the accuracy of the
network is not affected.

Load the pretrained network. net is the output network of the Train Deep Learning Network to
Classify New Images example.

load squeezenetmerch
net

net =
DAGNetwork with properties:

Layers: [68x1 nnet.cnn.layer.Layer]
Connections: [75x2 table]
InputNames: {'data'}
OutputNames: {'new classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the
convolution and fully connected layers of the network and the dynamic ranges of the activations in all
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layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore
object to resize the data for the network. Then, split the data into calibration and validation data sets.

unzip('MerchData.zip');
imds = imageDatastore('MerchData’,

'IncludeSubfolders',true,

'LabelSource', 'foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug calData = augmentedImageDatastore([227 227], calData);
aug valData = augmentedImageDatastore([227 227], valData);

Create a dlquantizer object and specify the network to quantize.

gquantObj = dlquantizer(net);

Define a metric function to use to compare the behavior of the network before and after quantization.
This example uses the hComputeModelAccuracy metric function.

function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
%% Computes model-level accuracy statistics

% Load ground truth
tmp = readall(dataStore);
groundTruth = tmp.response;

% Compare with predicted label with actual ground truth
predictionError = {};
for idx=1l:numel(groundTruth)
[~, idy] = max(predictionScores(idx,:));
yActual = net.Layers(end).Classes(idy);
predictionError{end+1} = (yActual == groundTruth(idx)); S%#ok
end

% Sum all prediction errors.

predictionError = [predictionError{:}];

accuracy = sum(predictionError)/numel(predictionError);
end

Specify the metric function in a dlquantizationOptions object.
quantOpts = dlquantizationOptions('MetricFcn',{@(x)hComputeModelAccuracy(x, net, aug valData)});

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = calibrate(quantObj, aug calData)

calResults=121x5 table
Optimized Layer Name Network Layer Name Learnables / Activations MinValue
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{'convl Weights' } {'convl' } "Weights" -0.9198
{'convl Bias' } {'convl' } "Bias" -0.0792!
{'fire2-squeezelxl Weights'} {'fire2-squeezelxl'} "Weights" -1.3
{'fire2-squeezelxl Bias' } {'fire2-squeezelxl'} "Bias" -0.1164
{'fire2-expandlxl Weights' } {'fire2-expandlxl' } "Weights" -0.740
{'fire2-expandlxl Bias' } {'fire2-expandlxl"' } "Bias" -0.06005
{'fire2-expand3x3 Weights' } {'fire2-expand3x3' } "Weights" -0.7439
{'fire2-expand3x3 Bias' } {'fire2-expand3x3"' } "Bias" -0.05177
{'fire3-squeezelxl Weights'} {'fire3-squeezelxl'} "Weights" -0.771.
{'fire3-squeezelxl Bias' } {'fire3-squeezelxl'} "Bias" -0.1013
{'fire3-expandlxl Weights' } {'fire3-expandlxl' } "Weights" -0.7203
{'fire3-expandlxl Bias' } {'fire3-expandlxl"' } "Bias" -0.06702¢
{'fire3-expand3x3 Weights' } {'fire3-expand3x3"' } "Weights" -0.6144
{'fire3-expand3x3 Bias' } {'fire3-expand3x3"' } "Bias" -0.05361.!
{'fire4-squeezelxl Weights'} {'fire4-squeezelxl'} "Weights" -0.742

{'fired4-squeezelxl Bias' } {'fired4-squeezelxl'} "Bias" -0.1088

Use the validate function to quantize the learnable parameters in the convolution layers of the
network and exercise the network. The function uses the metric function defined in the
dlquantizationOptions object to compare the results of the network before and after
quantization.

valResults = validate(quantObj, aug valData, quantOpts)

valResults = struct with fields:
NumSamples: 20
MetricResults: [1x1 struct]
Statistics: [2x2 table]

Examine the validation output to see the performance of the quantized network.
valResults.MetricResults.Result

ans=2x2 table

NetworkImplementation MetricOutput
{'Floating-Point'} 1
{'Quantized' } 1

valResults.Statistics

ans=2x2 table

NetworkImplementation LearnableParameterMemory(bytes)
{'Floating-Point'} 2.9003e+06
{'Quantized' } 7.3393e+05

In this example, the memory required for the network was reduced approximately 75% through
quantization. The accuracy of the network is not affected.
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The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Target

This example shows how to quantize learnable parameters in the convolution layers of a neural
network and explore the behavior of the quantized network. In this example, you quantize the logo
recognition network (LogoNet). Quantization helps reduce the memory requirement of a deep neural
network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data
types. Use MATLAB® to retrieve the prediction results from the target device.

This example uses the products listed under FPGA in “Quantization Workflow Prerequisites”.

Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the
file:

function net = getLogoNetwork()
data = getlLogoData();
net = data.convnet;

end

function data = getlLogoData()
if ~isfile('LogoNet.mat"')
url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo detection/LogoNet.mat';
websave('LogoNet.mat',url);
end
data = load('LogoNet.mat');
end

Load the pretrained network.

snet = getlLogoNetwork();

snet =
SeriesNetwork with properties:

Layers: [22x1 nnet.cnn.layer.Layer]
InputNames: {'imageinput'}
OutputNames: {'classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the

convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of
inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the
limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos dataset data set. Define an imageDatastore, then
split the data into calibration and validation data sets.

curDir = pwd;

newDir = fullfile(matlabroot, 'examples', 'deeplearning shared', 'data','logos dataset.zip');
copyfile(newDir,curDir);

unzip('logos dataset.zip');

imageData = imageDatastore(fullfile(curDir, 'logos dataset'),...



calibrate

'IncludeSubfolders',true, 'FileExtensions','.JPG', 'LabelSource', 'foldernames');

[calibra

tionData,validationData]

splitEachLabel(imageData, 0.5, 'randomized');

Create a dlquantizer object and specify the network to quantize. Set the execution environment for
the quantized network to FPGA.

dlQuantObj = dlquantizer(snet, 'ExecutionEnvironment', 'FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

dlQuantObj.calibrate(calibrationData)

ans =

{'co
{'co
{'co
{'co
{'co
{'co
{'co
{'co
{'fc
{'fc
{'fc
{'fc
{'fc
{'fc
{'im
{'im

Optimized Layer Name

nv_1 Weights'
nv_1 Bias'
nv_2 Weights'
nv_2 Bias'
nv_3 Weights'
nv_3 Bias'
nv_4 Weights'
nv_4 Bias'

1 Weights'

1 Bias'
2 Weights'
2 Bias'
3 Weights'

3 Bias'
ageinput'
ageinput normalization'

¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
}

Network Layer Name

{'conv 1
{'conv 1
{'conv 2'
{'conv 2'
{'conv 3'
{'conv 3'
{'conv 4'
{'conv 4'
{'fc 1'
{'fc 1'
{'fc 2'
{'fc 2'
{'fc 3"
{'fc 3"
{'imageinput'}
{'imageinput'}

S S N S e e S S e e e e

Learnables / Activations

"Weights"
"Bias"
"Weights"
"Bias"
"Weights"
"Bias"
"Weights"
"Bias"
"Weights"
"Bias"
"Weights"
"Bias"
"Weights"
"Bias"
"Activations"
"Activations"

MinValue

-0.048978
0.99996
-0.055518
-0.00061171
-0.045942
-0.0013998
-0.045967
-0.00164
-0.051394
-0.00052319
-0.05016
-0.0017564
-0.050706
-0.02951

0

-139.34

MaxValue

0.039352
1.0028
0.061901
0.00227
0.046927
0.0015218
0.051
0.0037892
0.054344
0.00084454
0.051557
0.0018502
0.04678
0.024855
255
198.72

Create a target object with a custom name for your target device and an interface to connect your
target device to the host computer.

hTarget = dlhdl.Target('Intel', 'Interface','JTAG");

Define a metric function to use to compare the behavior of the network before and after quantization.
Save this function in a local file.

function accuracy = hComputeModelAccuracy(predictionScores,net,dataStore)

%% hComputeModelAccuracy test helper function computes model level accuracy statistics

% Copyright 2020 The MathWorks, Inc.

% Lo

groundTruth = dataStore.Labels;

ad ground truth

% Compare predicted label with ground truth

pred
for

end

% Su
pred

end

ictionError = {};
idx=1:numel(groundTruth)

[~, idy] = max(predictionScores(idx,:));
yActual = net.Layers(end).Classes(idy);
predictionError{end+1} = (yActual == groundTruth(idx)); S#ok

m all prediction errors.

ictionError = [predictionError{:}];
accuracy = sum(predictionError)/numel(predictionError);

Specify the metric function and FPGA execution environment options in a dlquantizationOptions

object.

1-255



1 Deep Learning Functions

1-256

options = dlquantizationOptions('MetricFcn', ...
{@(x)hComputeModelAccuracy(x,snet,validationData)}, 'Bitstream', 'arrial@soc int8',...
'Target',hTarget);

Compile and deploy the quantized network. Use the validate function to quantize the learnable
parameters in the convolution layers of the network and exercise the network. This function uses the
output of the compile function to program the FPGA board by using the programming file. It also
downloads the network weights and biases. The deploy function checks for the Intel Quartus® tool
and the supported tool version. It then programs the FPGA device using the sof file, displays progress
messages, and the time it takes to deploy the network. The validate function uses the metric
function defined in the dlquantizationOptions object to compare the results of the network
before and after quantization.

prediction = dlQuantObj.validate(validationData,options);

offset name offset address allocated space
"InputDataOffset" "0x00000000" "48.0 MB"
"OutputResultOffset" "0x03000000" "4.0 MB"
"SystemBufferOffset" "0x03400000" "60.0 MB"
"InstructionDataOffset" "0x07000000" "8.0 MB"
"ConvWeightDataOffset" "0x07800000" "8.0 MB"
"FCWeightDataOffset" "0x08000000" "12.0 MB"
"EndOffset" "0x08c00000" "Total: 140.0 MB"

### Programming FPGA Bitstream using JTAG...

### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.

### Conv Weights loaded. Current time is 16-Jul-2020 12:45:10

### Loading weights to FC Processor.

### FC Weights loaded. Current time is 16-Jul-2020 12:45:26

### Finished writing input activations.

### Running single input activations.

Deep Learning Processor Profiler Performance Results

LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency
Network 13570959 0.09047 30 380609145
conv_module 12667786 0.08445
conv 1 3938907 0.02626
maxpool 1 1544560 0.01030
conv 2 2910954 0.01941
maxpool 2 577524 0.00385
conv 3 2552707 0.01702
maxpool 3 676542 0.00451
conv 4 455434 0.00304
maxpool 4 11251 0.00008
fc_module 903173 0.00602
fc 1 536164 0.00357
fc 2 342643 0.00228
fc 3 24364 0.00016

* The clock frequency of the DL processor is: 156MHz

### Finished writing input activations.
### Running single input activations.

Deep Learning Processor Profiler Performance Results

LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency
Network 13570364 0.09047 30 380612682
conv_module 12667103 0.08445
conv 1 3939296 0.02626
maxpool 1 1544371 0.01030

Frames/s

Frames/s
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conv_2 2910747 0.01940
maxpool 2 577654 0.00385
conv_3 2551829 0.01701
maxpool 3 676548 0.00451
conv 4 455396 0.00304
maxpool 4 11355 0.00008
fc_module 903261 0.00602
fc 1 536206 0.00357
fc 2 342688 0.00228
fc 3 24365 0.00016
* The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

Deep Learning Processor Profiler Performance Results

LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency Frames/s

Network 13571561 0.09048 30 380608338 11.8
conv_module 12668340 0.08446
conv_ 1 3939070 0.02626
maxpool 1 1545327 0.01030
conv_2 2911061 0.01941
maxpool 2 577557 0.00385
conv_3 2552082 0.01701
maxpool 3 676506 0.00451
conv 4 455582 0.00304
maxpool 4 11248 0.00007
fc_module 903221 0.00602
fc 1 536167 0.00357
fc 2 342643 0.00228
fc 3 24409 0.00016

* The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

Deep Learning Processor Profiler Performance Results

LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency Frames/s

Network 13569862 0.09047 30 380613327 11.8
conv_module 12666756 0.08445
conv_ 1 3939212 0.02626
maxpool 1 1543267 0.01029
conv_2 2911184 0.01941
maxpool 2 577275 0.00385
conv_3 2552868 0.01702
maxpool 3 676438 0.00451
conv 4 455353 0.00304
maxpool 4 11252 0.00008
fc_module 903106 0.00602
fc 1 536050 0.00357
fc 2 342645 0.00228
fc 3 24409 0.00016

* The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.
Deep Learning Processor Profiler Performance Results
LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency Frames/s

Network 13570823 0.09047 30 380619836 11.8
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conv_module 12667607 0.08445
conv_1 3939074 0.02626
maxpool 1 1544519 0.01030
conv_2 2910636 0.01940
maxpool 2 577769 0.00385
conv_3 2551800 0.01701
maxpool 3 676795 0.00451
conv_4 455859 0.00304
maxpool 4 11248 0.00007

fc_module 903216 0.00602
fc 1l 536165 0.00357
fc 2 342643 0.00228
fc 3 24406 0.00016

* The clock frequency of the DL processor is: 150MHz
offset name offset address allocated space

"InputDataOffset" "0x00000000" "48.0 MB"

"OutputResultOffset"” "0x03000000" "4.0 MB"

"SystemBufferOffset"” "0x03400000" "60.0 MB"

"InstructionDataOffset" "0x07000000" "8.0 MB"

"ConvWeightDataOffset" "0x07800000" "8.0 MB"

"FCWeightDataOffset" "0x08000000" "12.0 MB"

"EndOffset" "0x08c00000" "Total: 140.0 MB"

### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.

### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
### Finished writing input activations.

### Running single input activations.

Deep Learning Processor Profiler Performance Results

LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency Frames/s

Network 13572329 0.09048 10 127265075 11.8
conv_module 12669135 0.08446
conv_ 1 3939559 0.02626
maxpool 1 1545378 0.01030
conv_2 2911243 0.01941
maxpool 2 577422 0.00385
conv_3 2552064 0.01701
maxpool 3 676678 0.00451
conv 4 455657 0.00304
maxpool 4 11227 0.00007
fc_module 903194 0.00602
fc 1 536140 0.00357
fc 2 342688 0.00228
fc 3 24364 0.00016

* The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.

Deep Learning Processor Profiler Performance Results

LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency Frames/s

Network 13572527 0.09048 10 127266427 11.8
conv_module 12669266 0.08446
conv_ 1 3939776 0.02627
maxpool 1 1545632 0.01030
conv_2 2911169 0.01941
maxpool 2 577592 0.00385
conv_3 2551613 0.01701
maxpool 3 676811 0.00451
conv 4 455418 0.00304
maxpool 4 11348 0.00008
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fc_module 903261 0.00602
fc 1 536205 0.00357
fc 2 342689 0.00228
fc 3 24365 0.00016

* The clock frequency of the DL processor is: 156MHz

The weights, biases, and activations of the convolution layers of the network specified in the
dlquantizer object now use scaled 8-bit integer data types.

Examine the MetricResults.Result field of the validation output to see the performance of the
quantized network.

validateOut = prediction.MetricResults.Result

ans =
NetworkImplementation MetricOutput
{'Floating-Point'} 0.9875
{'Quantized' } 0.9875

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second
performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

Quantize a Neural Network for CPU Target

This example shows how to quantize and validate a neural network for a CPU target. This workflow is
similar to other execution environments, but before validating you must establish a raspi
connection.

First, load your network. This example uses the pretrained network squeezenet.

load squeezenetmerch
net

net =
DAGNetwork with properties:

Layers: [68x1 nnet.cnn.layer.Layer]
Connections: [75x2 table]
InputNames: {'data'}
OutputNames: {'new classoutput'}

Then define your calibration and validation data, calDS and valDS respectively.

unzip('MerchData.zip');
imds = imageDatastore('MerchData’,
'IncludeSubfolders',true,
'LabelSource', 'foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug calData = augmentedImageDatastore([227 227],calData);
aug valData = augmentedImageDatastore([227 227],valData);
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Create the dlquantizer object and specify a CPU execution environment.

dg = dlquantizer(net, 'ExecutionEnvironment', 'CPU")

dq =
dlquantizer with properties:

NetworkObject: [1x1 DAGNetwork]

ExecutionEnvironment: 'CPU'

Calibrate the network.

calResults = calibrate(dq,aug_calData)

Attempt to calibrate with host GPU errored with the message:

Unable to find a supported GPU device. For more information on GPU support, see GPU Support by R

Reverting to use host CPU.
calResults=121x5 table

Optimized Layer Name Network Layer Name Learnables / Activations MinValue
{'convl Weights' } {'convl' } "Weights" -0.9198
{'convl Bias' } {'convl' } "Bias" -0.0792!
{'fire2-squeezelxl Weights'} {'fire2-squeezelxl'} "Weights" -1. 3
{'fire2-squeezelxl Bias' } {'fire2-squeezelxl'} "Bias" -0.1164
{'fire2-expandlxl Weights' } {'fire2-expandlx1l' } "Weights" -0.740¢
{'fire2-expandlxl Bias' } {'fire2-expandlx1l' } "Bias" -0.06005
{'fire2-expand3x3 Weights' } {'fire2-expand3x3"' } "Weights" -0.7439
{'fire2-expand3x3 Bias' } {'fire2-expand3x3' } "Bias" -0.05177
{'fire3-squeezelxl Weights'} {'fire3-squeezelxl'} "Weights" -0.771.
{'fire3-squeezelxl Bias' } {'fire3-squeezelxl'} "Bias" -0.1013
{'fire3-expandlxl Weights' } {'fire3-expandlxl' } "Weights" -0.7203
{'fire3-expandlxl Bias' } {'fire3-expandlxl' } "Bias" -0.06702
{'fire3-expand3x3 Weights' } {'fire3-expand3x3' } "Weights" -0.6144:
{'fire3-expand3x3 Bias' } {'fire3-expand3x3"' } "Bias" -0.05361.!
{'fire4-squeezelxl Weights'} {'fire4-squeezelxl'} "Weights" -0.742.

{'fire4-squeezelxl'} "Bias" -0.1088

{'fire4-squeezelxl Bias' }

Use the MATLAB Support Package for Raspberry Pi function, raspi, to create a connection to the

Raspberry Pi. In the following code, replace:

* raspiname with the name or address of your Raspberry Pi

* username with your user name
* password with your password

% r = raspi('raspiname', 'username', 'password');

Validate the quantized network with the validate function.

valResults = validate(dq,aug valData)

### Starting application: 'codegen/lib/validate predict int8/pil/validate predict int8.elf'

To terminate execution: clear validate predict int8 pil

### Launching application validate predict int8.elf...
### Host application produced the following standard output (stdout) and standard error (stderr)
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valResults = struct with fields:
NumSamples: 20

MetricResults: [1x1 struct]
Statistics: []

Examine the validation output to see the performance of the quantized network.
valResults.MetricResults.Result

ans=2x2 table

NetworkImplementation MetricOutput
{'Floating-Point'} 0.95
{'Quantized' } 0.95

Input Arguments

quantObj — Network to quantize
dlguantizer object

Network to quantize, specified as a dlquantizer object.

calData — Data to use for calibration of quantized network
imageDatastore object | augmentedImageDatastore object | pixelLabelImageDatastore
object | CombinedImageDatastore object

Data to use for calibration of quantized network, specified as an imageDatastore object, an
augmentedImageDatastore object, a pixelLabelImageDatastore object, or a
CombinedDatastore object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: calResults = calibrate(quantObj,calData, 'UseGPU', 'on')

MiniBatchSize — Size of mini-batches
32 (default) | positive integer

Size of the mini-batches to use for calibration, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster calibration.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

UseGPU — Whether to use host GPU for calibration
‘auto’ (default) | ‘on' | 'off

Whether to use host GPU for calibration, specified as one of the following:
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 'auto' — Use host GPU for calibration if one is available. Otherwise, use host CPU for
calibration.

* 'on' — Use host GPU for calibration.
e 'off' — Use host CPU for calibration.

Data Types: char

Output Arguments

calResults — Dynamic ranges of network
table

Dynamic ranges of layers of the network, returned as a table. Each row in the table displays the
minimum and maximum values of a learnable parameter of a convolution layer of the optimized
network. The software uses these minimum and maximum values to determine the scaling for the
data type of the quantized parameter.

Version History
Introduced in R2020a

Calibrate on host GPU or host CPU

You can now choose whether to calibrate your network using the host GPU or host CPU. By default,
the calibrate function and the Deep Network Quantizer app will calibrate on the host GPU if one
is available.

In previous versions, it was required that the execution environment was the same as the
instrumentation environment used for the calibration step of quantization.

Specify mini-batch size to use for calibration

Use MiniBatchSize to specify the size of mini-batches to use for calibration.

ARM Cortex-A calibration support

The Deep Learning Toolbox Model Quantization Library now supports calibration of a network for
quantization and deployment on ARM Cortex®-A microcontrollers.

See Also

Apps
Deep Network Quantizer

Functions
validate | dlquantizer |dlquantizationOptions | quantize | quantizationDetails |
estimateNetworkMetrics

Topics
“Quantization Workflow Prerequisites”
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“Quantization of Deep Neural Networks”

“Quantize Residual Network Trained for Image Classification and Generate CUDA Code”
“Deploy INT8 Network to FPGA” (Deep Learning HDL Toolbox)

“Generate int8 Code for Deep Learning Networks” (MATLAB Coder)
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Check validity of custom or function layer

Syntax

checkLayer(layer,validInputSize)
checkLayer(layer,validInputSize,Name=Value)

Description

checkLayer (layer,validInputSize) checks the validity of a custom or function layer using
generated data of the sizes in validInputSize. For layers with a single input, set
validInputSize to a typical size of input data to the layer. For layers with multiple inputs, set
validInputSize to a cell array of typical sizes, where each element corresponds to a layer input.

checkLayer(layer,validInputSize,Name=Value) specifies additional options using one or
more name-value arguments.

Examples

Check Custom Layer Validity
Check the validity of the example custom layer prelulLayer.

The custom layer prelulLayer, attached to this example as a supporting file, applies the PReL.U
operation to the input data. To access this layer, open this example as a live script.

Create an instance of the layer.
layer = prelulLayer;

Because the layer has a custom initialize function, initialize the layer using a networkDataFormat
object that specifies the expected input size and format of a single observation of typical input to the
layer.

Specify a valid input size of [24 24 20], where the dimensions correspond to the height, width, and
number of channels of the previous layer output.

validInputSize = [24 24 201;
layout = networkDatalayout(validInputSize,"SSC");
layer = initialize(layer,layout);

Check the layer validity using checkLayer. Specify the valid input size as the size as the size as used
to initialize the layer. When you pass data through the network, the layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

checkLayer(layer,validInputSize)

Skipping multi-observation tests. To enable tests with multiple observations, specify the 'Obser
For 2-D image data, set 'ObservationDimension' to 4.
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For 3-D image data, set 'ObservationDimension' to 5.
For sequence data, set 'ObservationDimension' to 2.

Skipping GPU tests. No compatible GPU device found.
Skipping code generation compatibility tests. To check validity of the layer for code generation

Running nnet.checklayer.TestLayerWithoutBackward

Test Summary:
12 Passed, 0 Failed, 0 Incomplete, 16 Skipped.
Time elapsed: 0.054851 seconds.

The results show the number of passed, failed, and skipped tests. If you do not specify the
ObservationsDimension option, or do not have a GPU, then the function skips the corresponding
tests.

Check Multiple Observations

For multi-observation image input, the layer expects an array of observations of size h-by-w-by-c-by-
N, where h, w, and c are the height, width, and number of channels, respectively, and N is the
number of observations.

To check the layer validity for multiple observations, specify the typical size of an observation and set
the ObservationDimension option to 4.

checkLayer(layer,validInputSize,ObservationDimension=4)
Skipping GPU tests. No compatible GPU device found.
Skipping code generation compatibility tests. To check validity of the layer for code generation

Running nnet.checklayer.TestLayerWithoutBackward

Test Summary:
18 Passed, 0 Failed, 0 Incomplete, 10 Skipped.
Time elapsed: 0.030498 seconds.

In this case, the function does not detect any issues with the layer.

Check Function Layer Validity

Create a function layer object that applies the softsign operation to the input. The softsign operation
is given by the function f(x) =

1+ "

functionLayer(@(X) X./(1 + abs(X)))

layer

layer =
FunctionLayer with properties:
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Name:

PredictFcn: @(X)X./(1+abs (X))
Formattable: 0
Acceleratable: 0

Learnable Parameters
No properties.

State Parameters
No properties.

Show all properties

Check that the layer it is valid using the checkLayer function. Set the valid input size to the typical
size of a single observation input to the layer. For example, for a single input, the layer expects
observations of size h-by-w-by-c, where h, w, and c are the height, width, and number of channels of
the previous layer output, respectively.

Specify validInputSize as the typical size of an input array.

validInputSize = [5 5 20];
checkLayer(layer,validInputSize)

Skipping multi-observation tests. To enable tests with multiple observations, specify the 'Obsen
For 2-D image data, set 'ObservationDimension' to 4.
For 3-D image data, set 'ObservationDimension' to 5.
For sequence data, set 'ObservationDimension' to 2.

Skipping GPU tests. No compatible GPU device found.
Skipping code generation compatibility tests. To check validity of the layer for code generation

Running nnet.checklayer.TestLayerWithoutBackward

Test Summary:
12 Passed, 0 Failed, 0 Incomplete, 16 Skipped.
Time elapsed: 0.31986 seconds.

The results show the number of passed, failed, and skipped tests. If you do not specify the
ObservationsDimension option, or do not have a GPU, then the function skips the corresponding
tests.

Check Multiple Observations

For multi-observation image input, the layer expects an array of observations of size h-by-w-by-c-by-
N, where h, w, and c are the height, width, and number of channels, respectively, and N is the
number of observations.

To check the layer validity for multiple observations, specify the typical size of an observation and set
the ObservationDimension option to 4.
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layer = functionLayer(@(X) X./(1 + abs(X)));
validInputSize = [5 5 20];
checkLayer(layer,validInputSize,ObservationDimension=4)

Skipping GPU tests. No compatible GPU device found.
Skipping code generation compatibility tests. To check validity of the layer for code generation

Running nnet.checklayer.TestLayerWithoutBackward

Test Summary:
18 Passed, 0 Failed, 0 Incomplete, 10 Skipped.
Time elapsed: 0.2407 seconds.

In this case, the function does not detect any issues with the layer.

Check Custom Layer for Code Generation Compatibility
Check the code generation compatibility of the custom layer codegenPreluLayer.

The custom layer codegenPrelulLayer, attached to this is example as a supporting file, applies the
PReLU operation to the input data. To access this layer, open this example as a live script.

Create an instance of the layer and check its validity using checkLayer. Specify the valid input size
as the size of a single observation of typical input to the layer. The layer expects 4-D array inputs,
where the first three dimensions correspond to the height, width, and number of channels of the
previous layer output, and the fourth dimension corresponds to the observations.

Specify the typical size of the input of an observation and set the 'ObservationDimension' option
to 4. To check for code generation compatibility, set the CheckCodegenCompatibility option to
true. The checkLayer function does not check for functions that are not compatible with code
generation. To check that the custom layer definition is supported for code generation, first use the
Code Generation Readiness app. For more information, see “Check Code by Using the Code
Generation Readiness Tool” (MATLAB Coder).

layer = codegenPrelulLayer(20,"prelu");

validInputSize = [24 24 20];
checkLayer(layer,validInputSize,ObservationDimension=4,CheckCodegenCompatibility=true)
Skipping GPU tests. No compatible GPU device found.

Running nnet.checklayer.TestLayerWithoutBackward

Test Summary:
23 Passed, 0 Failed, 0 Incomplete, 5 Skipped.
Time elapsed: 1.114 seconds.

The function does not detect any issues with the layer.
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Input Arguments

layer — Layer to check
nnet.layer.Layer object | nnet.layer.ClassificationlLayer object |
nnet.layer.RegressionlLayer object

Layer to check, specified as an nnet.layer.Layer, nnet.layer.ClassificationLayer,
nnet.layer.RegressionLayer, or FunctionLayer object.

If Layer has learnable or state parameters, then the layer must be initialized. If the layer has a
custom initialize function, then first initialize the layer using the initialize function using
networkDatalayout objects.

The checkLayer function does not support layers that inherit from nnet.layer.Formattabtle.

For an example showing how to define your own custom layer, see “Define Custom Deep Learning
Layer with Learnable Parameters”. To create a layer that applies a specified function, use
functionlLayer.

validInputSize — Valid input sizes
vector of positive integers | cell array of vectors of positive integers

Valid input sizes of the layer, specified as a vector of positive integers or cell array of vectors of
positive integers.

» For layers with a single input, specify validInputSize as a vector of integers corresponding to
the dimensions of the input data. For example, [5 5 10] corresponds to valid input data of size
5-by-5-by-10.

» For layers with multiple inputs, specify validInputSize as a cell array of vectors, where each
vector corresponds to a layer input and the elements of the vectors correspond to the dimensions
of the corresponding input data. For example, {[24 24 201, [24 24 10]} corresponds to the
valid input sizes of two inputs, where 24-by-24-by-20 is a valid input size for the first input and 24-
by-24-by-10 is a valid input size for the second input.

For more information, see “Layer Input Sizes” on page 1-269.

For large input sizes, the gradient checks take longer to run. To speed up the check, specify a smaller
valid input size.

Example: [5 5 10]

Example: {[24 24 20],[24 24 10]}

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: ObservationDimension=4 sets the observation dimension to 4

ObservationDimension — Observation dimension
positive integer
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Observation dimension, specified as a positive integer.

The observation dimension specifies which dimension of the layer input data corresponds to
observations. For example, if the layer expects input data is of size h-by-w-by-c-by-N, where h, w, and
c correspond to the height, width, and number of channels of the input data, respectively, and N
corresponds to the number of observations, then the observation dimension is 4. For more
information, see “Layer Input Sizes” on page 1-269.

If you specify the observation dimension, then the checkLayer function checks that the layer
functions are valid using generated data with mini-batches of size 1 and 2. If you do not specify the
observation dimension, then the function skips the corresponding tests.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

CheckCodegenCompatibility — Flag to enable code generation tests
0 (false) (default) | 1 (true)

Flag to enable code generation tests, specified as 0 (false) or 1 (true).

If CheckCodegenCompatibility is 1 (true), then you must specify the ObservationDimension
option.

Code generation supports intermediate layers with 2-D image or feature input only. Code generation
does not support layers with state properties (properties with attribute State).

The checkLayer function does not check that functions used by the layer are compatible with code
generation. To check that functions used by the custom layer also support code generation, first use
the Code Generation Readiness app. For more information, see “Check Code by Using the Code
Generation Readiness Tool” (MATLAB Coder).

For an example showing how to define a custom layer that supports code generation, see “Define
Custom Deep Learning Layer for Code Generation”.

Data Types: logical

More About

Layer Input Sizes

For each layer, the valid input size and the observation dimension depend on the output of the
previous layer.

Intermediate Layers

For intermediate layers (layers of type nnet. layer.Layer), the valid input size and the observation
dimension depend on the type of data input to the layer.

» For layers with a single input, specify validInputSize as a vector of integers corresponding to
the dimensions of the input data.

» For layers with multiple inputs, specify validInputSize as a cell array of vectors, where each
vector corresponds to a layer input and the elements of the vectors correspond to the dimensions
of the corresponding input data.

For large input sizes, the gradient checks take longer to run. To speed up the check, specify a smaller
valid input size.
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Layer Input Input Size Observation Dimension

Feature vectors c-by-N, where c corresponds to |2
the number of channels and N is
the number of observations

2-D images h-by-w-by-c-by-N, where h, w, |4
and c¢ correspond to the height,
width, and number of channels
of the images, respectively, and
N is the number of observations

3-D images h-by-w-by-d-by-c-by-N, where h, |5
w, d, and ¢ correspond to the
height, width, depth, and
number of channels of the 3-D
images, respectively, and N is
the number of observations

Vector sequences c-by-N-by-S, where c is the 2
number of features of the
sequences, N is the number of
observations, and S is the
sequence length

2-D image sequences h-by-w-by-c-by-N-by-S, where h, |4
w, and ¢ correspond to the
height, width, and number of
channels of the images,
respectively, N is the number of
observations, and S is the
sequence length

3-D image sequences h-by-w-by-d-by-c-by-N-by-S, 5
where h, w, d, and ¢ correspond
to the height, width, depth, and
number of channels of the 3-D
images, respectively, N is the
number of observations, and S
is the sequence length

For example, for 2-D image classification problems, set validInputSizeto [h w c], where h, w,
and c correspond to the height, width, and number of channels of the images, respectively, and
ObservationDimension to 4.

Code generation supports intermediate layers with 2-D image input only.

Output Layers

For output layers (layers of type nnet.layer.ClassificationlLayer or
nnet.layer.RegressionLayer), set validInputSize to the typical size of a single input
observation Y to the layer.

For classification problems, the valid input size and the observation dimension of Y depend on the
type of problem:
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Classification Task

Input Size

Observation Dimension

2-D image classification

1-by-1-by-K-by-N, where K is the
number of classes and N is the
number of observations

4

3-D image classification

1-by-1-by-1-by-K-by-N, where K
is the number of classes and N
is the number of observations

5

Sequence-to-label classification

K-by-N, where K is the number
of classes and N is the number
of observations

2

Sequence-to-sequence
classification

K-by-N-by-S, where K is the
number of classes, N is the
number of observations, and S
is the sequence length

For example, for 2-D image classification problems, set validInputSizeto [1 1 K], where K is the
number of classes, and ObservationDimension to 4.

For regression problems, the dimensions of Y also depend on the type of problem. The following table

describes the dimensions of Y.

Regression Task

Input Size

Observation Dimension

2-D image regression

1-by-1-by-R-by-N, where R is the
number of responses and N is
the number of observations

4

2-D Image-to-image regression

h-by-w-by-c-by-N, where h, w,
and c are the height, width, and
number of channels of the
output, respectively, and N is
the number of observations

3-D image regression

1-by-1-by-1-by-R-by-N, where R
is the number of responses and
N is the number of observations

5

3-D Image-to-image regression

h-by-w-by-d-by-c-by-N, where h,
w, d, and c are the height,
width, depth, and number of
channels of the output,
respectively, and N is the
number of observations

5

Sequence-to-one regression

R-by-N, where R is the number
of responses and N is the
number of observations

2

Sequence-to-sequence
regression

R-by-N-by-S, where R is the
number of responses, N is the
number of observations, and S
is the sequence length
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For example, for 2-D image regression problems, set validInputSize to [1 1 R], where R is the
number of responses, and ObservationDimension to 4.

Algorithms

List of Tests

The checkLayer function checks the validity of a custom layer by performing a series of tests,
described in these tables. For more information on the tests used by checkLayer, see “Check

Custom Layer Validity”.

Intermediate Layers

The checkLayer function uses these tests to check the validity of custom intermediate layers (layers

of type nnet.layer.Layer).

Test

Description

functionSyntaxesAreCorrect

The syntaxes of the layer functions are correctly
defined.

predictDoesNotError

predict function does not error.

forwardDoesNotError

When specified, the forward function does not
error.

forwardPredictAreConsistentInSize

When forward is specified, forward and
predict output values of the same size.

backwardDoesNotError

When specified, backward does not error.

backwardIsConsistentInSize

When backward is specified, the outputs of
backward are consistent in size:

* The derivatives with respect to each input are
the same size as the corresponding input.

* The derivatives with respect to each learnable
parameter are the same size as the
corresponding learnable parameter.

predictIsConsistentInType

The outputs of predict are consistent in type
with the inputs.

forwardIsConsistentInType

When forward is specified, the outputs of
forward are consistent in type with the inputs.

backwardIsConsistentInType

When backward is specified, the outputs of
backward are consistent in type with the inputs.

gradientsAreNumericallyCorrect

When backward is specified, the gradients
computed in backward are consistent with the
numerical gradients.

backwardPropagationDoesNotError

When backward is not specified, the derivatives
can be computed using automatic differentiation.

predictReturnsValidStates

For layers with state properties, the predict

function returns valid states.
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Test

Description

forwardReturnsValidStates

For layers with state properties, the forward
function, if specified, returns valid states.

resetStateDoesNotError

For layers with state properties, the resetState
function, if specified, does not error and resets
the states to valid states.

codegenPragmaDefinedInClassDef

The pragma "%#codegen" for code generation is
specified in class file.

layerPropertiesSupportCodegen

The layer properties support code generation.

predictSupportsCodegen

predict is valid for code generation.

doesNotHaveStateProperties

For code generation, the layer does not have
state properties.

functionLayerSupportsCodegen

For code generation, the layer function must be a
named function on the path and the
Formattable property must be 0 (false).

Some tests run multiple times. These tests also check different data types and for GPU compatibility:

* predictIsConsistentInType
« forwardIsConsistentInType
* backwardIsConsistentInType

To execute the layer functions on a GPU, the functions must support inputs and outputs of type

gpuArray with the underlying data type single.

Output Layers

The checkLayer function uses these tests to check the validity of custom output layers (layers of
type nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer).

Test

Description

forwardLossDoesNotError

forwardLoss does not error.

backwardLossDoesNotError

backwardLoss does not error.

forwardLossIsScalar

The output of forwardLoss is scalar.

backwardLossIsConsistentInSize

When backwardLoss is specified, the output of
backwardLoss is consistent in size: dLdY is the
same size as the predictions Y.

forwardLossIsConsistentInType

The output of forwardLoss is consistent in type:
loss is the same type as the predictions Y.

backwardLossIsConsistentInType

When backwardLoss is specified, the output of
backwardLoss is consistent in type: dLdY must
be the same type as the predictions Y.

gradientsAreNumericallyCorrect

When backwardLoss is specified, the gradients
computed in backwardLoss are numerically
correct.
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Test

Description

backwardPropagationDoesNotError

When backwardLoss is not specified, the
derivatives can be computed using automatic
differentiation.

The forwardLossIsConsistentInType and backwardLossIsConsistentInType tests also
check for GPU compatibility. To execute the layer functions on a GPU, the functions must support
inputs and outputs of type gpuArray with the underlying data type single.

Version History
Introduced in R2018a

See Also

trainNetwork | trainingOptions | analyzeNetwork

Topics
“Check Custom Layer Validity”
“Define Custom Deep Learning Layers”

“Define Custom Deep Learning Layer with Learnable Parameters”
“Define Custom Deep Learning Layer with Multiple Inputs”

“Define Custom Classification Output Layer”
“Define Custom Regression Output Layer”

“Define Custom Deep Learning Layer for Code Generation”

“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”
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classificationLayer

Classification output layer

Syntax

layer = classificationLayer
layer classificationLayer(Name,Value)

Description

A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes.

The layer infers the number of classes from the output size of the previous layer. For example, to
specify the number of classes K of the network, you can include a fully connected layer with output
size K and a softmax layer before the classification layer.

layer = classificationLayer creates a classification layer.

layer = classificationLayer(Name,Value) sets the optional Name, ClassWeights, and
Classes properties using one or more name-value pairs. For example,
classificationLayer('Name', 'output') creates a classification layer with the name
"output’.

Examples

Create Classification Layer

Create a classification layer with the name 'output'.
layer = classificationLayer('Name', 'output')

layer =
ClassificationOutputLayer with properties:

Name: ‘'output’
Classes: 'auto'
ClassWeights: 'none'
OutputSize: 'auto'

Hyperparameters
LossFunction: 'crossentropyex'

Include a classification output layer in a Layer array.

layers = [ ...
imagelInputlLayer([28 28 1])
convolution2dLayer(5,20)
reluLayer
maxPooling2dLayer(2, 'Stride',2)
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fullyConnectedlLayer(10)
softmaxLayer
classificationLayer]

layers =
7x1 Layer array with layers:

1 b Image Input 28x28x1 images with 'zerocenter' normalization

2 t 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0O (
3 Y ReLU ReLU

4 b 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0O ©
5 b Fully Connected 10 fully connected layer

6 Y Softmax softmax

7 b Classification Output crossentropyex

Create Weighted Classification Layer

Create a weighted classification layer for three classes with names "cat", "dog", and "fish", with
weights 0.7, 0.2, and 0.1, respectively.

classes = ["cat" "dog" "fish"];
classWeights = [0.7 0.2 0.1];

layer = classificationLayer(
'Classes',classes, .
'ClassWeights',classWeights)

layer =
ClassificationOutputLayer with properties:

Name: '’
Classes: [cat dog fish]
ClassWeights: [3x1 double]
OQutputSize: 3

Hyperparameters
LossFunction: 'crossentropyex'

Include a weighted classification output layer in a Layer array.

numClasses = numel(classes);

layers = [ ...
imagelInputlLayer([28 28 1])
convolution2dLayer(5,20)
reluLayer
maxPooling2dLayer(2, 'Stride',2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer('Classes',classes, 'ClassWeights',classWeights)]

layers =
7x1 Layer array with layers:

1 b Image Input 28x28x1 images with 'zerocenter' normalization
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2 t 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 ©

3 e ReLU ReLU

4 Y 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 O 0O
5 t Fully Connected 3 fully connected layer

6 Y Softmax softmax

7 Y Classification Output Class weighted crossentropyex with 'cat' and 2 other classt

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: classificationLayer('Name', 'output') creates a classification layer with the name
‘output'’

Name — Layer name
"' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name '"'.

Data Types: char | string

ClassWeights — Class weights for weighted cross-entropy loss
'none' (default) | vector of positive numbers

Class weights for weighted cross-entropy loss, specified as a vector of positive numbers or 'none’.

For vector class weights, each element represents the weight for the corresponding class in the
Classes property. To specify a vector of class weights, you must also specify the classes using
‘Classes’.

If the ClassWeights property is 'none’, then the layer applies unweighted cross-entropy loss.

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at
training time. If you specify the string array or cell array of character vectors str, then the software
sets the classes of the output layer to categorical(str,str).

Data Types: char | categorical | string | cell

Output Arguments

layer — Classification layer
ClassificationOutputLayer object
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Classification layer, returned as a ClassificationOutputLayer object.

For information on concatenating layers to construct convolutional neural network architecture, see
Layer.

More About

Classification Layer

A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes.

For typical classification networks, the classification layer usually follows a softmax layer. In the

classification layer, trainNetwork takes the values from the softmax function and assigns each input
to one of the K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme

[1]:
K
, E Witnilnyn;,

i=1

1

loss = — =
Nn

p\A=z

where N is the number of samples, K is the number of classes, w; is the weight for class i, t,; is the

indicator that the nth sample belongs to the ith class, and y,; is the output for sample n for class i,

which in this case, is the value from the softmax function. In other words, y,; is the probability that
the network associates the nth input with class i.

Version History
Introduced in R2016a
References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainingOptions | trainNetwork | ClassificationOutputLayer | softmaxLayer |
regressionlLayer

Topics

“Train Sequence Classification Network Using Data With Imbalanced Classes”
“Deep Learning in MATLAB”
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“List of Deep Learning Layers”
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ClassificationOutputLayer

Classification layer

Description

A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes.

Creation

Create a classification layer using classificationlLayer.

Properties
Classification Output

ClassWeights — Class weights for weighted cross-entropy loss
'none' (default) | vector of positive numbers

Class weights for weighted cross-entropy loss, specified as a vector of positive numbers or 'none"’.

For vector class weights, each element represents the weight for the corresponding class in the
Classes property. To specify a vector of class weights, you must also specify the classes using
'Classes’'.

If the ClassWeights property is 'none’, then the layer applies unweighted cross-entropy loss.

Classes — Classes of the output layer
‘auto’ (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character
vectors, or 'auto'. If Classes is 'auto’, then the software automatically sets the classes at
training time. If you specify the string array or cell array of character vectors str, then the software
sets the classes of the output layer to categorical(str,str).

Data Types: char | categorical | string | cell

OutputSize — Size of the output
‘auto’ (default) | positive integer

This property is read-only.

Size of the output, specified as a positive integer. This value is the number of labels in the data.
Before the training, the output size is set to 'auto’.

LossFunction — Loss function for training
‘crossentropyex!

This property is read-only.
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Loss function for training, specified as 'crossentropyex', which stands for Cross Entropy Function
for k Mutually Exclusive Classes.

Layer

Name — Layer name
"' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
0 (default)

Number of outputs of the layer. The layer has no outputs.

Data Types: double

OutputNames — Output names
{} (default)

Output names of the layer. The layer has no outputs.

Data Types: cell

Examples
Create Classification Layer

Create a classification layer with the name 'output'.
layer = classificationLayer('Name', 'output')

layer =
ClassificationQutputLayer with properties:

Name: ‘'output’
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Classes: 'auto'
ClassWeights: 'none'
OutputSize: 'auto'

Hyperparameters
LossFunction: 'crossentropyex'

Include a classification output layer in a Layer array.

layers = [ ...
imagelInputlLayer([28 28 1])
convolution2dLayer(5,20)
reluLayer
maxPooling2dLayer(2, 'Stride',2)
fullyConnectedLayer(10)

softmaxLayer
classificationLayer]
layers =
7x1 Layer array with layers:

1 n Image Input 28x28x1 images with 'zerocenter' normalization

2 t 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0O
3 e ReLU ReLU

4 " 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 O O 0
5 t Fully Connected 10 fully connected layer

6 " Softmax softmax

7 t Classification Output crossentropyex

Create Weighted Classification Layer

Create a weighted classification layer for three classes with names "cat", "dog", and "fish", with
weights 0.7, 0.2, and 0.1, respectively.

classes = ["cat" "dog" "fish"];
classWeights = [0.7 0.2 0.1];

layer = classificationLayer(
'Classes',classes, ...
'ClassWeights',classWeights)

layer =
ClassificationQOutputLayer with properties:
Name: "'
Classes: [cat dog fish]
ClassWeights: [3x1 double]
OutputSize: 3

Hyperparameters

LossFunction: 'crossentropyex'

Include a weighted classification output layer in a Layer array.
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numClasses = numel(classes);

layers = [ ...
imagelInputLayer([28 28 1])
convolution2dLayer(5,20)
reluLayer
maxPooling2dLayer(2, 'Stride',2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer('Classes',classes, 'ClassWeights',classWeights)]

layers =
7x1 Layer array with layers:

1 t Image Input 28x28x1 images with 'zerocenter' normalization

2 t 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0O (

3 Y RelLU RelLU

4 b 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [6 0 O 0O

5 b Fully Connected 3 fully connected layer

6 b Softmax softmax

7 Y Classification Output Class weighted crossentropyex with 'cat' and 2 other classt
More About

Classification Output Layer

A classification layer computes the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes.

For typical classification networks, the classification layer usually follows a softmax layer. In the
classification layer, trainNetwork takes the values from the softmax function and assigns each input
to one of the K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme

[1]:

K
1 N
loss = — anl Witnlnyni,

i=1
where N is the number of samples, K is the number of classes, w; is the weight for class i, t,; is the
indicator that the nth sample belongs to the ith class, and y,; is the output for sample n for class i,

which in this case, is the value from the softmax function. In other words, y,; is the probability that
the network associates the nth input with class i.

Version History
Introduced in R2016a

ClassNames property will be removed
Not recommended starting in R2018b

ClassNames will be removed. Use Classes instead. To update your code, replace all instances of
ClassNames with Classes. There are some differences between the properties that require
additional updates to your code.
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The ClassNames property of the output layer is a cell array of character vectors. The Classes
property is a categorical array. To use the value of Classes with functions that require cell array
input, convert the classes using the cellstr function.

References

[1] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

See Also
regressionLayer | softmaxLayer

Topics

“Create Simple Deep Learning Network for Classification”

“Train Convolutional Neural Network for Regression”

“Train Sequence Classification Network Using Data With Imbalanced Classes”
“Deep Learning in MATLAB”

“Specify Layers of Convolutional Neural Network”

“List of Deep Learning Layers”
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classify

Classify data using trained deep learning neural network

Syntax

classify(net, images)
classify(net, sequences)
classify(net, features)

classify(net,X1,...,XN)
classify(net,mixed)

<< =<=<=

[Y,scores] = classify( )
= classify(___ ,Name=Value)

Description

You can make predictions using a trained neural network for deep learning on either a CPU or GPU.
Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Specify the
hardware requirements using the ExecutionEnvironment name-value argument.

For networks with multiple outputs, use the predict function instead and set the
ReturnCategorical option to true.

Y = classify(net, images) predicts the class labels of the specified images using the trained
network net.

Y = classify(net,sequences) predicts the class labels of the specified sequences using the
trained network net.

Y = classify(net, features) predicts the class labels of the specified feature data using the
trained network net.

Y = classify(net,X1,...,XN) predicts the class labels for the data in the numeric arrays or cell
arrays X1, ..., XN for the multi-input network net. The input Xi corresponds to the network input
net.InputNames(1i).

Y = classify(net,mixed) predicts the class labels using the trained network net with multiple
inputs of mixed data types.

[Y,scores] = classify( ) also returns the classification scores corresponding to the class
labels using any of the previous input arguments.

= classify(  ,Name=Value) predicts class labels with additional options specified by
one or more name-value arguments.

Tip When you make predictions with sequences of different lengths, the mini-batch size can impact
the amount of padding added to the input data, which can result in different predicted values. Try
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using different values to see which works best with your network. To specify mini-batch size and
padding options, use the MiniBatchSize and SequencelLength options, respectively.

Examples

Classify Images Using Trained Convolutional Neural Network

Load the pretrained network digitsNet. This network is a classification convolutional neural
network that classifies handwritten digits.

load digitsNet
View the network layers. The output layer of the network is a classification layer.
layers = net.Layers

layers =
15x1 Layer array with layers:

1 "imageinput’ Image Input 28x28x1 images with 'zerocenter' normalization
2 ‘conv_1' 2-D Convolution 8 3x3x1 convolutions with stride [1 1] and pad
3 ‘batchnorm 1' Batch Normalization Batch normalization with 8 channels

4 ‘relu_1' RelLU RelLU

5 ‘maxpool 1' 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding
6 ‘conv_2' 2-D Convolution 16 3x3x8 convolutions with stride [1 1] and pa
7 "batchnorm 2' Batch Normalization Batch normalization with 16 channels

8 ‘relu 2' RelLU RelLU

9 ‘maxpool 2' 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding
10 ‘conv_3' 2-D Convolution 32 3x3x16 convolutions with stride [1 1] and p
11 ‘batchnorm 3 Batch Normalization Batch normalization with 32 channels

12 "relu_3' RelLU ReLU

13 'fc'! Fully Connected 10 fully connected layer

14 'softmax’ Softmax softmax

15 'classoutput’ Classification Output crossentropyex with '0' and 9 other classes

Load the test images.

digitDatasetPath = fullfile(toolboxdir("nnet"),"nndemos","nndatasets","DigitDataset");
imdsTest = imageDatastore(digitDatasetPath,IncludeSubfolders=true);

Classify the images using the classify function.
YTest = classify(net,imdsTest);
View some of the test images at random with their predictions.

numImages = 9;
idx = randperm(numel(imdsTest.Files),numImages);

figure
tiledlayout("flow")
for i = 1l:numImages
nexttile
imshow(imdsTest.Files{idx(i)});
title("Predicted Label: " + string(YTest(idx(i))))
end
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Predicted Label: & Predicted Label: 9

Predicted Label: 1

Predicted Label: 9

Predicted Label: 2 Predicted Label: 5

< s

Classify Sequences Using Trained LSTM Network

Predicted Label: 0

Predicted Label: 9

Load the pretrained network JapaneseVowelsNet. This network is a pretrained LSTM network
trained on the Japanese Vowels data set as described in [1] and [2]. It was trained on the sequences

sorted by sequence length with a mini-batch size of 27.
load JapaneseVowelsNet

View the network architecture.

net.Layers

ans =
5x1 Layer array with layers:

1 'sequenceinput’ Sequence Input

2 "Istm' LSTM

3 'fc! Fully Connected

4 'softmax' Softmax

5 'classoutput’ Classification Output

Load the test data.

[XTest,TTest] = japaneseVowelsTestData;

Sequence input with 12 dimensions
LSTM with 100 hidden units

9 fully connected layer

softmax
crossentropyex with

K

and 8 other classes
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Classify the test data.
YTest = classify(net, XTest);
View the predictions in a confusion chart.

figure
confusionchart(TTest,YTest)

1| 28 3
2 33 2
3 4 1 3 2 1
! 2 42
un
s
Og 3 26
4]
2
|_
6 24
7 39 1
8 46 4
g| 2 1 26
1 2 3 4 5 6 7 8 9

Predicted Class

Calculate the classification accuracy of the predictions.
accuracy = mean(YTest == TTest)

accuracy = 0.8595

Classify Feature Data Using Trained Network

Load the pretrained network TransmissionCasingNet. This network classifies the gear tooth
condition of a transmission system given a mixture of numeric sensor readings, statistics, and
categorical inputs.

load TransmissionCasingNet
View the network architecture.

net.Layers
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ans =
7x1 Layer array with layers:

1 "input’ Feature Input 22 features with 'zscore' normalization

2 "fc 1' Fully Connected 50 fully connected layer

3 "batchnorm’ Batch Normalization Batch normalization with 50 channels

4 "relu’ RelLU RelLU

5 "fc 2' Fully Connected 2 fully connected layer

6 'softmax'’ Softmax softmax

7 ‘classoutput’ Classification Output crossentropyex with classes 'No Tooth Fault' ant

Read the transmission casing data from the CSV file "transmissionCasingData.csv".

filename = "transmissionCasingData.csv";
tbl = readtable(filename,TextType="string");

Convert the labels for prediction to categorical using the convertvars function.

labelName = "GearToothCondition";
tbl = convertvars(tbl,labelName, "categorical");

To make predictions using categorical features, you must first convert the categorical features to
numeric. First, convert the categorical predictors to categorical using the convertvars function by
specifying a string array containing the names of all the categorical input variables. This data set has
two categorical features named "SensorCondition" and "ShaftCondition".

categoricallnputNames = ["SensorCondition" "ShaftCondition"];
tbl = convertvars(tbl,categoricalInputNames, "categorical");

Loop over the categorical input variables. For each variable:

» Convert the categorical values to one-hot encoded vectors using the onehotencode function.

* Add the one-hot vectors to the table using the addvars function. Specify insertion of the vectors
after the column containing the corresponding categorical data.
* Remove the corresponding column containing the categorical data.
for i = 1l:numel(categoricalInputNames)
name = categoricalInputNames(i);
oh = onehotencode(tbl(:,name));
tbl = addvars(tbl,oh,After=name);

tbl(:,name) = [1;
end

Split the vectors into separate columns using the splitvars function.
tbl = splitvars(tbl);

View the first few rows of the table.

head(tbl)
SigMean SigMedian SigRMS SigVar SigPeak SigPeak2Peak SigSkewness SigK
-0.94876 -0.9722 1.3726 0.98387 0.81571 3.6314 -0.041525 2..
-0.97537 -0.98958 1.3937 0.99105 0.81571 3.6314 -0.023777 2..
1.0502 1.0267 1.4449 0.98491 2.8157 3.6314 -0.04162 2..
1.0227 1.0045 1.4288 0.99553 2.8157 3.6314 -0.016356 2..
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1.0123
1.0275
1.0464
1.0459

1.0024
1.0102
1.0275
1.0257

1.4202
1.4338
1.4477
1.4402

Extract the test labels from the table.

TTest = tbl{:, labelName};

0.99233
1.0001
1.0011

0.98047

2.8157
2.8157
2.8157
2.8157

3.6314
3.6314
3.6314
3.6314

-0.014701

-0.02659
-0.042849
-0.035405

Predict the labels of the test data using the trained network and calculate the accuracy. Specify the
same mini-batch size used for training.

YTest = classify(net,tbl(:,1l:end-1));

Visualize the predictions in a confusion matrix.

figure

confusionchart(TTest,YTest)

Mo Tooth Fault

True Class

Tooth Fault

37

Mo Tooth Fault
Predicted Class

Tooth Fault

Calculate the classification accuracy. The accuracy is the proportion of the labels that the network

predicts correctly.

accuracy = mean(YTest == TTest)

0.9952

accuracy

NNNN
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Input Arguments

net — Trained network
SeriesNetwork object | DAGNetwork ohject

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained
network by importing a pretrained network (for example, by using the googlenet function) or by
training your own network using trainNetwork.

images — Image data
datastore | numeric array | table

Image data, specified as one of the following.

Data Type Description Example Usage
Datastore ImageDatastore Datastore of images Make predictions with
saved on disk images saved on disk,
where the images are
the same size.
When the images are
different sizes, use an
AugmentedImageData
store object.
AugmentedImageData |Datastore that applies |Make predictions with
store random affine images saved on disk,
geometric where the images are
transformations, different sizes.
including resizing,
rotation, reflection,
shear, and translation
TransformedDatasto |Datastore that * Transform
re transforms batches of datastores with
data read from an outputs not
underlying datastore supported by
using a custom classify.
transformation function |, Apply custom
transformations to
datastore output.
CombinedDatastore |Datastore that reads e Make predictions
from two or more using networks with
underlying datastores multiple inputs.
* Combine predictors
from different data
sources.
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Data Type Description Example Usage
Custom mini-batch Custom datastore that |Make predictions using
datastore returns mini-batches of |data in a format that

data other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric array Images specified asa  |Make predictions using
numeric array data that fits in memory
and does not require
additional processing
like resizing.

Table Images specified as a Make predictions using

table data stored in a table.

When you use a datastore with networks with multiple inputs, the datastore must be a
TransformedDatastore or CombinedDatastore object.

Tip For sequences of images, for example, video data, use the sequences input argument.

Datastore

Datastores read mini-batches of images and responses. Use datastores when you have data that does
not fit in memory or when you want to resize the input data.

These datastores are directly compatible with classify for image data.:

* ImageDatastore

* AugmentedImageDatastore

* CombinedDatastore

* TransformedDatastore

* Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

Note that ImageDatastore objects allow for batch reading of JPG or PNG image files using
prefetching. If you use a custom function for reading the images, then ImageDatastore objects do
not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning,
including image resizing.

Do not use the readFcn option of the imageDatastore function for preprocessing or resizing, as
this option is usually significantly slower.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the format required by
classify.
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The required format of the datastore output depends on the network architecture.

Network Architecture

Datastore Output

Example Output

Single input

Table or cell array, where the
first column specifies the
predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom datastores must output
tables.

data = read(ds)

data =
4x1 table

Predictors

{224x224%x3 double}
{224x224%x3 double}
{224x224%x3 double}
{224x224%x3 double}

data = read(ds)

data =
4x1 cell array

{224%x224x3 double}
{224%x224x3 double}
{224%x224x3 double}
{224%x224x3 double}

Multiple input

Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by

the InputNames property of the

network.

data = read(ds)

data =
4x2 cell array

{224%x224x3 double}
{224%x224x3 double}
{224%x224x3 double}
{224%x224x3 double}

{1p8x128x3 do
{1p8x128x3 do
{1p8x128x3 do
{1p8x128x3 do

The format of the predictors depends on the type of data.

Data Format

2-D images h-by-w-by-c numeric array, where h, w, and c are
the height, width, and number of channels of the
images, respectively

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,

and c are the height, width, depth, and number of
channels of the images, respectively

For more information, see “Datastores for Deep Learning”.
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Numeric Array

For data that fits in memory and does not require additional processing like augmentation, you can
specify a data set of images as a numeric array.

The size and shape of the numeric array depends on the type of image data.

Data Format

2-D images h-by-w-by-c-by-N numeric array, where h, w, and
c are the height, width, and number of channels
of the images, respectively, and N is the number
of images

3-D images h-by-w-by-d-by-c-by-N numeric array, where h, w,
d, and c are the height, width, depth, and number
of channels of the images, respectively, and N is
the number of images

Table
As an alternative to datastores or numeric arrays, you can also specify images in a table.
When you specify images in a table, each row in the table corresponds to an observation.

For image input, the predictors must be in the first column of the table, specified as one of the
following:
* Absolute or relative file path to an image, specified as a character vector

* 1-by-1 cell array containing a h-by-w-by-c numeric array representing a 2-D image, where h, w,
and c correspond to the height, width, and number of channels of the image, respectively

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
table
Complex Number Support: Yes

sequences — Sequence or time series data
datastore | cell array of numeric arrays | numeric array

Sequence or time series data, specified as one of the following.
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Data Type Description Example Usage
Datastore TransformedDatasto |Datastore that * Transform
re transforms batches of datastores with
data read from an outputs not
underlying datastore supported by
using a custom classify.
transformation function |, Apply custom
transformations to
datastore output.
CombinedDatastore [|Datastore that reads * Make predictions

from two or more
underlying datastores

using networks with
multiple inputs.

* Combine predictors
from different data
sources.

Custom mini-batch
datastore

Custom datastore that
returns mini-batches of
data

Make predictions using
data in a format that
other datastores do not
support.

For details, see
“Develop Custom Mini-
Batch Datastore”.

Numeric or cell array

A single sequence
specified as a numeric
array or a data set of
sequences specified as
cell array of numeric
arrays

Make predictions using
data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of sequences and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with classify for sequence data:

* CombinedDatastore

* TransformedDatastore

» Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by classify. For example, you can transform and combine data read from in-memory
arrays and CSV files using an ArrayDatastore and an TabularTextDatastore object,

respectively.

The datastore must return data in a table or cell array. Custom mini-batch datastores must output

tables.
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Datastore Output

Example Output

Table

data = read(ds)

data =
4x2 table

Predictors

{12x50 double}
{12x50 double}
{12x50 double}
{12x50 double}

Cell array

data

read(ds)

data =
4x2 cell array

{12x50 double}
{12x50 double}
{12x50 double}
{12x50 double}

The format of the predictors depends on the type o

f data.

Data

Format of Predictors

Vector sequence

c-by-s matrix, where c is the number of features
of the sequence and s is the sequence length

1-D image sequence

h-by-c-by-s array, where h and ¢ correspond to
the height and number of channels of the image,
respectively, and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

2-D image sequence

h-by-w-by-c-by-s array, where h, w, and ¢
correspond to the height, width, and number of
channels of the image, respectively, and s is the
sequence length.

Each sequence in the mini-batch must have the
same sequence length.

3-D image sequence

h-by-w-by-d-by-c-by-s array, where h, w, d, and ¢
correspond to the height, width, depth, and
number of channels of the image, respectively,
and s is the sequence length.

Each sequence in the mini-batch must have the
same sequence length.

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector,

or a 1-by-1 cell array containing a numeric array.
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For more information, see “Datastores for Deep Learning”.

Numeric or Cell Array

For data that fits in memory and does not require additional processing like custom transformations,
you can specify a single sequence as a numeric array or a data set of sequences as a cell array of
numeric arrays.

For cell array input, the cell array must be an N-by-1 cell array of numeric arrays, where N is the
number of observations. The size and shape of the numeric array representing a sequence depends
on the type of sequence data.

Input Description

Vector sequences c-by-s matrices, where c is the number of
features of the sequences and s is the sequence
length

1-D image sequences h-by-c-by-s arrays, where h and ¢ correspond to

the height and number of channels of the images,
respectively, and s is the sequence length

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and ¢
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and ¢
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
cell
Complex Number Support: Yes

features — Feature data
datastore | numeric array | table

Feature data, specified as one of the following.

Data Type Description Example Usage
Datastore TransformedDatasto |Datastore that * Transform
re transforms batches of datastores with
data read from an outputs not
underlying datastore supported by
using a custom classify.
transformation function |, Apply custom
transformations to
datastore output.
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Data Type Description Example Usage
CombinedDatastore |Datastore that reads ¢ Make predictions
from two or more using networks with
underlying datastores multiple inputs.

* Combine predictors
from different data
sources.

Custom mini-batch Custom datastore that |Make predictions using
datastore returns mini-batches of |data in a format that
data other datastores do not
support.

For details, see

“Develop Custom Mini-

Batch Datastore”.

Table Feature data specified |Make predictions using
as a table data stored in a table.
Numeric array Feature data specified |Make predictions using
as numeric array data that fits in memory
and does not require
additional processing
like custom
transformations.

Datastore

Datastores read mini-batches of feature data and responses. Use datastores when you have data that
does not fit in memory or when you want to apply transformations to the data.

These datastores are directly compatible with classify for feature data:

« CombinedDatastore

+ TransformedDatastore
» Custom mini-batch datastore. For details, see “Develop Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by classify. For more information, see “Datastores for Deep Learning”.

For networks with multiple inputs, the datastore must be a TransformedDatastore or
CombinedDatastore object.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Network Architecture

Datastore Output

Example Output

Single input layer

Table or cell array with at least
one column, where the first
column specifies the predictors.

Table elements must be scalars,
row vectors, or 1-by-1 cell
arrays containing a numeric
array.

Custom mini-batch datastores
must output tables.

Table for network with one
input:

data = read(ds)
data =
4x2 table
Predictors

{24x1 double}
{24x1 double}
{24x1 double}
{24x1 double}

Cell array for network with one
input:

data

read(ds)

data =
4x1 cell array

{24x1 double}
{24x1 double}
{24x1 double}
{24x1 double}

Multiple input layers

Cell array with at least
numInputs columns, where
numInputs is the number of
network inputs.

The first numInputs columns
specify the predictors for each
input.

The order of inputs is given by
the InputNames property of the
network.

Cell array for network with two
inputs:

data

read(ds)

data

4x3 cell array

{24x1 double} {28x1 d
{24x1 double} {28x1 d
{24x1 double} {28x1 d
{24x1 double} {28x1 d

ouble}
ouble}
ouble}

ouble}

The predictors must be c-by-1 column vectors, where c is the number of features.

For more information, see “Datastores for Deep Learning”.

Table

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data and responses as a table.

Each row in the table corresponds to an observation. The arrangement of predictors in the table
columns depends on the type of task.
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Task Predictors
Feature classification Features specified in one or more columns as
scalars.

Numeric Array

For feature data that fits in memory and does not require additional processing like custom
transformations, you can specify feature data as a numeric array.

The numeric array must be an N-by-numFeatures numeric array, where N is the number of
observations and numFeatures is the number of features of the input data.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
table
Complex Number Support: Yes

X1,...,XN — Numeric or cell arrays for networks with multiple inputs
numeric array | cell array

Numeric or cell arrays for networks with multiple inputs.

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

To input complex-valued data into a network, the SplitComplexInputs option of the input layer
must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
cell
Complex Number Support: Yes

mixed — Mixed data
TransformedDatastore | CombinedDatastore | custom mini-batch datastore

Mixed data, specified as one of the following.
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or more underlying datastores

Data Type Description Example Usage
TransformedDatastore Datastore that transforms * Make predictions using
batches of data read from an networks with multiple
underlying datastore using a inputs.
custom transformation function |, Transform outputs of
datastores not supported by
classify so they have the
required format.

* Apply custom
transformations to datastore
output.

CombinedDatastore Datastore that reads from two |¢ Make predictions using

networks with multiple
inputs.

* Combine predictors from
different data sources.

Custom mini-batch datastore

Custom datastore that returns
mini-batches of data

Make predictions using data in
a format that other datastores
do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by classify. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.

Datastore Output

Example Output

property of the network.

Cell array with numInputs columns, where
numInputs is the number of network inputs.

The order of inputs is given by the InputNames

data =

{24x1 double}
{24x1 double}
{24x1 double}
{24x1 double}

data = read(ds)

4x3 cell array

{28x1 double}
{28x1 double}
{28x1 double}
{28x1 double}

For image, sequence, and feature predictor input, the format of the predictors must match the
formats described in the images, sequences, or features argument descriptions, respectively.

For an example showing how to train a network with multiple inputs, see “Train Network on Image

and Feature Data”.

Tip To convert a numeric array to a datastore, use arrayDatastore.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: MiniBatchSize=256 specifies the mini-batch size as 256.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

When you make predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data, which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding
options, use the MiniBatchSize and SequencelLength options, respectively.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Acceleration — Performance optimization
"auto" (default) | "mex" | “none"

Performance optimization, specified as one of the following:

* "auto" — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

* "mex" — Compile and execute a MEX function. This option is available only when you use a GPU.
Using a GPU requires Parallel Computing Toolbox and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If Parallel
Computing Toolbox or a suitable GPU is not available, then the software returns an error.

* "none" — Disable all acceleration.

If Accelerationis "auto", then MATLAB applies a number of compatible optimizations and does
not generate a MEX function.

The "auto" and "mex" options can offer performance benefits at the expense of an increased initial
run time. Subsequent calls with compatible parameters are faster. Use performance optimization
when you plan to call the function multiple times using new input data.

The "mex" option generates and executes a MEX function based on the network and parameters used
in the function call. You can have several MEX functions associated with a single network at one time.
Clearing the network variable also clears any MEX functions associated with that network.

The "mex" option is available when you use a single GPU.

To use the "mex" option, you must have a C/C++ compiler installed and the GPU Coder Interface for
Deep Learning Libraries support package. Install the support package using the Add-On Explorer in
MATLAB. For setup instructions, see “MEX Setup” (GPU Coder). GPU Coder is not required.

The "mex" option supports networks that contain the layers listed on the “Supported Layers” (GPU
Coder) page, except for the sequenceInputLayer and featureInputLayer objects.
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MATLAB Compiler does not support deploying networks when you use the "mex" option.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu" | "multi-gpu" | "parallel”

Hardware resource, specified as one of the following:

o "auto" — Use a GPU if one is available; otherwise, use the CPU.

+ "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU
device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

* "cpu" — Use the CPU.

* "multi-gpu" — Use multiple GPUs on one machine, using a local parallel pool based on your
default cluster profile. If there is no current parallel pool, the software starts a parallel pool with
pool size equal to the number of available GPUs.

+ "parallel" — Use a local or remote parallel pool based on your default cluster profile. If there is
no current parallel pool, the software starts one using the default cluster profile. If the pool has
access to GPUs, then only workers with a unique GPU perform computation. If the pool does not
have GPUs, then computation takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep
Learning in Parallel, on GPUs, and in the Cloud”.

The "gpu", "multi-gpu", and "parallel" options require Parallel Computing Toolbox. To use a
GPU for deep learning, you must also have a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). If you choose one of
these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software
returns an error.

To make predictions in parallel with networks with recurrent layers (by setting
ExecutionEnvironment to either "multi-gpu" or "parallel"), the SequencelLength option
must be "shortest" or "longest".

Networks with custom layers that contain State parameters do not support making predictions in
parallel.

SequencelLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

* "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

* "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

» Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.
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To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
char | string

SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:
* "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

+ "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequencelLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Output Arguments

Y — Predicted class labels
categorical vector | cell array of categorical vectors

Predicted class labels, returned as a categorical vector or a cell array of categorical vectors. The
format of Y depends on the type of task.

The following table describes the format for classification tasks.

Task Format
Image or feature classification N-by-1 categorical vector of labels, where N is
Sequence-to-label classification the number of observations
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Task Format

Sequence-to-sequence classification N-by-1 cell array of categorical sequences of
labels, where N is the number of observations.
Each sequence has the same number of time
steps as the corresponding input sequence after
the SequencelLength option is applied to each
mini-batch independently.

For sequence-to-sequence classification tasks
with one observation, sequences can be a
matrix. In this case, Y is a categorical sequence of
labels.

scores — Predicted class scores
matrix | cell array of matrices

Predicted scores or responses, returned as a matrix or a cell array of matrices. The format of scores
depends on the type of task.

The following table describes the format of scores.

Task Format

Image classification N-by-K matrix, where N is the number of
observations and K is the number of classes

Sequence-to-label classification

Feature classification

Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the
number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after the SequencelLength option is applied to
each mini-batch independently.

For sequence-to-sequence classification tasks with one observation, sequences can be a matrix. In
this case, scores is a matrix of predicted class scores.

For an example exploring classification scores, see “Classify Webcam Images Using Deep Learning”.

Algorithms

When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Alternatives

To classify data using a network with multiple output layers, use the predict function and set the
ReturnCategorical option to 1 (true).

1-305



1 Deep Learning Functions

1-306

To compute the predicted classification scores, you can also use the predict function.
To compute the activations from a network layer, use the activations function.

For recurrent networks such as LSTM networks, you can make predictions and update the network
state using classifyAndUpdateState and predictAndUpdateState.

Version History
Introduced in R2016a

Prediction functions pad mini-batches to length of longest sequence before splitting when
you specify SequencelLength option as an integer

Starting in R2022b, when you make predictions with sequence data using the predict, classify,
predictAndUpdateState, classifyAndUpdateState, and activations functions and the
SequencelLength option is an integer, the software pads sequences to the length of the longest
sequence in each mini-batch and then splits the sequences into mini-batches with the specified
sequence length. If SequencelLength does not evenly divide the sequence length of the mini-batch,
then the last split mini-batch has a length shorter than SequencelLength. This behavior prevents
time steps that contain only padding values from influencing predictions.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequencelLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, manually pad the input data such that the mini-batches
have the length of the appropriate multiple of SequencelLength. For sequence-to-sequence
workflows, you may also need to manually remove time steps of the output that correspond to
padding values.

References

[1] Kudo, Mineichi, Jun Toyama, and Masaru Shimbo. “Multidimensional Curve Classification Using
Passing-through Regions.” Pattern Recognition Letters 20, no. 11-13 (November 1999): 1103-
11. https://doi.org/10.1016/S0167-8655(99)00077-X.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* C++ code generation supports the following syntaxes:

. , i , 1 , where i is a numeric arra
[Y,scores] classify(net,images), wh images

* [Y,scores] classify(net, sequences), where sequences is a cell array

* [Y,scores] classify(net, features), where features is a numeric array


https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels
https://archive.ics.uci.edu/ml/datasets/Japanese+Vowels
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* [Y,scores] = classify( ,Name=Value) using any of the previous syntaxes.

C++ code generation for the classify function is not supported for regression networks and
networks with multiple outputs.

For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

Only the MiniBatchSize, SequencelLength, SequencePaddingDirection, and
SequencePaddingValue name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

Only the "longest" and "shortest" option of the SequenceLength name-value pair is
supported for code generation.

If you use a GCC C/C++ compiler version 8.2 or above, you might get a -Wstringop-overflow
warning.

Code generation for Intel MKL-DNN target does not support the combination of
SequencelLength="1longest", SequencePaddingDirection="1eft", and
SequencePaddingValue=0 name-value arguments.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

GPU code generation supports the following syntaxes:

* Y = classify(net,images), where images is a numeric array
* Y = classify(net,sequences), where sequences is a cell array or numeric array
* Y = classify(net, features), where features is a numeric array

* [Y,scores] = classify( ) using any of the previous syntaxes.
* [Y,scores] = classify( ,Name=Value) using any of the previous syntaxes.

GPU code generation for the classify function is not supported for regression networks and
networks with multiple outputs.

GPU code generation does not support gpuArray inputs to the classify function.

The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only
vector input sequences. The ARM Compute Library for GPU does not support recurrent
networks.

For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

Only the MiniBatchSize, SequencelLength, SequencePaddingDirection, and
SequencePaddingValue name-value pair arguments are supported for code generation. All
name-value pairs must be compile-time constants.

Only the "longest" and "shortest" option of the SequenceLength name-value pair is
supported for code generation.

GPU code generation for the classify function supports inputs that are defined as half-precision
floating point data types. For more information, see half.

1-307



1 Deep Learning Functions

» Ifyouuse a GCC C/C++ compiler version 8.2 or above, you might get a -Wstringop-overflow
warning.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run computations in parallel, set the ExecutionEnvironment option to "multi-gpu" or
"parallel".

For details, see “Scale Up Deep Learning in Parallel, on GPUs, and in the Cloud”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

* The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

* AgpuArray

* A cell array containing gpuArray objects

* A table containing gpuArray objects

* A datastore that outputs cell arrays containing gpuArray objects
* A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
See Also

predict | activations | classifyAndUpdateState | predictAndUpdateState
Topics

“Classify Image Using GoogLeNet”
“Classify Webcam Images Using Deep Learning”
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classifyAndUpdateState

Classify data using a trained recurrent neural network and update the network state

Syntax
[updatedNet, Y] classifyAndUpdateState(recNet, sequences)
[updatedNet, Y] classifyAndUpdateState(recNet,X1,...,XN)
[updatedNet, Y] classifyAndUpdateState(recNet,mixed)
[updatedNet,Y,scores] = classifyAndUpdateState( )
= classifyAndUpdateState( __ ,Name=Value)

Description

You can make predictions using a trained deep learning network on either a CPU or GPU. Using a
GPU requires Parallel Computing Toolbox and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). Specify the hardware
requirements using the ExecutionEnvironment name-value argument.

For networks with multiple outputs, use the predictAndUpdateState function instead and set the
ReturnCategorical option to true.

[updatedNet,Y] = classifyAndUpdateState(recNet, sequences) classifies the data in
sequences using the trained recurrent neural network recNet and updates the network state.

This function supports recurrent neural networks only. The input recNet must have at least one
recurrent layer such as an LSTM layer or a custom layer with state parameters.

[updatedNet,Y] = classifyAndUpdateState(recNet, X1, ...,XN) predicts the class labels
for the data in the numeric arrays or cell arrays X1, ..., XN for the multi-input network recNet. The
input Xi corresponds to the network input recNet.InputNames(i).

[updatedNet,Y] = classifyAndUpdateState(recNet,mixed) predicts the class labels for the
multi-input network recNet with data of mixed data types.

[updatedNet,Y,scores] = classifyAndUpdateState( ) also returns the classification
scores corresponding to the class labels using any of the previous syntaxes.

= classifyAndUpdateState(  ,Name=Value) predicts class labels with additional
options specified by one or more name-value arguments using any of the previous syntaxes. For
example, MiniBatchSize=27 classifies data using mini-batches of size 27.

Tip When you make predictions with sequences of different lengths, the mini-batch size can impact
the amount of padding added to the input data, which can result in different predicted values. Try
using different values to see which works best with your network. To specify mini-batch size and
padding options, use the MiniBatchSize and Sequencelength options, respectively.

“Classify and Update Network State” on page 1-310
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Examples

Classify and Update Network State

Classify data using a recurrent neural network and update the network state.

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the
Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences
sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans =

5x1 Layer array with layers:

U WNRE

'sequenceinput’
'"Tstm'

Ifcl

'softmax'
‘classoutput’

Load the test data.

Sequence Input Sequence input with 12 dimensions
LSTM LSTM with 100 hidden units

Fully Connected 9 fully connected layer

Softmax softmax

Classification Output crossentropyex with 'l' and 8 other classes

[XTest,TTest] = japaneseVowelsTestData;

Loop over the time steps in a sequence. Classify each time step and update the network state.

X = XTest{94};

numTimeSteps = size(X,2);

for i = l:numTimeSteps
v = X(:
[net, label,score] =
labels(i) = label;

end

i)

classifyAndUpdateState(net,v);

Plot the predicted labels in a stair plot. The plot shows how the predictions change between time

steps.

figure

stairs(labels,"-0")
xlim([1 numTimeSteps])
xlabel("Time Step")
ylabel("Predicted Class")
title("Classification Over Time Steps")

Compare the predictions with the true label. Plot a horizontal line showing the true label of the

observation
trueLabel

truelLabel
3

TTest (94)

categorical
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hold on

line([1 numTimeSteps], [trueLabel trueLabel],
Color="red", ...
LineStyle="--")

legend(["Prediction" "True Label"])

Classification Over Time Steps

9 —=— Prediction | -
— — —True Label

B — .

TH R e A .

Predicted Class
n

r
K
{]
o
L=

2 4 6 8 10 12 14
Time Step

Input Arguments

recNet — Trained recurrent neural network
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a SeriesNetwork or a DAGNetwork object. You can
get a trained network by importing a pretrained network or by training your own network using the
trainNetwork function.

recNet is a recurrent neural network. It must have at least one recurrent layer (for example, an
LSTM network).

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the
number of observations, a numeric array representing a single sequence, or a datastore.
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For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences
depend on the type of data.

Input Description

Vector sequences c-by-s matrices, where c is the number of
features of the sequences and s is the sequence
length.

1-D image sequences h-by-c-by-s arrays, where h and ¢ correspond to

the height and number of channels of the images,
respectively, and s is the sequence length.

2-D image sequences h-by-w-by-c-by-s arrays, where h, w, and ¢
correspond to the height, width, and number of
channels of the images, respectively, and s is the
sequence length.

3-D image sequences h-by-w-by-d-by-c-by-s, where h, w, d, and ¢
correspond to the height, width, depth, and
number of channels of the 3-D images,
respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first
column contains sequences. The dimensions of the sequence data must correspond to the table
above.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
cell
Complex Number Support: Yes

X1,...,XN — Numeric or cell arrays for networks with multiple inputs
numeric array | cell array

Numeric or cell arrays for networks with multiple inputs.

For sequence predictor input, the input must be a numeric array representing a single sequence or a
cell array of sequences, where the format of the predictors match the formats described in the
sequences argument description. For image and feature predictor input, the input must be a
numeric array and the format of the predictors must match the one of the following:

Data Format

2-D images h-by-w-by-c numeric array, where h, w, and c are
the height, width, and number of channels of the
images, respectively.

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number of

channels of the images, respectively.
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Data Format
Feature data c-by-1 column vectors, where c is the number of
features.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

Tip To input complex-valued data into a network, the SplitComplexInputs option of the input
layer must be 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
cell
Complex Number Support: Yes

mixed — Mixed data
TransformedDatastore | CombinedDatastore | custom mini-batch datastore

Mixed data, specified as one of the following.

Data Type Description Example Usage

TransformedDatastore Datastore that transforms * Make predictions using
batches of data read from an networks with multiple
underlying datastore using a inputs.

custom transformation function |, Transform outputs of

datastores not supported by
classifyAndUpdateState
so they have the required
format.

* Apply custom
transformations to datastore

output.
CombinedDatastore Datastore that reads from two |* Make predictions using
or more underlying datastores networks with multiple
inputs.
* Combine predictors from
different data sources.
Custom mini-batch datastore Custom datastore that returns |Make predictions using data in
mini-batches of data a format that other datastores

do not support.

For details, see “Develop
Custom Mini-Batch Datastore”.

You can use other built-in datastores for making predictions by using the transform and combine
functions. These functions can convert the data read from datastores to the table or cell array format
required by classifyAndUpdateState. For more information, see “Datastores for Deep Learning”.

The datastore must return data in a table or a cell array. Custom mini-batch datastores must output
tables. The format of the datastore output depends on the network architecture.
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Datastore Output Example Output

Cell array with numInputs columns, where data = read(ds)
numInputs is the number of network inputs. data =
The order of inputs is given by the InputNames

property of the network. 4x3 cell array

{12x50 double} {28x1 double}
{12x50 double} {28x1 double}
{12x50 double} {28x1 double}

{12x50 double} {28x1 double}

For sequence predictor input, the input must be a numeric array representing a single sequence or a
cell array of sequences, where the format of the predictors match the formats described in the
sequences argument description. For image and feature predictor input, the input must be a
numeric array and the format of the predictors must match the one of the following:

Data Format

2-D images h-by-w-by-c numeric array, where h, w, and c are
the height, width, and number of channels of the
images, respectively.

3-D images h-by-w-by-d-by-c numeric array, where h, w, d,
and c are the height, width, depth, and number o
channels of the images, respectively.

—h

Feature data c-by-1 column vectors, where c is the number of
features.

For an example showing how to train a network with multiple inputs, see “Train Network on Image
and Feature Data”.

Tip To convert a numeric array to a datastore, use ArrayDatastore.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ... ,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [updatedNet,Y] = classifyAndUpdateState(recNet,C,MiniBatchSize=27)
classifies data using mini-batches of size 27.

MiniBatchSize — Size of mini-batches
128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes
require more memory, but can lead to faster predictions.

When you make predictions with sequences of different lengths, the mini-batch size can impact the
amount of padding added to the input data, which can result in different predicted values. Try using
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different values to see which works best with your network. To specify mini-batch size and padding
options, use the MiniBatchSize and SequencelLength options, respectively.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

Acceleration — Performance optimization
"auto" (default) | "none"

Performance optimization, specified as one of the following:

* "auto" — Automatically apply a number of optimizations suitable for the input network and
hardware resources.

* "none" — Disable all acceleration.

Using the Acceleration option "auto" can offer performance benefits, but at the expense of an
increased initial run time. Subsequent calls with compatible parameters are faster. Use performance
optimization when you plan to call the function multiple times using new input data.

ExecutionEnvironment — Hardware resource
"auto" (default) | "gpu" | "cpu"

Hardware resource, specified as one of the following:

o "auto" — Use a GPU if one is available; otherwise, use the CPU.

* "gpu" — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a supported GPU
device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox). If Parallel Computing Toolbox or a suitable GPU is not available, then the
software returns an error.

* "cpu" — Use the CPU.

SequencelLength — Option to pad or truncate sequences
"longest" (default) | "shortest" | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

* "longest" — Pad sequences in each mini-batch to have the same length as the longest sequence.
This option does not discard any data, though padding can introduce noise to the network.

* "shortest" — Truncate sequences in each mini-batch to have the same length as the shortest
sequence. This option ensures that no padding is added, at the cost of discarding data.

* Positive integer — For each mini-batch, pad the sequences to the length of the longest sequence in
the mini-batch, and then split the sequences into smaller sequences of the specified length. If
splitting occurs, then the software creates extra mini-batches. If the specified sequence length
does not evenly divide the sequence lengths of the data, then the mini-batches containing the ends
those sequences have length shorter than the specified sequence length. Use this option if the full
sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-
batch by setting the MiniBatchSize option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
char | string
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SequencePaddingDirection — Direction of padding or truncation
"right" (default) | "left"

Direction of padding or truncation, specified as one of the following:
* "right" — Pad or truncate sequences on the right. The sequences start at the same time step
and the software truncates or adds padding to the end of the sequences.

+ "left" — Pad or truncate sequences on the left. The software truncates or adds padding to the
start of the sequences so that the sequences end at the same time step.

Because recurrent layers process sequence data one time step at a time, when the recurrent layer
OutputMode property is 'last', any padding in the final time steps can negatively influence the
layer output. To pad or truncate sequence data on the left, set the SequencePaddingDirection
option to "left".

For sequence-to-sequence networks (when the QutputMode property is 'sequence' for each
recurrent layer), any padding in the first time steps can negatively influence the predictions for the
earlier time steps. To pad or truncate sequence data on the right, set the
SequencePaddingDirection option to "right".

To learn more about the effect of padding, truncating, and splitting the input sequences, see
“Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar.

The option is valid only when SequencelLength is "longest" or a positive integer. Do not pad
sequences with NaN, because doing so can propagate errors throughout the network.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Output Arguments

updatedNet — Updated network
SeriesNetwork object | DAGNetwork ohject

Updated network. updatedNet is the same type of network as the input network.

Y — Predicted class labels
categorical vector | cell array of categorical vectors

Predicted class labels, returned as a categorical vector, or a cell array of categorical vectors. The
format of Y depends on the type of problem.

The following table describes the format of Y.

Task Format

Sequence-to-label classification N-by-1 categorical vector of labels, where N is
the number of observations.
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Task Format

Sequence-to-sequence classification N-by-1 cell array of categorical sequences of
labels, where N is the number of observations.
Each sequence has the same number of time
steps as the corresponding input sequence after
applying the SequencelLength option to each
mini-batch independently.

For sequence-to-sequence classification problems
with one observation, sequences can be a
matrix. In this case, YPred is a categorical
sequence of labels.

scores — Predicted class scores
matrix | cell array of matrices

Predicted class scores, returned as a matrix or a cell array of matrices. The format of scores
depends on the type of problem.

The following table describes the format of scores.

Task Format

Sequence-to-label classification N-by-K matrix, where N is the number of
observations, and K is the number of classes.

Sequence-to-sequence classification N-by-1 cell array of matrices, where N is the
number of observations. The sequences are
matrices with K rows, where K is the number of
classes. Each sequence has the same number of
time steps as the corresponding input sequence
after applying the SequencelLength option to
each mini-batch independently.

For sequence-to-sequence classification problems with one observation, sequences can be a matrix.
In this case, scores is a matrix of predicted class scores.

Algorithms

When you train a network using the trainNetwork function, or when you use prediction or
validation functions with DAGNetwork and SeriesNetwork objects, the software performs these
computations using single-precision, floating-point arithmetic. Functions for training, prediction, and
validation include trainNetwork, predict, classify, and activations. The software uses
single-precision arithmetic when you train networks using both CPUs and GPUs.

Version History
Introduced in R2017b

Prediction functions pad mini-batches to length of longest sequence before splitting when
you specify SequencelLength option as an integer
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Starting in R2022b, when you make predictions with sequence data using the predict, classify,
predictAndUpdateState, classifyAndUpdateState, and activations functions and the
Sequencelength option is an integer, the software pads sequences to the length of the longest
sequence in each mini-batch and then splits the sequences into mini-batches with the specified
sequence length. If SequencelLength does not evenly divide the sequence length of the mini-batch,
then the last split mini-batch has a length shorter than SequenceLength. This behavior prevents
time steps that contain only padding values from influencing predictions.

In previous releases, the software pads mini-batches of sequences to have a length matching the
nearest multiple of SequencelLength that is greater than or equal to the mini-batch length and then
splits the data. To reproduce this behavior, manually pad the input data such that the mini-batches
have the length of the appropriate multiple of SequenceLength. For sequence-to-sequence
workflows, you may also need to manually remove time steps of the output that correspond to
padding values.

References

[1] M. Kudo, J. Toyama, and M. Shimbo. "Multidimensional Curve Classification Using Passing-
Through Regions." Pattern Recognition Letters. Vol. 20, No. 11-13, pages 1103-1111.

[2] UCI Machine Learning Repository: Japanese Vowels Dataset. https://archive.ics.uci.edu/ml/
datasets/Japanese+Vowels

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
* C++ code generation supports the following syntaxes:

* [updatedNet,Y] = classifyAndUpdateState(recNet, sequences), where sequences
is cell array or numeric array.

* [updatedNet,Y,scores] = classifyAndUpdateState(recNet, sequences), where
sequences is cell array.

+ = classifyAndUpdateState(recNet, sequences,Name=Value) using any of the
previous syntaxes

» For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

+ For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

* Only the MiniBatchSize, SequencelLength, SequencePaddingDirection, and
SequencePaddingValue name-value arguments are supported for code generation. All name-
value arguments must be compile-time constants.

* Only the "longest" and "shortest" option of the SequenceLength name-value argument is
supported for code generation.

* Code generation for Intel MKL-DNN target does not support the combination of
SequencelLength="1longest", SequencePaddingDirection="1eft", and
SequencePaddingValue=0 name-value arguments.
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GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
* GPU code generation supports the following syntaxes:
* [updatedNet,Y] = classifyAndUpdateState(recNet, sequences), where sequences

is cell array.

* [updatedNet,Y,scores] = classifyAndUpdateState(recNet, sequences), where
sequences is cell array.

+ = classifyAndUpdateState( ,Name=Value) using any of the previous syntaxes

* GPU code generation for the classifyAndUpdateState function is only supported for recurrent
neural networks targeting cuDNN and TensorRT libraries.

* GPU code generation does not support gpuArray inputs to the classifyAndUpdateState
function.

» For vector sequence inputs, the number of features must be a constant during code generation.
The sequence length can be variable sized.

» For image sequence inputs, the height, width, and the number of channels must be a constant
during code generation.

* Only the MiniBatchSize, SequencelLength, SequencePaddingDirection, and
SequencePaddingValue name-value arguments are supported for code generation. All name-
value arguments must be compile-time constants.

* Only the "longest" and "shortest" options of the SequenceLength name-value argument is
supported for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

* The ExecutionEnvironment option must be "auto" or "gpu" when the input data is:

* AgpuArray

* A cell array containing gpuArray objects

* A table containing gpuArray objects

* A datastore that outputs cell arrays containing gpuArray objects
* A datastore that outputs tables containing gpuArray objects

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
sequencelnputlLayer | lstmLayer | bilstmLayer | gruLayer | predictAndUpdateState |
predict | classify | resetState

Topics

“Sequence Classification Using Deep Learning”

“Visualize Activations of LSTM Network”

“Long Short-Term Memory Networks”

“Specify Layers of Convolutional Neural Network”

“Set Up Parameters and Train Convolutional Neural Network”

1-319



1 Deep Learning Functions

“Deep Learning in MATLAB”
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clearCache

Clear accelerated deep learning function trace cache

Syntax

clearCache(accfun)

Description

clearCache(accfun) clears the trace cache of the AcceleratedFunction object accfun

Examples

Clear Cache of Accelerated Function

Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

s = load("dlnetDigits.mat");
net = s.net;
classNames = s.classNames;

Accelerate the model loss function modelLoss listed at the end of the example.

fun = @modellLoss;
accfun = dlaccelerate(fun);

Clear any previously cached traces of the accelerated function using the clearCache function.
clearCache(accfun)

View the properties of the accelerated function. Because the cache is empty, the Occupancy property
is 0.

accfun

accfun =
AcceleratedFunction with properties:

Function: @modellLoss

Enabled: 1
CacheSize: 50
HitRate: 0O

Occupancy: 0
CheckMode: 'none'
CheckTolerance: 1.0000e-04

The returned AcceleratedFunction object stores the traces of underlying function calls and
reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a
custom training loop, replace calls to the model gradients function with calls to the accelerated
function. You can invoke the accelerated function as you would invoke the underlying function. Note
that the accelerated function is not a function handle.
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Evaluate the accelerated model gradients function with random data using the dlfeval function.

X = rand(28,28,1,128,"single");

X = dlarray(X, "SSCB");

T = categorical(classNames(randi(10,[128 1])));
T = onehotencode(T,2)";

T = dlarray(T,"CB");

[loss,gradients,state] = dlfeval(accfun,net,X,T);

View the Occupancy property of the accelerated function. Because the function has been evaluated,
the cache is nonempty.

accfun.0Occupancy
ans = 2
Clear the cache using the clearCache function.

clearCache(accfun)

View the Occupancy property of the accelerated function. Because the cache has been cleared, the
cache is empty.

accfun.Occupancy
ans = 0
Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the loss, the gradients of the loss with respect to the
learnable parameters in net, and the network state. To compute the gradients, use the dlgradient
function.

function [loss,gradients,state] = modelLoss(net,X,T)
[Y,state] = forward(net,X);

loss = crossentropy(Y,T);

gradients = dlgradient(loss,net.Learnables);

end

Input Arguments

accfun — Accelerated function
AcceleratedFunction object

Accelerated function, specified as an AcceleratedFunction object.

Version History
Introduced in R2021a
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See Also
dlaccelerate | AcceleratedFunction | dlarray | dlgradient | dlfeval

Topics

“Deep Learning Function Acceleration for Custom Training Loops”
“Accelerate Custom Training Loop Functions”

“Check Accelerated Deep Learning Function Outputs”

“Evaluate Performance of Accelerated Deep Learning Function”
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Clipped Rectified Linear Unit (ReLU) layer

Description

A clipped ReLU layer performs a threshold operation, where any input value less than zero is set to
zero and any value above the clipping ceiling is set to that clipping ceiling.

This operation is equivalent to:

0, x<0
f(x) =1x, 0 = x < ceiling .
ceiling, x = ceiling

This clipping prevents the output from becoming too large.

Creation

Syntax

layer
layer

clippedRelulLayer(ceiling)
clippedRelulLayer(ceiling, 'Name', Name)

Description

layer = clippedRelulLayer(ceiling) returns a clipped ReLU layer with the clipping ceiling
equal to ceiling.

layer = clippedRelulLayer(ceiling, 'Name', Name) sets the optional Name property.

Properties
Clipped RelLU

Ceiling — Ceiling for input clipping
positive scalar

Ceiling for input clipping, specified as a positive scalar.

Example: 10
Layer
Name — Layer name

"' (default) | character vector | string scalar
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Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name "'

Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.
Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Clipped RelLU Layer

Create a clipped ReLU layer with the name 'clipl' and the clipping ceiling equal to 10.

layer = clippedRelulLayer(10, 'Name', 'clipl')

layer =
ClippedReLULayer with properties:

Name: 'clipl’

Hyperparameters
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Ceiling: 10

Include a clipped ReLU layer in a Layer array.

layers = [ ...
imagelInputlLayer([28 28 1])
convolution2dLayer(5,20)
clippedRelulLayer(10)
maxPooling2dLayer(2, 'Stride",2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer]

layers =
7x1 Layer array with layers:

1 t Image Input 28x28x1 images with 'zerocenter' normalization

2 t 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0O (
3 b Clipped RelLU Clipped ReLU with ceiling 10

4 b 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [6 0 O 0O
5 b Fully Connected 10 fully connected layer

6 b Softmax softmax

7 t Classification Output crossentropyex

Version History
Introduced in R2017b

References

[1] Hannun, Awni, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, et al. "Deep speech: Scaling up end-to-end speech recognition." Preprint, submitted
17 Dec 2014. http://arxiv.org/abs/1412.5567

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
trainNetwork | reluLayer | leakyRelulLayer | swishLayer

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”

“Specify Layers of Convolutional Neural Network”
“Compare Activation Layers”



clippedReluLayer

“List of Deep Learning Layers”
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concatenationLayer

Concatenation layer

Description

A concatenation layer takes inputs and concatenates them along a specified dimension. The inputs
must have the same size in all dimensions except the concatenation dimension.

Specify the number of inputs to the layer when you create it. The inputs have the names
"inl','in2', ..., 'inN', where N is the number of inputs. Use the input names when connecting
or disconnecting the layer by using connectLayers or disconnectLayers.

Creation

Syntax

layer
layer

concatenationLayer(dim, numInputs)
concatenationLayer(dim,numInputs, 'Name', name)

Description

layer = concatenationlLayer(dim,numInputs) creates a concatenation layer that
concatenates numInputs inputs along the specified dimension, dim. This function also sets the Dim
and NumInputs properties.

layer = concatenationLayer(dim,numInputs, 'Name', name) also sets the Name property.

Properties
Concatenation

Dim — Concatenation dimension
positive integer
Concatenation dimension, specified as a positive integer.

Example: 4
Layer

Name — Layer name
"' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name "'

Data Types: char | string
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NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer greater than or equal to 2.

The inputs have the names 'inl', 'in2',...,"'inN"', where N is NumInputs. For example, if
NumInputs is 3, then the inputs have the names 'inl', 'in2"', and 'in3"'. Use the input names
when connecting or disconnecting the layer using the connectlLayers or disconnectLayers
functions.

InputNames — Input Names
{'inl','in2"',.., "inN'} (default)

Input names, specified as {'inl"', 'in2', ..., 'inN'}, where N is the number of inputs of the layer.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create and Connect Concatenation Layer

Create a concatenation layer that concatenates two inputs along the fourth dimension (channels).
Name the concatenation layer 'concat'.

concat

concatenationLayer(4,2, 'Name', 'concat"')

concat =
ConcatenationLayer with properties:

Name: 'concat'
Dim: 4
NumInputs: 2
InputNames: {'inl' 'in2'}

Create two ReLU layers and connect them to the concatenation layer. The concatenation layer
concatenates the outputs from the ReLU layers.

1-329



1 Deep Learning Functions

1-330

relu 1 = reluLayer('Name', 'relu 1');
relu 2 = reluLayer('Name', 'relu 2');
lgraph = layerGraph();
lgraph = addLayers(lgraph, relu 1);
lgraph = addLayers(lgraph, relu 2);
lgraph = addLayers(lgraph, concat);
lgraph = connectLayers(lgraph, 'relu 1', ‘'concat/inl');
lgraph = connectLayers(lgraph, 'relu 2', 'concat/in2');
plot(lgraph)
.mﬂr ®ly 5
.E’“"?c,-”

Version History
Introduced in R2019a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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See Also
trainNetwork | layerGraph | additionLayer | connectlLayers | disconnectlLayers

Topics

“3-D Brain Tumor Segmentation Using Deep Learning”
“Pretrained Deep Neural Networks”

“List of Deep Learning Layers”
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confusionchart

Create confusion matrix chart for classification problem

Syntax
confusionchart(truelLabels,predictedLabels)
confusionchart(m)
confusionchart(m,classLabels)
confusionchart(parent, )
confusionchart(  ,Name,Value)

cm = confusionchart( )

Description

confusionchart(trueLabels,predictedLabels) creates a confusion matrix chart from true
labels truelLabels and predicted labels predictedLabels and returns a ConfusionMatrixChart
object. The rows of the confusion matrix correspond to the true class and the columns correspond to
the predicted class. Diagonal and off-diagonal cells correspond to correctly and incorrectly classified
observations, respectively. Use cm to modify the confusion matrix chart after it is created. For a list of
properties, see ConfusionMatrixChart Properties.

confusionchart(m) creates a confusion matrix chart from the numeric confusion matrix m. Use this
syntax if you already have a numeric confusion matrix in the workspace.

confusionchart(m, classlLabels) specifies class labels that appear along the x-axis and y-axis.
Use this syntax if you already have a numeric confusion matrix and class labels in the workspace.

confusionchart(parent, ) creates the confusion chart in the figure, panel, or tab specified
by parent.
confusionchart(  ,Name,Value) specifies additional ConfusionMatrixChart properties

using one or more name-value pair arguments. Specify the properties after all other input arguments.
For a list of properties, see ConfusionMatrixChart Properties.

cm = confusionchart( ) returns the ConfusionMatrixChart object. Use cm to modify
properties of the chart after creating it. For a list of properties, see ConfusionMatrixChart Properties.

Examples

Create Confusion Matrix Chart

Load a sample of predicted and true labels for a classification problem. trueLabels is the true
labels for an image classification problem and predictedLabels is the predictions of a
convolutional neural network.

load('CifarlOLabels.mat', 'trueLabels', 'predictedLabels');

Create a confusion matrix chart.
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figure
cm = confusionchart(truelLabels,predictedLabels);

airplane 5 23 6
automobile 1 5 15
bird 5 4 3
cat 12 5 T
i
8 deer 14 | 2 1
(&
S dog 17 3
'_

frog 16

horse| 9 1 14 13 22 17

ship| 37 10 4 4 1

truck | 20 39 3 3

T L T Y T =

Predicted Class

¥

Modify the appearance and behavior of the confusion matrix chart by changing property values. Add
column and row summaries and a title. A column-normalized column summary displays the number of
correctly and incorrectly classified observations for each predicted class as percentages of the
number of observations of the corresponding predicted class. A row-normalized row summary
displays the number of correctly and incorrectly classified observations for each true class as

percentages of the number of observations of the corresponding true class.

cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
cm.Title = 'CIFAR-10 Confusion Matrix';
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CIFAR-10 Confusion Matrix

airplane ks 21708 | 4 |1 515|236
automobile 1 15
bird 13| 8 | 17| 5
cat| 12 | 4 12
deer| 5 | 1 | 28
@ dog| 7 | 2 | 28
E frog| 5 16
= horse| 9 | 1 | 14
ship| 37 |10 | 4
truck | 20 | 39

Predicted Class

Create Confusion Matrix Chart from Numeric Confusion Matrix
You can use confusionchart to create a confusion matrix chart from a numeric confusion matrix.

Load a sample confusion matrix m and the associated class labels classLabels.

load('Cifarl0ConfusionMat.mat', 'm', 'classLabels');

m
m = 10x10

923 4 21 8 4 1 5 5 23 6

5 972 2 0 0 0 0 1 5 15

26 2 892 30 13 8 17 5 4 3

12 4 32 826 24 48 30 12 5 7

5 1 28 24 898 13 14 14 2 1

7 2 28 111 18 801 13 17 0 3

5 0 16 27 3 4 943 1 1 0

9 1 14 13 22 17 3 915 2 4

37 10 4 4 0 1 2 1 931 10

20 39 3 3 0 0 2 1 9 923
classLabels
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classLabels = 10x1 categorical
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Create a confusion matrix chart from the numeric confusion matrix and the class labels.

cm = confusionchart(m,classLabels);

airplane

automaobile

bird

cat

deer

dog

True Class

frog

horse

ship

truck

o© o N R i i e

Predicted Class

Sort Classes by Precision or Recall

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network. Create a confusion matrix chart with column and row summaries

load('CifarlOLabels.mat', 'trueLabels', 'predictedLabels');
figure
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cm = confusionchart(truelLabels,predictedlLabels,
"ColumnSummary', 'column-normalized’,
'RowSummary', 'row-normalized');

airplane

automobile

bird

cat

deer
dog
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horse

True Class

ship

truck
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Predicted Class

To sort the classes of the confusion matrix by class-wise recall (true positive rate), normalize the cell
values across each row, that is, by the number of observations that have the same true class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the row summaries to the right
are decreasing.

cm.Normalization = 'row-normalized';
sortClasses(cm, 'descending-diagonal');
cm.Normalization = 'absolute';
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To sort the classes by class-wise precision (positive predictive value), normalize the cell values across
each column, that is, by the number of observations that have the same predicted class. Sort the
classes by the corresponding diagonal cell values and reset the normalization of the cell values. The
classes are now sorted such that the percentages in the blue cells in the column summaries at the
bottom are decreasing.

cm.Normalization = 'column-normalized';
sortClasses(cm, 'descending-diagonal');
cm.Normalization = 'absolute';
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Input Arguments

trueLabels — True labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors |

logical vector

True labels of classification problem, specified as a categorical vector, numeric vector, string vector,
character array, cell array of character vectors, or logical vector. If trueLabels is a vector, then
each element corresponds to one observation. If trueLabels is a character array, then it must be
two-dimensional with each row corresponding to the label of one observation.

predictedLabels — Predicted labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors |

logical vector

Predicted labels of classification problem, specified as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. If predictedLabels is a
vector, then each element corresponds to one observation. If predictedLabels is a character array,
then it must be two-dimensional with each row corresponding to the label of one observation.

m — Confusion matrix
matrix

Confusion matrix, specified as a matrix. m must be square and its elements must be positive integers.
The element m(1i, j) is the number of times an observation of the ith true class was predicted to be
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of the jth class. Each colored cell of the confusion matrix chart corresponds to one element of the
confusion matrix m.

classLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

Class labels of the confusion matrix chart, specified as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. If classLabels is a vector,
then it must have the same number of elements as the confusion matrix has rows and columns. If
classLabels is a character array, then it must be two-dimensional with each row corresponding to
the label of one class.

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: cm = confusionchart(trueLabels,predictedLabels, 'Title', 'My Title
Text', 'ColumnSummary', 'column-normalized')

Note The properties listed here are only a subset. For a complete list, see ConfusionMatrixChart
Properties.

Title — Title
"' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.
Example: cm = confusionchart( ,'Title','My Title Text')

Example: cm.Title = 'My Title Text'

ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

Option Description
‘of f' Do not display a column summary.
'absolute’ Display the total number of correctly and

incorrectly classified observations for each
predicted class.
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Option

Description

'column-normalized'

Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the number of observations of the
corresponding predicted class. The percentages
of correctly classified observations can be
thought of as class-wise precisions (or positive
predictive values).

'total-normalized'

Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the total number of observations.

Example: cm = confusionchart( , 'ColumnSummary', 'column-normalized"')

Example: cm.ColumnSummary = 'column-normalized'

RowSummary — Row summary

"off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

Option Description
‘of f' Do not display a row summary.
'absolute’ Display the total number of correctly and

incorrectly classified observations for each true
class.

'row-normalized'

Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the number of observations of the
corresponding true class. The percentages of
correctly classified observations can be thought
of as class-wise recalls (or true positive rates).

'"total-normalized'

Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the total number of observations.

Example: cm = confusionchart( , 'RowSummary', 'row-normalized')

Example: cm.RowSummary = 'row-normalized’

Normalization — Normalization of cell values

‘absolute’ (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'’

Normalization of cell values, specified as one of the following:

Option

Description

'absolute’

Display the total number of observations in each
cell.

"column-normalized'

Normalize each cell value by the number of
observations that has the same predicted class.
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Option Description

'row-normalized' Normalize each cell value by the number of
observations that has the same true class.

"total-normalized' Normalize each cell value by the total number of
observations.

Modifying the normalization of cell values also affects the colors of the cells.

Example: cm = confusionchart( , 'Normalization', 'total-normalized')
Example: cm.Normalization = 'total-normalized'
Output Arguments

cm — Confusion matrix chart object
ConfusionMatrixChart object

ConfusionMatrixChart object, which is a standalone visualization on page 1-341. Use cm to set
properties of the confusion matrix chart after creating it.

Limitations

* MATLAB code generation is not supported for ConfusionMatrixChart objects.

More About

Standalone Visualization

A standalone visualization is a chart designed for a special purpose that works independently from
other charts. Unlike other charts such as plot and surf, a standalone visualization has a
preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:

* It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.
* The gca function can return the chart object as the current axes.

* You can pass the chart object to many MATLAB functions that accept an axes object as an input
argument. For example, you can pass the chart object to the title function.

Tips

» Ifyou have one-hot (one-of-N) data, use onehotdecode to prepare your data for use with
confusionchart. For example, suppose you have true labels targets and predicted labels
outputs, with observations in columns. You can create a confusion matrix chart using

numClasses = size(targets,1);

trueLabels = onehotdecode(targets,l:numClasses,l);
predictedLabels = onehotdecode(outputs,l:numClasses,1);
confusionchart(trueLabels,predictedLabels)
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» Ifyou have Statistics and Machine Learning Toolbox, you can create a confusion matrix chart for
tall arrays. For details, see confusionchart and “Confusion Matrix for Classification Using Tall
Arrays” (Statistics and Machine Learning Toolbox).

Version History
Introduced in R2018b
See Also

Functions
categorical | sortClasses | classify | confusionmat

Properties
ConfusionMatrixChart Properties

Topics

“Compare Deep Learning Models Using ROC Curves”
“Deep Learning in MATLAB”
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confusionmat

Compute confusion matrix for classification problem

Syntax

C = confusionmat(group,grouphat)
C = confusionmat(group,grouphat, 'Order',grouporder)
[C,order] = confusionmat( )

Description

C = confusionmat(group,grouphat) returns the confusion matrix C determined by the known
and predicted groups in group and grouphat, respectively.

C = confusionmat(group,grouphat, 'Order',grouporder) uses grouporder to order the
rows and columns of C.

[C,order] = confusionmat( ) also returns the order of the rows and columns of C in the
variable order using any of the input arguments in previous syntaxes.

Examples

Calculate Confusion Matrix

Load a sample of predicted and true labels for a classification problem. trueLabels are the true
labels for an image classification problem and predictedLabels are the predictions of a
convolutional neural network.

load('CifarlOLabels.mat', 'trueLabels', 'predictedLabels');
Calculate the numeric confusion matrix. order is the order of the classes in the confusion matrix.

[m,order] = confusionmat(truelLabels,predictedLabels)

m = 10x10

923 4 21 8 4 1 5 5 23 6
5 972 2 0 0 0 0 1 5 15
26 2 892 30 13 8 17 5 4 3
12 4 32 826 24 48 30 12 5 7
5 1 28 24 898 13 14 14 2 1

7 2 28 111 18 801 13 17 0 3

5 0 16 27 3 4 943 1 1 0

9 1 14 13 22 17 3 915 2 4
37 10 4 4 0 1 2 1 931 10
20 39 3 3 0 0 2 1 9 923

order = 10x1 categorical
airplane
automobile
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You can use confusionchart to plot the confusion matrix as a confusion matrix chart.

figure
cm = confusionchart(m,order);
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You do not need to calculate the confusion matrix first and then plot it. Instead, plot a confusion
matrix chart directly from the true and predicted labels. You can also add column and row summaries
and a title.

figure

cm = confusionchart(trueLabels,predictedLabels,
'Title','My Title',
'RowSummary', 'row-normalized',
"ColumnSummary', 'column-normalized');
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The ConfusionMatrixChart object stores the numeric confusion matrix in the NormalizedValues
propert